JPWO2019246251A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019246251A5
JPWO2019246251A5 JP2020570926A JP2020570926A JPWO2019246251A5 JP WO2019246251 A5 JPWO2019246251 A5 JP WO2019246251A5 JP 2020570926 A JP2020570926 A JP 2020570926A JP 2020570926 A JP2020570926 A JP 2020570926A JP WO2019246251 A5 JPWO2019246251 A5 JP WO2019246251A5
Authority
JP
Japan
Prior art keywords
materials
polymer
metal
dopant
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020570926A
Other languages
Japanese (ja)
Other versions
JP2021527583A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/037968 external-priority patent/WO2019246251A2/en
Publication of JP2021527583A publication Critical patent/JP2021527583A/en
Publication of JPWO2019246251A5 publication Critical patent/JPWO2019246251A5/ja
Pending legal-status Critical Current

Links

Claims (20)

非類似の材料を固体状態付加製造機で接合するプロセスであって、
第1の材料を、固体状態付加製造機の中空器具を介して第2の材料の表面に供給すること、
前記第1及び前記第2の材料が界面領域で可鍛性及び/または粘弾性状態になるように、前記中空器具の回転ショルダーを介して法線力、せん断力、及び/または摩擦力を加えることにより、前記第1及び前記第2の材料の塑性変形を生成すること、及び
前記界面領域で前記第1及び前記第2の材料を混合及び接合すること
を含む、前記プロセス。
It is a process of joining dissimilar materials with a solid state addition manufacturing machine.
Supplying the first material to the surface of the second material via the hollow instrument of the solid state addition manufacturing machine,
A normal force, shear force, and / or frictional force is applied through the rotating shoulder of the hollow device so that the first and second materials are in a malleable and / or viscoelastic state at the interface region. The process comprising generating plastic deformations of the first and second materials and mixing and joining the first and second materials at the interface region.
前記第1及び前記第2の材料が2つの異なるポリマーである、請求項1に記載のプロセス。 The process of claim 1, wherein the first and second materials are two different polymers. 前記第1及び前記第2の材料が2つの異なる金属、MMCまたは金属合金である、請求項1に記載のプロセス。 The process of claim 1, wherein the first and second materials are two different metals, MMCs or metal alloys. 前記第1の材料がポリマーであり、前記第2の材料が金属である、または、
前記第1の材料が金属であり、前記第2の材料がポリマーである、請求項1に記載のプロセス。
The first material is a polymer and the second material is a metal, or
The process of claim 1, wherein the first material is a metal and the second material is a polymer.
前記ポリマーが前記金属の表面領域の粒子の間に浸透する、請求項1に記載のプロセス。 The process of claim 1, wherein the polymer penetrates between particles in the surface area of the metal. 前記第1の材料がポリマーであり、前記第2の材料が複合材料である、または、
前記第1の材料が複合材料であり、前記第2の材料がポリマーである、請求項1に記載のプロセス。
The first material is a polymer and the second material is a composite material, or
The process of claim 1, wherein the first material is a composite material and the second material is a polymer.
前記第1の材料が金属であり、前記第2の材料が複合材料である、または、
前記第1の材料が複合材料であり、前記第2の材料が金属である、請求項1に記載のプロセス。
The first material is a metal and the second material is a composite material or
The process of claim 1, wherein the first material is a composite material and the second material is a metal.
前記第1及び前記第2の材料が溶接不可能な材料である、請求項1に記載のプロセス。 The process of claim 1, wherein the first and second materials are non-weldable materials. 前記第1及び前記第2の材料が非常に低い表面エネルギーである、請求項1に記載のプロセス。 The process of claim 1, wherein the first and second materials have very low surface energy. 前記第1及び前記第2の材料が、1つまたは複数の中間層を形成することによって接合される、請求項1に記載のプロセス。 The process of claim 1, wherein the first and second materials are joined by forming one or more intermediate layers. 前記第1の材料が液晶ポリマー(オリゴマーなど)であり、前記第2の材料の表面の上に堆積すると優先的に配向される、請求項1に記載のプロセス。 The process of claim 1, wherein the first material is a liquid crystal polymer (oligomer, etc.) and is preferentially oriented when deposited on the surface of the second material. 前記第1の材料は、前記第2の材料の上部に堆積すると反応を受ける反応性材料である、請求項1に記載のプロセス。 The process of claim 1, wherein the first material is a reactive material that undergoes a reaction when deposited on top of the second material. 前記第1の材料が、開始剤の補助のもと反応を受ける、請求項1に記載のプロセス。 The process of claim 1, wherein the first material undergoes a reaction with the assistance of an initiator. 前記第1の材料が、熱、光、または電子ビームの補助のもと反応を受ける、請求項1に記載のプロセス。 The process of claim 1, wherein the first material undergoes a reaction with the assistance of heat, light, or electron beam. 前記第1及び前記第2の材料の一方または両方が、ドーパント及び/または強化粒子でドープされている、請求項1に記載のプロセス。 The process of claim 1, wherein one or both of the first and second materials are doped with dopants and / or reinforced particles. 前記ドーパント及び/または前記強化粒子がミクロンオンナノサイズである、請求項15に記載のプロセス。 15. The process of claim 15, wherein the dopant and / or the enhanced particles are micron-on-nano size. 前記ドーパント及び/または前記強化粒子がミクロンサイズまたはナノサイズの繊維である、請求項15に記載のプロセス。 15. The process of claim 15, wherein the dopant and / or the reinforcing particles are micron-sized or nano-sized fibers. 前記ドーパント及び/または前記強化粒子がカーボンナノチューブ(CNT)である、請求項15に記載のプロセス。 15. The process of claim 15, wherein the dopant and / or the reinforcing particles are carbon nanotubes (CNTs). 前記ドーパント及び/または前記強化粒子が、複数のタイプの材料の混合物である、請求項15に記載のプロセス。 15. The process of claim 15, wherein the dopant and / or the reinforcing particles are a mixture of a plurality of types of materials. 前記ドーパントが、前記開始剤、プライマー、及び/または接着促進剤で充填されたマイクロカプセルである、請求項15に記載のプロセス。 15. The process of claim 15, wherein the dopant is a microcapsule filled with the initiator, primer, and / or adhesion promoter.
JP2020570926A 2018-06-19 2019-06-19 Solid state method of joining dissimilar materials and parts and solid state addition manufacturing of coatings and parts that in-situ generate taggant features Pending JP2021527583A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862686949P 2018-06-19 2018-06-19
US62/686,949 2018-06-19
US201862729147P 2018-09-10 2018-09-10
US62/729,147 2018-09-10
PCT/US2019/037968 WO2019246251A2 (en) 2018-06-19 2019-06-19 Solid-state methods of joining dissimilar materials and parts and solid-state additive manufacturing of coatings and parts with in situ generated taggant features

Publications (2)

Publication Number Publication Date
JP2021527583A JP2021527583A (en) 2021-10-14
JPWO2019246251A5 true JPWO2019246251A5 (en) 2022-06-28

Family

ID=68984361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020570926A Pending JP2021527583A (en) 2018-06-19 2019-06-19 Solid state method of joining dissimilar materials and parts and solid state addition manufacturing of coatings and parts that in-situ generate taggant features

Country Status (8)

Country Link
US (1) US20210197457A1 (en)
EP (1) EP3810384A4 (en)
JP (1) JP2021527583A (en)
KR (1) KR20210049085A (en)
CN (1) CN112770884A (en)
AU (1) AU2019290657A1 (en)
CA (1) CA3104289A1 (en)
WO (1) WO2019246251A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11351590B2 (en) 2017-08-10 2022-06-07 Honda Motor Co., Ltd. Features of dissimilar material-reinforced blanks and extrusions for forming
US10532421B2 (en) * 2017-08-29 2020-01-14 Honda Motor Co., Ltd. UAM resistance spot weld joint transition for multimaterial automotive structures
WO2019089764A1 (en) 2017-10-31 2019-05-09 Aeroprobe Corporation Solid-state additive manufacturing system and material compositions and structures
US10870166B2 (en) 2018-02-01 2020-12-22 Honda Motor Co., Ltd. UAM transition for fusion welding of dissimilar metal parts
AU2019234726A1 (en) 2018-03-12 2020-10-29 MELD Manufacturing Corporation Method for process control of a solid-state additive manufacturing system
EP3849785A4 (en) * 2018-09-11 2022-06-22 Meld Manufacturing Corporation Solid-state additive manufacturing methods for compounding conductive polymer compositions, fabrication of conductive plastic parts and conductive coatings
US11491718B2 (en) * 2019-12-20 2022-11-08 Nutech Ventures Hybrid additive manufacturing method
US11465390B2 (en) 2020-03-02 2022-10-11 Honda Motor Co., Ltd. Post-process interface development for metal-matrix composites
US11890788B2 (en) 2020-05-20 2024-02-06 The Regents Of The University Of Michigan Methods and process for producing polymer-metal hybrid components bonded by C—O-M bonds
CN111812022B (en) * 2020-06-16 2024-04-05 重庆大学 System and method for visualizing three-dimensional strain field of coal and rock under complex geological structure
IT202000027612A1 (en) 2020-11-18 2022-05-18 Nanotech System IMPROVED ANTI-COUNTERFEIT SYSTEM
CN113798512B (en) * 2021-09-03 2022-04-26 南京工业大学 Net forming method and application of interface reinforced Ti-Ni-based gradient material
CN114453594B (en) * 2022-04-11 2022-07-19 西安空天机电智能制造有限公司 Grafting printing method of selective laser melting equipment
CN114713849A (en) * 2022-06-09 2022-07-08 吉林大学 Integrated additive manufacturing method for heterogeneous metal bionic component
CN114713846A (en) * 2022-06-10 2022-07-08 吉林大学 Heterogeneous bionic structure design and directional energy deposition additive manufacturing method thereof
CN115815776B (en) * 2023-02-15 2023-05-16 中北大学 Ultrasonic-electric field assisted vacuum hot-pressing heterogeneous interface diffusion forming device and process

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241185B2 (en) * 2003-05-21 2009-03-18 三菱重工業株式会社 Friction stir welding apparatus and friction stir welding joint manufactured by the apparatus
US9511445B2 (en) * 2014-12-17 2016-12-06 Aeroprobe Corporation Solid state joining using additive friction stir processing
US9266191B2 (en) * 2013-12-18 2016-02-23 Aeroprobe Corporation Fabrication of monolithic stiffening ribs on metallic sheets
US7762447B2 (en) * 2008-03-20 2010-07-27 Ut-Battelle, Llc Multiple pass and multiple layer friction stir welding and material enhancement processes
CN102383095A (en) * 2011-11-04 2012-03-21 浙江大学 Method for sputtering and deposition of aluminum nitride piezoelectric thin film on flexible substrate through room-temperature reaction
US9944021B2 (en) * 2012-03-02 2018-04-17 Dynamic Material Systems, LLC Additive manufacturing 3D printing of advanced ceramics
DE102013204012A1 (en) * 2013-03-08 2014-09-11 Bayerische Motoren Werke Aktiengesellschaft Method for joining fiber-reinforced plastic parts
CN106794519B (en) * 2014-10-14 2019-05-28 西门子能源有限公司 The laser gain material of the three-dimensional part comprising multiple material of being formed as one system manufactures
JP6358126B2 (en) * 2015-02-20 2018-07-18 スズキ株式会社 Method for producing a laminated structure of three or more layers using a friction stir welding tool and a laminated structure produced by the method
CA3031329A1 (en) * 2015-07-18 2017-01-26 Vulcanforms Inc. Additive manufacturing by spatially controlled material fusion
CN106112254B (en) * 2016-08-16 2018-08-10 东晓 A kind of 3D printing device and method

Similar Documents

Publication Publication Date Title
JPWO2019246251A5 (en)
US8261961B2 (en) Metal matrix carbon nanotube composite material and method of making same
Sahu et al. Friction stir welding of polypropylene sheet
Lim et al. Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing
Pramanik et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys–A review
Sharma et al. Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing
Liu et al. Joining of metal to plastic using friction lap welding
Wu et al. Direct joining of oxygen-free copper and carbon-fiber-reinforced plastic by friction lap joining
Abe et al. The effect of nanospike structures on direct bonding strength properties between aluminum and carbon fiber reinforced thermoplastics
Hajideh et al. Reinforced dissimilar friction stir weld of polypropylene to acrylonitrile butadiene styrene with copper nanopowder
Jeon et al. Mechanical properties of graphite/aluminum metal matrix composite joints by friction stir spot welding
Wang et al. Experimental investigation of clinching CFRP/aluminum alloy sheet with prepreg sandwich structure
Cakir et al. MWCNT, nano‐silica, and nano‐clay additives effects on adhesion performance of dissimilar materials bonded joints
Zhang et al. Ultrasonic dissolution of brazing of 55% SiCp/A356 composites
Yi et al. Differences in microstructure and properties of C/C composites brazed with Ag-Cu-Ti and Ni-Cr-P-Ti pasty brazing filler
Zhan et al. Effect of surface cold ablation on shear strength of CFRP adhesively bonded joint after UV laser treatment
Bagnato et al. Superior interfacial toughening of hybrid metal-composite structural joints using 3D printed pins
Bali et al. Effect of graphene nano-particle reinforcement on the fatigue behavior of adhesively bonded single lap joints
Misak et al. Fabrication and characterization of carbon nanotube nanocomposites into 2024-T3 Al substrates via friction stir welding process
Moldovan et al. Overview of joining dissimilar materials: Metals and polymers
Cao et al. Friction stir welding of dissimilar AA 2024-T3 to AZ31B-H24 alloys
KR101282659B1 (en) Fabrication method of metal matrix composite joints by friction stir spot welding(fssw)
Suzuki et al. Control of surface micro− structure for Al alloy/polymer joining fabricated by laser process using Al− Ti− C powders: Effect of powder composition.
Suhr et al. Damping properties of epoxy films with nanoscale fillers
Jiang et al. Achieving a Strong Friction‐Lap Joint of Continuous Carbon‐Fiber‐Reinforced Plastic/Aluminum Alloy via a Surface Laser‐Processing Pretreatment