JPWO2020002142A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020002142A5
JPWO2020002142A5 JP2020572983A JP2020572983A JPWO2020002142A5 JP WO2020002142 A5 JPWO2020002142 A5 JP WO2020002142A5 JP 2020572983 A JP2020572983 A JP 2020572983A JP 2020572983 A JP2020572983 A JP 2020572983A JP WO2020002142 A5 JPWO2020002142 A5 JP WO2020002142A5
Authority
JP
Japan
Prior art keywords
xylene
stage
fraction
process according
desorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020572983A
Other languages
Japanese (ja)
Other versions
JP2021528468A (en
JP7361057B2 (en
Publication date
Priority claimed from FR1856049A external-priority patent/FR3083231B1/en
Application filed filed Critical
Publication of JP2021528468A publication Critical patent/JP2021528468A/en
Publication of JPWO2020002142A5 publication Critical patent/JPWO2020002142A5/ja
Application granted granted Critical
Publication of JP7361057B2 publication Critical patent/JP7361057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

前記カラム頂部のストリームは、C8芳香族異性体を含んでおり、続けて分離プロセスに送液される。このプロセスは通常、似移動床における吸着分離段階である。 The stream at the top of the column contains the C8 aromatic isomer and is subsequently delivered to the separation process. This process is usually an adsorption separation step in a pseudo -moving bed.

似移動床における吸着分離段階の結果得られる抽出物にはパラキシレンが含まれている。この抽出物を更に抽出カラム、次いでトルエンカラムで蒸留することにより、高純度パラキシレンが得られる。 The extract obtained as a result of the adsorption separation step in the simulated moving bed contains paraxylene. High-purity paraxylene can be obtained by further distilling this extract in an extraction column and then in a toluene column.

似移動床における吸着分離段階の結果得られるラフィネートには、メタキシレン、オルトキシレン及びエチルベンゼンが高濃度で含まれる。この混合物は、蒸留による脱着剤の除去段階を経て、異性化段階に導入することによって、キシレン(オルト-、メタ-、パラキシレン)比率が実質的に熱力学的平衡にあるとともにエチルベンゼン量が減じられた混合物を得ることができる。この混合物は、新たな原料とともに、 “キシレンカラム”に再度送液される。 The raffinate obtained as a result of the adsorption separation step in the pseudo -moving bed contains high concentrations of metaxylene, orthoxylene and ethylbenzene. This mixture is introduced into the isomerization step through the desorption agent removal step by distillation, so that the xylene (ortho-, meta-, paraxylene) ratio is substantially in thermodynamic equilibrium and the amount of ethylbenzene is reduced. The resulting mixture can be obtained. The mixture is re-delivered to the "xylene column" with the new raw material.

特許文献1には、炭化水素原料からパラキシレンを製造する方法が記載されている。この方法では似移動床による分離を二段階で行うとともに、異性化も二段階で行う。かかるプロセスのデメリットは、似移動床による分離段階を二段階も要する点にあり、製造コストの実質的な増加がもたらされる。 Patent Document 1 describes a method for producing paraxylene from a hydrocarbon raw material. In this method, separation by a pseudo -moving bed is performed in two steps, and isomerization is also performed in two steps. The disadvantage of such a process is that it requires as many as two separation steps with a pseudo -moving bed, resulting in a substantial increase in manufacturing costs.

SMBは似移動床を表す。 SMB represents a pseudo -moving floor.

-段階Aは、似移動床における単一の分離段階であり、この段階では脱着剤及び吸着剤としてゼオライトが使用される。また、この段階は20℃~250℃の温度で、かつ操業圧力におけるキシレンの気泡圧と2.0MPaの間の圧力下で実施される。また、似移動床における分離ユニットにおいて、供給原料に対する脱着剤の体積比は0.4~2.5の比率とされる。この段階では少なくとも三のフラクションを得ることができる。 -Step A is a single separation step in the quasi -moving bed, in which zeolite is used as the desorbent and adsorbent. Further, this step is carried out at a temperature of 20 ° C. to 250 ° C. and under a pressure between the bubble pressure of xylene and 2.0 MPa at the operating pressure. Further, in the separation unit in the pseudo moving bed, the volume ratio of the desorbing agent to the feedstock is set to a ratio of 0.4 to 2.5. At this stage, at least three fractions can be obtained.

似移動床における分離段階A Separation stage A in the simulated moving floor

前記原料の分離段階は一のユニット内で行う。このユニットでは、少なくとも一の分離カラム内で似移動床を作動させる。この分離カラムは、相互に接続された複数の床と脱着剤とを含んでおり、脱着剤は閉ループ内で循環させられる。そして、このユニットより三つのフラクションが発生する。 The separation step of the raw material is performed in one unit. In this unit, the pseudo -moving floor is operated in at least one separation column. This separation column contains multiple interconnected beds and a desorbent, which is circulated within a closed loop. And three fractions are generated from this unit.

似移動床における分離ユニットで使用する吸着剤としては、バリウム交換ゼオライトX、カリウム交換ゼオライトY、又はバリウム・カリウム交換ゼオライトYが好ましい。 As the adsorbent used in the separation unit in the simulated moving bed, barium-exchanged zeolite X, potassium-exchanged zeolite Y, or barium-potassium-exchanged zeolite Y is preferable.

似移動床における分離ユニットで使用する脱着剤は、パラ-ジエチルベンゼン、トルエン、パラ-ジフルオロベンゼン若しくはジエチルベンゼンより選択するのが好ましく、単体で又は混合物として使用できる。 The desorbing agent used in the separation unit in the pseudo -moving bed is preferably selected from para-diethylbenzene, toluene, para-difluorobenzene or diethylbenzene, and can be used alone or as a mixture.

似移動床に係る分離ユニット内における、供給原料に対する脱着剤の体積比は、0.4~2.5、好ましくは0.5~2.0、より好ましくは0.5~1.5である。 The volume ratio of the desorbing agent to the feedstock in the separation unit related to the simulated moving bed is 0.4 to 2.5, preferably 0.5 to 2.0, and more preferably 0.5 to 1.5. be.

似移動床における分離段階Aは、90℃~210℃、より好ましくは160℃~200℃の温度で、かつ、1.0MPa~2.2MPa、好ましくは1.2MPa~2.0MPaの圧力下で行うのが好適である。 The separation step A in the simulated moving bed is at a temperature of 90 ° C. to 210 ° C., more preferably 160 ° C. to 200 ° C., and under a pressure of 1.0 MPa to 2.2 MPa, preferably 1.2 MPa to 2.0 MPa. It is preferable to do it in.

脱着剤系のフラクションB41と、脱着剤系でありC8Aを欠如するB42は、脱着剤が重質の場合には各々のカラムの底部において、また脱着剤が軽質の場合には各頂部において回収されたのちに混合され、ストリームB4を経由して似移動床の吸着段階Aに戻される。 The desorbing agent fraction B41 and the desorbing agent-based B42 lacking C8A are recovered at the bottom of each column when the desorbing agent is heavy and at each top when the desorbing agent is light. It is later mixed and returned to the adsorption step A of the pseudo -moving bed via stream B4.

段階Cで得られるエフルエントC1は、熱力学的平衡に近接したPX、OX及びMX異性体の濃度を示し、似移動床の吸着段階Aで再利用される。 The effluent C1 obtained in step C exhibits concentrations of PX, OX and MX isomers close to thermodynamic equilibrium and is reused in adsorption step A of the pseudo -moving bed.

図1bの従来技術によると、前記C8Aカットは似移動床の吸着段階Aに供給される。この似移動床は4ゾーンに分画されており、それぞれ脱着剤を含む。ゾーンは供給原料及び脱着剤の注入口と、並びにラフィネートA2及び抽出物A1の取り出し口とで分画されている。この吸着器は15段床よりなり、バリウム交換ゼオライトXを含む。以下に床の分布を示す。 According to the prior art of FIG. 1b, the C8A cut is supplied to the adsorption step A of the pseudo -moving bed. This pseudo -moving floor is divided into four zones, each containing a desorbing agent. The zone is partitioned by the inlet of the feedstock and the desorbent, and the outlet of the raffinate A2 and the extract A1. This adsorber consists of a 15-tiered bed and contains barium-exchanged zeolite X. The floor distribution is shown below.

ラフィネートA2は、蒸留カラムB-C2の25番目の理論段に供給された。このカラムには47の理論段と、コンデンサと、リボイラとが含まれている。操業圧力は0.2MPa、還流比は1.4であり、このカラムにより二の分留が得られた。即ち、カラム頂部では420t/hのラフィネートB2が得られ、脱着剤が25ppmで含まれていた。また、カラム底部では407t/hの脱着剤B42が得られ、50ppmのキシレンが含まれていた。ラフィネートB42はストリームB41と混合させられたのち、似移動床に、その温度が吸着に必要な程度に熱交換させられた上で、戻された。そして、図示されるように、ラフィネートカラムでラフィネートA2を分離精製した。リボイルには80G cal/hのエネルギーを要した。また、ラフィネートB2は最初の異性化段階(C)に送られた。 Raffinate A2 was supplied to the 25th theoretical stage of distillation columns BC2. This column contains 47 theoretical stages, a capacitor, and a reboiler. The operating pressure was 0.2 MPa and the reflux ratio was 1.4, and this column gave a dichotomy. That is, 420 t / h raffinate B2 was obtained at the top of the column, and the desorbing agent was contained at 25 ppm. Further, at the bottom of the column, a desorbent B42 of 407 t / h was obtained, and 50 ppm of xylene was contained. The raffinate B42 was mixed with the stream B41 and then returned to the pseudo -moving bed after heat exchange to the extent required for adsorption. Then, as shown, Raffinate A2 was separated and purified on a Raffinate column. Riboyl required 80 G cal / h of energy. Raffinate B2 was also sent to the first isomerization step (C).

図2で示される本発明の方法を実施するに当たり、前記C8Aカットは吸着段階Aの似移動床に送られた。この似移動床は脱着剤を含み、5ゾーンに分画されている。区画は供給原料及び脱着剤(B4)の注入口並びにラフィネートA21及びA22の取り出し口でなされている。前記吸着器は18段床よりなり、床は以下のように分布させられている。 In carrying out the method of the invention shown in FIG. 2, the C8A cut was sent to the pseudo -moving bed of adsorption step A. This pseudo -moving floor contains a desorbing agent and is divided into 5 zones. The compartment is made up of an inlet for the feedstock and desorption agent (B4) and an outlet for the raffinates A21 and A22. The adsorber consists of an 18-tiered floor, and the floors are distributed as follows.

ユニットA内のゾーン3Bの各サイドにおいて、ラフィネートA21及びA22を回収し、似移動床に吸着させた結果、以下の組成が示された。 As a result of collecting raffinates A21 and A22 and adsorbing them on a pseudo -moving bed on each side of zone 3B in the unit A, the following composition was shown.

- 頂部では420t/hのラフィネートB21が得られ、これにはMX、OX及びEB、並びに25ppmの脱着剤が含まれていた。
- 底部では407t/hの脱着剤B42が得られ、これには50ppmのキシレンが含まれていた。B42は、ストリームB41と混合させられた後、似移動床に、吸着のために必要とされる温度熱交換を行った上で、戻された。そして、ラフィネートA21及びA22の分留を図示のラフィネートカラムで行うためには74.4Gcal/hのリボイルエネルギーが必要であった。ラフィネートB2は異性化段階Cに送られた。
-At the apex, 420 t / h raffinate B21 was obtained, which contained MX, OX and EB, as well as 25 ppm of desorbent.
-At the bottom, a 407 t / h desorbent B42 was obtained, which contained 50 ppm xylene. After being mixed with the stream B41, B42 was returned to the pseudo -moving bed after undergoing the temperature heat exchange required for adsorption. And, in order to carry out the fractional distillation of raffinates A21 and A22 in the illustrated raffinate column, 74.4 Gcal / h of riboyl energy was required. Raffinate B2 was sent to isomerization stage C.

この実施例より以下のことが明らかに示された。即ち、分離段階Aにおいて、似移動床による吸着ユニットを用いて、脱着剤が濃厚なラフィネートと、MX、OX及びEBが濃厚なラフィネートとを得、それらを別々に一の蒸留カラムに導入する組合せを採用することにより、分離精製を容易に行うことができ、故に熱負荷も減少できた。 The following was clearly shown from this example. That is, in the separation step A, an adsorption unit with a pseudo -moving bed is used to obtain a raffinate rich in the desorbent and a raffinate rich in MX, OX and EB, and they are separately introduced into one distillation column. By adopting the combination, separation and purification could be easily performed, and therefore the heat load could be reduced.

Claims (11)

キシレン類、エチルベンゼン及びC9+炭化水素を含有する供給原料よりパラキシレンを得るための方法であって、
前記方法には、以下の段階A及び段階Bが含まれており、
-段階Aは、擬似移動床における単一の分離段階であり、この段階は、脱着剤及び吸着剤としてゼオライトを用いるとともに、20~250℃の間の温度で、かつ操業温度におけるキシレンの気泡圧~2.0MPaの圧力下で、かつ擬似移動床における分離ユニットにおける供給原料に対する脱着剤の体積比が0.4~2.5の間の比率で実施され、この段階により少なくとも三のフラクションを得ることができ、
・一のフラクションA1には、パラキシレン及び脱着剤よりなる混合物が含まれており、
・二のフラクションA21及びA22には、エチルベンゼン(EB)、オルトキシレン(OX)及びメタキシレン(MX)並びに脱着剤が含まれており、
また、
-段階Bは、段階Aより生ずるフラクションA21及びA22を一の蒸留カラム内で蒸留により分留させる段階であり、この蒸留カラムには前記フラクションが別々に、各々独立した注入点にて導入され、かつ、この段階ではエチルベンゼン、オルトキシレン及びメタキシレンを含むフラクションB2と、炭素数が8の芳香族化合物を欠くとともに脱着剤を含むフラクションB42とを得ることができる
方法。
A process for obtaining para-xylene from a feedstock containing xylenes, ethylbenzene and C9+ hydrocarbons comprising:
The method includes the following steps A and B,
- Stage A is a single separation stage in a simulated moving bed, which uses zeolites as desorbent and adsorbent, at a temperature between 20 and 250°C and the xylene bubble pressure at the operating temperature . It is carried out under a pressure of ~2.0 MPa and with a volume ratio of desorbent to feed in the separation unit in a simulated moving bed between 0.4 and 2.5, this step yielding at least three fractions. It is possible,
- one fraction A1 contains a mixture of para-xylene and a desorbent,
the second fractions A21 and A22 contain ethylbenzene (EB), ortho-xylene (OX) and meta-xylene (MX) and desorbents;
Also,
- stage B is the fractionation by distillation of the fractions A21 and A22 resulting from stage A in one distillation column, into which said fractions are introduced separately, each at an independent injection point, Also, at this stage, a fraction B2 containing ethylbenzene, ortho-xylene and meta-xylene and a fraction B42 containing desorbents and lacking aromatic compounds having 8 carbon atoms can be obtained.
段階Bで用いる蒸留カラムが示す理論段数が30~80である、請求項1に記載の方法。 2. The process according to claim 1, wherein the distillation column used in step B has 30 to 80 theoretical plates. 段階Bで用いる蒸留カラムへの前記フラクションA21及びA22の注入点の間隔が2~15の理論段数である、請求項1又は2に記載の方法。 A process according to claim 1 or 2, wherein the distance between the injection points of said fractions A21 and A22 into the distillation column used in step B is 2 to 15 theoretical plates . 段階Bで使用される蒸留カラムが2カットカラム及び3カットカラムから選択される、請求項1~3のいずれか1項に記載の方法。 Process according to any one of claims 1 to 3, wherein the distillation column used in step B is selected from a 2-cut column and a 3-cut column. フラクションA21が示す脱着剤の含有量が前記フラクションA22のそれよりも低い、請求項1~4のいずれか1項に記載の方法。 A process according to any one of claims 1 to 4, wherein fraction A21 has a lower desorbent content than said fraction A22. 擬似移動床における分離段階Aが90~210℃の温度で、かつ1.0~2.2 MPaの圧力下で実施される、請求項1~5のいずれか1項に記載の方法。 Process according to any one of claims 1 to 5, wherein the separation stage A in the simulated moving bed is carried out at a temperature of 90-210°C and under a pressure of 1.0-2.2 MPa. 段階Aで用いる分離ユニット(SMB)の床層数が10~30床である、請求項1~6のいずれか1項に記載の方法。 Process according to any one of claims 1 to 6, wherein the separation unit (SMB) used in stage A has 10 to 30 beds . 段階Aで使用される脱着剤が示す沸点がキシレンのそれよりも高く、かつ前記フラクションA22が前記フラクションA21よりも低い位置で導入される、請求項~7のいずれか1項に記載の方法。 A process according to any one of claims 5 to 7, wherein the desorbent used in step A has a boiling point higher than that of xylene and the fraction A22 is introduced at a lower position than the fraction A21. . 段階Aで用いる脱着剤がキシレン類の沸点よりも低い沸点を示す化合物であり、かつ前記フラクションA22がA21よりも高い位置で導入される、請求項5~7のいずれか1項に記載の方法。 Process according to any one of claims 5 to 7 , wherein the desorbent used in step A is a compound with a boiling point lower than that of xylenes, and said fraction A22 is introduced at a position higher than A21. . 分留段階Bより得られるエチルベンゼン、オルトキシレン及びメタキシレンを含有するフラクションB2の気相異性化段階Cを含む、請求項1~9のいずれか1項に記載の方法。 Process according to any one of claims 1 to 9, comprising a gas phase isomerization stage C of fraction B2 containing ethylbenzene, ortho-xylene and meta-xylene obtained from fractionation stage B. 異性化段階が300℃よりも大きい温度で、かつ4.0MPa未満の圧力で、かつ10.0h-1満の空間速度で、かつ10.0未満の水素-炭化水素モル比で、かつ触媒の存在下で実施され、
前記触媒は少なくとも一のゼオライトと少なくとも一の金属とを含んでおり、かつゼオライトが示す管状細孔は開口が10又は12の酸素原子(10MR又は12MR)を有する環によって定義され、かつ金属はVIII族より選ばれるとともにその含量が重量基準で0.1%~0.3%である
請求項10に記載の方法。
the isomerization stage at a temperature greater than 300 ° C. and at a pressure of less than 4.0 MPa and a space velocity of less than 10.0 h −1 and a hydrogen-to-hydrocarbon molar ratio of less than 10.0 , and carried out in the presence of a catalyst,
Said catalyst comprises at least one zeolite and at least one metal, and the tubular pores exhibited by the zeolite are defined by rings whose openings have 10 or 12 oxygen atoms (10MR or 12MR), and the metal is VIII 11. The method according to claim 10, which is selected from the group and whose content is 0.1% to 0.3% by weight.
JP2020572983A 2018-06-29 2019-06-21 A method for producing paraxylene using a simulated moving bed stage, and a second fractional distillation stage in a two-section column. Active JP7361057B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1856049A FR3083231B1 (en) 2018-06-29 2018-06-29 PROCESS FOR PRODUCING PARAXYLENE USING A SIMULATED MOBILE BED STEP, AND A TWO-FRACTION FRACTIONATION STEP
FR1856049 2018-06-29
PCT/EP2019/066445 WO2020002142A1 (en) 2018-06-29 2019-06-21 Method for producing paraxylene using a simulated moving-bed step, and a step of fractionating two fractions in a two-section column

Publications (3)

Publication Number Publication Date
JP2021528468A JP2021528468A (en) 2021-10-21
JPWO2020002142A5 true JPWO2020002142A5 (en) 2023-08-29
JP7361057B2 JP7361057B2 (en) 2023-10-13

Family

ID=63312144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020572983A Active JP7361057B2 (en) 2018-06-29 2019-06-21 A method for producing paraxylene using a simulated moving bed stage, and a second fractional distillation stage in a two-section column.

Country Status (8)

Country Link
US (1) US11242302B2 (en)
EP (1) EP3814307B1 (en)
JP (1) JP7361057B2 (en)
KR (1) KR20210030273A (en)
CN (1) CN112585107B (en)
FR (1) FR3083231B1 (en)
PT (1) PT3814307T (en)
WO (1) WO2020002142A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11673848B2 (en) * 2020-02-27 2023-06-13 Exxonmobil Chemical Patents Inc. Xylene separation processes using a membrane separator
CN112843788B (en) * 2021-01-19 2022-10-28 温州大学新材料与产业技术研究院 Temperature gradient simulated moving bed device adopting mobile phase independent out-of-loop replacement and separation method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700744A (en) * 1970-09-18 1972-10-24 Universal Oil Prod Co Simultaneous recovery and production of pure xylenes from a c aromatic mixture
TW200454B (en) * 1991-09-05 1993-02-21 Inst Of France Petroleum
FR2773149B1 (en) * 1997-12-26 2000-02-18 Inst Francais Du Petrole CO-PRODUCTION AND SEPARATION PROCESS OF ETHYLBENZENE AND PARAXYLENE
TWI240716B (en) * 2000-07-10 2005-10-01 Bp Corp North America Inc Pressure swing adsorption process for separating paraxylene and ethylbenzene from mixed C8 aromatics
US6573418B2 (en) * 2000-07-10 2003-06-03 Bp Corporation North America Inc. Process for production of para-xylene incorporating pressure swing adsorption and simulated moving bed adsorption
US6627783B2 (en) * 2000-07-10 2003-09-30 Bp Corporation North America Inc. Pressure swing adsorption process for separating para-xylene and ethylbenzene from mixed C8 aromatics
US6483002B1 (en) * 2000-09-26 2002-11-19 Uop Llc Integrated fractional distillation for adsorptive separation process
FR2844790B1 (en) 2002-09-20 2004-10-22 Inst Francais Du Petrole PARAXYLENE AND STYRENE CO-PRODUCTION PROCESS
FR2862638B1 (en) 2003-11-26 2005-12-30 Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF PARAXYLENE COMPRISING AN ADSORPTION STEP AND TWO STEPS OF ISOMERIZATION
FR2922547B1 (en) * 2007-10-18 2012-09-21 Inst Francais Du Petrole C8 AROMATIC SEPARATION PROCESS WITH LIMITED RECYCLING
US8557028B2 (en) * 2011-03-31 2013-10-15 Uop Llc Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and adsorptive separation processes using the binderless zeolitic adsorbents
US8802914B2 (en) 2011-12-15 2014-08-12 Uop Llc Process and apparatus for para-xylene production using multiple adsorptive separation units and a split fractionating column
CN103373891B (en) * 2012-04-26 2015-07-29 中国石油化工股份有限公司 From C 8in aromatic hydrocarbons, fractionation by adsorption produces the method for p-Xylol and ethylbenzene
FR3002461B1 (en) * 2013-02-22 2016-12-09 Ifp Energies Now METHOD FOR SEPARATING SIMPLE MOBILE BED XYLENES BY MEANS OF A ZEOLITHIC ADSORBENT SOLANIZING SOLIDITY BETWEEN 150 AND 500 MICRONS
JP6615888B2 (en) 2014-08-15 2019-12-04 エクソンモービル・ケミカル・パテンツ・インク Aromatic production method
WO2016133589A1 (en) * 2015-02-19 2016-08-25 Exxonmobil Chemical Patents Inc. Xylene separation process
JP6527960B2 (en) 2015-04-30 2019-06-12 エクソンモービル・ケミカル・パテンツ・インク Process and apparatus for producing paraxylene
FR3083230B1 (en) * 2018-06-29 2021-04-23 Axens PROCESS FOR THE PRODUCTION OF PARAXYLENE USING A SIMULATED MOVABLE BED STAGE, AND A FRACTIONING STAGE VIA A COLUMN OF 3 CUTS

Similar Documents

Publication Publication Date Title
TWI638800B (en) Aromatics production process
JP4966664B2 (en) Method for producing para-xylene comprising one adsorption step and two isomerization steps
JP4871887B2 (en) Improved product recovery process from simulated moving bed adsorption
US8802914B2 (en) Process and apparatus for para-xylene production using multiple adsorptive separation units and a split fractionating column
KR101486106B1 (en) Process and device for improved separation of paraxylene in a simulated moving bed
US10351489B2 (en) Processes for recovering paraxylene
KR20020077458A (en) Process for producing para-xylene
KR20160060703A (en) Systems and methods for separating xylene isomers using selective adsorption
JP6730490B2 (en) Device and method for isolating C8 aromatics
WO2016094752A2 (en) Processes for para-xylene adsorptive separation
JP2011525919A (en) Method and apparatus for separating para-xylene from a mixture of C8 and C9 aromatic hydrocarbons
CN107531590A (en) Method and apparatus for producing paraxylene
US10300404B2 (en) Process for the recovering of paraxylene
JP5432370B2 (en) Method for improving meta-xylene yield from C8 aromatic compounds
JP7361057B2 (en) A method for producing paraxylene using a simulated moving bed stage, and a second fractional distillation stage in a two-section column.
JP6585587B2 (en) Apparatus and method for forming a C8 aromatics stream containing a selected amount of C9 aromatics
TWI805790B (en) Process for producing para-xylene using a step in a simulated moving bed and a step of fractionation via a three-fraction column
JP2020023475A5 (en)
JPWO2020002142A5 (en)
WO2017201159A1 (en) Xylene separation process
US9126875B2 (en) Sorption process with added drying section
WO2016094243A1 (en) Processes for para-xylene adsorptive separation