JPWO2020017083A1 - Detectors, programs, and detection systems - Google Patents

Detectors, programs, and detection systems Download PDF

Info

Publication number
JPWO2020017083A1
JPWO2020017083A1 JP2020530885A JP2020530885A JPWO2020017083A1 JP WO2020017083 A1 JPWO2020017083 A1 JP WO2020017083A1 JP 2020530885 A JP2020530885 A JP 2020530885A JP 2020530885 A JP2020530885 A JP 2020530885A JP WO2020017083 A1 JPWO2020017083 A1 JP WO2020017083A1
Authority
JP
Japan
Prior art keywords
light
light emitting
unit
measurement surface
emitting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020530885A
Other languages
Japanese (ja)
Other versions
JP7109010B2 (en
Inventor
俊雄 河野
俊雄 河野
良 下北
良 下北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENIAL LIGHT CO Ltd
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
GENIAL LIGHT CO Ltd
Alps Alpine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, GENIAL LIGHT CO Ltd, Alps Alpine Co Ltd filed Critical Alps Electric Co Ltd
Publication of JPWO2020017083A1 publication Critical patent/JPWO2020017083A1/en
Application granted granted Critical
Publication of JP7109010B2 publication Critical patent/JP7109010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Signal Processing (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一実施形態に係る検出装置は、第1波長を有する第1光を発光可能な第1発光部と、前記第1発光部が発光した前記第1光の反射光を受光可能であり、受光した光に応じた受光信号を出力する受光部と、少なくとも一部に透光性を有し、前記第1発光部及び前記受光部を覆う測定面と、前記第1発光部が発光している間、前記受光信号に基づいて、生体情報を測定し、当該生体情報に基づいて、前記測定面に人体が接触したか判定する制御部と、を備える。The detection device according to the embodiment is capable of receiving the first light emitting unit capable of emitting the first light having the first wavelength and the reflected light of the first light emitted by the first light emitting unit, and has received the light. A light receiving portion that outputs a light receiving signal corresponding to light, a measurement surface that has at least a part of translucency and covers the first light emitting portion and the light receiving portion, and while the first light emitting portion emits light. A control unit that measures biological information based on the received light signal and determines whether or not a human body has come into contact with the measurement surface based on the biological information.

Description

本発明は、検出装置、プログラム、及び検出システムに関する。 The present invention relates to detection devices, programs, and detection systems.

従来、反射光を利用して人体の接触を検出する装置が知られている。このような装置として、第1の波長の光を発光する第1の発光手段と、第1の波長とは異なる第2の波長の光を発光する第2の発光手段と、第1及び第2の波長の光の反射光に基づいて、接触した物体が人体であるか判断する判断手段と、を備えた切替装置が提案されている。この切替装置は、第1及び第2の波長の光の反射率に基づいて、接触した物体が人体であるか判断することができる。 Conventionally, a device for detecting contact with a human body using reflected light has been known. As such a device, a first light emitting means for emitting light having a first wavelength, a second light emitting means for emitting light having a second wavelength different from the first wavelength, and first and second light emitting means. A switching device including a means for determining whether or not the contacted object is a human body based on the reflected light of the wavelength of the above has been proposed. This switching device can determine whether the contacted object is a human body based on the reflectance of light of the first and second wavelengths.

国際公開第2010/117006号International Publication No. 2010/117006

しかしながら、上記従来の切替装置は、外光に第1及び第2の波長の光が含まれる場合、人体が接触していないにもかかわらず、人体が接触したものと誤検出するおそれがあった。 However, when the external light includes light of the first and second wavelengths, the conventional switching device may erroneously detect that the human body is in contact with the external light even though the human body is not in contact with the external light. ..

本発明は、上記の課題に鑑みてなされたものであり、人体の接触を精度よく検出することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to accurately detect contact with a human body.

一実施形態に係る検出装置は、第1波長を有する第1光を発光可能な第1発光部と、前記第1発光部が発光した前記第1光の反射光を受光可能であり、受光した光に応じた受光信号を出力する受光部と、少なくとも一部に透光性を有し、前記第1発光部及び前記受光部を覆う測定面と、前記第1発光部が発光している間、前記受光信号に基づいて、生体情報を測定し、当該生体情報に基づいて、前記測定面に人体が接触したか判定する制御部と、を備える。 The detection device according to the embodiment is capable of receiving the first light emitting unit capable of emitting the first light having the first wavelength and the reflected light of the first light emitted by the first light emitting unit, and has received the light. A light receiving portion that outputs a light receiving signal corresponding to light, a measurement surface that has at least a part of translucency and covers the first light emitting portion and the light receiving portion, and while the first light emitting portion emits light. A control unit that measures biological information based on the received light signal and determines whether or not a human body has come into contact with the measurement surface based on the biological information.

本発明の各実施形態によれば、人体の接触を精度よく検出することができる。 According to each embodiment of the present invention, contact with the human body can be detected with high accuracy.

生体センサの一例を示す機能ブロック図。A functional block diagram showing an example of a biosensor. 生体センサの一例を示す斜視図。The perspective view which shows an example of the biological sensor. 図2の測定面の拡大図。An enlarged view of the measurement surface of FIG. 制御部による処理の概要を示すフローチャート。A flowchart showing an outline of processing by the control unit. 制御部による測定対象者の検出処理の一例を示すフローチャート。The flowchart which shows an example of the detection process of the measurement target person by a control unit. 検出システムの一例を示す機能ブロック図。A functional block diagram showing an example of a detection system.

以下、本発明の各実施形態について、添付の図面を参照しながら説明する。なお、各実施形態に係る明細書及び図面の記載に関して、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重畳した説明を省略する。 Hereinafter, each embodiment of the present invention will be described with reference to the accompanying drawings. Regarding the description of the specification and the drawings according to each embodiment, the components having substantially the same functional configuration are designated by the same reference numerals, and the superimposed description will be omitted.

一実施形態に係る検出装置について、図1〜図6を参照して説明する。本実施形態に係る検出装置は、測定面Rに人体が接触したことを検出する装置であり、人体の接触に応じた制御を行う任意の装置に適用できる。このような装置として、人体の接触に応じて、生体情報を測定する生体センサ(生体情報測定装置)や、人体の接触に応じて点灯又は消灯を行う照明器具のスイッチなどが挙げられる。以下では、検出装置が生体センサである場合を例に説明するが、上記の通り、検出装置が適用可能な装置はこれに限られない。 The detection device according to the embodiment will be described with reference to FIGS. 1 to 6. The detection device according to the present embodiment is a device that detects that a human body has come into contact with the measurement surface R, and can be applied to any device that controls according to the contact of the human body. Examples of such a device include a biological sensor (biological information measuring device) that measures biological information in response to contact with the human body, a switch of a lighting device that turns on or off in response to contact with the human body, and the like. In the following, a case where the detection device is a biosensor will be described as an example, but as described above, the device to which the detection device can be applied is not limited to this.

図1は、本実施形態に係る生体センサ1の一例を示す機能ブロック図である。図2は、生体センサ1の一例を示す斜視図である。図3は、図2の点線で囲まれた部分である測定面Rの拡大図である。 FIG. 1 is a functional block diagram showing an example of the biological sensor 1 according to the present embodiment. FIG. 2 is a perspective view showing an example of the biological sensor 1. FIG. 3 is an enlarged view of the measurement surface R, which is a portion surrounded by the dotted line in FIG.

生体センサ1は、反射光に基づいて生体情報を測定する反射型の生体情報測定装置であり、人体の表面に向き合うように構成された平坦な測定面Rを有している。生体センサ1は、測定面Rに測定対象者(人体)が接触したことを検出すると、当該測定対象者の生体情報を測定し、測定した生体情報を無線通信により外部に送信する。生体センサ1は、例えば、図2に示すように、幅Wが40mm、奥行きDが30mm、高さHが10mmである。 The biological sensor 1 is a reflective biological information measuring device that measures biological information based on reflected light, and has a flat measuring surface R configured to face the surface of the human body. When the biological sensor 1 detects that the measurement target person (human body) has come into contact with the measurement surface R, the biological sensor 1 measures the biological information of the measurement target person and transmits the measured biological information to the outside by wireless communication. As shown in FIG. 2, the biosensor 1 has a width W of 40 mm, a depth D of 30 mm, and a height H of 10 mm, for example.

生体センサ1は、図1〜図3に示すように、第1発光部11と、第2発光部12と、駆動回路13と、受光部14と、増幅回路15と、制御部16と、無線通信部17と、基板18と、ケース19と、を備える。基板18は、図3に示すように、第1発光部11、第2発光部12、駆動回路13、受光部14、増幅回路15、制御部16、及び無線通信部17が実装された状態でケース19に収容されている。なお、図3の破線は隠れ線を表している。また、生体センサ1は、電池動作を実現する図示しない電源回路を有している。また、生体センサ1は、3軸のジャイロセンサ、3軸の加速度センサ、肌温度センサ等を有していてもよい。 As shown in FIGS. 1 to 3, the biological sensor 1 includes a first light emitting unit 11, a second light emitting unit 12, a drive circuit 13, a light receiving unit 14, an amplifier circuit 15, a control unit 16, and a radio. A communication unit 17, a substrate 18, and a case 19 are provided. As shown in FIG. 3, the substrate 18 is in a state where the first light emitting unit 11, the second light emitting unit 12, the drive circuit 13, the light receiving unit 14, the amplifier circuit 15, the control unit 16, and the wireless communication unit 17 are mounted. It is housed in case 19. The broken line in FIG. 3 represents a hidden line. Further, the biosensor 1 has a power supply circuit (not shown) that realizes battery operation. Further, the biological sensor 1 may have a 3-axis gyro sensor, a 3-axis acceleration sensor, a skin temperature sensor, and the like.

第1発光部11は、第1波長λ1を有する第1光を発光可能な発光ダイオード素子又はレーザ素子である。第1光は、不可視光であり、例えば、近赤外光である。第1波長λ1は、850nm±50nmであるのが好ましく、例えば、850nmであるが、これに限られない。図1〜図3の例では、生体センサ1は、2つの第1発光部11を備えるが、1つ又は3つ以上の第1発光部11を備えてもよい。 The first light emitting unit 11 is a light emitting diode element or a laser element capable of emitting the first light having the first wavelength λ1. The first light is invisible light, for example, near infrared light. The first wavelength λ1 is preferably 850 nm ± 50 nm, and is, for example, 850 nm, but is not limited thereto. In the example of FIGS. 1 to 3, the biosensor 1 includes two first light emitting units 11, but may include one or three or more first light emitting units 11.

第2発光部12は、第1波長λ1とは異なる第2波長λ2を有する第2光を発光可能な発光ダイオード素子又はレーザ素子である。第2光は、可視光であり、例えば、赤色光である。第2波長λ2は、760nm±50nmであるのが好ましく、例えば、760nmであるが、これに限られない。図1〜図3の例では、生体センサ1は、2つの第2発光部12を備えるが、1つ又は3つ以上の第2発光部12を備えてもよい。 The second light emitting unit 12 is a light emitting diode element or a laser element capable of emitting second light having a second wavelength λ2 different from the first wavelength λ1. The second light is visible light, for example, red light. The second wavelength λ2 is preferably 760 nm ± 50 nm, for example, 760 nm, but is not limited thereto. In the example of FIGS. 1 to 3, the biosensor 1 includes two second light emitting units 12, but may include one or three or more second light emitting units 12.

なお、第1波長λ1及び第2波長λ2を上記のように設計することにより、受光部14の出力をより大きくしてS/N比を高くすることができる。また、第1発光部11及び第2発光部12は、互いに独立した素子であってもよいし、1つのパッケージに含まれていてもよい。また、第1光及び第2光のいずれも発光可能な1つの発光素子により、第1発光部11及び第2発光部12が構成されてもよい。 By designing the first wavelength λ1 and the second wavelength λ2 as described above, the output of the light receiving unit 14 can be made larger and the S / N ratio can be made higher. Further, the first light emitting unit 11 and the second light emitting unit 12 may be elements independent of each other, or may be included in one package. Further, the first light emitting unit 11 and the second light emitting unit 12 may be configured by one light emitting element capable of emitting both the first light and the second light.

駆動回路13は、第1発光部11及び第2発光部12をそれぞれ駆動する回路である。すなわち、駆動回路13は、第1発光部11及び第2発光部12に電力を供給し、第1発光部11及び第2発光部12に第1光及び第2光をそれぞれ発光させる。 The drive circuit 13 is a circuit that drives the first light emitting unit 11 and the second light emitting unit 12, respectively. That is, the drive circuit 13 supplies electric power to the first light emitting unit 11 and the second light emitting unit 12, and causes the first light emitting unit 11 and the second light emitting unit 12 to emit the first light and the second light, respectively.

受光部14は、受光した光に応じた信号(受光信号)を出力するフォトダイオード素子又はフォトトランジスタ素子である。受光部14は、第1発光部11及び第2発光部12が発光した第1光及び第2光の反射光を受光可能なように配置される。受光部14は、第1波長λ1の近傍の波長と、第2波長λ2の近傍の波長と、に感度を有するように構成される。図1〜図3の例では、生体センサ1は、1つの受光部14を備えるが、2つ以上の受光部14を備えてもよい。また、生体センサ1は、第1波長λ1の近傍の波長に感度を有する受光部14と、第2波長λ2の近傍の波長に感度を有する受光部14と、をそれぞれ備えてもよい。 The light receiving unit 14 is a photodiode element or a phototransistor element that outputs a signal (light receiving signal) corresponding to the received light. The light receiving unit 14 is arranged so that the reflected light of the first light and the second light emitted by the first light emitting unit 11 and the second light emitting unit 12 can be received. The light receiving unit 14 is configured to have sensitivity to a wavelength in the vicinity of the first wavelength λ1 and a wavelength in the vicinity of the second wavelength λ2. In the example of FIGS. 1 to 3, the biosensor 1 includes one light receiving unit 14, but may include two or more light receiving units 14. Further, the biosensor 1 may include a light receiving unit 14 having sensitivity to a wavelength near the first wavelength λ1 and a light receiving unit 14 having sensitivity to a wavelength near the second wavelength λ2, respectively.

増幅回路15は、受光部14が出力した受光信号を増幅する回路である。増幅回路15は、例えば、オペアンプにより構成される。増幅回路15が増幅した受光信号は、制御部16に入力される。 The amplifier circuit 15 is a circuit that amplifies the light receiving signal output by the light receiving unit 14. The amplifier circuit 15 is composed of, for example, an operational amplifier. The received light signal amplified by the amplifier circuit 15 is input to the control unit 16.

本実施形態では、図2に示すように、ケース19の表面に測定面Rが設けられ、測定面Rは、反射部20を含むように構成される。反射部20は、第1発光部11及び第2発光部12から発光された第1光及び第2光を、測定面Rに接触した物体との間で反射させるように構成された部分である。反射部20と物体との間で繰り返し反射された第1光及び第2光の少なくとも一部は、受光部14に受光される。反射部20は、測定面Rの表面に設けられた、金(Au)などを含む金属膜(金メッキ)により構成される。 In the present embodiment, as shown in FIG. 2, a measurement surface R is provided on the surface of the case 19, and the measurement surface R is configured to include a reflection portion 20. The reflecting unit 20 is a portion configured to reflect the first light and the second light emitted from the first light emitting unit 11 and the second light emitting unit 12 with an object in contact with the measurement surface R. .. At least a part of the first light and the second light repeatedly reflected between the reflecting unit 20 and the object is received by the light receiving unit 14. The reflective portion 20 is formed of a metal film (gold plating) containing gold (Au) or the like provided on the surface of the measurement surface R.

受光部14は、図3に示すように、基板18上で、第1発光部11と第2発光部12との間に挟まれて配置される。そして、反射部20には、第1発光部11及び第2発光部12を露出させる窓部W1と、受光部14を露出させる窓部W2と、が形成される。窓部W1及び窓部W2は、ポリエチレンテレフタレート(PET)などの透光性を有する材料で形成されている。すなわち、測定面Rは、第1発光部11、第2発光部12、及び受光部14を覆うように配置され、第1発光部11、第2発光部12、及び受光部14を露出させる透光性の窓部W1,W2と、窓部W1,W2の周囲に形成された反射部20と、を有する。 As shown in FIG. 3, the light receiving unit 14 is arranged on the substrate 18 so as to be sandwiched between the first light emitting unit 11 and the second light emitting unit 12. Then, the reflecting portion 20 is formed with a window portion W1 that exposes the first light emitting portion 11 and the second light emitting portion 12, and a window portion W2 that exposes the light receiving portion 14. The window portion W1 and the window portion W2 are formed of a translucent material such as polyethylene terephthalate (PET). That is, the measurement surface R is arranged so as to cover the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 14, and exposes the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 14. It has a light window portion W1 and W2 and a reflective portion 20 formed around the window portions W1 and W2.

測定面Rの近傍に物体が存在しない場合、第1発光部11及び第2発光部12が発光した第1光及び第2光は、窓部W1を通過し、外部に拡散する。受光部14には、窓部W2を通過した外光が入射する。 When no object exists in the vicinity of the measurement surface R, the first light and the second light emitted by the first light emitting unit 11 and the second light emitting unit 12 pass through the window portion W1 and diffuse to the outside. External light that has passed through the window portion W2 is incident on the light receiving portion 14.

一方、測定面Rに物体が接触している場合、第1発光部11及び第2発光部12が発光した第1光及び第2光の一部は、窓部W1を通過し、測定面Rに接触した物体で反射し、反射部20で反射し、物体と反射部20との間で繰り返し反射した後、窓部W2を通過して受光部14に入射する。測定面Rと物体との間に隙間がある場合には、当該隙間及び窓部W2を通過した外光が受光部14に入射する。 On the other hand, when an object is in contact with the measurement surface R, a part of the first light and the second light emitted by the first light emitting unit 11 and the second light emitting unit 12 passes through the window portion W1 and the measurement surface R It is reflected by an object in contact with the light, reflected by the reflecting unit 20, repeatedly reflected between the object and the reflecting unit 20, then passes through the window unit W2 and is incident on the light receiving unit 14. When there is a gap between the measurement surface R and the object, the external light that has passed through the gap and the window portion W2 is incident on the light receiving portion 14.

制御部16は、駆動回路13を制御することにより、第1発光部11及び第2発光部12の発光を制御すると共に、受光部14が出力した受光信号に基づいて、測定面Rへの測定対象者の接触を検出し、接触した測定対象者の生体情報を測定する回路である。制御部16は、例えば、CPU、ROM、及びRAMを備えたマイクロコンピュータである。CPUがROMに記憶されたプログラムをRAM上で実行することにより、制御部16の機能が実現される。CPUが実行するプログラムは、CD(Compact Disk)、DVD、フラッシュメモリなどの、コンピュータ読み取り可能な任意の記録媒体に記録され得る。 The control unit 16 controls the light emission of the first light emitting unit 11 and the second light emitting unit 12 by controlling the drive circuit 13, and measures the measurement surface R based on the light receiving signal output by the light receiving unit 14. It is a circuit that detects the contact of the target person and measures the biological information of the contacted measurement target person. The control unit 16 is, for example, a microcomputer including a CPU, a ROM, and a RAM. The function of the control unit 16 is realized by the CPU executing the program stored in the ROM on the RAM. The program executed by the CPU can be recorded on any computer-readable recording medium such as a CD (Compact Disk), a DVD, or a flash memory.

具体的には、制御部16は、駆動回路13にタイミング信号を送信し、第1発光部11及び第2発光部12に第1光及び第2光をそれぞれ発光させる。また、制御部16は、例えば、内蔵のアナログ−デジタル変換回路を用いて、増幅回路15から出力された増幅後の受光信号(アナログ信号)をデジタル信号に変換し、変換後の受光信号に基づいて、測定対象者の検出や、測定対象者の生体情報の測定を行う。制御部16の処理について後述する。 Specifically, the control unit 16 transmits a timing signal to the drive circuit 13 and causes the first light emitting unit 11 and the second light emitting unit 12 to emit the first light and the second light, respectively. Further, the control unit 16 uses, for example, a built-in analog-digital conversion circuit to convert the amplified received light signal (analog signal) output from the amplifier circuit 15 into a digital signal, and based on the converted received light signal. Then, the measurement target person is detected and the biological information of the measurement target person is measured. The processing of the control unit 16 will be described later.

無線通信部17は、生体センサ1と外部との無線通信を制御する回路である。無線通信部17は、例えば、無線通信IC(Integrated Circuit)であるが、これに限られない。無線通信部17は、制御部16で測定した生体情報を、Bluetooth(登録商標)等の無線通信規格を用いた通信により外部に送信する。生体センサ1は、生体情報ではなく、生体情報の測定に用いる信号情報を無線通信により外部に送信してもよい。この場合、外部にある機器は、信号情報に基づき生体情報を測定することができる。 The wireless communication unit 17 is a circuit that controls wireless communication between the biosensor 1 and the outside. The wireless communication unit 17 is, for example, a wireless communication IC (Integrated Circuit), but is not limited to this. The wireless communication unit 17 transmits the biological information measured by the control unit 16 to the outside by communication using a wireless communication standard such as Bluetooth (registered trademark). The biosensor 1 may transmit signal information used for measuring biometric information to the outside by wireless communication instead of biometric information. In this case, the external device can measure the biological information based on the signal information.

基板18は、第1発光部11、第2発光部12、駆動回路13、受光部14、増幅回路15、制御部16、及び無線通信部17を保持するように構成される。基板18は、例えば、ガラスエポキシ基板に銅箔で配線パターンが形成されたプリント基板であるが、これに限られない。第1発光部11及び第2発光部12は、図3に示すように、基板18の表面で仮想線L1上に並ぶように配置される。また、受光部14は、仮想線L1に垂直な仮想線L2上に配置される。図3の例では、2つの第1発光部11は、仮想線L2を挟んで対称に配置されている。また、2つの第2発光部12は、仮想線L2を挟んで対称に配置されている。第1発光部11と仮想線L2との間隔D1及び第2発光部12と仮想線L2との間隔D2は、例えば、4〜11mmの範囲内である。このように、第1発光部11及び第2発光部12を、仮想線L2(受光部14)を挟んで対称に配置することにより、受光部14に入射する第1光及び第2光を均一化できる。なお、間隔D1,D2は、任意に設計可能である。例えば、図3の例では、間隔D1は間隔D2より大きいが、間隔D1は間隔D2より小さくてもよい。また、第1発光部11ごとに間隔D1が異なってもよい。同様に、第2発光部12ごとに間隔D2が異なってもよい。 The substrate 18 is configured to hold the first light emitting unit 11, the second light emitting unit 12, the drive circuit 13, the light receiving unit 14, the amplifier circuit 15, the control unit 16, and the wireless communication unit 17. The substrate 18 is, for example, a printed circuit board in which a wiring pattern is formed of a copper foil on a glass epoxy substrate, but the substrate 18 is not limited to this. As shown in FIG. 3, the first light emitting unit 11 and the second light emitting unit 12 are arranged so as to line up on the virtual line L1 on the surface of the substrate 18. Further, the light receiving unit 14 is arranged on the virtual line L2 perpendicular to the virtual line L1. In the example of FIG. 3, the two first light emitting units 11 are symmetrically arranged with the virtual line L2 in between. Further, the two second light emitting units 12 are arranged symmetrically with the virtual line L2 in between. The distance D1 between the first light emitting unit 11 and the virtual line L2 and the distance D2 between the second light emitting unit 12 and the virtual line L2 are, for example, in the range of 4 to 11 mm. In this way, by arranging the first light emitting unit 11 and the second light emitting unit 12 symmetrically with the virtual line L2 (light receiving unit 14) interposed therebetween, the first light and the second light incident on the light receiving unit 14 are made uniform. Can be converted. The intervals D1 and D2 can be arbitrarily designed. For example, in the example of FIG. 3, the interval D1 is larger than the interval D2, but the interval D1 may be smaller than the interval D2. Further, the interval D1 may be different for each of the first light emitting units 11. Similarly, the interval D2 may be different for each second light emitting unit 12.

本実施形態では、第1発光部11、第2発光部12、及び受光部14は、基板18の下面(測定面R側の面)に実装されている。そして、駆動回路13、増幅回路15、制御部16、及び無線通信部17は、基板18の上面に実装されている。但し、駆動回路13、増幅回路15、制御部16、及び無線通信部17のうちの少なくとも1つは、基板18の下面に実装されていてもよい。電源回路についても同様である。 In the present embodiment, the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 14 are mounted on the lower surface of the substrate 18 (the surface on the measurement surface R side). The drive circuit 13, the amplifier circuit 15, the control unit 16, and the wireless communication unit 17 are mounted on the upper surface of the substrate 18. However, at least one of the drive circuit 13, the amplifier circuit 15, the control unit 16, and the wireless communication unit 17 may be mounted on the lower surface of the substrate 18. The same applies to the power supply circuit.

次に、制御部16による処理について説明する。図4は、制御部16による処理の概要を示すフローチャートである。制御部16は、図4の処理を所定時間毎に実行する。 Next, the processing by the control unit 16 will be described. FIG. 4 is a flowchart showing an outline of processing by the control unit 16. The control unit 16 executes the process of FIG. 4 at predetermined time intervals.

まず、制御部16は、駆動回路13にタイミング信号を送信し、第1発光部11を点灯させる(ステップS101)。これにより、第1発光部11が第1光を発光する。第1光は、不可視光であるため、第1発光部11が点灯しても、第1光は外部からは見えない。 First, the control unit 16 transmits a timing signal to the drive circuit 13 to light the first light emitting unit 11 (step S101). As a result, the first light emitting unit 11 emits the first light. Since the first light is invisible light, even if the first light emitting unit 11 is turned on, the first light cannot be seen from the outside.

次に、制御部16は、増幅回路15から入力された受光信号の波形に基づいて、測定面Rへの測定対象者の接触を検出する(ステップS102)。測定対象者の検出方法については後述する。 Next, the control unit 16 detects the contact of the measurement target person with the measurement surface R based on the waveform of the received light signal input from the amplifier circuit 15 (step S102). The method of detecting the person to be measured will be described later.

制御部16は、測定面Rへの測定対象者の接触を検出しなかった場合(ステップS102:NO)、処理を終了する。一方、制御部16は、測定面Rへの測定対象者の接触を検出した場合(ステップS102:YES)、第2発光部12を点灯する(ステップS102)。第2光は可視光であるものの、第2発光部12を覆う測定面Rには測定対象者が接触しているため、第2光は外部からは見えない。 When the control unit 16 does not detect the contact of the measurement target person with the measurement surface R (step S102: NO), the control unit 16 ends the process. On the other hand, when the control unit 16 detects the contact of the measurement target person with the measurement surface R (step S102: YES), the control unit 16 lights the second light emitting unit 12 (step S102). Although the second light is visible light, the second light cannot be seen from the outside because the measurement target person is in contact with the measurement surface R covering the second light emitting unit 12.

制御部16は、第2発光部12を点灯すると、増幅回路15から入力された受光信号に基づいて、測定対象者の生体情報を測定する(ステップS104)。測定対象者が接触している場合、受光部14には測定対象者と反射部20との間で反射を繰り返した第2光が入射するため、受光信号には、測定対象者に照射された第2光に応じた信号が含まれる。したがって、制御部16は、受光信号の周波数、振幅、及び波形などに基づいて、可視光を利用した既存の任意の測定方法により、測定対象者の生体情報を測定することができる。具体的には、制御部16は、測定対象者の血中ヘモグロビン濃度、血中酸素濃度、脈拍数、脈拍間隔、血圧、及び肌温度などを測定することができる。 When the second light emitting unit 12 is turned on, the control unit 16 measures the biological information of the measurement target person based on the received light signal input from the amplifier circuit 15 (step S104). When the measurement target person is in contact with the light receiving unit 14, the second light repeatedly reflected between the measurement target person and the reflection unit 20 is incident on the light receiving unit 14, so that the light receiving signal is irradiated to the measurement target person. A signal corresponding to the second light is included. Therefore, the control unit 16 can measure the biological information of the measurement target person by any existing measurement method using visible light based on the frequency, amplitude, waveform, and the like of the received signal. Specifically, the control unit 16 can measure the blood hemoglobin concentration, the blood oxygen concentration, the pulse rate, the pulse interval, the blood pressure, the skin temperature, and the like of the measurement target person.

なお、制御部16は、生体情報を測定する際に、第1発光部11を消灯してもよいし、第1発光部11を点灯したままにしてもよい。後者の場合、受光部14には測定対象者と反射部20との間で反射を繰り返した第1光及び第2光が入射するため、受光信号には、測定対象者に照射された第1光及び第2光に応じた信号が含まれる。したがって、制御部16は、受光信号の周波数、振幅、及び波形などに基づいて、可視光及び不可視光を利用した既存の任意の測定方法により、測定対象者の生体情報を測定することができる。 The control unit 16 may turn off the first light emitting unit 11 or leave the first light emitting unit 11 on when measuring biological information. In the latter case, since the first light and the second light that are repeatedly reflected between the measurement target person and the reflection unit 20 are incident on the light receiving unit 14, the light receiving signal is the first light that is applied to the measurement target person. Signals corresponding to light and second light are included. Therefore, the control unit 16 can measure the biological information of the measurement target person by any existing measurement method using visible light and invisible light based on the frequency, amplitude, waveform, and the like of the received signal.

その後、制御部16は、第2発光部12を消灯し(ステップS105)、処理を終了する。以上の処理により、制御部16は、第1光による測定対象者の検出を所定時間毎に実行し、測定対象者を検出した場合には、第2光による生体情報の測定を実行することができる。 After that, the control unit 16 turns off the second light emitting unit 12 (step S105), and ends the process. By the above processing, the control unit 16 can detect the measurement target person by the first light at predetermined time intervals, and when the measurement target person is detected, can execute the measurement of the biological information by the second light. it can.

図5は、制御部16による測定対象者の検出処理の一例を示すフローチャートである。図5の検出処理は、図4のステップS102の内部処理に相当する。 FIG. 5 is a flowchart showing an example of the detection process of the measurement target person by the control unit 16. The detection process of FIG. 5 corresponds to the internal process of step S102 of FIG.

測定対象者の検出処理が開始されると、まず、制御部16は、受光信号の交流振幅を測定する(ステップS201)。交流振幅は、受光信号に含まれる交流成分の振幅の最大値であってもよいし、平均値であってもよいし、実効値であってもよい。 When the detection process of the measurement target person is started, the control unit 16 first measures the AC amplitude of the received light signal (step S201). The AC amplitude may be the maximum value, the average value, or the effective value of the amplitude of the AC component included in the received signal.

測定面Rに測定対象者が接触していない場合、第1発光部11が発光した第1光は、測定対象者に反射されないため、受光部14にはほとんど入射しない。すなわち、受光部14に入射する光のほとんどは外光となる。そして、一般に、外光は交流成分が小さい。このため、測定面Rに測定対象者が接触していない場合、受光信号の交流振幅は小さくなると考えられる。 When the measurement target person is not in contact with the measurement surface R, the first light emitted by the first light emitting unit 11 is not reflected by the measurement target person, so that the light is hardly incident on the light receiving unit 14. That is, most of the light incident on the light receiving unit 14 is external light. In general, external light has a small AC component. Therefore, when the measurement target person is not in contact with the measurement surface R, it is considered that the AC amplitude of the received light signal becomes small.

これに対して、測定面Rに測定対象者が接触している場合、第1発光部11が発光した第1光は、測定対象者に反射され、受光部14に入射する。また、外光は、測定対象者に遮られ、受光部14にはほとんど入射しない。そして、測定対象者に反射した第1光は、測定対象者の脈拍により交流成分が大きくなる。したがって、測定面Rに測定対象者が接触している場合、受光信号の交流振幅は大きくなると考えられる。 On the other hand, when the measurement target person is in contact with the measurement surface R, the first light emitted by the first light emitting unit 11 is reflected by the measurement target person and incident on the light receiving unit 14. Further, the external light is blocked by the person to be measured and hardly enters the light receiving unit 14. Then, the first light reflected by the measurement target has a large AC component due to the pulse of the measurement target. Therefore, when the measurement target person is in contact with the measurement surface R, it is considered that the AC amplitude of the received light signal becomes large.

そこで、制御部16は、受光信号の交流振幅が、予め設定された閾値Ath未満である場合(ステップS202:NO)、測定対象者が測定面Rに接触していないと判定し(ステップS210)、検出処理を終了する。ステップS210の判定は、測定面Rへの測定対象者の接触を検出しないことに相当するため、検出処理の終了後、図4の処理も終了する。なお、閾値Athは、実験により設定され、制御部16のROMに保存される。 Therefore, when the AC amplitude of the received signal is less than the preset threshold value Ath (step S202: NO), the control unit 16 determines that the measurement target person is not in contact with the measurement surface R (step S210). , Ends the detection process. Since the determination in step S210 corresponds to not detecting the contact of the measurement target person with the measurement surface R, the process of FIG. 4 is also completed after the detection process is completed. The threshold value Ath is set by an experiment and stored in the ROM of the control unit 16.

一方、制御部16は、受光信号の交流振幅が、予め設定された閾値Ath以上である場合(ステップS202:YES)、測定面Rに測定対象者が接触している可能性があると判定する。 On the other hand, when the AC amplitude of the received light signal is equal to or higher than the preset threshold value Ath (step S202: YES), the control unit 16 determines that the measurement target person may be in contact with the measurement surface R. ..

次に、制御部16は、生体情報に基づく第1の判定処理を実行する。具体的には、制御部16は、受光信号が測定対象者の脈波に応じた信号であると仮定して、受光信号に基づいて、脈拍間隔を測定する(ステップS203)。脈拍間隔は、脈波のピーク(R波)間隔である。人間の脈拍間隔は、一般に、300ms以上2150ms以下である。制御部16は、受光信号を利用した既存の任意の方法により脈拍間隔を測定できる。 Next, the control unit 16 executes the first determination process based on the biological information. Specifically, the control unit 16 measures the pulse interval based on the received signal, assuming that the received signal is a signal corresponding to the pulse wave of the measurement target person (step S203). The pulse interval is the peak (R wave) interval of the pulse wave. The human pulse interval is generally 300 ms or more and 2150 ms or less. The control unit 16 can measure the pulse interval by any existing method using the received signal.

測定面Rに測定対象者が接触していない場合、第1発光部11が発光した第1光は、測定対象者に反射されないため、受光部14にはほとんど入射しない。すなわち、受光部14に入射する光のほとんどは外光となる。したがって、測定面Rに測定対象者が接触していない場合、受光信号に基づいて脈拍間隔を測定しても、当該脈拍間隔は人間の脈拍間隔とはかけ離れた値になる、又は測定できないと考えられる。 When the measurement target person is not in contact with the measurement surface R, the first light emitted by the first light emitting unit 11 is not reflected by the measurement target person, so that the light is hardly incident on the light receiving unit 14. That is, most of the light incident on the light receiving unit 14 is external light. Therefore, when the measurement target person is not in contact with the measurement surface R, even if the pulse interval is measured based on the received signal, the pulse interval is considered to be a value far from the human pulse interval or cannot be measured. Be done.

これに対して、測定面Rに測定対象者が接触している場合、第1発光部11が発光した第1光は、測定対象者に反射され、受光部14に入射する。また、外光は、測定対象者に遮られ、受光部14にはほとんど入射しない。そして、測定対象者に反射した第1光の波形は、測定対象者の脈波に応じた波形となる。したがって、測定面Rに測定対象者が接触している場合、受光信号に基づいて脈拍間隔を測定すると、当該脈拍間隔は人間の脈拍間隔と一致した値になると考えられる。 On the other hand, when the measurement target person is in contact with the measurement surface R, the first light emitted by the first light emitting unit 11 is reflected by the measurement target person and incident on the light receiving unit 14. Further, the external light is blocked by the person to be measured and hardly enters the light receiving unit 14. Then, the waveform of the first light reflected by the measurement target person becomes a waveform corresponding to the pulse wave of the measurement target person. Therefore, when the measurement target person is in contact with the measurement surface R, when the pulse interval is measured based on the received signal, it is considered that the pulse interval is a value that matches the human pulse interval.

そこで、制御部16は、受光信号に基づいて測定した脈拍間隔が所定の第1範囲外である場合(ステップS204:NO)、測定対象者が測定面Rに接触していないと判定し(ステップS210)、検出処理を終了する。脈拍間隔が第1範囲外である場合には、脈拍間隔が測定できない場合も含まれる。ステップS210の判定は、測定面Rへの測定対象者の接触を検出しないことに相当するため、検出処理の終了後、図4の処理も終了する。第1範囲は、例えば、300ms以上2150ms以下の範囲であるが、これに限られない。第1範囲は、制御部16のROMに保存される。 Therefore, when the pulse interval measured based on the received signal is outside the predetermined first range (step S204: NO), the control unit 16 determines that the measurement target person is not in contact with the measurement surface R (step). S210), the detection process is terminated. When the pulse interval is out of the first range, the case where the pulse interval cannot be measured is also included. Since the determination in step S210 corresponds to not detecting the contact of the measurement target person with the measurement surface R, the process of FIG. 4 is also completed after the detection process is completed. The first range is, for example, a range of 300 ms or more and 2150 ms or less, but is not limited to this. The first range is stored in the ROM of the control unit 16.

一方、制御部16は、受光信号に基づいて測定された脈拍間隔が、予め設定された第1範囲内である場合(ステップS204:YES)、測定面Rに測定対象者が接触している可能性があると判定する。 On the other hand, when the pulse interval measured based on the received signal is within the preset first range (step S204: YES), the control unit 16 may contact the measurement target person with the measurement surface R. Judged as having sex.

次に、制御部16は、生体情報に基づく第2の判定処理を実行する。具体的には、制御部16は、受光信号が測定対象者の脈波に応じた信号であると仮定して、受光信号に基づいて、血圧を測定する(ステップS205)。制御部16は、受光信号を利用した既存の任意の方法により血圧を測定できる。人間の血圧は、一般に、40mmHg以上255mmHg以下である。 Next, the control unit 16 executes a second determination process based on the biological information. Specifically, the control unit 16 measures the blood pressure based on the received light signal, assuming that the received light signal is a signal corresponding to the pulse wave of the measurement target person (step S205). The control unit 16 can measure the blood pressure by any existing method using the received signal. Human blood pressure is generally 40 mmHg or more and 255 mmHg or less.

測定面Rに測定対象者が接触していない場合、第1発光部11が発光した第1光は、測定対象者に反射されないため、受光部14にはほとんど入射しない。すなわち、受光部14に入射する光のほとんどは外光となる。したがって、測定面Rに測定対象者が接触していない場合、受光信号に基づいて血圧を測定しても、当該血圧は人間の血圧とはかけ離れた値になる、又は外光は人固有の脈波と波形が異なるため血圧を測定できないと考えられる。 When the measurement target person is not in contact with the measurement surface R, the first light emitted by the first light emitting unit 11 is not reflected by the measurement target person, so that the light is hardly incident on the light receiving unit 14. That is, most of the light incident on the light receiving unit 14 is external light. Therefore, when the measurement target person is not in contact with the measurement surface R, even if the blood pressure is measured based on the received signal, the blood pressure is far from the human blood pressure, or the external light is a human-specific pulse. It is considered that blood pressure cannot be measured because the wave and waveform are different.

これに対して、測定面Rに測定対象者が接触している場合、第1発光部11が発光した第1光は、測定対象者に反射され、受光部14に入射する。また、外光は、測定対象者に遮られ、受光部14にはほとんど入射しない。そして、測定対象者に反射した第1光の波形は、測定対象者の脈波に応じた波形となる。したがって、測定面Rに測定対象者が接触している場合、受光信号に基づいて血圧を測定すると、当該血圧は人間の血圧と一致した値になると考えられる。 On the other hand, when the measurement target person is in contact with the measurement surface R, the first light emitted by the first light emitting unit 11 is reflected by the measurement target person and incident on the light receiving unit 14. Further, the external light is blocked by the person to be measured and hardly enters the light receiving unit 14. Then, the waveform of the first light reflected by the measurement target person becomes a waveform corresponding to the pulse wave of the measurement target person. Therefore, when the measurement target person is in contact with the measurement surface R, when the blood pressure is measured based on the received signal, the blood pressure is considered to be a value consistent with the human blood pressure.

そこで、制御部16は、受光信号に基づいて測定した血圧が所定の第2範囲外である場合(ステップS206:NO)、測定対象者が測定面Rに接触していないと判定し(ステップS210)、検出処理を終了する。血圧が第2範囲外である場合には、血圧が測定できない場合も含まれる。ステップS210の判定は、測定面Rへの測定対象者の接触を検出しないことに相当するため、検出処理の終了後、図4の処理も終了する。第1範囲は、例えば、40mmHg以上255mmHg以下の範囲であるが、これに限られない。第2範囲は、制御部16のROMに保存される。 Therefore, when the blood pressure measured based on the received signal is out of the predetermined second range (step S206: NO), the control unit 16 determines that the measurement target person is not in contact with the measurement surface R (step S210). ), End the detection process. When the blood pressure is outside the second range, the case where the blood pressure cannot be measured is included. Since the determination in step S210 corresponds to not detecting the contact of the measurement target person with the measurement surface R, the process of FIG. 4 is also completed after the detection process is completed. The first range is, for example, a range of 40 mmHg or more and 255 mmHg or less, but is not limited to this. The second range is stored in the ROM of the control unit 16.

一方、制御部16は、受光信号に基づいて測定された血圧が、予め設定された第2範囲内である場合(ステップS206:YES)、測定面Rに測定対象者が接触している可能性があると判定する。 On the other hand, when the blood pressure measured based on the received signal is within the preset second range (step S206: YES), the control unit 16 may have a measurement target person in contact with the measurement surface R. It is determined that there is.

次に、制御部16は、生体情報に基づく第3の判定処理を実行する。具体的には、制御部16は、受光信号が測定対象者の脈波に応じた信号であると仮定して、受光信号に基づいて、血管年齢を測定する(ステップS207)。制御部16は、受光信号を利用した既存の任意の方法により血管年齢を測定できる。人間の血管年齢は、一般に、0歳以上100歳未満である。 Next, the control unit 16 executes a third determination process based on the biological information. Specifically, the control unit 16 measures the blood vessel age based on the received signal, assuming that the received signal is a signal corresponding to the pulse wave of the measurement target person (step S207). The control unit 16 can measure the blood vessel age by any existing method using the received signal. The age of human blood vessels is generally 0 to 100 years.

測定面Rに測定対象者が接触していない場合、第1発光部11が発光した第1光は、測定対象者に反射されないため、受光部14にはほとんど入射しない。すなわち、受光部14に入射する光のほとんどは外光となる。したがって、測定面Rに測定対象者が接触していない場合、受光信号に基づいて血管年齢を測定しても、当該血管年齢は人間の血管年齢とはかけ離れた値になる、又は外光は人固有の脈波と波形が異なるため血管年齢を測定できないと考えられる。 When the measurement target person is not in contact with the measurement surface R, the first light emitted by the first light emitting unit 11 is not reflected by the measurement target person, so that the light is hardly incident on the light receiving unit 14. That is, most of the light incident on the light receiving unit 14 is external light. Therefore, when the measurement target person is not in contact with the measurement surface R, even if the blood vessel age is measured based on the received signal, the blood vessel age is far from the human blood vessel age, or the outside light is human. It is considered that the blood vessel age cannot be measured because the waveform is different from the inherent pulse wave.

これに対して、測定面Rに測定対象者が接触している場合、第1発光部11が発光した第1光は、測定対象者に反射され、受光部14に入射する。また、外光は、測定対象者に遮られ、受光部14にはほとんど入射しない。そして、測定対象者に反射した第1光の波形は、測定対象者の脈波に応じた波形となる。したがって、測定面Rに測定対象者が接触している場合、受光信号に基づいて血管年齢を測定すると、当該血管年齢は人間の血管年齢と一致した値になると考えられる。 On the other hand, when the measurement target person is in contact with the measurement surface R, the first light emitted by the first light emitting unit 11 is reflected by the measurement target person and incident on the light receiving unit 14. Further, the external light is blocked by the person to be measured and hardly enters the light receiving unit 14. Then, the waveform of the first light reflected by the measurement target person becomes a waveform corresponding to the pulse wave of the measurement target person. Therefore, when the measurement target person is in contact with the measurement surface R, when the blood vessel age is measured based on the received signal, the blood vessel age is considered to be a value consistent with the human blood vessel age.

そこで、制御部16は、受光信号に基づいて測定した血管年齢が所定の第3範囲外である場合(ステップS208:NO)、測定対象者が測定面Rに接触していないと判定し(ステップS210)、検出処理を終了する。血管年齢が所定の第3範囲外である場合には、血管年齢が測定できない場合も含まれる。ステップS210の判定は、測定面Rへの測定対象者の接触を検出しないことに相当するため、検出処理の終了後、図4の処理も終了する。第3範囲は、例えば、0歳以上100歳以下の範囲であるが、これに限られない。第3範囲は、制御部16のROMに保存される。 Therefore, when the blood vessel age measured based on the received signal is outside the predetermined third range (step S208: NO), the control unit 16 determines that the measurement target person is not in contact with the measurement surface R (step). S210), the detection process is terminated. When the blood vessel age is outside the predetermined third range, the case where the blood vessel age cannot be measured is also included. Since the determination in step S210 corresponds to not detecting the contact of the measurement target person with the measurement surface R, the process of FIG. 4 is also completed after the detection process is completed. The third range is, for example, a range of 0 to 100 years old, but is not limited to this. The third range is stored in the ROM of the control unit 16.

一方、制御部16は、受光信号に基づいて測定された血管年齢が、予め設定された第3範囲内である場合(ステップS208:YES)、測定面Rに測定対象者が接触していると判定する(ステップS209)。ステップS209の判定は、測定面Rへの測定対象者の接触を検出したことに相当するため、検出処理の終了後、制御部16は、図4のステップS103の処理を実行する。 On the other hand, when the blood vessel age measured based on the received signal is within the preset third range (step S208: YES), the control unit 16 determines that the measurement target person is in contact with the measurement surface R. Determine (step S209). Since the determination in step S209 corresponds to detecting the contact of the measurement target person with the measurement surface R, the control unit 16 executes the process of step S103 in FIG. 4 after the detection process is completed.

以上の処理により、制御部16は、第1光による測定対象者の検出を実行することができる。なお、図5の例では、制御部16は、交流振幅による判定処理、第1の判定処理、第2の判定処理、及び第3の判定処理という順番で判定処理を実行したが、判定処理を実行する順番は任意に設計できる。また、制御部16は、第1の判定処理、第2の判定処理、及び第3の判定処理のうち、いずれか1つだけを実行してもよいし、いずれか2つだけを実行してもよい。この場合、制御部16は、実行する判定処理のいずれか1つにおいて、生体情報が所定の範囲外である場合、人体が接触していないと判定し、実行する判定処理の全てにおいて、生体情報が所定の範囲内である場合、人体が接触していると判定すればよい。また、制御部16は、交流振幅による判定処理を省略することも可能である。いずれの場合も、制御部16は、受光信号に基づいて測定した生体情報に基づいて、測定対象者を検出することができる。 By the above processing, the control unit 16 can execute the detection of the measurement target person by the first light. In the example of FIG. 5, the control unit 16 executed the determination process in the order of the AC amplitude determination process, the first determination process, the second determination process, and the third determination process. The order of execution can be designed arbitrarily. Further, the control unit 16 may execute only one of the first determination process, the second determination process, and the third determination process, or may execute only two of them. May be good. In this case, if the biometric information is out of the predetermined range in any one of the determination processes to be executed, the control unit 16 determines that the human body is not in contact, and in all the determination processes to be executed, the biometric information. If is within a predetermined range, it may be determined that the human body is in contact. Further, the control unit 16 can omit the determination process based on the AC amplitude. In either case, the control unit 16 can detect the person to be measured based on the biological information measured based on the received light signal.

以上説明した通り、本実施形態によれば、制御部16は、第1発光部11が第1光を発光している間、受光信号に基づいて生体情報を測定し、当該生体情報に基づいて、測定面Rに人体が接触しているか判定する。脈拍間隔、血圧、及び血管年齢などの生体情報は、人間固有の情報であるため、制御部16は、生体情報を利用することにより、測定面Rへの人体の接触を精度よく検出することができる。具体的には、人体以外の物体が測定面Rに接触した場合や、外光の影響により、人体が測定面Rに接触していないにもかかわらず、人体が測定面Rに接触していると判定される誤判定を抑制することができる。 As described above, according to the present embodiment, the control unit 16 measures the biological information based on the received light signal while the first light emitting unit 11 emits the first light, and based on the biological information. , It is determined whether the human body is in contact with the measurement surface R. Since biological information such as pulse interval, blood pressure, and blood vessel age is human-specific information, the control unit 16 can accurately detect the contact of the human body with the measurement surface R by using the biological information. it can. Specifically, when an object other than the human body comes into contact with the measurement surface R, or due to the influence of external light, the human body is in contact with the measurement surface R even though the human body is not in contact with the measurement surface R. It is possible to suppress an erroneous determination that is determined to be.

また、人体の接触を精度よく検出することにより、人体が確実に測定面Rに接触しているときに、すなわち、外光が受光部14にほぼ入射しないときに、第2光による生体情報の測定が行われるため、生体情報を精度よく測定することができる。 Further, by accurately detecting the contact with the human body, when the human body is surely in contact with the measurement surface R, that is, when the external light hardly enters the light receiving portion 14, the biological information by the second light is obtained. Since the measurement is performed, the biological information can be measured accurately.

また、本実施形態によれば、人体の検出処理は不可視光である第1光により行われ、当該検出処理の間、可視光である第2光は発光されない。したがって、第2光により生体センサ1の周囲の人間に与える眩しさを抑制することができる。また、人体の検出処理に要する電力を抑制することができる。 Further, according to the present embodiment, the detection process of the human body is performed by the first light which is invisible light, and the second light which is visible light is not emitted during the detection process. Therefore, it is possible to suppress the glare given to the human beings around the biosensor 1 by the second light. In addition, the power required for the detection process of the human body can be suppressed.

なお、本実施形態において、人体の検出方法は、上記の例に限られない。例えば、制御部16は、脈波の波形を機械学習し、機械学習により得られた波形モデルに基づいて、受光信号の波形が脈波の波形であるか判定することにより、人体を検出してもよい。機械学習方法として、サポートベクターマシンなどの既存の任意の方法を利用できる。 In the present embodiment, the method for detecting the human body is not limited to the above example. For example, the control unit 16 detects the human body by machine learning the waveform of the pulse wave and determining whether the waveform of the received signal is the waveform of the pulse wave based on the waveform model obtained by the machine learning. May be good. As a machine learning method, any existing method such as a support vector machine can be used.

また、以上では、生体センサ1の制御部16が人体の検出や生体情報の測定を行ったが、人体の検出や生体情報の測定は、生体センサ1の外部にある機器で行ってもよい。 Further, in the above, the control unit 16 of the biosensor 1 detects the human body and measures the biometric information, but the detection of the human body and the measurement of the biometric information may be performed by a device outside the biosensor 1.

ここで、図6は、本実施形態に係る検出システム100の一例を示す機能ブロック図である。図6の検出システム100は、無線通信可能な生体センサ1及び情報処理装置2を備える。生体センサ1の構成は上述の通りである。ただし、図6の例では、制御部16は、人体の検出や生体情報の測定を行わない。また、無線通信部17は、受光信号を無線で情報処理装置2に送信する。 Here, FIG. 6 is a functional block diagram showing an example of the detection system 100 according to the present embodiment. The detection system 100 of FIG. 6 includes a biosensor 1 and an information processing device 2 capable of wireless communication. The configuration of the biosensor 1 is as described above. However, in the example of FIG. 6, the control unit 16 does not detect the human body or measure biological information. Further, the wireless communication unit 17 wirelessly transmits the received signal to the information processing device 2.

情報処理装置2は、生体センサ1と通信可能な任意のコンピュータである。情報処理装置2は、例えば、マイクロコンピュータ、サーバ、PC(Personal Computer)、スマートフォン、又はタブレット端末であるが、これに限られない。図6の例では、情報処理装置2は、生体センサ1と無線により通信可能であるが、有線により通信可能であってもよい。また、生体センサ1及び情報処理装置2は、インターネットなどのネットワークを介して通信可能に接続されていてもよい。情報処理装置2は、生体センサ1から受信した受光信号に基づいて、人体の検出や生体情報の測定を実行する。人体の検出方法及び生体情報の測定方法については、上述の通りである。 The information processing device 2 is an arbitrary computer capable of communicating with the biosensor 1. The information processing device 2 is, for example, a microcomputer, a server, a PC (Personal Computer), a smartphone, or a tablet terminal, but is not limited thereto. In the example of FIG. 6, the information processing device 2 can communicate wirelessly with the biosensor 1, but may also communicate wirelessly. Further, the biosensor 1 and the information processing device 2 may be communicably connected via a network such as the Internet. The information processing device 2 executes detection of the human body and measurement of biological information based on the received light signal received from the biological sensor 1. The method for detecting the human body and the method for measuring biological information are as described above.

情報処理装置2が受光信号に基づいて生体情報を測定し、当該生体情報に基づいて、人体の接触を検出することにより、上述の効果が得られる。また、図6の構成により、生体センサ1の計算量を抑制することができる。 The above-mentioned effect can be obtained by the information processing device 2 measuring the biological information based on the received light signal and detecting the contact with the human body based on the biological information. Further, with the configuration of FIG. 6, the amount of calculation of the biological sensor 1 can be suppressed.

以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはない。上述した実施形態は、本発明の範囲を逸脱することなしに、種々の変形及び置換が適用され得る。また、上述の実施形態を参照して説明された特徴のそれぞれは、技術的に矛盾しない限り、適宜に組み合わされてもよい。 The preferred embodiment of the present invention has been described in detail above. However, the present invention is not limited to the embodiments described above. Various modifications and substitutions can be applied to the embodiments described above without departing from the scope of the present invention. In addition, each of the features described with reference to the above-described embodiments may be appropriately combined as long as there is no technical contradiction.

また、本国際出願は、2018年7月17日に出願した日本国特許出願第2018−134399号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 In addition, this international application claims priority based on Japanese Patent Application No. 2018-134399 filed on July 17, 2018, and the entire contents of the application are incorporated into this international application.

1:生体センサ
2:情報処理装置
11:第1発光部
12:第2発光部
13:駆動回路
14:受光部
15:増幅回路
16:制御部
17:無線通信部
18:基板
19:ケース
20:反射部
100:検出システム
R:測定面
W1,W2:窓部
L1,L2:仮想線
D1,D2:間隔
1: Biological sensor 2: Information processing device 11: First light emitting unit 12: Second light emitting unit 13: Drive circuit 14: Light receiving unit 15: Amplifier circuit 16: Control unit 17: Wireless communication unit 18: Board 19: Case 20: Reflector 100: Detection system R: Measurement surface W1, W2: Window L1, L2: Virtual line D1, D2: Interval

Claims (10)

第1波長を有する第1光を発光可能な第1発光部と、
前記第1発光部が発光した前記第1光の反射光を受光可能であり、受光した光に応じた受光信号を出力する受光部と、
少なくとも一部に透光性を有し、前記第1発光部及び前記受光部を覆う測定面と、
前記第1発光部が発光している間、前記受光信号に基づいて、生体情報を測定し、当該生体情報に基づいて、前記測定面に人体が接触したか判定する制御部と、
を備える検出装置。
A first light emitting unit capable of emitting first light having a first wavelength, and
A light receiving unit capable of receiving the reflected light of the first light emitted by the first light emitting unit and outputting a light receiving signal corresponding to the received light, and a light receiving unit.
A measurement surface having at least a part of translucency and covering the first light emitting portion and the light receiving portion,
While the first light emitting unit is emitting light, a control unit that measures biological information based on the received light signal and determines whether or not a human body has come into contact with the measurement surface based on the biological information.
A detection device comprising.
前記制御部は、前記生体情報が所定の範囲外である場合、前記測定面に前記人体が接触していないと判定する
請求項1に記載の検出装置。
The detection device according to claim 1, wherein the control unit determines that the human body is not in contact with the measurement surface when the biological information is out of a predetermined range.
前記生体情報は、脈拍間隔、血圧、及び血管年齢の少なくとも1つを含む
請求項2に記載の検出装置。
The detection device according to claim 2, wherein the biological information includes at least one of pulse interval, blood pressure, and blood vessel age.
前記第1光は、不可視光である
請求項1から請求項3までのいずれか1項に記載の検出装置。
The detection device according to any one of claims 1 to 3, wherein the first light is invisible light.
前記制御部は、前記第1発光部が発光している間、前記受光部が受光した光の交流振幅を測定し、当該交流振幅が閾値未満である場合、前記測定面に前記人体が接触していないと判定する
請求項1から請求項4までのいずれか1項に記載の検出装置。
The control unit measures the AC amplitude of the light received by the light receiving unit while the first light emitting unit is emitting light, and when the AC amplitude is less than the threshold value, the human body comes into contact with the measurement surface. The detection device according to any one of claims 1 to 4, wherein the detection device is determined not to be present.
前記第1波長とは異なる第2波長を有する第2光を発光可能な第2発光部を更に備え、
前記受光部は、前記第2発光部が発光した前記第2光の反射光を受光可能であり、
前記測定面は、前記第2発光部を覆う
請求項1から請求項5までのいずれか1項に記載の検出装置。
A second light emitting unit capable of emitting a second light having a second wavelength different from the first wavelength is further provided.
The light receiving unit can receive the reflected light of the second light emitted by the second light emitting unit.
The detection device according to any one of claims 1 to 5, wherein the measurement surface covers the second light emitting unit.
前記制御部は、前記測定面に前記人体が接触したと判定した場合、前記第2発光部を発光させ、前記受光信号に基づいて、生体情報を測定する
請求項6に記載の検出装置。
The detection device according to claim 6, wherein when the control unit determines that the human body has come into contact with the measurement surface, the second light emitting unit emits light and measures biological information based on the received signal.
前記第2光は、可視光である
請求項6又は請求項7に記載の検出装置。
The detection device according to claim 6 or 7, wherein the second light is visible light.
第1波長を有する第1光を発光可能な第1発光部と、
前記第1発光部が発光した前記第1光の反射光を受光可能であり、受光した光に応じた受光信号を出力する受光部と、
透光性を有し、前記第1発光部及び前記受光部を覆う測定面と、
制御部と、
を備えた検出装置の前記制御部に、
前記第1発光部が発光している間、前記受光信号に基づいて、生体情報を測定し、当該生体情報に基づいて、前記測定面に人体が接触したか判定するステップを実行させるためのプログラム。
A first light emitting unit capable of emitting first light having a first wavelength, and
A light receiving unit capable of receiving the reflected light of the first light emitted by the first light emitting unit and outputting a light receiving signal corresponding to the received light, and a light receiving unit.
A measurement surface having translucency and covering the first light emitting portion and the light receiving portion,
Control unit and
In the control unit of the detection device provided with
A program for measuring biological information based on the received signal while the first light emitting unit is emitting light, and executing a step of determining whether or not a human body has come into contact with the measurement surface based on the biological information. ..
ネットワークを介して接続されたセンサ及び情報処理装置を備えた生体検出システムであって、
前記センサは、
第1波長を有する第1光を発光可能な第1発光部と、
前記第1発光部が発光した前記第1光の反射光を受光可能であり、受光した光に応じた受光信号を出力する受光部と、
透光性を有し、前記第1発光部及び前記受光部を覆う測定面と、
前記受光信号を前記情報処理装置に送信する通信部と、
を備え、
前記情報処理装置は、前記第1発光部が発光している間、前記センサから受信した前記受光信号に基づいて、前記測定面に人体が接触したか判定する
検出システム。
A biometric detection system equipped with sensors and information processing devices connected via a network.
The sensor is
A first light emitting unit capable of emitting first light having a first wavelength, and
A light receiving unit capable of receiving the reflected light of the first light emitted by the first light emitting unit and outputting a light receiving signal corresponding to the received light, and a light receiving unit.
A measurement surface having translucency and covering the first light emitting portion and the light receiving portion,
A communication unit that transmits the received signal to the information processing device, and
With
The information processing device is a detection system that determines whether or not a human body has come into contact with the measurement surface based on the received light signal received from the sensor while the first light emitting unit is emitting light.
JP2020530885A 2018-07-17 2019-02-25 DETECTION APPARATUS, PROGRAM AND DETECTION SYSTEM Active JP7109010B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018134399 2018-07-17
JP2018134399 2018-07-17
PCT/JP2019/007074 WO2020017083A1 (en) 2018-07-17 2019-02-25 Detection device, program, and detection system

Publications (2)

Publication Number Publication Date
JPWO2020017083A1 true JPWO2020017083A1 (en) 2021-06-10
JP7109010B2 JP7109010B2 (en) 2022-07-29

Family

ID=69163662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020530885A Active JP7109010B2 (en) 2018-07-17 2019-02-25 DETECTION APPARATUS, PROGRAM AND DETECTION SYSTEM

Country Status (4)

Country Link
JP (1) JP7109010B2 (en)
KR (1) KR20210021041A (en)
CN (1) CN112533530A (en)
WO (1) WO2020017083A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130127721A1 (en) * 2011-11-17 2013-05-23 Pixart Imaging Inc. Optical finger mouse, mouse control module and physiology detection method thereof
JP2015192742A (en) * 2014-03-31 2015-11-05 ブラザー工業株式会社 Pulse wave detection device
JP2016016144A (en) * 2014-07-09 2016-02-01 セイコーエプソン株式会社 Biological information processing system and method of controlling biological information processing system
JP2016189924A (en) * 2015-03-31 2016-11-10 ローム株式会社 Biological information sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354008B2 (en) 2009-04-06 2013-11-27 ソニー株式会社 Switching device, switching method, and electronic device
JP5454147B2 (en) * 2010-01-05 2014-03-26 セイコーエプソン株式会社 Biological information detector and biological information measuring device
JP5672709B2 (en) * 2010-02-04 2015-02-18 セイコーエプソン株式会社 Biological information detector, biological information measuring device, and method for designing reflector in biological information detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130127721A1 (en) * 2011-11-17 2013-05-23 Pixart Imaging Inc. Optical finger mouse, mouse control module and physiology detection method thereof
JP2015192742A (en) * 2014-03-31 2015-11-05 ブラザー工業株式会社 Pulse wave detection device
JP2016016144A (en) * 2014-07-09 2016-02-01 セイコーエプソン株式会社 Biological information processing system and method of controlling biological information processing system
JP2016189924A (en) * 2015-03-31 2016-11-10 ローム株式会社 Biological information sensor

Also Published As

Publication number Publication date
WO2020017083A1 (en) 2020-01-23
KR20210021041A (en) 2021-02-24
JP7109010B2 (en) 2022-07-29
CN112533530A (en) 2021-03-19

Similar Documents

Publication Publication Date Title
EP3943001B1 (en) Touch-type blood pressure measurement apparatus
US9895067B2 (en) Apparatus and method for simultaneously detecting surface pressure and blood volume
EP3505044B1 (en) Biological component measuring apparatus and biological component measuring method
EP3072083B1 (en) Secure human fingerprint sensor
US20180325397A1 (en) Photoplethysmography device
JP6291874B2 (en) Biological information measuring apparatus and biological information measuring method
US20040193063A1 (en) Method and apparatus for measuring biological condition
KR101692004B1 (en) wearable bio-device
JP2015142665A (en) Blood glucose level measuring unit and blood glucose level measuring method
US10641695B2 (en) Method of determining operation conditions of a laser-based particle detector
KR20190035234A (en) Apparatus for estimating biological component and operating method thereof
JP2011200456A (en) Optical device and biological information detector
JP6769171B2 (en) Biometric information acquisition device and biometric information acquisition method
JP2017058186A (en) Optical tactile sensor
JP7109010B2 (en) DETECTION APPARATUS, PROGRAM AND DETECTION SYSTEM
KR20190131306A (en) Electronic device for measuring blood pressure and operating method thereof
US11096592B2 (en) Sensor module and biological information display system
JP2015192742A (en) Pulse wave detection device
JP6694676B2 (en) probe
US20170112394A1 (en) Measurement apparatus and measurement method
JP7024261B2 (en) Optical measuring device and optical measuring program
JP2010136921A (en) Measuring apparatus
JP6691637B2 (en) Biological information measuring device
US20170071514A1 (en) Measurement apparatus, measurement system, measurement method, and electronic device provided with measurement apparatus
WO2018180375A1 (en) Biological information measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220707

R150 Certificate of patent or registration of utility model

Ref document number: 7109010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150