JPWO2020009800A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020009800A5
JPWO2020009800A5 JP2020571504A JP2020571504A JPWO2020009800A5 JP WO2020009800 A5 JPWO2020009800 A5 JP WO2020009800A5 JP 2020571504 A JP2020571504 A JP 2020571504A JP 2020571504 A JP2020571504 A JP 2020571504A JP WO2020009800 A5 JPWO2020009800 A5 JP WO2020009800A5
Authority
JP
Japan
Prior art keywords
component
input
linear
training
angular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020571504A
Other languages
Japanese (ja)
Other versions
JP2021529380A (en
JP7437327B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/037952 external-priority patent/WO2020009800A1/en
Publication of JP2021529380A publication Critical patent/JP2021529380A/en
Publication of JPWO2020009800A5 publication Critical patent/JPWO2020009800A5/ja
Application granted granted Critical
Publication of JP7437327B2 publication Critical patent/JP7437327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

いくつかの実施形態では、任意の好適なニューラルネットワーク(NN)が、角度および線形成分が分離される限り、補間エンジンとして使用されてもよい。いくつかの実施形態では、正規化線形ユニット(ReLU)活性化関数を使用する、単一隠れ層を伴う全結合ネットワーク等のフィードフォワードニューラルネットワーク(FFNN)が、使用されてもよい。いくつかの実施形態では、隠れ層は、残差ニューラルネットワーク(resnet)ブロックとして組み込まれてもよい。
本発明は、例えば、以下を提供する。
(項目1)
方法であって、
少なくとも1つの角度成分および少なくとも1つの線形成分を備える入力データを受信することと、
前記入力データを、入力として、前記少なくとも1つの線形成分と異なるように前記少なくとも1つの角度成分を評価するように訓練されている少なくとも1つのニューラルネットワーク(NN)に提供することと、
前記少なくとも1つの角度成分および前記少なくとも1つの線形成分の異なる評価に基づいて前記少なくとも1つのNNによって生成される出力データを受信することと
を含む、方法。
(項目2)
前記少なくとも1つの角度成分は、3次元空間内の特殊直交群(SO(3))内にある、項目1に記載の方法。
(項目3)
前記ニューラルネットワークのうちの少なくとも1つは、フィードフォワードニューラルネットワーク(FFNN)である、項目1に記載の方法。
(項目4)
前記少なくとも1つのFFNNは、全結合ネットワークである、項目3に記載の方法。
(項目5)
前記FFNNは、単一隠れ層を備える、項目4に記載の方法。
(項目6)
前記FFNNは、正規化線形ユニット活性化関数を備える、項目5に記載の方法。
(項目7)
前記隠れ層は、残差NNブロックである、項目6に記載の方法。
(項目8)
前記NNのうちの少なくとも1つは、放射基底関数ニューラルネットワーク(RBFNN)である、項目1に記載の方法。
(項目9)
前記入力データは、デジタルキャラクタの姿勢を説明する、項目1に記載の方法。
(項目10)
前記入力データは、デジタルキャラクタの低次骨格を表し、前記出力データは、デジタルキャラクタの高次骨格を表す、項目1に記載の方法。
(項目11)
前記出力データは、デジタルキャラクタの姿勢を説明する、項目1に記載の方法。
(項目12)
前記入力データおよび前記出力データのうちの1つ以上のものはさらに、第3の成分を含む、項目1に記載の方法。
(項目13)
前記角度成分、線形成分、および第3の成分はそれぞれ、運動の異なる成分である、項目12に記載の方法。
(項目14)
前記少なくとも1つの角度成分は、回転運動を説明し、
前記少なくとも1つの線形成分は、平行移動運動を説明し、
前記第3の成分は、スケールを説明する、
項目13に記載の方法。
(項目15)
前記少なくとも1つのNNは、前記少なくとも1つの角度成分を評価する第1のFFNNと、前記少なくとも1つの線形成分を評価する第2のFFNNとを備える、項目12に記載の方法。
(項目16)
前記少なくとも1つのNNは、前記第3の成分を評価する第3のFFNNを備える、項目15に記載の方法。
(項目17)
前記少なくとも1つのNNは、複数のサンプルノードを備え、各サンプルノードは、訓練姿勢に対応し、前記訓練姿勢のうちの少なくとも1つは、少なくとも1つの角度成分および線形成分を含む、項目1に記載の方法。
(項目18)
前記少なくとも1つのNNは、3次元空間内の特殊直交群(SO(3))内の前記少なくとも1つの角度成分を評価することによって、かつユークリッド距離式を利用して、前記少なくとも1つの線形成分を評価することによって、前記少なくとも1つの線形成分と異なるように前記少なくとも1つの角度成分を評価する、項目1に記載の方法。
(項目19)
前記1つ以上のNNを訓練することであって、前記訓練は、
訓練入力データおよび訓練出力データを含む訓練データを受信することであって、前記訓練入力データおよび前記訓練出力データは、1つ以上の訓練姿勢を表し、前記1つ以上の訓練姿勢のうちの少なくとも1つは、入力角度成分、入力線形成分、出力角度成分、および出力線形成分を含む、ことと、
前記1つ以上の姿勢のそれぞれからの前記入力角度成分を入力角度成分群にグループ化することと、
前記1つ以上の姿勢のそれぞれからの前記入力線形成分を入力線形成分群にグループ化することと、
前記訓練入力データを入力として提供し、前記少なくとも1つのNNを訓練することであって、前記入力角度成分群は、前記入力線形成分群と異なるように評価され、前記評価は、前記出力角度成分および前記出力線形成分をもたらす、ことと
を含む、こと
をさらに含む、項目1に記載の方法。
(項目20)
システムであって、
少なくとも1つのニューラルネットワーク(NN)を実行する少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに通信可能に結合されるメモリであって、前記メモリは、命令を記憶しており、前記命令は、前記少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに、
少なくとも1つの角度成分および少なくとも1つの線形成分を備える入力データを受信することと、
前記入力データを、入力として、前記少なくとも1つの線形成分と異なるように前記少なくとも1つの角度成分を評価するように訓練されている少なくとも1つのニューラルネットワーク(NN)に提供することと、
前記少なくとも1つの角度成分および前記少なくとも1つの線形成分の異なる評価に基づいて前記少なくとも1つのNNによって生成される出力データを受信することと
を含む動作を実施させる、メモリと
を備える、システム。
In some embodiments, any suitable neural network (NN) may be used as the interpolation engine as long as the angular and linear components are separated. In some embodiments, a feedforward neural network (FFNN), such as a fully coupled network with a single hidden layer, may be used that uses a normalized linear unit (ReLU) activation function. In some embodiments, the hidden layer may be incorporated as a residual neural network (resnet) block.
The present invention provides, for example,:
(Item 1)
It ’s a method,
Receiving input data with at least one angular component and at least one linear component,
The input data is provided as input to at least one neural network (NN) trained to evaluate the at least one angular component differently from the at least one linear component.
To receive the output data produced by the at least one NN based on different evaluations of the at least one angular component and the at least one linear component.
Including, how.
(Item 2)
The method according to item 1, wherein the at least one angular component is in a special orthogonal group (SO (3)) in a three-dimensional space.
(Item 3)
The method according to item 1, wherein at least one of the neural networks is a feedforward neural network (FFNN).
(Item 4)
The method of item 3, wherein the at least one FFNN is a fully coupled network.
(Item 5)
The method of item 4, wherein the FFNN comprises a single hidden layer.
(Item 6)
5. The method of item 5, wherein the FFNN comprises a normalized linear unit activation function.
(Item 7)
The method according to item 6, wherein the hidden layer is a residual NN block.
(Item 8)
The method of item 1, wherein at least one of the NNs is a Radial Basis Function Neural Network (RBFNN).
(Item 9)
The method according to item 1, wherein the input data is a posture of a digital character.
(Item 10)
The method according to item 1, wherein the input data represents a low-order skeleton of a digital character, and the output data represents a high-order skeleton of a digital character.
(Item 11)
The method according to item 1, wherein the output data describes the posture of a digital character.
(Item 12)
The method of item 1, wherein one or more of the input data and the output data further comprises a third component.
(Item 13)
Item 12. The method according to item 12, wherein the angle component, the linear component, and the third component are components having different motions, respectively.
(Item 14)
The at least one angular component describes rotational motion.
The at least one linear component describes translational locomotion.
The third component describes the scale.
The method according to item 13.
(Item 15)
12. The method of item 12, wherein the at least one NN comprises a first FFNN for evaluating the at least one angular component and a second FFNN for evaluating the at least one linear component.
(Item 16)
15. The method of item 15, wherein the at least one NN comprises a third FFNN for evaluating the third component.
(Item 17)
In item 1, the at least one NN comprises a plurality of sample nodes, each sample node corresponding to a training posture, wherein at least one of the training postures comprises at least one angular component and a linear component. The method described.
(Item 18)
The at least one NN is the at least one linear component by evaluating the at least one angular component in a special orthogonal group (SO (3)) in three-dimensional space and by utilizing the Euclidean distance equation. The method of item 1, wherein the at least one angular component is evaluated differently from the at least one linear component by evaluating.
(Item 19)
The training is to train one or more of the NNs.
Receiving training data including training input data and training output data, wherein the training input data and the training output data represent one or more training postures, and at least one of the one or more training postures. One includes the input angle component, the input linear component, the output angle component, and the output linear component.
Grouping the input angle components from each of the one or more postures into an input angle component group,
Grouping the input linear components from each of the one or more postures into an input linear component group,
By providing the training input data as an input and training the at least one NN, the input angle component group is evaluated differently from the input linear component group, and the evaluation is the output angle component. And to bring about the output linear component
Including, that
The method according to item 1, further comprising.
(Item 20)
It ’s a system,
With at least one processor running at least one neural network (NN),
A memory communicably coupled to the at least one processor, the memory storing instructions, and when the instructions are executed by the at least one processor, the at least one processor.
Receiving input data with at least one angular component and at least one linear component,
The input data is provided as input to at least one neural network (NN) trained to evaluate the at least one angular component differently from the at least one linear component.
To receive the output data produced by the at least one NN based on different evaluations of the at least one angular component and the at least one linear component.
To perform operations including, with memory
The system.

Claims (19)

方法であって、
少なくとも1つの角度成分および少なくとも1つの線形成分を備える入力データを受信することと、
前記入力データを、入力として、前記少なくとも1つの線形成分と異なるように前記少なくとも1つの角度成分を評価するように訓練されている少なくとも1つのニューラルネットワーク(NN)に提供することと、
前記少なくとも1つの角度成分および前記少なくとも1つの線形成分の異なる評価に基づいて前記少なくとも1つのNNによって生成される出力データを受信することと
を含み、
前記少なくとも1つの角度成分は、3次元空間内の特殊直交群内にあり、前記特殊直交群は、デジタルキャラクタの全体的移動への相対的寄与を表す加重を割り当てられる、方法。
It ’s a method,
Receiving input data with at least one angular component and at least one linear component,
The input data is provided as input to at least one neural network (NN) trained to evaluate the at least one angular component differently from the at least one linear component.
Including receiving the output data produced by the at least one NN based on different evaluations of the at least one angular component and the at least one linear component.
A method in which the at least one angular component is within a special orthogonal group in three-dimensional space, the special orthogonal group being assigned a weight that represents a relative contribution to the overall movement of the digital character .
前記ニューラルネットワークのうちの少なくとも1つは、フィードフォワードニューラルネットワーク(FFNN)である、請求項1に記載の方法。 The method of claim 1, wherein at least one of the neural networks is a feedforward neural network (FFNN). 前記少なくとも1つのFFNNは、全結合ネットワークである、請求項に記載の方法。 The method of claim 2 , wherein the at least one FFNN is a fully coupled network. 前記FFNNは、単一隠れ層を備える、請求項に記載の方法。 The method of claim 3 , wherein the FFNN comprises a single hidden layer. 前記FFNNは、正規化線形ユニット活性化関数を備える、請求項に記載の方法。 The method of claim 4 , wherein the FFNN comprises a normalized linear unit activation function. 前記隠れ層は、残差NNブロックである、請求項に記載の方法。 The method of claim 5 , wherein the hidden layer is a residual NN block. 前記NNのうちの少なくとも1つは、放射基底関数ニューラルネットワーク(RBFNN)である、請求項1に記載の方法。 The method of claim 1, wherein at least one of the NNs is a Radial Basis Function Neural Network (RBFNN). 前記入力データは、デジタルキャラクタの姿勢を説明する、請求項1に記載の方法。 The method according to claim 1, wherein the input data describes the posture of a digital character. 前記入力データは、デジタルキャラクタの低次骨格を表し、前記出力データは、デジタルキャラクタの高次骨格を表す、請求項1に記載の方法。 The method according to claim 1, wherein the input data represents a low-order skeleton of a digital character, and the output data represents a high-order skeleton of a digital character. 前記出力データは、デジタルキャラクタの姿勢を説明する、請求項1に記載の方法。 The method according to claim 1, wherein the output data describes the posture of a digital character. 前記入力データおよび前記出力データのうちの1つ以上のものは第3の成分をさらに含む、請求項1に記載の方法。 The method of claim 1, wherein one or more of the input data and the output data further comprises a third component. 前記角度成分、線形成分、および第3の成分はそれぞれ、運動の異なる成分である、請求項11に記載の方法。 11. The method of claim 11 , wherein the angular component, the linear component, and the third component are components of different motion, respectively. 前記少なくとも1つの角度成分は、回転運動を説明し、
前記少なくとも1つの線形成分は、平行移動運動を説明し、
前記第3の成分は、スケールを説明する、
請求項12に記載の方法。
The at least one angular component describes rotational motion.
The at least one linear component describes translational locomotion.
The third component describes the scale.
The method according to claim 12 .
前記少なくとも1つのNNは、前記少なくとも1つの角度成分を評価する第1のFFNNと、前記少なくとも1つの線形成分を評価する第2のFFNNとを備える、請求項11に記載の方法。 11. The method of claim 11 , wherein the at least one NN comprises a first FFNN that evaluates the at least one angular component and a second FFNN that evaluates the at least one linear component. 前記少なくとも1つのNNは、前記第3の成分を評価する第3のFFNNを備える、請求項14に記載の方法。 14. The method of claim 14 , wherein the at least one NN comprises a third FFNN for evaluating the third component. 前記少なくとも1つのNNは、複数のサンプルノードを備え、各サンプルノードは、訓練姿勢に対応し、前記訓練姿勢のうちの少なくとも1つは、少なくとも1つの角度成分および線形成分を含む、請求項1に記載の方法。 The at least one NN comprises a plurality of sample nodes, each sample node corresponding to a training posture, wherein at least one of the training postures comprises at least one angular component and a linear component. The method described in. 前記少なくとも1つのNNは、3次元空間内の特殊直交群(SO(3))内の前記少なくとも1つの角度成分を評価することによって、かつユークリッド距離式を利用して、前記少なくとも1つの線形成分を評価することによって、前記少なくとも1つの線形成分と異なるように前記少なくとも1つの角度成分を評価する、請求項1に記載の方法。 The at least one NN is the at least one linear component by evaluating the at least one angular component in a special orthogonal group (SO (3)) in three-dimensional space and by utilizing the Euclidean distance equation. The method of claim 1, wherein the at least one angular component is evaluated differently from the at least one linear component by evaluating. 前記1つ以上のNNを訓練することであって、前記訓練は、
訓練入力データおよび訓練出力データを含む訓練データを受信することであって、前記訓練入力データおよび前記訓練出力データは、1つ以上の訓練姿勢を表し、前記1つ以上の訓練姿勢のうちの少なくとも1つは、入力角度成分、入力線形成分、出力角度成分、および出力線形成分を含む、ことと、
前記1つ以上の姿勢のそれぞれからの前記入力角度成分を入力角度成分群にグループ化することと、
前記1つ以上の姿勢のそれぞれからの前記入力線形成分を入力線形成分群にグループ化することと、
前記訓練入力データを入力として提供し、前記少なくとも1つのNNを訓練することであって、前記入力角度成分群は、前記入力線形成分群と異なるように評価され、前記評価は、前記出力角度成分および前記出力線形成分をもたらす、ことと
を含む、こと
をさらに含む、請求項1に記載の方法。
The training is to train one or more of the NNs.
Receiving training data including training input data and training output data, wherein the training input data and the training output data represent one or more training postures, and at least one of the one or more training postures. One includes the input angle component, the input linear component, the output angle component, and the output linear component.
Grouping the input angle components from each of the one or more postures into an input angle component group,
Grouping the input linear components from each of the one or more postures into an input linear component group,
By providing the training input data as an input and training the at least one NN, the input angle component group is evaluated differently from the input linear component group, and the evaluation is the output angle component. The method of claim 1, further comprising, including, and providing the output linear component.
システムであって、
少なくとも1つのニューラルネットワーク(NN)を実行する少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに通信可能に結合されるメモリであって、前記メモリは、命令を記憶しており、前記命令は、前記少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに、
少なくとも1つの角度成分および少なくとも1つの線形成分を備える入力データを受信することと、
前記入力データを、入力として、前記少なくとも1つの線形成分と異なるように前記少なくとも1つの角度成分を評価するように訓練されている少なくとも1つのニューラルネットワーク(NN)に提供することと、
前記少なくとも1つの角度成分および前記少なくとも1つの線形成分の異なる評価に基づいて前記少なくとも1つのNNによって生成される出力データを受信することと
を含む動作を実施させる、メモリと
を備え
前記少なくとも1つの角度成分は、3次元空間内の特殊直交群内にあり、前記特殊直交群は、デジタルキャラクタの全体的移動への相対的寄与を表す加重を割り当てられる、システム。
It ’s a system,
With at least one processor running at least one neural network (NN),
A memory communicably coupled to the at least one processor, the memory storing instructions, and when the instructions are executed by the at least one processor, the at least one processor.
Receiving input data with at least one angular component and at least one linear component,
The input data is provided as input to at least one neural network (NN) trained to evaluate the at least one angular component differently from the at least one linear component.
It comprises a memory that performs operations including receiving output data produced by the at least one NN based on different evaluations of the at least one angular component and the at least one linear component.
The system in which the at least one angular component is within a special orthogonal group in three-dimensional space, the special orthogonal group being assigned a weight that represents a relative contribution to the overall movement of the digital character .
JP2020571504A 2018-07-02 2019-06-19 Method and system for interpolation of heterogeneous inputs Active JP7437327B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862693237P 2018-07-02 2018-07-02
US62/693,237 2018-07-02
PCT/US2019/037952 WO2020009800A1 (en) 2018-07-02 2019-06-19 Methods and systems for interpolation of disparate inputs

Publications (3)

Publication Number Publication Date
JP2021529380A JP2021529380A (en) 2021-10-28
JPWO2020009800A5 true JPWO2020009800A5 (en) 2022-06-27
JP7437327B2 JP7437327B2 (en) 2024-02-22

Family

ID=69055205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020571504A Active JP7437327B2 (en) 2018-07-02 2019-06-19 Method and system for interpolation of heterogeneous inputs

Country Status (5)

Country Link
US (1) US11669726B2 (en)
EP (1) EP3818530A4 (en)
JP (1) JP7437327B2 (en)
CN (1) CN112602090A (en)
WO (1) WO2020009800A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11113887B2 (en) * 2018-01-08 2021-09-07 Verizon Patent And Licensing Inc Generating three-dimensional content from two-dimensional images
US11669726B2 (en) 2018-07-02 2023-06-06 Magic Leap, Inc. Methods and systems for interpolation of disparate inputs
US10984587B2 (en) * 2018-07-13 2021-04-20 Nvidia Corporation Virtual photogrammetry
US11496723B1 (en) * 2018-09-28 2022-11-08 Apple Inc. Automatically capturing a moment
US10679397B1 (en) 2018-12-13 2020-06-09 Universal City Studios Llc Object tracking animated figure systems and methods
US11132606B2 (en) * 2019-03-15 2021-09-28 Sony Interactive Entertainment Inc. Reinforcement learning to train a character using disparate target animation data
KR102243040B1 (en) * 2019-04-10 2021-04-21 한양대학교 산학협력단 Electronic device, avatar facial expression system and controlling method threrof
EP4058989A1 (en) * 2019-11-15 2022-09-21 Snap Inc. 3d body model generation
US11687778B2 (en) 2020-01-06 2023-06-27 The Research Foundation For The State University Of New York Fakecatcher: detection of synthetic portrait videos using biological signals
CN111223171A (en) * 2020-01-14 2020-06-02 腾讯科技(深圳)有限公司 Image processing method, image processing device, electronic equipment and storage medium
WO2021226128A1 (en) * 2020-05-04 2021-11-11 Rct Studio Inc. Methods and systems for 3d character pose prediction based on phase-functioned neural networks
US11113862B1 (en) * 2020-05-11 2021-09-07 Sony Interactive Entertainment Inc. Simulating motion of computer simulation characters to account for simulated injuries to the characters using current motion model
KR20220018760A (en) * 2020-08-07 2022-02-15 삼성전자주식회사 Edge data network for providing three-dimensional character image to the user equipment and method for operating the same
US11430217B2 (en) 2020-12-11 2022-08-30 Microsoft Technology Licensing, Llc Object of interest colorization
US20230063681A1 (en) * 2021-08-25 2023-03-02 Sony Interactive Entertainment Inc. Dynamic augmentation of stimuli based on profile of user
CN114241396A (en) * 2021-12-31 2022-03-25 深圳市智岩科技有限公司 Lamp effect control method, system, device, electronic equipment and storage medium
CN114647650A (en) * 2022-05-18 2022-06-21 苏州琞能能源科技有限公司 Data storage method and device, electronic equipment and storage medium
CN117240602B (en) * 2023-11-09 2024-01-19 北京中海通科技有限公司 Identity authentication platform safety protection method

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US5670988A (en) 1995-09-05 1997-09-23 Interlink Electronics, Inc. Trigger operated electronic device
US9525696B2 (en) * 2000-09-25 2016-12-20 Blue Coat Systems, Inc. Systems and methods for processing data flows
GB2403363A (en) * 2003-06-25 2004-12-29 Hewlett Packard Development Co Tags for automated image processing
US11428937B2 (en) 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
US20070081123A1 (en) 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
US8696113B2 (en) 2005-10-07 2014-04-15 Percept Technologies Inc. Enhanced optical and perceptual digital eyewear
US9317110B2 (en) 2007-05-29 2016-04-19 Cfph, Llc Game with hand motion control
US8350916B2 (en) * 2007-12-03 2013-01-08 Panasonic Corporation Image processing device, photographing device, reproducing device, integrated circuit, and image processing method
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
US10156722B2 (en) 2010-12-24 2018-12-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
KR101890328B1 (en) 2010-12-24 2018-08-21 매직 립, 인코포레이티드 An ergonomic head mounted display device and optical system
EP2705435B8 (en) 2011-05-06 2017-08-23 Magic Leap, Inc. Massive simultaneous remote digital presence world
US11074495B2 (en) * 2013-02-28 2021-07-27 Z Advanced Computing, Inc. (Zac) System and method for extremely efficient image and pattern recognition and artificial intelligence platform
US10795448B2 (en) 2011-09-29 2020-10-06 Magic Leap, Inc. Tactile glove for human-computer interaction
AU2012348348B2 (en) 2011-10-28 2017-03-30 Magic Leap, Inc. System and method for augmented and virtual reality
KR102404537B1 (en) 2012-04-05 2022-05-31 매직 립, 인코포레이티드 Wide-field of view (fov) imaging devices with active foveation capability
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
EP2864961A4 (en) 2012-06-21 2016-03-23 Microsoft Technology Licensing Llc Avatar construction using depth camera
US9740006B2 (en) 2012-09-11 2017-08-22 Magic Leap, Inc. Ergonomic head mounted display device and optical system
KR102274413B1 (en) 2013-01-15 2021-07-07 매직 립, 인코포레이티드 Ultra-high resolution scanning fiber display
CA3157218A1 (en) 2013-03-11 2014-10-09 Magic Leap, Inc. System and method for augmented and virtual reality
NZ712192A (en) 2013-03-15 2018-11-30 Magic Leap Inc Display system and method
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
AU2014337171B2 (en) 2013-10-16 2018-11-15 Magic Leap, Inc. Virtual or augmented reality headsets having adjustable interpupillary distance
NZ720610A (en) 2013-11-27 2020-04-24 Magic Leap Inc Virtual and augmented reality systems and methods
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
CN106233189B (en) 2014-01-31 2020-06-26 奇跃公司 Multi-focus display system and method
EP3100099B1 (en) 2014-01-31 2020-07-01 Magic Leap, Inc. Multi-focal display system and method
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
KR102173699B1 (en) 2014-05-09 2020-11-03 아이플루언스, 인크. Systems and methods for discerning eye signals and continuous biometric identification
CN113253476B (en) 2014-05-30 2022-12-27 奇跃公司 Method and system for generating virtual content display using virtual or augmented reality device
MA41117A (en) 2014-12-05 2017-10-10 Myfiziq Ltd IMAGING OF A BODY
NZ773845A (en) 2015-03-16 2022-07-01 Magic Leap Inc Methods and systems for diagnosing and treating health ailments
US9443192B1 (en) * 2015-08-30 2016-09-13 Jasmin Cosic Universal artificial intelligence engine for autonomous computing devices and software applications
US10402700B2 (en) 2016-01-25 2019-09-03 Deepmind Technologies Limited Generating images using neural networks
US10929743B2 (en) * 2016-09-27 2021-02-23 Disney Enterprises, Inc. Learning to schedule control fragments for physics-based character simulation and robots using deep Q-learning
US10535174B1 (en) * 2017-09-14 2020-01-14 Electronic Arts Inc. Particle-based inverse kinematic rendering system
WO2019204164A1 (en) 2018-04-16 2019-10-24 Magic Leap, Inc. Systems and methods for cross-application authoring, transfer, and evaluation of rigging control systems for virtual characters
US11669726B2 (en) 2018-07-02 2023-06-06 Magic Leap, Inc. Methods and systems for interpolation of disparate inputs

Similar Documents

Publication Publication Date Title
JPWO2020009800A5 (en)
Chen Modeling and control for nonlinear structural systems via a NN-based approach
Zhang et al. Optimal kinematic calibration of parallel manipulators with pseudoerror theory and cooperative coevolutionary network
CN111216130B (en) Uncertain robot self-adaptive control method based on variable impedance control
CN104992259A (en) Complex network survivability and key node analysis method based on community structure
Mock et al. A comparison of ppo, td3 and sac reinforcement algorithms for quadruped walking gait generation
He et al. A design methodology for mechatronic vehicles: application of multidisciplinary optimization, multibody dynamics and genetic algorithms
Lai et al. Singularity‐avoiding swing‐up control for underactuated three‐link gymnast robot using virtual coupling between control torques
He et al. Dynamics analysis and numerical simulation of a novel underactuated robot wrist
Anantharaman et al. Numerical simulation of mechanical systems using methods for differential‐algebraic equations
CN116956440A (en) Concrete performance monitoring point optimal arrangement method in complex environment
Fijany et al. A new factorization of the mass matrix for optimal serial and parallel calculation of multibody dynamics
CN113055218A (en) Redundancy evaluation method and device for NFV network and computing equipment
Peng et al. Neural adaptive control for leader–follower flocking of networked nonholonomic agents with unknown nonlinear dynamics
Bae et al. Humanoid state estimation using a moving horizon estimator
CN112276952B (en) Robust simultaneous stabilization method and system for multi-robot system
CN109544082B (en) System and method for digital battlefield countermeasure
Kalaba et al. Associative memory approach to the identification of structural and mechanical systems
CN110377957B (en) Bridge crane neural network modeling method of whale search strategy wolf algorithm
Kim et al. A Deep Learning Part-diagnosis Platform (DLPP) based on an In-vehicle On-board gateway for an Autonomous Vehicle
Srinivasarao et al. Bond graph modeling and multi-body dynamics of a twin rotor system
Abdessameud et al. Attitude synchronization of a spacecraft formation without velocity measurement
JP2021174401A5 (en)
Wu et al. Hierarchical inversion‐based output tracking control for uncertain autonomous underwater vehicles using extended Kalman filter
Vos et al. Port-Hamiltonian approach to deployment