JPWO2019240202A1 - measuring device - Google Patents

measuring device Download PDF

Info

Publication number
JPWO2019240202A1
JPWO2019240202A1 JP2020525638A JP2020525638A JPWO2019240202A1 JP WO2019240202 A1 JPWO2019240202 A1 JP WO2019240202A1 JP 2020525638 A JP2020525638 A JP 2020525638A JP 2020525638 A JP2020525638 A JP 2020525638A JP WO2019240202 A1 JPWO2019240202 A1 JP WO2019240202A1
Authority
JP
Japan
Prior art keywords
electrode
measuring device
solution
measuring
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020525638A
Other languages
Japanese (ja)
Other versions
JP7312930B2 (en
Inventor
法親 緒方
法親 緒方
Original Assignee
メディカルメカニカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メディカルメカニカ株式会社 filed Critical メディカルメカニカ株式会社
Publication of JPWO2019240202A1 publication Critical patent/JPWO2019240202A1/en
Application granted granted Critical
Publication of JP7312930B2 publication Critical patent/JP7312930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance

Abstract

【解決課題】 試料の物性をより精度よく測定でき,試料の挙動をも測定できる電気化学的測定装置を提供する。【解決手段】 溶液3を収容する溶液槽5と,溶液層5内に存在し,少なくとも表面の一部が溶液中に露出する第1の電極7及び第2の電極9と,第1の電極7及び第2の電極9との間に電圧を印可する電圧印加手段11と,第1の電極7及び第2の電極9との間に流れる電流を測定する電流測定手段13と,を備える電気化学測定装置1であって,第1の電極7の溶液槽5に露出した部分15の表面積Sが0.1μm2以上100μm2以下である,測定装置。【選択図】 図1PROBLEM TO BE SOLVED: To provide an electrochemical measuring device capable of measuring the physical characteristics of a sample more accurately and also measuring the behavior of a sample. SOLUTION: A solution tank 5 containing a solution 3, a first electrode 7 and a second electrode 9 existing in the solution layer 5 and at least a part of the surface thereof is exposed in the solution, and a first electrode. Electricity including a voltage applying means 11 for applying a voltage between the 7 and the second electrode 9 and a current measuring means 13 for measuring the current flowing between the first electrode 7 and the second electrode 9. A measuring device which is a chemical measuring device 1 and has a surface surface S of a portion 15 exposed to the solution tank 5 of the first electrode 7 of 0.1 μm2 or more and 100 μm2 or less. [Selection diagram] Fig. 1

Description

本発明は, 測定装置に関する。より詳しく説明すると,本発明は,細胞の物性や挙動を測定できる電気化学的測定装置に関する。 The present invention relates to a measuring device. More specifically, the present invention relates to an electrochemical measuring device capable of measuring the physical properties and behavior of cells.

特許5617532号公報には,誘電サイトメトリ装置及び誘電サイトメトリによる細胞分取方法が記載されている。 Japanese Patent No. 5617532 describes a dielectric cytometry apparatus and a cell sorting method using a dielectric cytometry.

特許5617532号公報Japanese Patent No. 5617532

従来の誘電サイトメトリでは,電極付近にある試料の物性を測定できないという問題や,電極と試料との距離により測定値が変動するという問題があった。 With conventional dielectric cytometry, there are problems that the physical properties of the sample near the electrode cannot be measured and that the measured value fluctuates depending on the distance between the electrode and the sample.

そこで,本明細書は,試料の物性をより精度よく測定でき,試料の挙動をも測定できる電気化学的測定装置を提供することを目的とする。 Therefore, an object of the present specification is to provide an electrochemical measuring device capable of measuring the physical characteristics of a sample more accurately and also measuring the behavior of the sample.

上記の課題は,電極を試料の断面積よりも小さくすることで,電極付近に存在する試料の物性をも測定できるという知見に基づく。また,隣接する電極の間の距離を小さくするとより精度よく試料の物性を測定でき,電圧を印可する電極の間を溶液は通るものの試料は通さない隔壁を設けることで,さらに精度よく試料の物性を測定できるという知見に基づく。 The above problem is based on the finding that the physical properties of the sample existing near the electrode can also be measured by making the electrode smaller than the cross-sectional area of the sample. In addition, the physical characteristics of the sample can be measured more accurately by reducing the distance between adjacent electrodes, and the physical characteristics of the sample can be measured more accurately by providing a partition wall that allows the solution to pass but not the sample to pass between the electrodes to which the voltage is applied. Based on the knowledge that can be measured.

本明細書において最初に記載される発明は測定装置1に関する。この測定装置は,溶液3を収容する溶液槽5と,第1の電極7及び第2の電極9と,電圧印加手段11と,電流測定手段13と,を備える電気化学測定装置1である。 The invention first described herein relates to measuring apparatus 1. This measuring device is an electrochemical measuring device 1 including a solution tank 5 for accommodating the solution 3, a first electrode 7, a second electrode 9, a voltage applying means 11, and a current measuring means 13.

第1の電極7及び第2の電極9は,溶液槽5内に存在し,少なくとも表面の一部が溶液中に露出する。 The first electrode 7 and the second electrode 9 exist in the solution tank 5, and at least a part of the surface thereof is exposed in the solution.

電圧印加手段11は,第1の電極7及び第2の電極9との間に電圧を印可するための要素である。 The voltage applying means 11 is an element for applying a voltage between the first electrode 7 and the second electrode 9.

電流測定手段13は,第1の電極7及び第2の電極9との間に流れる電流を測定するための要素である。 The current measuring means 13 is an element for measuring the current flowing between the first electrode 7 and the second electrode 9.

そして,この装置は,第1の電極7の溶液槽5に露出した部分15の表面積Sが0.1μm以上100μm以下である。In this device, the surface area S of the portion 15 exposed to the solution tank 5 of the first electrode 7 is 0.1 μm 2 or more and 100 μm 2 or less.

この測定装置は,例えば,溶液中に含まれる試料17であって第1の電極付近に存在するもの17aの物性又は動きを測定するための装置である。試料17の例は,生物細胞又はリポソームであり,表面積Sが生物細胞又はリポソームの面積より小さいことが好ましい。 This measuring device is, for example, a device for measuring the physical properties or movement of the sample 17 contained in the solution and existing in the vicinity of the first electrode. The example of sample 17 is a biological cell or a liposome, and the surface area S is preferably smaller than the area of the biological cell or the liposome.

この装置は,溶液中に含まれる試料17が第2の電極に付着することを防止する付着防止手段19を有することが好ましい。 This device preferably has an adhesion preventing means 19 for preventing the sample 17 contained in the solution from adhering to the second electrode.

第1の電極7及び第2の電極9はそれぞれ複数存在し,隣接する第1の電極7又は第2の電極9までの最小距離が31mm以下であるものが好ましい。 It is preferable that a plurality of the first electrode 7 and the second electrode 9 are present, and the minimum distance to the adjacent first electrode 7 or the second electrode 9 is 31 mm or less.

第1の電極7及び第2の電極9は,基板21上に設けられてもよい。また,第2の電極9は,基板21の凹み部分23に設けられ,付着防止手段19は,凹み部を覆う網であるものが好ましい。 The first electrode 7 and the second electrode 9 may be provided on the substrate 21. Further, it is preferable that the second electrode 9 is provided in the recessed portion 23 of the substrate 21, and the adhesion preventing means 19 is a net covering the recessed portion.

第1の電極7は,基板上21に設けられ,
第2の電極9は,溶液槽5の側壁に設けられ,
付着防止手段19は,第2の電極を覆う網であってもよい。
The first electrode 7 is provided on the substrate 21 and is provided on the substrate 21.
The second electrode 9 is provided on the side wall of the solution tank 5.
The adhesion preventing means 19 may be a net covering the second electrode.

第2の電極9は,溶液に浮遊する電極収容体23に設けられ,電極収容体23の少なくとも一部が,付着防止手段19を有し,第1の電極7は,基板上21に設けられるものであってもよい。 The second electrode 9 is provided on the electrode accommodating body 23 floating in the solution, at least a part of the electrode accommodating body 23 has the adhesion preventing means 19, and the first electrode 7 is provided on the substrate 21. It may be a thing.

この明細書に記載した発明は,,試料の物性をより精度よく測定でき,試料の挙動をも測定できる電気化学的測定装置を提供できる。 The invention described in this specification can provide an electrochemical measuring device capable of measuring the physical characteristics of a sample more accurately and also measuring the behavior of the sample.

図1は,測定装置の構成例を示す概念図である。FIG. 1 is a conceptual diagram showing a configuration example of a measuring device. 図2は,第1の電極及び第2の電極が基板上に設けられた測定装置の例を示す概念図である。FIG. 2 is a conceptual diagram showing an example of a measuring device in which a first electrode and a second electrode are provided on a substrate. 図3は,アレイ状に形成された第1の電極及び第2の電極を示す概念図である。FIG. 3 is a conceptual diagram showing the first electrode and the second electrode formed in an array. 図4は,第1の電極が溶液槽の側壁に設けられ,第2の電極は溶液槽の底に設けられる測定装置を示す概念図である。FIG. 4 is a conceptual diagram showing a measuring device in which the first electrode is provided on the side wall of the solution tank and the second electrode is provided on the bottom of the solution tank. 図5は,第2の電極が溶液にうく電極収容体に収容された測定装置の例を示す概念図である。FIG. 5 is a conceptual diagram showing an example of a measuring device in which the second electrode is immersed in a solution and is housed in an electrode container. 図6は,実施例において製造された電極の概念図である。FIG. 6 is a conceptual diagram of the electrodes manufactured in the examples. 図7は,誘電スペクトルを測定するための誘電測定装置を示す概念図である。FIG. 7 is a conceptual diagram showing a dielectric measuring device for measuring a dielectric spectrum. 図8は,電極と細胞の様子を示す図面に代わる写真である。FIG. 8 is a photograph instead of a drawing showing the state of the electrodes and cells. 図9は,測定されたCole-Coleプロット(図9(A))及び周波数−位相プロット(図9(B))を示す図面に代わるグラフである。FIG. 9 is a graph that replaces the drawings showing the measured Cole-Cole plot (FIG. 9 (A)) and frequency-phase plot (FIG. 9 (B)). 図10は,電極間の距離の効果を示すためのCole-Coleプロット(図10(A))及び周波数−位相プロット(図10(B))を示す図面に代わるグラフである。FIG. 10 is a graph that replaces the drawings showing the Cole-Cole plot (FIG. 10 (A)) and the frequency-phase plot (FIG. 10 (B)) to show the effect of the distance between the electrodes. 図11は,非電解質の影響を検討するための周波数−位相プロットを示す図面に代わるグラフである。FIG. 11 is an alternative graph to the drawing showing a frequency-phase plot for examining the effects of non-electrolytes. 図12は,移動する細胞を追跡した様子を示す概念図である。FIG. 12 is a conceptual diagram showing how migrating cells are tracked.

以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to the forms described below, and includes those modified appropriately by those skilled in the art from the following forms.

本明細書において最初に記載される発明は測定装置1に関する。図1は,測定装置の構成例を示す概念図である。図1に示されるように,この測定装置は,溶液3を収容する溶液槽5と,第1の電極7及び第2の電極9と,電圧印加手段11と,電流測定手段13と,を備える電気化学測定装置1である。溶液の例は電解質溶液や,細胞やリポソームによっては,培地や培養液であってもよい。溶液槽5は溶液を収容できるものであればよく,用途に合わせてその大きさや素材を適宜選択できる。 The invention first described herein relates to measuring apparatus 1. FIG. 1 is a conceptual diagram showing a configuration example of a measuring device. As shown in FIG. 1, this measuring device includes a solution tank 5 for accommodating the solution 3, a first electrode 7 and a second electrode 9, a voltage applying means 11, and a current measuring means 13. This is an electrochemical measuring device 1. Examples of solutions may be electrolyte solutions, and depending on cells and liposomes, media or culture medium. The solution tank 5 may be any as long as it can accommodate the solution, and its size and material can be appropriately selected according to the intended use.

第1の電極7及び第2の電極9は,溶液槽5内に存在し,少なくとも表面の一部が溶液中に露出する。電極の表面全体が露出して溶液と接触するものであってもよし,電極の一部が基板や溶液に埋没していてもよい。第1の電極7の溶液槽5に露出した部分15の表面積Sが0.1μm以上100μm以下である。Sの値は0.2の電極はμm以上80μm以下でもよいし,0.5μm以上70μm以下でもよいし,1μm以上50μm以下でもよいし,0.5μm以上30μm以下でもよいし,2μm以上10μm以下でもよいし,10μm以上50μm以下でもよい。このように微小な電極に電圧を印加した場合,電極表面へ試料を輸送する拡散層の形が半球に近づき,試料が半球表面から電極に向けて収束するように拡散するので,試料の物性を精度よく測定できると考えられる。つまり,通常の電極を用いると隣接する電極に付着等した試料により測定値が変動するものの,電極を微小とすることでそのような問題を解消できると考えられる。半導体チップは微小化及び迅速化が達成できているので,このような微小電極を,半導体製造方法における技術を用いることで製造できる。The first electrode 7 and the second electrode 9 exist in the solution tank 5, and at least a part of the surface thereof is exposed in the solution. The entire surface of the electrode may be exposed and come into contact with the solution, or a part of the electrode may be buried in the substrate or the solution. The surface area S of the portion 15 exposed to the solution tank 5 of the first electrode 7 is 0.1 μm 2 or more and 100 μm 2 or less. The value of S may be in the 0.2 of the electrode [mu] m 2 or more 80 [mu] m 2 or less, may be a 0.5 [mu] m 2 or more 70 [mu] m 2 or less, may be a 1 [mu] m 2 or more 50 [mu] m 2 or less, 0.5 [mu] m 2 or more 30 [mu] m 2 or less But to good, may be a 2 [mu] m 2 or more 10 [mu] m 2 or less, it may be 10 [mu] m 2 or more 50 [mu] m 2 or less. When a voltage is applied to such a minute electrode, the shape of the diffusion layer that transports the sample to the electrode surface approaches a hemisphere, and the sample diffuses so as to converge from the hemispherical surface toward the electrode. It is thought that it can be measured accurately. In other words, if a normal electrode is used, the measured value will fluctuate depending on the sample attached to the adjacent electrode, but it is considered that such a problem can be solved by making the electrode minute. Since semiconductor chips have been miniaturized and speeded up, such microelectrodes can be manufactured by using the technology in the semiconductor manufacturing method.

第2の電極9も第1の電極と同様のものであってもよい。また,第1の電極7及び第2の電極9は,複数存在してもよい。図2は,第1の電極及び第2の電極が基板上に設けられた測定装置の例を示す概念図である。図2に示される測定装置は,第1の電極7及び第2の電極9が,基板21上に設けられている。そして,第2の電極9が,基板21の凹み部分23に設けられ,付着防止手段19が,凹み部を覆う網である。網により,溶液は網を通過するものの,試料は網を通過しない。これにより,第2の電極に試料が付着する事態を防止できる。図2に示されるように第1の電極7及び第2の電極9は,基板に設けられたアレイ状のものであってもよい。また,第1の電極7及び第2の電極9は,それぞれの接続関係を調整できるように接続関係を制御できるものが好ましい。 The second electrode 9 may be the same as the first electrode. Further, a plurality of the first electrode 7 and the second electrode 9 may exist. FIG. 2 is a conceptual diagram showing an example of a measuring device in which a first electrode and a second electrode are provided on a substrate. In the measuring device shown in FIG. 2, the first electrode 7 and the second electrode 9 are provided on the substrate 21. Then, the second electrode 9 is provided in the recessed portion 23 of the substrate 21, and the adhesion preventing means 19 is a net covering the recessed portion. The net allows the solution to pass through the net, but the sample does not. As a result, it is possible to prevent the sample from adhering to the second electrode. As shown in FIG. 2, the first electrode 7 and the second electrode 9 may be in the form of an array provided on the substrate. Further, it is preferable that the first electrode 7 and the second electrode 9 can control the connection relationship so that the connection relationship between them can be adjusted.

図3は,アレイ状に形成された第1の電極及び第2の電極を示す概念図である。第1の電極7及び第2の電極9はそれぞれ複数存在し,隣接する第1の電極7又は第2の電極9までの最小距離dが31mm以下であるものが好ましい。dの値があまりに小さいと隣接する電極において通電してしまうので,dの値は0.1μm以上であることが好ましく,1μm以上でもよいし,5μm以上でもよい。一方,dは,25mm以下でもよいし,20mm以下でもよいし,15mm以下でもよいし,10mm以下でもよいし,1mm以下でもよいし,500μm以下でもよいし,100μm以下でもよいし,50μm以下でもよい。図3において,電極のうち溶液槽5に露出した部分15が描画されている。また,図3のアレイ状の電極において,いずれが第1の電極7又は第2の電極9であってもよい。 FIG. 3 is a conceptual diagram showing the first electrode and the second electrode formed in an array. It is preferable that a plurality of the first electrode 7 and the second electrode 9 are present, and the minimum distance d to the adjacent first electrode 7 or the second electrode 9 is 31 mm or less. If the value of d is too small, the adjacent electrodes will be energized. Therefore, the value of d is preferably 0.1 μm or more, and may be 1 μm or more, or 5 μm or more. On the other hand, d may be 25 mm or less, 20 mm or less, 15 mm or less, 10 mm or less, 1 mm or less, 500 μm or less, 100 μm or less, or 50 μm or less. Good. In FIG. 3, a portion 15 of the electrodes exposed to the solution tank 5 is drawn. Further, in the array-shaped electrodes of FIG. 3, whichever is the first electrode 7 or the second electrode 9 may be used.

電圧印加手段11は,第1の電極7及び第2の電極9との間に電圧を印可するための要素である。電圧印加手段11は,第1の電極7及び第2の電極9の間に電圧を印可する手段である。印加される電圧は交流であっても,直流であってもよいものの,通常は交流電圧である。電圧印加手段11は,電極間に印加する交流電圧の周波数を制御できるものが好ましい。誘電サイトメトリ等において2つの電極の間に印加される電圧は公知であるから,公知の印過電圧を適宜調整したものを第1の電極7及び第2の電極9との間に印加すればよい。そして,複数の電極を有する電極アレイのうち,いずれの電極間に電圧を印可するかは,制御部により制御できるようにされていることが好ましい。 The voltage applying means 11 is an element for applying a voltage between the first electrode 7 and the second electrode 9. The voltage applying means 11 is a means for applying a voltage between the first electrode 7 and the second electrode 9. The applied voltage may be alternating current or direct current, but is usually an alternating voltage. The voltage applying means 11 is preferably one capable of controlling the frequency of the AC voltage applied between the electrodes. Since the voltage applied between the two electrodes in dielectric cytometry or the like is known, a known overvoltage voltage may be appropriately adjusted and applied between the first electrode 7 and the second electrode 9. .. Then, it is preferable that the control unit can control which electrode of the electrode array having a plurality of electrodes a voltage is applied to.

電流測定手段13は,第1の電極7及び第2の電極9との間に流れる電流を測定するための要素である。電流測定手段13は,公知である。電流測定手段13は,2つの電極間の電流を測定することで,各種物性を測定できるものであってもよい。 The current measuring means 13 is an element for measuring the current flowing between the first electrode 7 and the second electrode 9. The current measuring means 13 is known. The current measuring means 13 may be capable of measuring various physical properties by measuring the current between the two electrodes.

この測定装置は,例えば,溶液中に含まれる試料17であって第1の電極付近に存在するもの17aの物性又は動きを測定するための装置である。試料17の例は,生物細胞又はリポソームであり,表面積Sが生物細胞又はリポソームの面積より小さいことが好ましい。第1の電極付近の例は,第1の電極と隣接する電極において,第1の電極への距離が近い領域である。 This measuring device is, for example, a device for measuring the physical properties or movement of the sample 17 contained in the solution and existing in the vicinity of the first electrode. The example of sample 17 is a biological cell or a liposome, and the surface area S is preferably smaller than the area of the biological cell or the liposome. An example near the first electrode is a region in which the distance to the first electrode is short in the electrode adjacent to the first electrode.

この装置は,溶液中に含まれる試料17が第2の電極に付着することを防止する付着防止手段19を有することが好ましい。 付着防止手段19は,第1の電極に試料が付着することをも防止してもよい。付着防止手段19の例は,後述する網や半透膜である。付着防止手段19が網の場合,網の目の大きさが試料(の断面積)よりも小さいものが好ましい。そのような網を用いることで溶液の移動を確保しつつ,試料が電極に付着する事態を効果的に防止できる。 This device preferably has an adhesion preventing means 19 for preventing the sample 17 contained in the solution from adhering to the second electrode. The adhesion preventing means 19 may also prevent the sample from adhering to the first electrode. Examples of the adhesion preventing means 19 are a net and a semipermeable membrane, which will be described later. When the adhesion preventing means 19 is a net, it is preferable that the mesh size of the net is smaller than that of the sample (cross-sectional area). By using such a net, it is possible to effectively prevent the sample from adhering to the electrodes while ensuring the movement of the solution.

図4は,第1の電極が溶液槽の側壁に設けられ,第2の電極は溶液槽の底に設けられる測定装置を示す概念図である。図4の例では,第1の電極7が,基板上21に設けられ,第2の電極9が,溶液槽5の側壁に設けられ,付着防止手段19が,第2の電極を覆う網である。このような位置関係にある場合,特に試料が細胞であると,試料が第2の電極に付着する事態を効果的に防止できたため,好ましい。この場合の,溶液槽5は,底面と底面から伸びる側壁とを有するものである。底面の形状の例は,円形,楕円形,及び多角形である。第2の電極は,底面から所定の高さにあることが好ましい。高さの例は,1μm以上1mm以下であり,10μm以上100μm以下でもよい。 FIG. 4 is a conceptual diagram showing a measuring device in which the first electrode is provided on the side wall of the solution tank and the second electrode is provided on the bottom of the solution tank. In the example of FIG. 4, the first electrode 7 is provided on the substrate 21, the second electrode 9 is provided on the side wall of the solution tank 5, and the adhesion preventing means 19 is a net covering the second electrode. is there. In such a positional relationship, especially when the sample is a cell, it is preferable because the situation where the sample adheres to the second electrode can be effectively prevented. In this case, the solution tank 5 has a bottom surface and a side wall extending from the bottom surface. Examples of bottom shapes are circles, ellipses, and polygons. The second electrode is preferably at a predetermined height from the bottom surface. An example of the height is 1 μm or more and 1 mm or less, and may be 10 μm or more and 100 μm or less.

基板は,絶縁体により構成されていてもよい。基板が透明又は半透明な絶縁体により構成されていることが好ましい。そのような絶縁体の例は,透明セラミックスである。透明セラミックスは,例えばAl2O3,Y2O3及び YAGのいずれか又は複数を用いることで達成できる。基板が透明であれば,特に試料が細胞やリポソームの場合に,それらの挙動を観測しやすい。 The substrate may be composed of an insulator. It is preferable that the substrate is made of a transparent or translucent insulator. An example of such an insulator is transparent ceramics. The transparent ceramic can be achieved by using, for example, one or more of Al2O3, Y2O3 and YAG. If the substrate is transparent, it is easy to observe their behavior, especially when the sample is cells or liposomes.

図5は,第2の電極が溶液に浮く電極収容体に収容された測定装置の例を示す概念図である。電極収容体の例は,浮きである。第2の電極9は,溶液に浮遊する電極収容体23に設けられ,電極収容体23の少なくとも一部が,付着防止手段19(例えば網)を有し,第1の電極7は,基板上21に設けられるものであってもよい。 FIG. 5 is a conceptual diagram showing an example of a measuring device in which the second electrode is housed in an electrode container in which the second electrode floats in a solution. An example of an electrode containment is a float. The second electrode 9 is provided on the electrode accommodating body 23 floating in the solution, at least a part of the electrode accommodating body 23 has the adhesion preventing means 19 (for example, a net), and the first electrode 7 is on the substrate. It may be the one provided in 21.

次に,電気化学測定装置の原理を簡単に説明する。
電極板間に交流電圧を印加して,流れる電流を測定することで,電極間の複素抵抗(複素インピーダンス)が得られる。印加される交流電圧の周波数を変化させると,測定される複素抵抗も変化する。このような測定は,市販されている精密インピーダンスアナライザ(電流測定装置)を用いて行うことができる。
Next, the principle of the electrochemical measuring device will be briefly explained.
A complex resistance (complex impedance) between electrodes can be obtained by applying an AC voltage between the electrode plates and measuring the flowing current. When the frequency of the applied AC voltage is changed, the measured complex resistance also changes. Such measurement can be performed using a commercially available precision impedance analyzer (current measuring device).

周波数に依存した複素抵抗は,測定容器の形状に依存した因子,複素抵抗測定器と測定容器の間の電気配線の伝送特性に依存した因子などを補正することにより,細胞懸濁液の複素誘電率に変換できる。複素誘電率の周波数依存性を,複素誘電率分散(誘電スペクトル)という。 The frequency-dependent complex resistance is corrected by correcting factors such as the shape of the measuring container and the transmission characteristics of the electrical wiring between the complex resistance measuring instrument and the measuring container. Can be converted to rate. The frequency dependence of the complex permittivity is called the complex permittivity dispersion (dielectric spectrum).

細胞懸濁液の複素誘電率分散は,単一の緩和関数(例えば,Cole-Cole関数),あるいは複数の緩和関数の重ね合わせにより表現できる。実験的に得られた複素誘電率分散に対して,緩和関数が含む未定係数を変数とした非線形適合を行うことにより,その変数を最適化できる。例えばCole-Cole関数の場合,分散曲線を特徴づける変数として,緩和強度及び緩和周波数がある。これらの誘電変数は,細胞の構造や物性と密接に関連している。誘電変数から細胞を構成する相(細胞膜,細胞質など)の電気的物性値を推定する方法は,例えば特開2009−42141号公報に記載されている。 The complex permittivity dispersion of a cell suspension can be expressed by a single relaxation function (eg, Cole-Cole function) or by superposition of multiple relaxation functions. The variable can be optimized by performing a non-linear adaptation using the undetermined coefficient included in the relaxation function as a variable for the experimentally obtained complex permittivity variance. For example, in the case of the Cole-Cole function, the variables that characterize the dispersion curve are relaxation intensity and relaxation frequency. These dielectric variables are closely related to the structure and physical properties of cells. A method for estimating the electrical property values of the phases (cell membrane, cytoplasm, etc.) constituting the cell from the dielectric variable is described in, for example, Japanese Patent Application Laid-Open No. 2009-42141.

測定装置を製造するにあたり,基板(チップ)上に電極を開発した。図6は,実施例において製造された電極の概念図である。電極表面は,窒化チタン(TiN)で形成され,溶液や動物細胞などの試料と接することとなる部分である。非ドープケイ酸塩ガラス(NSG,SiO2),アルミニウム(Al),酸化ケイ素(SiO2),ケイ素(Si)が用いられた。 In manufacturing the measuring device, we developed an electrode on the substrate (chip). FIG. 6 is a conceptual diagram of the electrodes manufactured in the examples. The electrode surface is made of titanium nitride (TiN) and is the part that comes into contact with samples such as solutions and animal cells. Non-doped silicate glass (NSG, SiO2), aluminum (Al), silicon oxide (SiO2), silicon (Si) were used.

予備チップ
20μm間隔の10μm四方の36個の電極パッドを6行6列のグリッド電極アレイとし,28900μm2の領域を覆った。
Spare tip
Thirty-six electrode pads of 10 μm square at 20 μm intervals were used as a grid electrode array of 6 rows and 6 columns, covering a region of 28900 μm 2.

細動の挙動追跡用チップ
3.4μmの間隔をおいて6.6μm角の36個の電極パッドを6行6列のグリッド電極アレイとし,3200μm2の領域を覆った。
Tip for tracking fibrillation behavior
36 electrode pads of 6.6 μm square were used as a grid electrode array of 6 rows and 6 columns with an interval of 3.4 μm, and the area of 3200 μm 2 was covered.

誘電測定装置
図7に誘電スペクトルを測定するための誘電測定装置を示す。この例では,アジレント4294Aプレシジョンインピーダンスアナライザーを用いて,誘電スペクトルを測定した。Z値と位相を測定した。
Dielectric measuring device FIG. 7 shows a dielectric measuring device for measuring a dielectric spectrum. In this example, the dielectric spectrum was measured using an Agilent 4294A Precision Impedance Analyzer. The Z value and phase were measured.

溶液としてグルコース溶液及びPBSを用いた。試料の例として,ここでは,25μmのポリスチレン製のビーズを用いた。 Glucose solution and PBS were used as the solutions. As an example of the sample, beads made of polystyrene of 25 μm were used here.

MGM-450昆虫培地に10μm四方の電極2個を20μm間隔で接触させ,培地に昆虫細胞塊を加えた。光学顕微鏡を用いて電極を観察し,電極上部に細胞塊が乗っていない2つの電極間でLCRメーターを用いて100mVで100Hzから1000000Hzまでのインピーダンス測定を行ってZ値とθ値を得た。同様に,MGM-450昆虫培地に10μm四方の電極2個を20μm間隔で接触させ,培地に昆虫細胞塊を加えた。光学顕微鏡を用いて電極を観察し,電極上部に細胞塊が乗っている2つの電極間でLCRメーターを用いて100mVで100Hzから1000000Hzまでのインピーダンス測定を行ってZ値とθ値を得た。図8は,電極と細胞の様子を示す図面に代わる写真である。図9は,測定されたCole-Coleプロット(図9(A))及び周波数−位相プロット(図9(B))である。測定結果をθ-Hz平面上に図示したときに観察される10000Hz付近のピークは電極上部に細胞塊が乗っている2つの電極間の測定において低周波側にシフトした。 Two 10 μm square electrodes were brought into contact with the MGM-450 insect medium at intervals of 20 μm, and an insect cell mass was added to the medium. The electrodes were observed using an optical microscope, and impedance measurements from 100 Hz to 1000000 Hz were performed at 100 mV using an LCR meter between two electrodes with no cell mass on top of the electrodes to obtain Z and θ values. Similarly, two 10 μm square electrodes were brought into contact with the MGM-450 insect medium at intervals of 20 μm, and an insect cell mass was added to the medium. The electrodes were observed using an optical microscope, and impedance measurements from 100 Hz to 1000000 Hz were performed at 100 mV using an LCR meter between the two electrodes with cell clusters on top of the electrodes to obtain Z and θ values. FIG. 8 is a photograph instead of a drawing showing the state of the electrodes and cells. FIG. 9 is a measured Cole-Cole plot (FIG. 9 (A)) and a frequency-phase plot (FIG. 9 (B)). The peak near 10000 Hz observed when the measurement result was illustrated on the θ-Hz plane was shifted to the low frequency side in the measurement between the two electrodes with the cell mass on the upper part of the electrode.

電極間の距離についての検討
電極として,10μm四方の電極と6.6μm四方の電極とマニュアルプローバーのプローブ針を用いた。10μm四方の電極と6.6μm四方の電極は,いずれも独立の導線で繋がっており,導線の反対側の端はマニュアルプローバーのプローブ針を用いてプロービングすることで導通が得られるようにした。
Examination of the distance between the electrodes As the electrodes, a 10 μm square electrode, a 6.6 μm square electrode, and a probe needle of a manual prober were used. The 10 μm square electrode and the 6.6 μm square electrode are both connected by independent conductors, and the opposite end of the conductors is probed with a probe needle of a manual prober so that conduction can be obtained.

リン酸緩衝生理食塩水に6.6μm四方の電極2個を接触させ,LCRメーターを用いて100mVで100Hzから100000000Hzまでのインピーダンス測定を行ってZ値とθ値を得た。θ値は100Hzで-80°,10000Hzで-60°,10000000Hzで-80°となり,100000000で-75°となり,従来技術で測定されてきた高周波領域に現れる電極表面から離れた領域にある電極間中間物質の電気化学的特性と,従来技術では測定されなかった10000Hz付近に現れる電極表面領域にある電極間中間物質の電気化学的特性が確認された。電極の間隔が3μmから60μmの範囲では測定結果が変化しなかった。 Two 6.6 μm square electrodes were brought into contact with phosphate buffered saline, and impedance measurements from 100 Hz to 100000000 Hz were performed at 100 mV using an LCR meter to obtain Z and θ values. The θ value is -80 ° at 100Hz, -60 ° at 10000Hz, -80 ° at 10000000Hz, and -75 ° at 100000000, which is between the electrodes in the region away from the electrode surface that appears in the high frequency region measured by the prior art. The electrochemical properties of the intermediate material and the electrochemical properties of the intermediate material between the electrodes in the electrode surface region appearing near 10000 Hz, which was not measured by the conventional technique, were confirmed. The measurement results did not change when the electrode spacing was in the range of 3 μm to 60 μm.

リン酸緩衝生理食塩水に6.6μm四方の電極1個とマニュアルプローバーのプローブ針を接触させ,LCRメーターを用いて100mVで100Hzから100000000Hzまでのインピーダンス測定を行ってZ値とθ値を得た。図10は,電極間の距離の効果を示すためのCole-Coleプロット(図10(A))及び周波数−位相プロット(図10(B))を示す図面に代わるグラフである。電極の間隔を2.5mmから8mmの範囲で変化させると,θ値は100Hzで-80°,10000Hzで-60°となるまでは前述の実施例と同様であったが,10000000Hz付近でθの値が電極間距離依存的に-80°から-70°まで増大し,100000000Hz付近でθの値が電極間距離依存的に-75°から-45°まで増大した。電極表面領域にある電極間中間物質の電気化学的特性は10000Hz付近に現れ,電極間の距離を変化させることによって変化しなかった。一方で電極表面から離れた領域にある電極間中間物質の電気化学的特性は高周波領域に現れ,電極間の距離を変化させることによって変化した。 One 6.6 μm square electrode and a probe needle of a manual prober were brought into contact with phosphate buffered saline, and impedance measurements were performed at 100 mV from 100 Hz to 100 000000 Hz using an LCR meter to obtain Z and θ values. FIG. 10 is a graph that replaces the drawings showing the Cole-Cole plot (FIG. 10 (A)) and the frequency-phase plot (FIG. 10 (B)) to show the effect of the distance between the electrodes. When the electrode spacing was changed in the range of 2.5 mm to 8 mm, the θ value was -80 ° at 100 Hz and -60 ° at 10000 Hz, which was the same as in the above embodiment, but the value of θ was around 10000000 Hz. Increased from -80 ° to -70 ° depending on the distance between the electrodes, and the value of θ increased from -75 ° to -45 ° depending on the distance between the electrodes near 100000000 Hz. The electrochemical properties of the inter-electrode intermediate material in the electrode surface region appeared around 10000 Hz and did not change by changing the distance between the electrodes. On the other hand, the electrochemical properties of the inter-electrode intermediate material in the region away from the electrode surface appeared in the high-frequency region and changed by changing the distance between the electrodes.

非電解質の効果
電極表面領域にある電極間中間物質(試料)の電気化学的特性に由来するθの増大と電極表面から離れた領域にある電極間中間物質の電気化学的特性に由来するθの増大とは,θ-Hz平面上に2つのピークを生じるが,この2つのピークの間に生じる谷底のHzの値が,電極表面領域にある電極間中間物質の電気化学的特性の現れる10000Hz付近に近づくと,電極表面領域にある電極間中間物質の電気化学的特性と電極表面から離れた領域にある電極間中間物質の電気化学的特性をθ-Hz平面上の2つのピークとして分離することが困難になると予測される。これまでの測定結果を外挿すると,前述の谷底のHzの値は10^(7.1+0.1(電極間距離(mm)))であり,電極間距離が31mm以上になると電極表面領域にある電極間中間物質の電気化学的特性と電極表面から離れた領域にある電極間中間物質の電気化学的特性をθ-Hz平面上の2つのピークとして分離することが困難になる。
Effect of non-electrode: Increase in θ due to the electrochemical properties of the inter-electrode intermediate material (sample) in the electrode surface region and θ due to the electrochemical properties of the inter-electrode intermediate material in the region away from the electrode surface. The increase means that two peaks are generated on the θ-Hz plane, and the value of Hz at the valley bottom generated between these two peaks is around 10000 Hz where the electrochemical characteristics of the inter-electrode intermediate material in the electrode surface region appear. When approaching, the electrochemical characteristics of the inter-electrode intermediate material in the electrode surface region and the electrochemical characteristics of the inter-electrode intermediate material in the region away from the electrode surface are separated as two peaks on the θ-Hz plane. Is expected to be difficult. When the measurement results so far are extrapolated, the Hz value at the bottom of the valley is 10 ^ (7.1 + 0.1 (distance between electrodes (mm))), and when the distance between electrodes is 31 mm or more, the electrodes in the electrode surface region It becomes difficult to separate the electrochemical characteristics of the intermediate material and the electrochemical characteristics of the intermediate material between the electrodes in a region away from the electrode surface as two peaks on the θ-Hz plane.

リン酸緩衝生理食塩水に6.6μm四方の電極1個とマニュアルプローバーのプローブ針を接触させ,LCRメーターを用いて100mVで100Hzから1000000Hzまでのインピーダンス測定を行ってZ値とθ値を得た。図11は,非電解質の影響を検討するための周波数−位相プロットを示す図面に代わるグラフである。測定結果をθ-Hz平面上に図示したときに観察される10000Hz付近のピークは,リン酸緩衝生理食塩水にスチレンビーズ,砂糖,真核細胞を加えることによって低周波側にシフトした。 One 6.6 μm square electrode and a probe needle of a manual prober were brought into contact with phosphate buffered saline, and impedance measurements were performed at 100 mV from 100 Hz to 1000000 Hz using an LCR meter to obtain Z and θ values. FIG. 11 is an alternative graph to the drawing showing a frequency-phase plot for examining the effects of non-electrolytes. The peak around 10000 Hz observed when the measurement results were illustrated on the θ-Hz plane was shifted to the low frequency side by adding styrene beads, sugar, and eukaryotic cells to phosphate buffered saline.

電極2個をミセルや粒子などの不均質構造の分散した溶液に接触させるLCRメーターを用いたインピーダンス測定において,電極表面領域にある電極間中間物質の電気化学的特性と電極表面から離れた領域にある電極間中間物質の電気化学的特性を分離してそれぞれ測定する限定された条件では,片方の電極をミセルや粒子,細胞などの不均質構造が接触しないように網などで覆うことで,溶液に接触した2個の電極のうちどちらに不均質構造が接触したのか知ることができた。 In the impedance measurement using an LCR meter in which two electrodes are brought into contact with a dispersed solution having an inhomogeneous structure such as micelles and particles, the electrochemical characteristics of the intermediate material between the electrodes in the electrode surface region and the region away from the electrode surface Under the limited conditions of separating and measuring the electrochemical properties of an intermediate substance between electrodes, one electrode is covered with a net so that inhomogeneous structures such as micelles, particles, and cells do not come into contact with each other. It was possible to know which of the two electrodes in contact with the inhomogeneous structure was in contact with.

試料の挙動分析
細胞なしで72時間培養培地を連続的に測定することにより,チップの耐久性を検証した。その結果,インピーダンスは変化しなかった。次に,隣り合っている60個の電極対を1時間15分間隔で繰り返し測定した。その結果,移動する細胞を追跡することができた。その様子を図12に示す。図12は,移動する細胞を追跡した様子を示す概念図である。細胞の位置は点線で囲ってある。つまり,細胞が移動すると電極において測定される電流値(したがってインピーダンス)が変化するので,細胞が移動したことを測定できる。
Sample behavior analysis The durability of the chips was verified by continuously measuring the culture medium for 72 hours without cells. As a result, the impedance did not change. Next, 60 adjacent electrode pairs were repeatedly measured at 1 hour and 15 minute intervals. As a result, we were able to track the migrating cells. The situation is shown in FIG. FIG. 12 is a conceptual diagram showing how migrating cells are tracked. The location of the cells is surrounded by a dotted line. In other words, when the cell moves, the current value (and therefore the impedance) measured at the electrode changes, so it is possible to measure that the cell has moved.

本発明は分析機器の分野で利用されうる。 The present invention can be used in the field of analytical instruments.

1 電気化学測定装置
3 溶液
5 溶液槽
7 第1の電極
9 第2の電極
11 電圧印加手段
13 電流測定手段
15 第1の電極の溶液槽に露出した部分

1 Electrochemical measuring device 3 Solution 5 Solution tank 7 First electrode 9 Second electrode 11 Voltage applying means 13 Current measuring means 15 Part exposed in the solution tank of the first electrode

Claims (8)

溶液(3)を収容する溶液槽(5)と,
前記溶液層(5)内に存在し,少なくとも表面の一部が前記溶液中に露出する第1の電極(7)及び第2の電極(9)と,
第1の電極(7)及び第2の電極(9)との間に電圧を印可する電圧印加手段(11)と,
第1の電極(7)及び第2の電極(9)との間に流れる電流を測定する電流測定手段(13)と,を備える電気化学測定装置(1)であって,
第1の電極(7)の前記溶液槽(5)に露出した部分(15)の表面積Sが0.1μm以上100μm以下である,
測定装置。
A solution tank (5) for accommodating the solution (3) and
A first electrode (7) and a second electrode (9) existing in the solution layer (5) and having at least a part of the surface exposed in the solution.
A voltage applying means (11) for applying a voltage between the first electrode (7) and the second electrode (9), and
An electrochemical measuring device (1) including a current measuring means (13) for measuring a current flowing between a first electrode (7) and a second electrode (9).
The surface area S of the portion (15) of the first electrode (7) exposed to the solution tank (5) is 0.1 μm 2 or more and 100 μm 2 or less.
measuring device.
請求項1に記載の測定装置であって,
前記測定装置は,前記溶液中に含まれる試料(17)であって第1の電極付近に存在するもの(17a)の物性又は動きを測定するための装置である,測定装置。
The measuring device according to claim 1.
The measuring device is a measuring device for measuring the physical properties or movement of a sample (17) contained in the solution and existing in the vicinity of the first electrode (17a).
請求項1に記載の測定装置であって,
前記試料(17)が生物細胞又はリポソームであり,前記表面積Sが前記生物細胞又はリポソームの面積より小さい,測定装置。
The measuring device according to claim 1.
A measuring device in which the sample (17) is a biological cell or a liposome, and the surface area S is smaller than the area of the biological cell or the liposome.
請求項1に記載の測定装置であって,
前記溶液中に含まれる試料(17)が第2の電極に付着することを防止する付着防止手段(19)を有する,測定装置。
The measuring device according to claim 1.
A measuring device having an adhesion prevention means (19) for preventing the sample (17) contained in the solution from adhering to the second electrode.
請求項1に記載の測定装置であって,第1の電極(7)及び第2の電極(9)はそれぞれ複数存在し,隣接する第1の電極(7)又は第2の電極(9)までの最小距離が31mm以下である,測定装置。 The measuring device according to claim 1, wherein a plurality of the first electrode (7) and the second electrode (9) are present, and the adjacent first electrode (7) or second electrode (9) is adjacent to each other. A measuring device with a minimum distance of 31 mm or less. 請求項4に記載の電気化学測定装置であって,
第1の電極(7)及び第2の電極(9)は,基板(21)上に設けられ,
第2の電極(9)は,前記基板(21)の凹み部分(23)に設けられ,前記付着防止手段(19)は,前記凹み部を覆う網である,電気化学測定装置。
The electrochemical measuring apparatus according to claim 4.
The first electrode (7) and the second electrode (9) are provided on the substrate (21).
The second electrode (9) is provided in the recessed portion (23) of the substrate (21), and the adhesion preventing means (19) is a net covering the recessed portion, which is an electrochemical measuring device.
請求項4に記載の電気化学測定装置であって,
第1の電極(7)は,基板上(21)に設けられ,
第2の電極(9)は,前記溶液槽(5)の側壁に設けられ,
前記付着防止手段(19)は,第2の電極を覆う網である,
測定装置。
The electrochemical measuring apparatus according to claim 4.
The first electrode (7) is provided on the substrate (21).
The second electrode (9) is provided on the side wall of the solution tank (5).
The adhesion prevention means (19) is a net covering the second electrode.
measuring device.
請求項4に記載の電気化学測定装置であって,
第2の電極(9)は,前記溶液に浮遊する電極収容体(23)に設けられ,前記電極収容体(23)の少なくとも一部が,前記付着防止手段(19)を有し,
第1の電極(7)は,基板上(21)に設けられる,電気化学測定装置。



The electrochemical measuring apparatus according to claim 4.
The second electrode (9) is provided on the electrode accommodating body (23) suspended in the solution, and at least a part of the electrode accommodating body (23) has the adhesion preventing means (19).
The first electrode (7) is an electrochemical measuring device provided on the substrate (21).



JP2020525638A 2018-06-15 2019-06-12 measuring device Active JP7312930B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018114957 2018-06-15
JP2018114957 2018-06-15
PCT/JP2019/023377 WO2019240202A1 (en) 2018-06-15 2019-06-12 Measurement device

Publications (2)

Publication Number Publication Date
JPWO2019240202A1 true JPWO2019240202A1 (en) 2021-07-08
JP7312930B2 JP7312930B2 (en) 2023-07-24

Family

ID=68842978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020525638A Active JP7312930B2 (en) 2018-06-15 2019-06-12 measuring device

Country Status (2)

Country Link
JP (1) JP7312930B2 (en)
WO (1) WO2019240202A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981268A (en) * 1997-05-30 1999-11-09 Board Of Trustees, Leland Stanford, Jr. University Hybrid biosensors
WO2002055653A1 (en) * 2001-01-09 2002-07-18 Matsushita Electric Industrial Co., Ltd. Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith
US20080293997A1 (en) * 2005-05-26 2008-11-27 Philippe Buhlmann Chemical Sensor
WO2010070538A1 (en) * 2008-12-17 2010-06-24 Koninklijke Philips Electronics N.V. Microelectronic device for measuring cell adhesion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981268A (en) * 1997-05-30 1999-11-09 Board Of Trustees, Leland Stanford, Jr. University Hybrid biosensors
WO2002055653A1 (en) * 2001-01-09 2002-07-18 Matsushita Electric Industrial Co., Ltd. Device for measuring extracellular potential, method of measuring extracellular potential by using the same and apparatus for quickly screening drug provided therewith
US20080293997A1 (en) * 2005-05-26 2008-11-27 Philippe Buhlmann Chemical Sensor
WO2010070538A1 (en) * 2008-12-17 2010-06-24 Koninklijke Philips Electronics N.V. Microelectronic device for measuring cell adhesion

Also Published As

Publication number Publication date
WO2019240202A1 (en) 2019-12-19
JP7312930B2 (en) 2023-07-24

Similar Documents

Publication Publication Date Title
US7622934B2 (en) Method and apparatus for sensing a time varying current passing through an ion channel
JP4758047B2 (en) Field effect transistor device for ultrafast nucleic acid sequencing
Ayliffe et al. Electric impedance spectroscopy using microchannels with integrated metal electrodes
Sabuncu et al. Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology
US8642287B2 (en) Cell-impedance sensors
JP5233187B2 (en) Cell electrophysiological sensor
JP2010502935A (en) Nanopore particle analyzer and method of preparation and use thereof
WO2009003315A1 (en) Automatic positioning and sensing microelectrode arrays
RU2020132430A (en) DEVICE FOR PERFORMING ELECTRICAL MEASUREMENTS
Awasthi et al. Impedimetric blood pH sensor based on MoS 2–Nafion coated microelectrode
RU2014136134A (en) ELECTROCHEMICAL ANALYTICAL TEST STRIP WITH REAGENT LAYER CONFIGURATION FOR OPTIMIZATION OF FILLING SPEED
Anderson et al. Carbon nanoelectrodes for single-cell probing
US20100127716A1 (en) Radio-frequency ion channel probe
RU2012155002A (en) ANALYTICAL TEST STRIPS WITH ELECTRODES HAVING ELECTROCHEMICALLY ACTIVE AND INERT REGIONS OF A PRESENT SIZE AND A PRESENT DISTRIBUTION
JPWO2019240202A1 (en) measuring device
ITUD20130047A1 (en) EQUIPMENT FOR THE ANALYSIS OF THE PROCESS OF FORMING AGGREGATES IN A BIOLOGICAL FLUID AND RELATIVE ANALYSIS METHOD
RU2014139828A (en) TEST STRIP WITH MULTILAYERED ONE-DIRECTIONAL CONTACT SITE AND INERT CARRIER SUBSTRATE
US8513958B2 (en) Stacked sensor for testing a porous medium
Mondal et al. Real-time sensing of epithelial cell-cell and cell-substrate interactions by impedance spectroscopy on porous substrates
Das et al. Electrical characterization of suspended HeLa cells using ECIS based biosensor
CN201289468Y (en) Two-sided nanometer belt electrode array integrated sensor capable of being cut up
Musa et al. In vitro and in vivo electrochemical characterization of a microfabricated neural probe
Chehelcheraghi et al. Real-Time kHz to GHz Monitoring of Incubated Yeast Cell Growth Using Interdigitated Capacitors
CN206594096U (en) The array detecting system of fine droplet evaporation process
JP2021177124A (en) Measurement apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210330

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230525

R150 Certificate of patent or registration of utility model

Ref document number: 7312930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150