JPWO2019239890A1 - Amorphous solid electrolyte and all-solid-state secondary battery using it - Google Patents

Amorphous solid electrolyte and all-solid-state secondary battery using it Download PDF

Info

Publication number
JPWO2019239890A1
JPWO2019239890A1 JP2020525419A JP2020525419A JPWO2019239890A1 JP WO2019239890 A1 JPWO2019239890 A1 JP WO2019239890A1 JP 2020525419 A JP2020525419 A JP 2020525419A JP 2020525419 A JP2020525419 A JP 2020525419A JP WO2019239890 A1 JPWO2019239890 A1 JP WO2019239890A1
Authority
JP
Japan
Prior art keywords
solid electrolyte
mass
electrolyte
amorphous
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020525419A
Other languages
Japanese (ja)
Other versions
JP7394757B2 (en
Inventor
和仁 小笠
和仁 小笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Publication of JPWO2019239890A1 publication Critical patent/JPWO2019239890A1/en
Application granted granted Critical
Publication of JP7394757B2 publication Critical patent/JP7394757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

高いイオン伝導性を持ちつつも低温・極短時間で合成でき、低抵抗で放電容量が高く、かつ量産性に優れた非晶質電解質を得る。Li2O−P2O5—SO3系又はLi2O−P2O5−SO3−Al2O3系の非晶質固体電解質を第一の固体電解質として用いることにより、リチウムに対して2.0V程度の電位で還元してしまい炭素などが存在する条件の熱処理で還元してしまうが、高いイオン伝導度をもつLATPを第二の固体電解質として使用することができるようになり、結果として低抵抗値の全固体二次電池を得ることができる【選択図】図9An amorphous electrolyte that can be synthesized at a low temperature and in an extremely short time while having high ionic conductivity, has a low resistance, a high discharge capacity, and is excellent in mass productivity can be obtained. By using a Li2O-P2O5-SO3 system or Li2O-P2O5-SO3-Al2O3 system amorphous solid electrolyte as the first solid electrolyte, it is reduced to lithium at a potential of about 2.0 V, and carbon and the like are released. Although it is reduced by heat treatment under existing conditions, LATP having high ionic conductivity can be used as a second solid electrolyte, and as a result, an all-solid secondary battery having a low resistance value can be obtained. Can be done [Selection diagram] Fig. 9

Description

本発明は、酸化物系固体電解質及びその用途に関する。更に詳しくは、本発明は、低温でのプレスでも高い伝導率を示しうる酸化物系固体電解質、それを実現する固体電解質と、それを含む固体電解質層、正極層、負極層および全固体二次電池に関する。 The present invention relates to an oxide-based solid electrolyte and its use. More specifically, the present invention presents an oxide-based solid electrolyte that can exhibit high conductivity even when pressed at a low temperature, a solid electrolyte that realizes the oxide-based solid electrolyte, and a solid electrolyte layer, a positive electrode layer, a negative electrode layer, and an all-solid secondary containing the same. Regarding batteries.

近年、電気自動車用電源、携帯端末用電源などの用途で、エネルギー密度が高く、充放電可能なリチウムイオン二次電池が広く用いられている。
現在市販されているリチウムイオン二次電池の多くは、高いエネルギー密度を有するために、有機溶媒などの液体の電解質(電解液)が一般的に使用されている。この電解液は、炭酸エステルや環状エステルなどの非プロトン性有機溶媒などにリチウム塩を熔解させて用いられている。
In recent years, lithium-ion secondary batteries having a high energy density and capable of charging and discharging have been widely used in applications such as power supplies for electric vehicles and power supplies for mobile terminals.
Most of the lithium ion secondary batteries currently on the market have a high energy density, so that a liquid electrolyte (electrolyte solution) such as an organic solvent is generally used. This electrolytic solution is used by dissolving a lithium salt in an aprotic organic solvent such as a carbonic acid ester or a cyclic ester.

しかし、液体の電解質(電解液)を用いたリチウムイオン二次電池においては、電解液が漏出するという危険性がある。また、電解液に一般的に用いられる有機溶媒などは可燃性物質であり、安全上、好ましくないという問題がある。 However, in a lithium ion secondary battery using a liquid electrolyte (electrolyte solution), there is a risk that the electrolyte solution leaks out. Further, an organic solvent generally used for an electrolytic solution is a flammable substance, and there is a problem that it is not preferable in terms of safety.

そこで、有機溶媒など液体の電解質(電解液)に替えて、固体電解質を用いることが提案されている。また、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成された全固体二次電池の開発が進められている。 Therefore, it has been proposed to use a solid electrolyte instead of a liquid electrolyte (electrolyte) such as an organic solvent. In addition, the development of an all-solid-state secondary battery in which a solid electrolyte is used as the electrolyte and other components are also made of solid is underway.

全固体二次電池は使用する電解質に応じて硫化物系と酸化物系に分類される。硫化物系においては、95(0.6LiS・0.4SiS)・5LiSiOやβLiPSなど、酸化物系ではNASICON構造のLi1+xTi2−xAl12(x=0.1〜0.4)やガーネット構造のLiLaZr12などが固体電解質に用いられる。大きな課題の1つが界面形成であり、課題解決の1つの方法として、硫化物系でも酸化物系でも、イオン伝導性のガラスを混合することで界面形成を促進させている。あるいは酸化物系ではLi1+xGe2−xAl12など易焼成性のセラミックが用いられている。
文献1に記載の全固体二次電池の固体電解質では、LiO-Al-P系のガラスを用い、200MPaの圧力をかけてガラスが溶融する温度である600℃で焼結している。焼結温度がまだ高いため、電極活物質と固体電解質が反応して放電容量が低下するという課題があった。
文献2に記載の固体電解質は、(100−x)LiBO・xLiSO(x=0〜100)の固体電解質をメカニカルミリングによりガラス状にし、255℃、360MPa、4時間という低温であるが高圧、長時間の熱処理により部分的に結晶化し1×10−5S/cmの固体電解質を形成している。高圧、長時間の熱処理が必要であり、量産性に疑問が残る。
文献3に記載の固体電解質はLi1.5Al0.5Ge1.5(POの粉末を金型で成形後に800℃で焼成している。ガラス電解質を使用していないため、反応温度を高く設定しているがそれでも抵抗値が3×10−7S/cmと高抵抗であるという課題があった。
All-solid-state secondary batteries are classified into sulfide-based and oxide-based batteries according to the electrolyte used. In sulfide, 95 (0.6Li 2 S · 0.4SiS 2) · 5Li 4 SiO 4 and βLi 3 PS 4 etc., Li 1 + x Ti 2- x Al x P 3 of the NASICON structure of oxide-based O 12 (X = 0.1-0.4) and Li 7 La 3 Zr 2 O 12 having a garnet structure are used as the solid electrolyte. One of the major problems is interface formation, and as one method of solving the problem, interface formation is promoted by mixing ionic conductive glass, whether it is sulfide-based or oxide-based. Or in the oxide-based Li 1 + x Ge 2-x Al x P 3 O 12 ceramic easily fired properties like are used.
In the solid electrolyte of the all-solid-state secondary battery described in Document 1, Li 2 O-Al 2 O 3- P 2 O 5 type glass is used, and a pressure of 200 MPa is applied at 600 ° C., which is the temperature at which the glass melts. It is sintered. Since the sintering temperature is still high, there is a problem that the electrode active material reacts with the solid electrolyte to reduce the discharge capacity.
The solid electrolyte described in Document 2 is a solid electrolyte of (100-x) Li 3 BO 3 · xLi 2 SO 4 (x = 0 to 100) made into a glass by mechanical milling, and has a low temperature of 255 ° C., 360 MPa, and 4 hours. However, it is partially crystallized by high pressure and long-term heat treatment to form a solid electrolyte of 1 × 10-5 S / cm. High pressure and long heat treatment are required, leaving doubts about mass productivity.
The solid electrolyte described in Document 3 is obtained by molding a powder of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 with a mold and then firing it at 800 ° C. Since no glass electrolyte is used, the reaction temperature is set high, but there is still a problem that the resistance value is as high as 3 × 10-7 S / cm.

特開2014−60084Japanese Patent Application Laid-Open No. 2014-60084 特開2015−176854JP 2015-176854 特開2007−258165JP-A-2007-258165

本発明は、上記課題を解決するものであり、高いイオン伝導性を持ちつつも、低温・極短時間で合成でき、低抵抗で放電容量が高く、かつ量産性に優れた非晶質電解質を用いて短時間の熱処理で合成できる全固体二次電池を提供することを目的とする。 The present invention solves the above-mentioned problems, and provides an amorphous electrolyte that has high ionic conductivity, can be synthesized at a low temperature and in an extremely short time, has low resistance, has a high discharge capacity, and is excellent in mass productivity. It is an object of the present invention to provide an all-solid-state secondary battery that can be synthesized by using it in a short time heat treatment.

本発明者は、上記の課題を解決するため、鋭意試験研究を重ねた結果、全固体二次電池に用いる固体電解質としてLiO−P―SO系又はLiO―P−SO−Al系の非晶質固体電解質を第一の固体電解質として用いることで、これまで用いられてきた非晶質固体電解質よりも低温・短時間で全固体二次電池の界面を形成することが可能であることを見出した。また、LiO−P―SO系又はLiO―P−SO−Al系の非晶質固体電解質を用いることにより耐還元性の低い固体電解質であるLi1+x+yAlTi2−x3−ySi12(LATPと称する)を全固体二次電池中で、第二の固体電解質として使用することができるようになり、低抵抗な電解質膜および全固体二次電池を形成できることも見出した。また、耐還元性の高いLi1+x+yAlZr2−x3−ySi12(LAZPと称する)を用いた場合でも正極層および負極層の活物質の分解を抑制でき放電容量を高く保てることができるようになり、高エネルギー密度の全固体二次電池を合成できることも見出し、本発明を完成するに至った。
すなわち、本発明によれば、以下に示す全固体二次電池が提供される。
As a result of intensive test and research in order to solve the above problems, the present inventor has Li 2 O-P 2 O 5- SO 3 system or Li 2 O-P 2 as a solid electrolyte used in an all-solid-state secondary battery. By using the O 5- SO 3- Al 2 O 3 system amorphous solid electrolyte as the first solid electrolyte, the all-solid secondary is performed at a lower temperature and in a shorter time than the amorphous solid electrolytes used so far. We have found that it is possible to form the interface of a battery. Further, by using a Li 2 O-P 2 O 5- SO 3 system or a Li 2 O-P 2 O 5- SO 3- Al 2 O 3 system amorphous solid electrolyte, a solid electrolyte having low reduction resistance can be used. some Li 1 + x + y Al x Ti 2-x P 3-y Si y O 12 ( referred to as LATP) on a total solids in the secondary battery, will be able to be used as the second solid electrolyte, low resistance electrolyte It has also been found that membranes and all-solid-state secondary batteries can be formed. Further, a high discharge capacity can be suppressed decomposition of the active material of the positive electrode layer and negative electrode layer even when a reduction resistant high Li 1 + x + y Al x Zr 2-x P 3-y Si y O 12 ( referred to as LAZP) It has become possible to maintain the battery, and it has been found that an all-solid-state secondary battery having a high energy density can be synthesized, and the present invention has been completed.
That is, according to the present invention, the following all-solid-state secondary battery is provided.

本発明によれば、LiO−P―SO系又はLiO−P−SO−Al系の非晶質固体電解質を第一の固体電解質として用いることにより、リチウムに対して2.0V程度の電位で還元してしまい、炭素などが存在する条件の熱処理で還元してしまうが、高いイオン伝導度をもつLATPを第二の固体電解質として使用することができるようになり、結果として低抵抗値の全固体二次電池を得ることができる。さらに耐還元性のあるLAZPを第二の固体電解質として使用する場合にも熱処理温度を低温化でき正極層および負極層中の活物質の分解を抑制でき、高エネルギー密度の全固体二次電池を得ることができる。According to the present invention, an amorphous solid electrolyte of Li 2 O-P 2 O 5- SO 3 system or Li 2 O-P 2 O 5- SO 3- Al 2 O 3 system is used as the first solid electrolyte. As a result, it is reduced to lithium at a potential of about 2.0 V, and it is reduced by heat treatment under the condition that carbon or the like is present. However, LATP having high ionic conductivity is used as the second solid electrolyte. As a result, an all-solid-state secondary battery having a low resistance value can be obtained. Furthermore, even when the reduction-resistant LAZP is used as the second solid electrolyte, the heat treatment temperature can be lowered, the decomposition of the active material in the positive electrode layer and the negative electrode layer can be suppressed, and an all-solid-state secondary battery having a high energy density can be obtained. Obtainable.

比較例1の熱重量・示差熱測定の結果である。This is the result of the thermogravimetric / differential thermal measurement of Comparative Example 1. 比較例2の熱重量・示差熱測定の結果である。This is the result of the thermogravimetric / differential thermal measurement of Comparative Example 2. 実施例1の熱重量・示差熱測定結果である。It is a thermogravimetric / differential thermal measurement result of Example 1. 実施例2の熱重量・示差熱測定結果である。It is a thermogravimetric / differential thermal measurement result of Example 2. 実施例3の熱重量・示差熱測定結果である。It is a thermogravimetric / differential thermal measurement result of Example 3. 実施例1の交流インピーダンス測定結果である。It is the AC impedance measurement result of Example 1. 実施例19の交流インピーダンス測定結果である。It is the AC impedance measurement result of Example 19. 比較例4〜8および実施例15〜21、伝導度の熱処理温度依存性測定結果の図である。(実線:第一の固体電解質として実施例2の非晶質固体電解質使用、破線:第一の固体電解質として比較例2の非晶質固体電解質使用)It is a figure of the heat treatment temperature dependence measurement result of the heat treatment temperature dependence of Comparative Examples 4 to 8 and Examples 15 to 21. (Solid line: Amorphous solid electrolyte of Example 2 is used as the first solid electrolyte, broken line: Amorphous solid electrolyte of Comparative Example 2 is used as the first solid electrolyte) 実施例26の充放電測定結果(実線:充電曲線、破線:放電曲線)である。It is the charge / discharge measurement result of Example 26 (solid line: charge curve, broken line: discharge curve). 実施例14の充放電測定結果(実線:充電曲線、破線:放電曲線)である。It is the charge / discharge measurement result of Example 14 (solid line: charge curve, broken line: discharge curve).

以下、本発明の全固体二次電池の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 Hereinafter, embodiments of the all-solid-state secondary battery of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and appropriate modifications are made within the scope of the object of the present invention. Can be carried out. It should be noted that the description may be omitted as appropriate for the parts where the explanations are duplicated, but the gist of the invention is not limited.

(非晶質固体電解質)
本発明で使用される第一の固体電解質は、LiO−P―SO系又はLiO−P―SO−Al系の非晶質の固体電解質(ガラス、あるいはアモルファス)である。
特に限定はしないが、好ましくは水冷キャスト法、より好ましくは双ローラー急冷法、最も好ましくはキャスト法で成形するのが量産性を考える上で好ましい。
LiO成分はリチウムイオン伝導度を発現させるために必要な必須成分である。酸化物換算組成で40mol%以上含有する場合にLiイオン伝導度が室温で1×10−10S/cm以上となる。そのため、LiOの含有量は、好ましくは40mol%以上、より好ましくは45mol%以上、さらに好ましくは50mol%以上とする。一方、LiO成分はガラス電解質の伝導度を低下させる結晶状態を安定化させる要因でもあり、多すぎると結晶化しやすくなる。そのため、好ましくは70mol%以下、さらに好ましくは58mol%以下、最も好ましくは57mol%以下とする。
(Amorphous solid electrolyte)
The first solid electrolyte used in the present invention is a Li 2 O-P 2 O 5- SO 3 system or Li 2 O-P 2 O 5- SO 3- Al 2 O 3 system amorphous solid electrolyte. (Glass or amorphous).
Although not particularly limited, molding by a water-cooled casting method, more preferably a twin-roller quenching method, and most preferably a casting method is preferable in terms of mass productivity.
The Li 2 O component is an essential component necessary for developing lithium ion conductivity. When it is contained in an oxide equivalent composition of 40 mol% or more, the Li ion conductivity is 1 × 10 -10 S / cm or more at room temperature. Therefore, the content of Li 2 O is preferably 40 mol% or more, more preferably 45 mol% or more, still more preferably 50 mol% or more. On the other hand, the Li 2 O component is also a factor for stabilizing the crystal state that lowers the conductivity of the glass electrolyte, and if it is too large, it tends to crystallize. Therefore, it is preferably 70 mol% or less, more preferably 58 mol% or less, and most preferably 57 mol% or less.

成分は固体電解質が非晶質となるのに必要な必須成分である。同様に低融点化が期待できるガラス形成酸化物であるBに比べるとLiOに対するガラス化範囲が広いため、より低い割合で安定な高イオン伝導度のガラスが形成しやすい。特に低融点化の成分であるSOとの相性が良く、低融点、低Tg化できる。そのため、Pの含有量は、好ましくは20mol%、より好ましくは22mol%、最も好ましくは25mol%以上とする。一方、P成分が多くなりすぎると他の成分が入らなくなりリチウムイオン伝導の機能が損なわれるため、好ましくは50mol%以下、さらに好ましくは45mol%以下、最も好ましくは40mol%以下とする。The P 2 O 5 component is an essential component necessary for the solid electrolyte to become amorphous. Similarly, since the vitrification range for Li 2 O is wider than that of B 2 O 3 , which is a glass-forming oxide that can be expected to have a low melting point, it is easy to form a glass having stable high ionic conductivity at a lower ratio. In particular, it has good compatibility with SO 3 , which is a component for lowering the melting point, and can lower the melting point and Tg. Therefore, the content of P 2 O 5 is preferably 20 mol%, more preferably 22 mol%, and most preferably 25 mol% or more. On the other hand, if the amount of the P 2 O 5 component is too large, other components will not enter and the function of lithium ion conduction will be impaired. Therefore, the content is preferably 50 mol% or less, more preferably 45 mol% or less, and most preferably 40 mol% or less.

SO成分は、非晶質固体電解質を低融点化あるいは低Tg化するのに必要な必須成分である。酸化物換算で1mol%以上あると非晶質固体電解質を低融点化あるいは低Tg化する。さらに、SO3を含む結晶のイオン伝導度は他のガラス電解質の結晶化したものに比べて高いため、焼成などにより結晶化してもガラス電解質の結晶化による抵抗増を抑制できる。
そのため、SOの含有量は、好ましくは1mol%以上、さらに好ましくは3mol%以上、最も好ましくは5mol%以上とする。一方、SO成分はガラス合成時に有毒ガスであるSOを放出する恐れがあるため、好ましくは30mol%以下、さらに好ましくは25mol%以下、最も好ましくは20mol%以下とする。
The SO 3 component is an essential component necessary for lowering the melting point or lowering the Tg of the amorphous solid electrolyte. If it is 1 mol% or more in terms of oxide, the melting point or Tg of the amorphous solid electrolyte is lowered. Further, since the ionic conductivity of the crystal containing SO3 is higher than that of other glass electrolytes crystallized, it is possible to suppress an increase in resistance due to the crystallization of the glass electrolyte even if it is crystallized by firing or the like.
Therefore, the content of SO 3 is preferably 1 mol% or more, more preferably 3 mol% or more, and most preferably 5 mol% or more. On the other hand, since the SO 3 component may release SO 3 which is a toxic gas during glass synthesis, it is preferably 30 mol% or less, more preferably 25 mol% or less, and most preferably 20 mol% or less.

Al成分は、非晶質固体電解質の耐水性とリチウムイオン伝導性を向上させる任意成分である。酸化物換算で0%超含有することによって耐水性とイオン伝導性を向上させる。そのためAlの成分は、好ましくは0mol%超、より好ましくは0.5mol%以上、さらに好ましくは1mol%以上、最も好ましくは2mol%以上である。 一方、Al成分は、含有量が多いと非晶質電解質の結晶状態を安定化させる要因となり、含有量が高すぎると結晶化しやすくなり、固体電解質が非晶質状態で得られにくくなる。そのため、Al成分の含有量は好ましくは10mol%以下、より好ましくは8mol%以下、最も好ましくは6mol%以下とする。ここで耐水性は水だけでなく、アルコールなどの極性溶媒に対しても適応され、シート成形など電池の製造工程で重要な要素となる。The Al 2 O 3 component is an optional component that improves the water resistance and lithium ion conductivity of the amorphous solid electrolyte. Water resistance and ionic conductivity are improved by containing more than 0% in terms of oxide. Therefore, the component of Al 2 O 3 is preferably more than 0 mol%, more preferably 0.5 mol% or more, still more preferably 1 mol% or more, and most preferably 2 mol% or more. On the other hand, if the content of the Al 2 O 3 component is high, it becomes a factor that stabilizes the crystalline state of the amorphous electrolyte, and if the content is too high, it is easy to crystallize and it is difficult to obtain the solid electrolyte in the amorphous state. Become. Therefore, the content of the Al 2 O 3 component is preferably 10 mol% or less, more preferably 8 mol% or less, and most preferably 6 mol% or less. Here, water resistance is applied not only to water but also to polar solvents such as alcohol, and is an important factor in the battery manufacturing process such as sheet molding.

本発明の非晶質(あるいはガラス)組成物は、その組成が酸化物換算組成の非晶質(あるいはガラス)全質量に対するmol%で表されているため直接的に重量%の記載に表せるものではないが、本発明において要求される諸特性を満たす固体電解質中に存在する各成分の重量比表示による組成は、重量比で概ね以下の値をとる。
重量比で
Li = 5〜17重量%及び/又は
P = 17〜40重量%及び/又は
S = 1〜15重量%及び/又は
O = 55〜58重量%
Since the composition of the amorphous (or glass) composition of the present invention is expressed in mol% with respect to the total amount of the amorphous (or glass) of the oxide-equivalent composition, it can be directly expressed in the description of% by weight. However, the composition by weight ratio display of each component present in the solid electrolyte satisfying the various properties required in the present invention generally takes the following value in terms of weight ratio.
Li = 5-17% by weight and / or P = 17-40% by weight and / or S = 1-15% by weight and / or O = 55-58% by weight

本発明の非晶質(あるいはガラス)組成物は、その組成が酸化物換算組成の非晶質(あるいはガラス)全質量に対するmol%で表されているため直接的にモル比の記載に表せるものではないが、本発明において要求される諸特性を満たす固体電解質中に存在する各成分のモル比表示による組成は、重量比で概ね以下の値をとる。
モル比で
Li = 15〜36mol%及び/又は
P = 9〜20mol%及び/又は
S = 1〜8 mol%及び/又は
O = 53〜65mol%
Since the composition of the amorphous (or glass) composition of the present invention is represented by mol% of the total amorphous (or glass) mass of the oxide-equivalent composition, it can be directly expressed in the description of the molar ratio. However, the composition by molar ratio display of each component present in the solid electrolyte satisfying the various properties required in the present invention generally takes the following value in terms of weight ratio.
Li = 15-36 mol% and / or P = 9-20 mol% and / or S = 1-8 mol% and / or O = 53-65 mol% in molar ratio

本発明の非晶質(あるいはガラス)組成物は、その組成が酸化物換算組成の非晶質(あるいはガラス)全質量に対するmol%で表されているため直接的に重量%の記載に表せるものではないが、本発明において要求される諸特性を満たす固体電解質中に存在する各成分の重量比表示による組成は、重量比で概ね以下の値をとる。
重量比で
Li = 5〜17重量%及び/又は
P = 17〜40重量%及び/又は
S = 1〜15重量%及び/又は
Al = 0超〜6.5重量%及び/又は
O = 55〜58重量%
Since the composition of the amorphous (or glass) composition of the present invention is expressed in mol% with respect to the total amount of the amorphous (or glass) of the oxide-equivalent composition, it can be directly expressed in the description of% by weight. However, the composition by weight ratio display of each component present in the solid electrolyte satisfying the various properties required in the present invention generally takes the following value in terms of weight ratio.
By weight ratio Li = 5 to 17% by weight and / or P = 17 to 40% by weight and / or S = 1 to 15% by weight and / or Al = more than 0 to 6.5% by weight and / or O = 55 to 5 58% by weight

本発明の非晶質(あるいはガラス)組成物は、その組成が酸化物換算組成の非晶質(あるいはガラス)全質量に対するmol%で表されているため直接的にモル比の記載に表せるものではないが、本発明において要求される諸特性を満たす固体電解質中に存在する各成分のモル比表示による組成は、重量比で概ね以下の値をとる。
モル比で
Li = 15〜36mol%及び/又は
P = 9〜20mol%及び/又は
S = 1〜8 mol%及び/又は
Al = 0超〜5mol%及び/又は
O = 53〜65mol%
Since the composition of the amorphous (or glass) composition of the present invention is represented by mol% of the total amorphous (or glass) mass of the oxide-equivalent composition, it can be directly expressed in the description of the molar ratio. However, the composition by molar ratio display of each component present in the solid electrolyte satisfying the various properties required in the present invention generally takes the following value in terms of weight ratio.
Li = 15-36 mol% and / or P = 9-20 mol% and / or S = 1-8 mol% and / or Al = more than 0-5 mol% and / or O = 53-65 mol% in molar ratio

(負極層)
本発明の全固体二次電池における負極層は、負極活物質及び、第一の固体電解質として非晶質電解質、第二の固体電解質として結晶性固体電解質又はガラスセラミックス固体電解質の少なくとも1つ以上及び導電助剤を含む材料を焼結したものであることが好ましい。
上記負極層の負極活物質の種類は限定されない。本発明の負極活物質としては、TiO、Nb、WOなどの遷移金属酸化物あるいはその固溶体、LiTi12、LiTiが好ましい。
負極層材料の全質量に対する上記負極活物質の含有量は、10質量%〜60質量%が好ましい。特にこの含有量を10質量%以上にすることで、全固体二次電池の電池容量を高めることができる。そのため、負極活物質の含有量は、好ましくは10質量%以上、より好ましくは18質量%以上とする。一方で、この含有量を60質量%以下にすることで、電極層のイオン伝導性を確保し易くできる。そのため、負極活物質の含有量は、好ましくは60質量%以下、好ましくは50質量%以下、より好ましくは35質量%以下とする。
(Negative electrode layer)
The negative electrode layer in the all-solid secondary battery of the present invention includes at least one or more negative electrode active material, an amorphous electrolyte as the first solid electrolyte, a crystalline solid electrolyte or a glass ceramics solid electrolyte as the second solid electrolyte, and the like. It is preferably a sintered material containing a conductive auxiliary agent.
The type of the negative electrode active material of the negative electrode layer is not limited. As the negative electrode active material of the present invention, transition metal oxides such as TiO 2 , Nb 2 O 3 , and WO 3 or solid solutions thereof, Li 4 Ti 5 O 12 , and Li 2 Ti 2 O 4 are preferable.
The content of the negative electrode active material with respect to the total mass of the negative electrode layer material is preferably 10% by mass to 60% by mass. In particular, by setting this content to 10% by mass or more, the battery capacity of the all-solid-state secondary battery can be increased. Therefore, the content of the negative electrode active material is preferably 10% by mass or more, more preferably 18% by mass or more. On the other hand, by setting this content to 60% by mass or less, it is possible to easily secure the ionic conductivity of the electrode layer. Therefore, the content of the negative electrode active material is preferably 60% by mass or less, preferably 50% by mass or less, and more preferably 35% by mass or less.

本発明記載の負極活物質の組成はLi成分についてはICP発光分光分析で確認できる。また、それ以外の組成については蛍光X線分析測定で確認できる。また、電極内に分散された場合、透過型電子顕微鏡のEDX測定などによっても解析することができる。その場合、Li成分については分析上の相違が発生することと、負極活物質であるためにLi量が不明量であることから、他の組成の価数のバランスから推定することもできる。 The composition of the negative electrode active material described in the present invention can be confirmed by ICP emission spectroscopic analysis for the Li component. In addition, other compositions can be confirmed by fluorescent X-ray analysis measurement. Further, when dispersed in the electrode, it can be analyzed by EDX measurement of a transmission electron microscope or the like. In that case, since there is an analytical difference in the Li component and the amount of Li is unknown because it is a negative electrode active material, it can be estimated from the balance of valences of other compositions.

上記負極層材料の全質量に対する第一の固体電解質である非晶質固体電解質の含有量が、2質量%以上含有する場合に、リチウムイオン伝導性の界面を形成することができる。また上記非晶質固体電解質は、負極層の密度を高め、体積当たりのエネルギー密度を高くする成分である。従って、非晶質固体電解質の含有量は、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは4質量%以上、特に好ましくは5質量%以上とする。また、非晶質固体電解質は熱処理の過程でイオン伝導性の結晶が析出するのであれば結晶化しても良い。
他方で、上記負極層材料の全質量に対する第一の固体電解質である非晶質固体電解質の含有量を60質量%以下にすることで、第二の固体電解質である結晶性電解質に比べて低いリチウムイオン伝導度の非晶質固体電解質が過剰に存在することに起因するリチウムイオン伝導度の低下を抑制できる。また、負極層中の電子伝導は導電助剤同士の接触又は接合によって生じる電子伝達によって成るので、電子伝導性を有しない非晶質固体電解質により導電助剤同士の接触が阻害されると電子伝導の抵抗が高くなる。よって、電子伝導性を有しない非晶質固体電解質が過剰に存在することに起因する電子伝導度の低下を抑制できる。従って、ガラス電解質の含有量は、好ましくは60質量%以下、より好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下とする。
When the content of the amorphous solid electrolyte, which is the first solid electrolyte, with respect to the total mass of the negative electrode layer material is 2% by mass or more, a lithium ion conductive interface can be formed. Further, the amorphous solid electrolyte is a component that increases the density of the negative electrode layer and increases the energy density per volume. Therefore, the content of the amorphous solid electrolyte is preferably 2% by mass or more, more preferably 3% by mass or more, still more preferably 4% by mass or more, and particularly preferably 5% by mass or more. Further, the amorphous solid electrolyte may be crystallized as long as ionic conductive crystals are precipitated in the process of heat treatment.
On the other hand, by reducing the content of the amorphous solid electrolyte, which is the first solid electrolyte, to 60% by mass or less with respect to the total mass of the negative electrode layer material, the content is lower than that of the crystalline electrolyte, which is the second solid electrolyte. It is possible to suppress a decrease in lithium ion conductivity due to the excessive presence of an amorphous solid electrolyte having lithium ion conductivity. Further, since the electron conduction in the negative electrode layer is formed by the electron transfer generated by the contact or bonding between the conductive aids, the electron conduction when the contact between the conductive aids is hindered by the amorphous solid electrolyte having no electron conductivity. Resistance increases. Therefore, it is possible to suppress a decrease in electron conductivity due to the excessive presence of an amorphous solid electrolyte having no electron conductivity. Therefore, the content of the glass electrolyte is preferably 60% by mass or less, more preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less.

本発明の負極層材料の第二の固体電解質である結晶性固体電解質は、特に限定しないが、菱面体晶系を有するリチウム含有リン酸化合物であることが好ましい。その化学式は、LiM’12(X=1〜1.7)で表される。ここでM’はZr、Ti、Fe、Mn、Co、Cr、Ca、Mg、Sr、Y、Sc、Sn、La、Ge、Nb、Alからなる群より選ばれた1種以上の元素である。また、Pの一部をSi又はBに、Oの一部をF、Cl等で置換してもよい。例えば、Li1.15Zr1.85Al0.15Si0.052.9512、Li1.2Ti1.8Al0.1Ge0.1Si0.052.9512等を用いることができる。また、異なる組成の材料を混合又は複合してもよい。ガラス電解質などで表面をコートしてもよい。又は、熱処理によりNASICON型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスセラミックスを用いてもよい。ここで、上記ガラスセラミックスにおけるLiOの配合割合は酸化物換算で8質量%以下であることが好ましい。NASICON型構造でなくとも、Li、La、Mg、Ca、Fe、Co、Cr、Mn、Ti、Zr、Sn、Y、Sc、P、Si、O、In、Nb、Fからなり、LISICON型、ぺロブスカイト型、ガーネット型、β―Fe(SO型の結晶構造をもち、Liイオンを室温で1×10−5S/cm以上伝導する固体電解質を用いても良い。また、上記電解質を混合しても良い。
以上をまとめると、本発明の電解質層材料の第二の固体電解質は、Li、Zr、Ti、Sn、Si、Ge、Sc、Y、La、Nb、Al、Ca、Mg、Fe、Mn、Co、Cr、O、P、B、F、Cl、Inの3元素以上からなり、菱面体晶系を含むリチウム含有リン酸化合物、NASICON構造、ペロブスカイト構造、LISICON構造、ガーネット構造、β―Fe(SO型構造を示すいずれか1種以上の結晶性固体電解質あるいはガラスセラミックスである。
The crystalline solid electrolyte, which is the second solid electrolyte of the negative electrode layer material of the present invention, is not particularly limited, but is preferably a lithium-containing phosphoric acid compound having a rhombic crystal system. Its chemical formula is represented by Li x M '2 P 3 O 12 (X = 1~1.7). Here, M'is one or more elements selected from the group consisting of Zr, Ti, Fe, Mn, Co, Cr, Ca, Mg, Sr, Y, Sc, Sn, La, Ge, Nb, and Al. .. Further, a part of P may be replaced with Si or B, and a part of O may be replaced with F, Cl or the like. For example, Li 1.15 Zr 1.85 Al 0.15 Si 0.05 P 2.95 O 12 , Li 1.2 Ti 1.8 Al 0.1 Ge 0.1 Si 0.05 P 2.95 O 12 and the like can be used. In addition, materials having different compositions may be mixed or combined. The surface may be coated with a glass electrolyte or the like. Alternatively, glass ceramics that precipitate the crystal phase of the lithium-containing phosphoric acid compound having a NASICON type structure by heat treatment may be used. Here, the blending ratio of Li 2 O in the glass ceramics is preferably 8% by mass or less in terms of oxide. Even if it is not a NASICON type structure, it is composed of Li, La, Mg, Ca, Fe, Co, Cr, Mn, Ti, Zr, Sn, Y, Sc, P, Si, O, In, Nb, and F. A solid electrolyte having a perovskite type, garnet type, β-Fe 2 (SO 4 ) type 3 crystal structure and conducting Li ions at 1 × 10-5 S / cm or more at room temperature may be used. Moreover, you may mix the said electrolyte.
Summarizing the above, the second solid electrolyte of the electrolyte layer material of the present invention is Li, Zr, Ti, Sn, Si, Ge, Sc, Y, La, Nb, Al, Ca, Mg, Fe, Mn, Co. , Cr, O, P, B, F, Cl, In, lithium-containing phosphoric acid compound containing rhombic crystal system, NASICON structure, perovskite structure, LISION structure, garnet structure, β-Fe 2 ( SO 4 ) One or more crystalline solid electrolytes or glass ceramics showing a type 3 structure.

本発明の負極層材料の導電助剤は、カーボン、グラファイト、カーボンナノチューブ、銅、アルミ合金、亜鉛合金、銀、ルテニウムなど電子伝導性を有する材料を用いることができる。異なる材料を混合または複合しても良い。
上記負極層材料の全質量に対する、導電助剤の含有量は導電助剤の種類にもよるが5質量%〜30質量%であることが好ましい。
特に、上記含有量を5質量%以上にすることで、導電助剤によって形成される電子伝導のネットワークが確保され易くなるため、電池の充放電特性や電池容量をより高め易くできる。従って、負極層における導電助剤の合計含有量は、好ましくは5質量%以上、より好ましくは7質量%以上、更に好ましくは8質量%以上とする。
他方で、上記含有量を30質量%以下にすることで、負極層中に含まれる負極活物質の含有量が増加するため、全固体二次電池のエネルギー密度を高められる。よって、負極層における上記導電助剤の含有量は、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下とする。
As the conductive auxiliary agent of the negative electrode layer material of the present invention, a material having electron conductivity such as carbon, graphite, carbon nanotube, copper, aluminum alloy, zinc alloy, silver and ruthenium can be used. Different materials may be mixed or combined.
The content of the conductive auxiliary agent with respect to the total mass of the negative electrode layer material is preferably 5% by mass to 30% by mass, although it depends on the type of the conductive auxiliary agent.
In particular, when the content is 5% by mass or more, the electron conduction network formed by the conductive auxiliary agent can be easily secured, so that the charge / discharge characteristics of the battery and the battery capacity can be further improved. Therefore, the total content of the conductive auxiliary agent in the negative electrode layer is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 8% by mass or more.
On the other hand, when the content is 30% by mass or less, the content of the negative electrode active material contained in the negative electrode layer is increased, so that the energy density of the all-solid secondary battery can be increased. Therefore, the content of the conductive auxiliary agent in the negative electrode layer is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.

(正極層)
本発明の全固体二次電池における正極層は、正極活物質及び、リチウムイオン伝導性の第一の固体電解質としての非晶質固体電解質、第二の固体電解質として結晶性電解質又はガラスセラミックス電解質の少なくとも1つ以上及び導電助剤を含む材料を焼結したものであることが好ましい。
上記正極層の正極活物質の種類は限定されない。本発明の正極活物質としては、オリビン構造を有するLiRPOであって、RはFe、Co、Mn、Ni、Zrのうち1種以上で、Alなどにより一部を置換してもよい。また、Pの一部をSi又はBで置換してもよい。Oの一部をFで置換してもよい。また、スピネル構造を持つLiMn、層状酸化物のLiCo1/3Ni1/3Mn1/3、LiNi1/2Mn1/2、LiNiO、LiCoOなどを用いてもよい。正極活物質は、Liを含有しているが、焼成時に正極活物質中のLiが電解質材料側に移動すると電荷のバランスを取るために正極活物質中の酸素が放出されて、正極活物質がLiを含まない酸化物に分解する現象が起こる。この現象がおこると正極活物質としての機能が著しく低下し放電容量が低下する。 一方、正極活物質の結晶構造中の酸素が強固に他の元素と結合していると格子中の酸素が放出しづらくなり、電荷のバランスを取るために、正極活物質中のLiを電解質側に放出しづらくなり、Liを含まない酸化物への分解を抑制し放電容量を高い状態で維持できる。そのため最も好ましくは、正極活物質中の酸素がリンと強硬に結合しているオリビン構造である。次に好ましくは、スピネル構造を持つLiMnである。好ましくは層状酸化物のLiCo1/3Ni1/3Mn1/3、LiNi1/2Mn1/2、LiNiO、LiCoOなどの層状酸化物である。
正極層材料の全質量に対する上記正極活物質の含有量は、10質量%〜60質量%が好ましい。特にこの含有量を10質量%以上にすることで、全固体二次電池の電池容量を高めることができる。そのため、正極活物質の含有量は、好ましくは10質量%以上、より好ましくは18質量%以上とする。一方で、この含有量を60質量%以下にすることで、電極層のイオン伝導性を確保し易くできる。そのため、正極活物質の含有量は、好ましくは60質量%以下、好ましくは50質量%以下、より好ましくは35質量%以下とする。
(Positive electrode layer)
The positive electrode layer in the all-solid secondary battery of the present invention is composed of a positive electrode active material, an amorphous solid electrolyte as the first solid electrolyte of lithium ion conductivity, and a crystalline electrolyte or a glass ceramic electrolyte as the second solid electrolyte. It is preferably obtained by sintering a material containing at least one and a conductive auxiliary agent.
The type of positive electrode active material in the positive electrode layer is not limited. The positive electrode active material of the present invention is LiRPO 4 having an olivine structure, and R is one or more of Fe, Co, Mn, Ni, and Zr, and a part thereof may be replaced with Al or the like. Further, a part of P may be replaced with Si or B. A part of O may be replaced with F. Further, using LiMn 2 O 4 having a spinel structure, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 of a layered oxide, LiNi 1/2 Mn 1/2 O 2 , LiNiO 2 , LiCoO 2 and the like. May be good. The positive electrode active material contains Li, but when Li in the positive electrode active material moves to the electrolyte material side during firing, oxygen in the positive electrode active material is released to balance the charge, and the positive electrode active material becomes A phenomenon of decomposition into an oxide containing no Li occurs. When this phenomenon occurs, the function as a positive electrode active material is remarkably lowered, and the discharge capacity is lowered. On the other hand, if oxygen in the crystal structure of the positive electrode active material is strongly bonded to other elements, it becomes difficult for oxygen in the lattice to be released, and Li in the positive electrode active material is placed on the electrolyte side in order to balance the charges. It becomes difficult to release the charge, and the decomposition into oxides containing no Li can be suppressed and the discharge capacity can be maintained in a high state. Therefore, the most preferable is an olivine structure in which oxygen in the positive electrode active material is strongly bonded to phosphorus. Next, LiMn 2 O 4 having a spinel structure is preferable. It is preferably a layered oxide such as LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 1/2 O 2 , LiNiO 2 , and LiCoO 2 .
The content of the positive electrode active material with respect to the total mass of the positive electrode layer material is preferably 10% by mass to 60% by mass. In particular, by setting this content to 10% by mass or more, the battery capacity of the all-solid-state secondary battery can be increased. Therefore, the content of the positive electrode active material is preferably 10% by mass or more, more preferably 18% by mass or more. On the other hand, by setting this content to 60% by mass or less, it is possible to easily secure the ionic conductivity of the electrode layer. Therefore, the content of the positive electrode active material is preferably 60% by mass or less, preferably 50% by mass or less, and more preferably 35% by mass or less.

上記正極層材料の全質量に対する第一の固体電解質である非晶質固体電解質の含有量は、2質量%以上含有する場合に、リチウムイオン伝導性の界面を形成できる。また第一の固体電解質である非晶質固体電解質は、軟化融解することで正極層の密度を高め、体積当たりのエネルギー密度を高くする成分である。従って、第一の固体電解質である非晶質固体電解質の含有量は、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは4質量%以上、特に好ましくは5質量%以上とする。
他方で、正極層材料の全質量に対する第一の固体電解質である非晶質固体電解質の含有量を60質量%以下にすることで、第二の固体電解質である結晶性電解質に比べて低いリチウムイオン伝導度の第一の固体電解質である非晶質固体電解質が過剰に存在することに起因するリチウムイオン伝導度の低下を抑制できる。また、正極層中の電子伝導は導電助剤同士の接触又は接合によって生じる電子伝達によって成るので、電子伝導性を有しないガラス電解質により導電助剤同士の接触が阻害されると電子伝導の抵抗が高くなる。よって、電子伝導性を有しない第一の固体電解質である非晶質固体電解質が過剰に存在することに起因する電子伝導度の低下を抑制できる。従って、第一の固体電解質である非晶質固体電解質の含有量は、好ましくは60質量%以下、より好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下とする。
When the content of the amorphous solid electrolyte, which is the first solid electrolyte, with respect to the total mass of the positive electrode layer material is 2% by mass or more, a lithium ion conductive interface can be formed. The amorphous solid electrolyte, which is the first solid electrolyte, is a component that softens and melts to increase the density of the positive electrode layer and increase the energy density per volume. Therefore, the content of the amorphous solid electrolyte, which is the first solid electrolyte, is preferably 2% by mass or more, more preferably 3% by mass or more, still more preferably 4% by mass or more, and particularly preferably 5% by mass or more. To do.
On the other hand, by reducing the content of the amorphous solid electrolyte, which is the first solid electrolyte, to 60% by mass or less with respect to the total mass of the positive electrode layer material, lithium is lower than that of the crystalline electrolyte, which is the second solid electrolyte. The decrease in lithium ion conductivity due to the excessive presence of the amorphous solid electrolyte, which is the first solid electrolyte of ionic conductivity, can be suppressed. Further, since the electron conduction in the positive electrode layer is formed by the electron transfer generated by the contact or bonding between the conductive aids, if the contact between the conductive aids is hindered by the glass electrolyte having no electron conductivity, the resistance of the electron conduction increases. It gets higher. Therefore, it is possible to suppress a decrease in electron conductivity due to the excessive presence of the amorphous solid electrolyte, which is the first solid electrolyte having no electron conductivity. Therefore, the content of the amorphous solid electrolyte, which is the first solid electrolyte, is preferably 60% by mass or less, more preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less. To do.

本発明の正極層材料の第二の固体電解質である結晶性固体電解質又はガラスセラミックス電解質は、特に限定しないが、菱面体晶系を含むリチウム含有リン酸化合物であることが好ましい。その化学式は、LiM”12(X=1〜1.7)で表される。ここでM”はZr、Ti、Fe、Mn、Co、Cr、Ca、Mg、Sr、Y、Sc、Sn、La、Ge、Nb、Alからなる群より選ばれた1種以上の元素である。また、Pの一部をSi又はBに、Oの一部をF、Cl等で置換してもよい。例えば、Li1.15Ti1.85Al0.15Si0.052.9512、Li1.2Ti1.8Al0.1Ge0.1Si0.052.9512、Li1.2Fe0.2Ti1.812等を用いることができる。また、異なる組成の材料を混合又は複合してもよい。非晶質電解質などで表面をコートしてもよい。又は、熱処理によりNASICON型構造を有する結晶を含むリチウム含有リン酸化合物の結晶相を析出するガラスセラミックスを用いてもよい。例えばオハラ社製のLICGCTMなどを用いても良い。ここで、上記ガラスセラミックスにおけるLiOの配合割合は酸化物換算で8質量%以下であることが好ましい。NASICON型構造でなくとも、Li、La、Mg、Ca、Fe、Co、Cr、Mn、Ti、Zr、Sn、Y、Sc、P、Si、O、In、Nb、Fからなり、LISICON型、ぺロブスカイト型、ガーネット型、β―Fe(SO型の結晶構造を有し、Liイオンを室温で1×10−5S/cm以上伝導する固体電解質を用いても良い。また、上記電解質を混合しても良い。
以上をまとめると、本発明の正極層材料の第二の固体電解質は、Li、Zr、Ti、Sn、Si、Ge、Sc、Y、La、Nb、Al、Ca、Mg、Fe、Mn、Co、Cr、O、P、B、F、Cl、Inの3元素以上からなり、菱面体晶系を含むリチウム含有リン酸化合物、NASICON構造、ペロブスカイト構造、LISICON構造、ガーネット構造、β―Fe(SO型構造を示すいずれか1種以上の結晶性固体電解質あるいはガラスセラミックスである。
The crystalline solid electrolyte or the glass-ceramic electrolyte, which is the second solid electrolyte of the positive electrode layer material of the present invention, is not particularly limited, but is preferably a lithium-containing phosphoric acid compound containing a rhombic crystal system. Its chemical formula is represented by Li x M " 2 P 3 O 12 (X = 1-1.7), where M" is Zr, Ti, Fe, Mn, Co, Cr, Ca, Mg, Sr, It is one or more elements selected from the group consisting of Y, Sc, Sn, La, Ge, Nb, and Al. Further, a part of P may be replaced with Si or B, and a part of O may be replaced with F, Cl or the like. For example, Li 1.15 Ti 1.85 Al 0.15 Si 0.05 P 2.95 O 12 , Li 1.2 Ti 1.8 Al 0.1 Ge 0.1 Si 0.05 P 2.95 O 12 , Li 1.2 Fe 0.2 Ti 1.8 P 3 O 12 and the like can be used. In addition, materials having different compositions may be mixed or combined. The surface may be coated with an amorphous electrolyte or the like. Alternatively, glass ceramics that precipitate the crystal phase of the lithium-containing phosphoric acid compound containing crystals having a NASICON type structure by heat treatment may be used. For example, LICGC TM manufactured by O'Hara may be used. Here, the blending ratio of Li 2 O in the glass ceramics is preferably 8% by mass or less in terms of oxide. Even if it is not a NASICON type structure, it is composed of Li, La, Mg, Ca, Fe, Co, Cr, Mn, Ti, Zr, Sn, Y, Sc, P, Si, O, In, Nb, and F. A solid electrolyte having a perovskite type, garnet type, β-Fe 2 (SO 4 ) type 3 crystal structure and conducting Li ions at 1 × 10-5 S / cm or more at room temperature may be used. Moreover, you may mix the said electrolyte.
Summarizing the above, the second solid electrolyte of the positive electrode layer material of the present invention is Li, Zr, Ti, Sn, Si, Ge, Sc, Y, La, Nb, Al, Ca, Mg, Fe, Mn, Co. , Cr, O, P, B, F, Cl, In, lithium-containing phosphoric acid compound containing rhombic crystal system, NASICON structure, perovskite structure, LISION structure, garnet structure, β-Fe 2 ( SO 4 ) One or more crystalline solid electrolytes or glass ceramics showing a type 3 structure.

上記正極層材料の全質量に対する、リチウム伝導性の第二の固体電解質である結晶性固体電解質の含有量は30質量%〜80質量%であることが好ましい。
特に、上記含有量を30質量%以上にすることで、第一の固体電解質である非晶質固体電解質によって形成されるリチウムイオンの移動経路が確保され易くなるため、電池の充放電特性や電池容量をより高め易くできる。従って、電極層におけるリチウム伝導性の第二の固体電解質の合計含有量は、好ましくは30質量%以上、より好ましくは45質量%以上、更に好ましくは55質量%以上とする。
他方で、上記含有量を80質量%以下にすることで、正極層中に含まれる正極活物質の含有量が増加するため、全固体二次電池のエネルギー密度を高められる。よって、正極層における上記リチウム伝導性の第二の固体電解質の含有量は、好ましくは80質量%、より好ましくは75質量%以下、より好ましくは70質量%以下、さらに好ましくは65質量%以下とする。
本発明の正極層材料の導電助剤は、カーボン、グラファイト、カーボンナノチューブ、アルミ合金、亜鉛合金、銀、ルテニウムなど電子伝導性を有する材料を用いることができる。異なる材料を混合または複合しても良い。
上記正極層材料の全質量に対する、導電助剤の含有量は導電助剤の種類にもよるが、5質量%〜30質量%であることが好ましい。
特に、上記含有量を5質量%以上にすることで、導電助剤によって形成される電子伝導のネットワークが確保され易くなるため、電池の充放電特性や電池容量をより高め易くできる。従って、正極層における導電助剤の合計含有量は、好ましくは5質量%以上、より好ましくは7質量%以上、更に好ましくは8質量%以上とする。
他方で、上記含有量を30質量%以下にすることで、正極層中に含まれる正極活物質の含有量が増加するため、全固体二次電池のエネルギー密度を高められる。よって、正極層における上記導電助剤の含有量は、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下とする。
The content of the crystalline solid electrolyte, which is the second solid electrolyte having lithium conductivity, is preferably 30% by mass to 80% by mass with respect to the total mass of the positive electrode layer material.
In particular, when the content is set to 30% by mass or more, the movement path of lithium ions formed by the amorphous solid electrolyte, which is the first solid electrolyte, can be easily secured, so that the charge / discharge characteristics of the battery and the battery can be secured. The capacity can be increased more easily. Therefore, the total content of the lithium conductive second solid electrolyte in the electrode layer is preferably 30% by mass or more, more preferably 45% by mass or more, and further preferably 55% by mass or more.
On the other hand, when the content is 80% by mass or less, the content of the positive electrode active material contained in the positive electrode layer is increased, so that the energy density of the all-solid secondary battery can be increased. Therefore, the content of the lithium conductive second solid electrolyte in the positive electrode layer is preferably 80% by mass, more preferably 75% by mass or less, more preferably 70% by mass or less, still more preferably 65% by mass or less. To do.
As the conductive auxiliary agent of the positive electrode layer material of the present invention, a material having electron conductivity such as carbon, graphite, carbon nanotubes, aluminum alloy, zinc alloy, silver and ruthenium can be used. Different materials may be mixed or combined.
The content of the conductive auxiliary agent with respect to the total mass of the positive electrode layer material depends on the type of the conductive auxiliary agent, but is preferably 5% by mass to 30% by mass.
In particular, when the content is 5% by mass or more, the electron conduction network formed by the conductive auxiliary agent can be easily secured, so that the charge / discharge characteristics of the battery and the battery capacity can be further improved. Therefore, the total content of the conductive auxiliary agent in the positive electrode layer is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 8% by mass or more.
On the other hand, when the content is 30% by mass or less, the content of the positive electrode active material contained in the positive electrode layer is increased, so that the energy density of the all-solid secondary battery can be increased. Therefore, the content of the conductive auxiliary agent in the positive electrode layer is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.

(固体電解質層)
本発明の全固体二次電池における固体電解質層は、第一の固体電解質としての非晶質固体電解質、第二の固体電解質としての結晶性固体電解質又はガラスセラミックス電解質の少なくとも1つ以上を含む材料を焼結したものであることが好ましい。
(Solid electrolyte layer)
The solid electrolyte layer in the all-solid secondary battery of the present invention is a material containing at least one of an amorphous solid electrolyte as a first solid electrolyte, a crystalline solid electrolyte as a second solid electrolyte, or a glass ceramic electrolyte. Is preferably sintered.

上記固体電解質層材料の全質量に対する第一の固体電解質としての非晶質固体電解質の含有量は、3質量%以上の場合に、非晶質固体電解質が第二の固体電解質である結晶性固体電解質界面に行き渡り、固体電解質層のイオン伝導度を上げる事が出来る。また、上記固体電解質層の密度を上げることができるので、全固体二次電池の強度も高くできる。3質量%未満の場合、固体電解質層のイオン伝導度を高くできない。従って、固体電解質層中の第一の固体電解質である非晶質電解質の含有量は、好ましくは3質量%以上、より好ましくは4質量%以上、更に好ましくは4.5質量%以上、特に好ましくは5質量%以上とする。
他方で、第一の固体電解質である非晶質固体電解質の含有量が90質量%を超えると、第二の固体電解質である結晶性固体電解質同士をつないでいる第一の固体電解質である非晶質固体電解質の膜厚が厚くなり、リチウムイオンが非晶質固体電解質を通る距離が長くなる。結晶性電解質よりも伝導度が低い非晶質固体電解質の伝導度の影響が強くなり、結果としてイオン伝導度が低下する。そこで、第一の固体電解質である非晶質固体電解質の含有量を90質量%以下にすることで上記のようなイオン伝導度の低下を防ぐことができる。従って、非晶質固体電解質の含有量は、好ましくは90質量%未満、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下とする。
When the content of the amorphous solid electrolyte as the first solid electrolyte with respect to the total mass of the solid electrolyte layer material is 3% by mass or more, the amorphous solid electrolyte is a crystalline solid as the second solid electrolyte. It can reach the electrolyte interface and increase the ionic conductivity of the solid electrolyte layer. Further, since the density of the solid electrolyte layer can be increased, the strength of the all-solid secondary battery can also be increased. If it is less than 3% by mass, the ionic conductivity of the solid electrolyte layer cannot be increased. Therefore, the content of the amorphous electrolyte, which is the first solid electrolyte, in the solid electrolyte layer is preferably 3% by mass or more, more preferably 4% by mass or more, still more preferably 4.5% by mass or more, and particularly preferably. Is 5% by mass or more.
On the other hand, when the content of the amorphous solid electrolyte, which is the first solid electrolyte, exceeds 90% by mass, it is the first solid electrolyte that connects the crystalline solid electrolytes, which are the second solid electrolytes. The film thickness of the crystalline solid electrolyte becomes thicker, and the distance through which the lithium ions pass through the amorphous solid electrolyte becomes longer. The influence of the conductivity of the amorphous solid electrolyte, which has a lower conductivity than that of the crystalline electrolyte, becomes stronger, and as a result, the ionic conductivity decreases. Therefore, by reducing the content of the amorphous solid electrolyte, which is the first solid electrolyte, to 90% by mass or less, it is possible to prevent the above-mentioned decrease in ionic conductivity. Therefore, the content of the amorphous solid electrolyte is preferably less than 90% by mass, preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less.

上記固体電解質層材料に含まれる第二の固体電解質である結晶性固体電解質の種類は限定されない。本発明の第二の固体電解質である結晶性固体電解質としては菱面体晶系のNASICON型構造を有するリチウム含有リン酸化合物であって、化学式Li12(X=1〜1.7)で表される。ここでLは、Zr、Ti、Fe、Mn、Co、Ca、Mg、Sr、Y、La、Ge、Nb、Alからなる群より選ばれた1種以上の元素である。また、Pの一部をSiやBに、Oの一部をF、Cl等で置換しても良い。例えば、Li1.2Zr1.85Al0.15Si0.052.9512、Li1.2Zr1.85Al0.1Ti0.05Si0.0512等を用いることができる。また、異なる組成の材料を混合又は複合しても良い。NASICON型とは別のリチウムイオン伝導体、La0.57Li0.29TiO(LLTOと称する)などのぺロブスカイト構造を有する固体電解質、LiLaZr12(LLZO)などの立方晶ガーネット構造を有する固体電解質、LiIn(POなどのβ−Fe(SO型の固体電解質、Li3.5Si0.5などのLISICON型の固体電解質などを用いても良い。いずれのセラミック電解質もガラス電解質などで表面をコートしても良い。
以上をまとめると、本発明の電解質層材料の第二の固体電解質は、Li、Zr、Ti、Sn、Si、Ge、Sc、Y、La、Nb、Al、Ca、Mg、Fe、Mn、Co、Cr、O、P、B、F、Cl、Inの3元素以上からなり、菱面体晶系を含むリチウム含有リン酸化合物、NASICON構造、ペロブスカイト構造、LISICON構造、ガーネット構造、β―Fe(SO型構造を示すいずれか1種以上の結晶性固体電解質あるいはガラスセラミックスである。
The type of the crystalline solid electrolyte, which is the second solid electrolyte contained in the solid electrolyte layer material, is not limited. The crystalline solid electrolyte, which is the second solid electrolyte of the present invention, is a lithium-containing phosphoric acid compound having a rhombic crystal-based NASICON type structure, and has a chemical formula of Li x L 2 P 3 O 12 (X = 1-1). It is represented by .7). Here, L is one or more elements selected from the group consisting of Zr, Ti, Fe, Mn, Co, Ca, Mg, Sr, Y, La, Ge, Nb, and Al. Further, a part of P may be replaced with Si or B, and a part of O may be replaced with F, Cl or the like. For example, Li 1.2 Zr 1.85 Al 0.15 Si 0.05 P 2.95 O 12 and Li 1.2 Zr 1.85 Al 0.1 Ti 0.05 Si 0.05 O 12 are used. be able to. In addition, materials having different compositions may be mixed or combined. A lithium ion conductor different from the NASICON type, a solid electrolyte having a perovskite structure such as La 0.57 Li 0.29 TiO 3 (referred to as LLTO), and a cube such as Li 7 La 3 Zr 2 O 12 (LLZO). Solid electrolyte with crystal garnet structure, β-Fe 2 (SO 4 ) type 3 solid electrolyte such as Li 3 In 2 (PO 4 ) 3 , Lithium type solid electrolyte such as Li 3.5 Si 0.5 O 4 Etc. may be used. The surface of any ceramic electrolyte may be coated with a glass electrolyte or the like.
Summarizing the above, the second solid electrolyte of the electrolyte layer material of the present invention is Li, Zr, Ti, Sn, Si, Ge, Sc, Y, La, Nb, Al, Ca, Mg, Fe, Mn, Co. , Cr, O, P, B, F, Cl, In, lithium-containing phosphoric acid compound containing rhombic crystal system, NASICON structure, perovskite structure, LISION structure, garnet structure, β-Fe 2 ( SO 4 ) One or more crystalline solid electrolytes or glass ceramics showing a type 3 structure.

上記固体電解質層材料の全質量に対して、リチウムイオン伝導性の第二の固体電解質である結晶性固体電解質の含有量を98質量%以下にすることが好ましい。これにより、第一の固体電解質である非晶質固体電解質が存在できるようになり固体電解質層中にリチウムイオンの伝導する界面および経路が形成され易くなるため、固体電解質層のリチウムイオン伝導性をより高めることができる。
他方で、上記リチウムイオン伝導性の結晶性固体電解質の含有量の下限は特に限定されず、0質量%であってもよい。
It is preferable that the content of the crystalline solid electrolyte, which is the second solid electrolyte having lithium ion conductivity, is 98% by mass or less with respect to the total mass of the solid electrolyte layer material. As a result, the amorphous solid electrolyte, which is the first solid electrolyte, can exist, and the interface and the path through which lithium ions are conducted are easily formed in the solid electrolyte layer. Therefore, the lithium ion conductivity of the solid electrolyte layer is improved. Can be enhanced.
On the other hand, the lower limit of the content of the lithium ion conductive crystalline solid electrolyte is not particularly limited and may be 0% by mass.

以下に、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによりなんら制限されるものではない。
本発明の説明としては、第一の固体電解質である非晶質固体電解質の合成と評価、第一の固体電解質である非晶質固体電解質と第二の固体電解質の混合・焼成と評価、第一の固体電解質である非晶質固体電解質と第二の固体電解質である結晶性固体電解質を混合した固体電解質の全固体二次電池への適応評価の3つとした。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
As the description of the present invention, the synthesis and evaluation of the amorphous solid electrolyte which is the first solid electrolyte, the mixing / firing and evaluation of the amorphous solid electrolyte which is the first solid electrolyte and the second solid electrolyte, and the first. Three solid electrolytes, which are a mixture of an amorphous solid electrolyte, which is one solid electrolyte, and a crystalline solid electrolyte, which is a second solid electrolyte, are evaluated for adaptation to an all-solid secondary battery.

<第一の固体電解質である非晶質固体電解質の調製>
合成した第一の固体電解質である非晶質固体電解質の仕込み組成を表1に示す。原料にはLiPO、LiPO、LiSO・5HO、Al(PO、HPO、LiCO、HBO、を用い、量論比で合成した。熔解には白金坩堝を用い熔解温度は600℃〜1100℃とした。熔解時間は30分〜2時間とした。伝導度測定をするサンプルは、耐熱鋼性のキャスト板で挟んで板状に成形することで取得した。その他のサンプルは耐熱鋼上にキャストして取得した。SO成分は揮発しやすいため、Al成分が多い組成については、一度SO以外の成分を高温で熔解後成形後に粉砕し、SO成分であるLiSO・5HOを加えて熔解した。比較例3を除いて、いずれも安定な非晶質(ガラス)であり、結晶化はしなかった。比較例3ではガラス状のサンプルは取得できなかった。また、作製後の非晶質固体電解質の分析結果を表2に示す。測定方法は、ICP発光分光分析装置(アジレント・テクノロジーズ株式会社製:ICP-OES 720-ES)を用いて実施した。
<Preparation of amorphous solid electrolyte, which is the first solid electrolyte>
Table 1 shows the charged composition of the amorphous solid electrolyte, which is the first synthesized solid electrolyte. The raw material LiPO 3, Li 3 PO 4, Li 2 SO 4 · 5H 2 O, Al (PO 3) 3, H 3 PO 4, Li 2 CO 3, H 3 BO 3, using a synthesized stoichiometric did. A platinum crucible was used for melting, and the melting temperature was set to 600 ° C to 1100 ° C. The melting time was 30 minutes to 2 hours. The sample for which the conductivity was measured was obtained by sandwiching it between heat-resistant steel cast plates and forming it into a plate shape. Other samples were obtained by casting on heat resistant steel. Since the SO 3 component is likely to volatilize, the composition Al 2 O 3 component is large, once crushed components other than SO 3 after melting after molding at a high temperature, the Li 2 SO 4 · 5H 2 O is a SO 3 component In addition, it was melted. Except for Comparative Example 3, all of them were stable amorphous (glass) and did not crystallize. In Comparative Example 3, a glassy sample could not be obtained. Table 2 shows the analysis results of the amorphous solid electrolyte after preparation. The measurement method was carried out using an ICP emission spectroscopic analyzer (manufactured by Agilent Technologies, Inc .: ICP-OES 720-ES).

Figure 2019239890
Figure 2019239890

Figure 2019239890
Figure 2019239890

<非晶質固体電解質の評価>
合成した第一の固体電解質である非晶質固体電解質の熱特性は、熱重量・示差熱測定(ブルカー・エイエックスエス社製TG−DTA2000SA)により行った。評価結果を図1〜図5および表3に示す。SOを含有しない比較例1および比較例2に比べ、SOを含有する実施例1〜14はいずれもガラス軟化点(Tg)で10.0℃〜78.4℃、融点(mp)で14.3℃〜192.2℃低下することが確認できた。
伝導度は、交流インピーダンス法による交流抵抗測定で得られた抵抗値と、厚さおよび電極面積測定により得られた厚みと電極径より計算して導いた。交流インピーダンス法に用いるブロッキング電極は金を用いた。板状に成形したサンプルに対して800番と2000番の耐水研磨紙で研磨液として1-プロパノールを用いて表面を研磨し、研磨面に金電極をマグネトロンスパッタ(サンユー電子製SC701HMC)により形成した。厚さはマイクロメーターを用い、電極径はノギスにて評価した。実施例1の交流インピーダンス測定結果を図6に示す。いずれの結果も図6にある矢印の点を抵抗値として読み取り、電解質厚さと金電極の面積から伝導度を算出した。比較例1および比較例2、実施例1〜14の算出した伝導度の値を表3に示す。伝導度についても比較例に比べて2〜10倍程度の向上が確認された。
以上の結果から、ガラス軟化点、融点およびイオン伝導度という界面形成に必要な条件について改善が認められた。
<Evaluation of amorphous solid electrolyte>
The thermal properties of the amorphous solid electrolyte, which is the first synthesized solid electrolyte, were measured by thermogravimetric analysis and differential thermal measurement (TG-DTA2000SA manufactured by Bruker AXS Co., Ltd.). The evaluation results are shown in FIGS. 1 to 5 and Table 3. Compared to Comparative Example 1 and Comparative Example 2 containing no SO 3, 10.0 ° C. In Examples 1-14 Both glass softening point containing SO 3 (Tg) ~78.4 ℃, a melting point (mp) It was confirmed that the temperature decreased from 14.3 ° C to 192.2 ° C.
The conductivity was calculated and derived from the resistance value obtained by the AC resistance measurement by the AC impedance method, and the thickness and the electrode diameter obtained by the thickness and the electrode area measurement. Gold was used as the blocking electrode used in the AC impedance method. The surface of the plate-shaped sample was polished with 1-propanol as a polishing solution with No. 800 and No. 2000 water-resistant abrasive paper, and a gold electrode was formed on the polished surface by magnetron sputtering (SC701HMC manufactured by Sanyu Electronics). .. The thickness was evaluated using a micrometer, and the electrode diameter was evaluated with a caliper. The AC impedance measurement result of Example 1 is shown in FIG. In each of the results, the point indicated by the arrow in FIG. 6 was read as the resistance value, and the conductivity was calculated from the electrolyte thickness and the area of the gold electrode. Table 3 shows the calculated conductivity values of Comparative Example 1, Comparative Example 2, and Examples 1 to 14. It was confirmed that the conductivity was also improved by about 2 to 10 times as compared with the comparative example.
From the above results, improvement was observed in the conditions necessary for interface formation such as glass softening point, melting point and ionic conductivity.

Figure 2019239890
Figure 2019239890

<第一の固体電解質である非晶質固体電解質と第二の固体電解質である結晶性固体電解質の混合体の伝導度評価>
作製した第一の固体電解質である非晶質固体電解質が第二の固体電解質である結晶性固体電解質と混合することでイオン伝導性界面を形成して伝導度を向上させる機能を有するかを確認するために、第一の固体電解質である非晶質固体電解質と第二の固体電解質である結晶性固体電解質を混合した電解質膜を形成して交流インピーダンス法により伝導度評価を行った。
<Evaluation of conductivity of a mixture of amorphous solid electrolyte, which is the first solid electrolyte, and crystalline solid electrolyte, which is the second solid electrolyte>
Confirm whether the prepared amorphous solid electrolyte, which is the first solid electrolyte, has a function of forming an ionic conductive interface and improving conductivity by mixing with the crystalline solid electrolyte, which is the second solid electrolyte. To this end, an electrolyte membrane was formed by mixing an amorphous solid electrolyte, which is the first solid electrolyte, and a crystalline solid electrolyte, which is the second solid electrolyte, and the conductivity was evaluated by the AC impedance method.

<第二の固体電解質である結晶性固体電解質の作製>
第二の固体電解質としては、NASICON型の固体電解質としてLi1.2Al0.15Zr1.85Si0.052.9512(LAZP12と称する)とLi1.2Al0.15Ti1.85Si0.052.9512(LATP12と称する)を用いた。また、ペロブスカイト型の固体電解質として、La0.51Li0.34TiO2.94(LLTOと称する)をガーネット型の固体電解質として、LLZOをLISICON型の固体電解質として、Li3.5Si0.50.5(LSPOと称する)を用いた。
<Preparation of crystalline solid electrolyte, which is the second solid electrolyte>
The second solid electrolytes include Li 1.2 Al 0.15 Zr 1.85 Si 0.05 P 2.95 O 12 (referred to as LAZP 12) and Li 1.2 Al 0.15 as NASICON type solid electrolytes. Ti 1.85 Si 0.05 P 2.95 O 12 (referred to as LATP 12) was used. Further, as the solid electrolyte of perovskite type, a La 0.5 1Li 0.34 TiO 2.94 (referred to as LLTO) as a solid electrolyte of the garnet-type, as a solid electrolyte of LISICON type of LLZO, Li 3.5 Si 0. 5 P 0.5 O 4 (referred to as LSPO) was used.

<第二の固体電解質である結晶性固体電解質の調製 LATP12>
第二の固体電解質である結晶性固体電解質の1つとして、高イオン伝導性のLi1.2Al0.15Ti1.85Si0.052.9512を調製した。原料としてLiPO、TiO、Al(PO、及びSiOの微紛体と、HPO溶液とを量論比で混合した後、石英るつぼにて1100℃で5時間焼成した。焼成した原料の混合物をスタンプミルで106μm以下に粉砕し、湿式の遊星ボールミルで1μm以下まで粉砕することで固体電解質を得た(以降この固体電解質をLATP12と言及する)。焼成した試料を粉末X線回折装置(フィリップス社製 X‘Pert−MPD)で評価し、菱面体晶系のLiTi(PO(JCPDS:35−0754)と同様の結晶構造になることを確認した。
<Preparation of crystalline solid electrolyte, which is the second solid electrolyte LATP12>
As one of the crystalline solid electrolytes, which is the second solid electrolyte, highly ionic conductive Li 1.2 Al 0.15 Ti 1.85 Si 0.05 P 2.95 O 12 was prepared. A fine powder of LiPO 3 , TiO 2 , Al (PO 3 ) 3 , and SiO 2 as raw materials and a solution of H 3 PO 4 were mixed in a stoichiometric ratio, and then calcined in a quartz crucible at 1100 ° C. for 5 hours. A mixture of calcined raw materials was pulverized to 106 μm or less with a stamp mill, and pulverized to 1 μm or less with a wet planetary ball mill to obtain a solid electrolyte (hereinafter, this solid electrolyte is referred to as LATP12). The calcined sample is evaluated by a powder X-ray diffractometer (X'Pert-MPD manufactured by Philips), and has a crystal structure similar to that of the rhombohedral LiTi 2 (PO 4 ) 3 (JCPDS: 35-0754). It was confirmed.

<第二の固体電解質である結晶性固体電解質の調製 LAZP12>
固体電解質の1つとして、Ti成分を含まない耐還元性のLi1.2Al0.15Zr1.85Si0.052.9512を調製した。原料としてLiPO、ZrO、Al(PO、及びSiOの微紛体と、HPO溶液とを量論比で混合した後、白金板上にて1350℃で1時間焼成した。焼成した原料の混合物をスタンプミルで106μm以下に粉砕し、湿式の遊星ボールミルで1μm以下まで粉砕することで耐還元性固体電解質を得た(以降この耐還元性固体電解質をLAZP12と言及する)。得られた試料を粉末X線回折装置で評価し、菱面体晶のLiZr(PO(JCPDS:084−0998)と同様の結晶構造であることを確認した。
<Preparation of crystalline solid electrolyte, which is the second solid electrolyte LAZP12>
As one of the solid electrolytes, a reduction-resistant Li 1.2 Al 0.15 Zr 1.85 Si 0.05 P 2.95 O 12 containing no Ti component was prepared. A fine powder of LiPO 3 , ZrO 2 , Al (PO 3 ) 3 , and SiO 2 as raw materials and a solution of H 3 PO 4 were mixed in a stoichiometric ratio, and then calcined on a platinum plate at 1350 ° C. for 1 hour. .. A mixture of calcined raw materials was pulverized to 106 μm or less with a stamp mill, and pulverized to 1 μm or less with a wet planetary ball mill to obtain a reduction-resistant solid electrolyte (hereinafter, this reduction-resistant solid electrolyte is referred to as LAZP12). The obtained sample was evaluated by a powder X-ray diffractometer, and it was confirmed that the crystal structure was similar to that of the rhombohedral LiZr 2 (PO 4 ) 3 (JCPDS: 084-0998).

<それ以外の第二の固体電解質である結晶性固体電解質>
それ以外の結晶性固体電解質(La0.57Li0.29TiO、LiLaZr12、Li3.5Si0.5)は、高純度化学研究所より購入した。
<Crystally solid electrolyte, which is the other second solid electrolyte>
Other crystalline solid electrolytes (La 0.57 Li 0.29 TiO 3 , Li 7 La 3 Zr 2 O 12 , Li 3.5 Si 0.5 O 4 ) were purchased from the Institute of High Purity Chemistry.

<試料の粉砕・混合>
作製および入手した第一の固体電解質である非晶質固体電解質および第二の固体電解質である結晶性固体電解質を窒素雰囲気下でスタンプミルを用いて106μmメッシュパスまで粉砕した。第一の固体電解質である非晶質固体電解質が6重量%、第二の固体電解質である結晶性固体電解質が94重量%になるように混合後、1−プロパノールを溶剤として遊星ボールミルにて湿式粉砕した。試料の粉砕条件は、粒度分布測定装置(マルバーン製 マスターサイザー3000)を用いて、屈折率をTiO(2.9)相当としてD90で2μm以下の粒度分布を示すまで粉砕後、試料を取出し乾燥させた。乾燥後の粉末をラボミルサーにて106μm以下まで粉砕し、焼成前原料とした。
<Crushing and mixing of samples>
Amorphous solid electrolytes, which are the first solid electrolytes prepared and obtained, and crystalline solid electrolytes, which are the second solid electrolytes, were ground under a nitrogen atmosphere using a stamp mill to a 106 μm mesh path. After mixing so that the amorphous solid electrolyte, which is the first solid electrolyte, is 6% by weight and the crystalline solid electrolyte, which is the second solid electrolyte, is 94% by weight, wetting with a planetary ball mill using 1-propanol as a solvent. Crushed. As for the pulverization conditions of the sample, a particle size distribution measuring device (Mastersizer 3000 manufactured by Malvern) was used to pulverize the sample until the particle size distribution was 2 μm or less at D90 with a refractive index equivalent to TiO 2 (2.9), and then the sample was taken out and dried. I let you. The dried powder was pulverized with a lab miller to 106 μm or less and used as a raw material before firing.

<成形・焼成・評価>
焼成前原料0.1gを2000kgf/cmにて加圧成形後に所定の温度まで加熱して電解質膜を得た。得られた電解質膜の両面を800番と2000番の耐水研磨紙を用いて表面を研磨した。研磨後の試料を乾燥後、短絡しないように両面にマグネトロンスパッタを用いて金電極をスパッタにより形成した。インピーダンス測定は、電気化学測定装置(BiO Logic製 SP−300)を用いて測定した。振幅電圧は10mV、測定温度は25℃とした。測定周波数は1MHzから0.1Hzとした。いずれも評価温度は25℃とした。実施例19の測定結果を図7に示す。マイクロメーターで測定した膜厚は0.47mm、電極の直径は0.67cmであった。抵抗値の見取りについては、図7矢印部分に相当する抵抗値をそれぞれのグラフから読み取った。測定結果を表4および図8に示す。
<Molding / firing / evaluation>
0.1 g of the raw material before firing was pressure-molded at 2000 kgf / cm 2 and then heated to a predetermined temperature to obtain an electrolyte membrane. Both sides of the obtained electrolyte membrane were polished on the surfaces using No. 800 and No. 2000 water resistant abrasive papers. After the polished sample was dried, gold electrodes were formed by sputtering on both sides using magnetron sputtering so as not to cause a short circuit. Impedance was measured using an electrochemical measuring device (SP-300 manufactured by BiO Logical). The amplitude voltage was 10 mV and the measurement temperature was 25 ° C. The measurement frequency was 1 MHz to 0.1 Hz. In each case, the evaluation temperature was 25 ° C. The measurement result of Example 19 is shown in FIG. The film thickness measured with a micrometer was 0.47 mm, and the diameter of the electrode was 0.67 cm. Regarding the estimation of the resistance value, the resistance value corresponding to the arrow portion in FIG. 7 was read from each graph. The measurement results are shown in Table 4 and FIG.

比較例2および実施例2の非晶質電解質とLATP12を用いた固体電解質膜については、熱処理温度と伝導度の関係を確認した。比較例2の固体電解質を使用した場合(比較例4〜8)の結果を表4に示す。熱処理温度600℃処理品(比較例4)では室温で1.2×10−4S/cmと高いイオン伝導度を示すが、熱処理温度を50℃下げると(比較例6)、イオン伝導度は3.4×10−5S/cmまで低下した。それに比べ、SOを添加した実施例2の固体電解質を使用した場合(実施例15〜22)は450℃の低温から0.2×10−4S/cmという高いイオン伝導を示すことが確認できた。
この温度域の熱処理で構成した電解質膜としては、非常に高いイオン伝導度である。ガラス電解質単体あるいはガラス電解質を結晶化させた材料でも実現できておらず、また高いイオン伝導度のあるLATP12のみの粉末を用いてもこの温度域の熱処理では実現できていない。
第二の固体電解質である結晶性固体電解質として、LATP12やLAZP12以外にガーネット構造を有するLLZOで1.0×10−5S/cm、ぺロブスカイト構造を有するLLTOをもちいても1.0×10−4S/cm、LISICON構造を有するLi3.5Si0.5を用いても0.7×10−6S/cmの高いイオン伝導性を示すことが確認でできた。LLZO、LLTOおよびLi3.5Si0.5いずれも第一の固体電解質を混合しないで同様の処理をしてもイオン伝導性を示さず、第二の固体電解質である非晶質固体電解質の効果が確認できた(実施例23〜25)。
Regarding the amorphous electrolytes of Comparative Examples 2 and 2 and the solid electrolyte membrane using LATP12, the relationship between the heat treatment temperature and the conductivity was confirmed. Table 4 shows the results when the solid electrolyte of Comparative Example 2 was used (Comparative Examples 4 to 8). The product treated at a heat treatment temperature of 600 ° C. (Comparative Example 4) shows a high ionic conductivity of 1.2 × 10 -4 S / cm at room temperature, but when the heat treatment temperature is lowered by 50 ° C. (Comparative Example 6), the ionic conductivity becomes high. It decreased to 3.4 × 10-5 S / cm. In comparison, it was confirmed that when the solid electrolyte of Example 2 to which SO 3 was added was used (Examples 15 to 22), a high ion conduction of 0.2 × 10 -4 S / cm was exhibited from a low temperature of 450 ° C. did it.
It has extremely high ionic conductivity for an electrolyte membrane constructed by heat treatment in this temperature range. It has not been realized by the glass electrolyte alone or the material obtained by crystallizing the glass electrolyte, and even by using the powder of LATP12 alone having high ionic conductivity, it has not been realized by the heat treatment in this temperature range.
As the crystalline solid electrolyte which is the second solid electrolyte, 1.0 × 10-5 S / cm for LLZO having a garnet structure in addition to LATP12 and LAZP12, and 1.0 × 10 for LLTO having a perovskite structure. It was confirmed that even when Li 3.5 Si 0.5 O 4 having a -4 S / cm and LISION structure was used, a high ionic conductivity of 0.7 × 10 -6 S / cm was exhibited. None of LLZO, LLTO and Li 3.5 Si 0.5 O 4 show ionic conductivity even if the same treatment is performed without mixing the first solid electrolyte, and the second solid electrolyte is an amorphous solid. The effect of the electrolyte was confirmed (Examples 23 to 25).

Figure 2019239890
Figure 2019239890

<全固体二次電池の評価>
第一の固体電解質である非晶質固体電解質が全固体二次電池の固体電解質として機能することを確認するために、全固体二次電池を作製して評価した。全固体二次電池は、正極活物質を含む正極層、負極活物質を含む負極層、電解質のみで形成される電解質層を含む。電解質層は伝導度測定で用いた混合電解質を用いた。正極層および負極層の合成方法および全固体二次電池の作製方法について以下に述べる。
<Evaluation of all-solid-state secondary battery>
In order to confirm that the amorphous solid electrolyte, which is the first solid electrolyte, functions as the solid electrolyte of the all-solid secondary battery, an all-solid secondary battery was prepared and evaluated. The all-solid-state secondary battery includes a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and an electrolyte layer formed only of an electrolyte. As the electrolyte layer, the mixed electrolyte used in the conductivity measurement was used. The method of synthesizing the positive electrode layer and the negative electrode layer and the method of manufacturing the all-solid-state secondary battery will be described below.

<活物質粉末作製と正極層および負極層粉末作製>
負極活物質としてLi1.5Fe0.5Ti1.512(以降LFTP15と称する)を作製した。原料にLiPO、Fe、TiO、HPOを用い、量論比で混合後、石英ポットに入れて大気下1000℃で10時間焼成した。焼成した試料を粉末X線回折装置で評価し、菱面体晶系のLiTi(PO(JCPDS:35−0754)と同様の結晶構造になることを確認した。
<Preparation of active material powder and preparation of positive electrode layer and negative electrode layer powder>
Li 1.5 Fe 0.5 Ti 1.5 P 3 O 12 (hereinafter referred to as LFTP15) was prepared as a negative electrode active material. LiPO 3 , Fe 2 O 3 , TiO 2 , and H 3 PO 4 were used as raw materials, mixed in a stoichiometric ratio, placed in a quartz pot, and calcined in the air at 1000 ° C. for 10 hours. The calcined sample was evaluated by a powder X-ray diffractometer, and it was confirmed that the crystal structure was similar to that of the rhombohedral LiTi 2 (PO 4 ) 3 (JCPDS: 35-0754).

正極活物質としてLiMn0.75Fe0.25PO(以降LMFPと称する)を作製した。原料にLiPO、Fe、MnOを用い、量論比で混合後、5wt%のアセチレンブラックを混ぜ、黒鉛坩堝に入れて密閉し、グラファイトを周りに配置した窒素雰囲気炉にて800℃で1時間焼成した。粉末X線回折装置にてLiMnPO(JCPDS:77−0178)であることを確認した。
負極活物質、正極活物質いずれも、1−プロパノールを分散媒として遊星ボールミルにてD90で0.5μm以下まで粉砕した。
正極層および負極層は、それぞれ表5の調合方法に従い調合後、泡とり錬太郎(シンキー製 ARV200)で混合した。YTZボールを分離し素早く蒸発乾固させた後、ラボミルサーで解砕して、それぞれ正極層粉末、負極層粉末とした。
LiMn 0.75 Fe 0.25 PO 4 (hereinafter referred to as LMFP) was prepared as a positive electrode active material. Using LiPO 3 , Fe 2 O 3 , and MnO 3 as raw materials, after mixing in a stoichiometric ratio, mix 5 wt% acetylene black, put it in a graphite crucible and seal it, and in a nitrogen atmosphere furnace with graphite arranged around 800 It was calcined at ° C. for 1 hour. It was confirmed by a powder X-ray diffractometer that it was LiMnPO 4 (JCPDS: 77-0178).
Both the negative electrode active material and the positive electrode active material were pulverized with D90 to 0.5 μm or less with a planetary ball mill using 1-propanol as a dispersion medium.
The positive electrode layer and the negative electrode layer were prepared according to the preparation method shown in Table 5, and then mixed with Rentaro Awatori (ARV200 manufactured by Shinky). The YTZ balls were separated, quickly evaporated to dryness, and then crushed with a lab miller to obtain positive electrode layer powder and negative electrode layer powder, respectively.

<全固体二次電池構成と評価>
φ11の金型に負極層粉末30mgを入れた後に金型の自重程度で押して面をならした。次に電解質層粉末を50mg入れ、再度、面をならした。最後に正極層粉末をいれて面をならした後、上型をはめた。粉末充填後2000kgf/cmで加圧成形後に設定温度まで昇温して全固体二次電池を得た。得られた全固体二次電池は外周の短絡を抑制するために800番の耐水研磨紙を用いて200μm程度研削した。集電は黒鉛ペースト(日本黒鉛製)を用い、正極側にアルミ箔、負極側に銅箔を用いて集電し、アルミラミネートパックにて外気を遮断した。
第一の固体電解質である非晶質固体電解質として実施例2および比較例2の非晶質固体電解質、第二の固体電解質である結晶性固体電解質としてLATP12、負極活物質としてLFTP15、正極活物質としてLFMPを用い、熱処理温度を500℃とした全固体二次電池の充放電特性を実施例26として図9に示す。同様の組成で熱処理温度600℃とした場合はいずれの条件でも充放電特性は示さなかった。
600℃で熱処理した場合、充放電特性を示さなかった結果について確認するために比作製した電池(比較例9)を粉末とし、電子スピン共鳴測定を行った。使用した装置は電子スピン共鳴分析装置(BrukerE500)である。分析の結果、未処理試料に比べて数重量%に相当する2.5×1018spins/mgのピークの増加が確認された。このことから、正極層および負極層に分散させたカーボンによる還元雰囲気により第二の固体電解質であるLATP12中のTiがTi4+からTi3+に還元されLATP12が電子伝導性を有するようになったと考えられる。そのため短絡し、充放電特性を示さなかったものと考察する。500℃の低温処理(実施例26)でも未処理品に比べ0.9×1018spins/mgのピーク増加を確認したが、短絡挙動は示さないことからTi3+の還元は電解質膜中でネットワークを形成するほどは進んでいないことが推定できる。
以上のことより実施例で示すガラス電解質により、これまでできなかった低温処理が可能となり、充放電可能で低抵抗な全固体二次電池が得られることが確認できた。
Tiを含有するLATP12に比べて高い耐還元性を示すLAZP12を電解質膜として用いた場合、600℃の熱処理でも充放電特性を示した。LAZP12にはTi成分が無いため還元せず短絡が抑制できたためと考えられる。作製した電池の抵抗値を測定するために交流インピーダンス法による抵抗測定を実施した。結果を表7に示す。第二の固体電解質としてLATP12を用いたセルは第二の固体電解質としてLAZP12を用いたセルに比べて1桁低抵抗であることが確認された。
<All-solid-state secondary battery configuration and evaluation>
After putting 30 mg of the negative electrode layer powder into a φ11 mold, the surface was smoothed by pressing with the weight of the mold itself. Next, 50 mg of electrolyte layer powder was added, and the surface was smoothed again. Finally, the positive electrode layer powder was added and the surface was smoothed, and then the upper mold was fitted. After filling with powder, the temperature was raised to a set temperature after pressure molding at 2000 kgf / cm 2, and an all-solid secondary battery was obtained. The obtained all-solid-state secondary battery was ground to about 200 μm using No. 800 water-resistant abrasive paper in order to suppress a short circuit on the outer circumference. Graphite paste (manufactured by Nippon Graphite) was used for current collection, aluminum foil was used on the positive electrode side, and copper foil was used on the negative electrode side to collect current, and the outside air was blocked by an aluminum laminate pack.
The amorphous solid electrolyte of Example 2 and Comparative Example 2 as the first solid electrolyte, LATP12 as the crystalline solid electrolyte of the second solid electrolyte, LFTP15 as the negative electrode active material, and the positive electrode active material as the negative electrode active material. The charge / discharge characteristics of the all-solid secondary battery at a heat treatment temperature of 500 ° C. are shown in FIG. 9 as Example 26. When the heat treatment temperature was 600 ° C. with the same composition, no charge / discharge characteristics were exhibited under any of the conditions.
In order to confirm the result of not showing charge / discharge characteristics when heat-treated at 600 ° C., a comparatively produced battery (Comparative Example 9) was powdered and electron spin resonance measurement was performed. The device used is an electron spin resonance analyzer (Bruker E500). As a result of the analysis, an increase in the peak of 2.5 × 10 18 spins / mg corresponding to several% by weight was confirmed as compared with the untreated sample. From this, it is considered that Ti in LATP12, which is the second solid electrolyte, was reduced from Ti 4+ to Ti 3+ by the reducing atmosphere of carbon dispersed in the positive electrode layer and the negative electrode layer, and LATP12 became electron conductive. Be done. Therefore, it is considered that it was short-circuited and did not show charge / discharge characteristics. Even in the low temperature treatment at 500 ° C. (Example 26), a peak increase of 0.9 × 10 18 spins / mg was confirmed as compared with the untreated product, but since no short-circuit behavior was shown , the reduction of Ti 3+ was networked in the electrolyte membrane. It can be presumed that it has not progressed enough to form.
From the above, it was confirmed that the glass electrolyte shown in the examples enables low-temperature treatment that was not possible until now, and that an all-solid-state secondary battery that can be charged and discharged and has low resistance can be obtained.
When LAZP12, which exhibits higher reduction resistance than LATP12 containing Ti, was used as the electrolyte membrane, it exhibited charge / discharge characteristics even after heat treatment at 600 ° C. It is probable that since LAZP12 does not have a Ti component, short circuit could be suppressed without reduction. In order to measure the resistance value of the manufactured battery, the resistance was measured by the AC impedance method. The results are shown in Table 7. It was confirmed that the cell using LATP12 as the second solid electrolyte had an order of magnitude lower resistance than the cell using LAZP12 as the second solid electrolyte.

Figure 2019239890
Figure 2019239890

Figure 2019239890
Figure 2019239890

Figure 2019239890
Figure 2019239890

Claims (6)

LiO-P-SOで示される非晶質固体電解質。Amorphous solid electrolyte represented by Li 2 O-P 2 O 5- SO 3. 前記LiO-P-SOの組成が
酸化物換算のモル比で
LiO = 40〜70mol%P = 20〜50mol%
SO = 1〜30mol%
である請求項1に記載の非晶質固体電解質。
The composition of Li 2 O-P 2 O 5- SO 3 is Li 2 O = 40 to 70 mol% P 2 O 5 = 20 to 50 mol% in terms of oxide-equivalent molar ratio.
SO 3 = 1 to 30 mol%
The amorphous solid electrolyte according to claim 1.
LiO-P-SO-Alの組成が
酸化物換算のモル比で
LiO = 40〜70mol%P = 20〜50mol%
SO = 1〜30mol%
Al = 0超〜10mol%
である請求項1又は2に記載の非晶質固体電解質。
The composition of Li 2 O-P 2 O 5 -SO 3- Al 2 O 3 is in terms of oxide-equivalent molar ratio. Li 2 O = 40 to 70 mol% P 2 O 5 = 20 to 50 mol%.
SO 3 = 1 to 30 mol%
Al 2 O 3 = more than 0 to 10 mol%
The amorphous solid electrolyte according to claim 1 or 2.
重量比で第一の固体電解質である非晶質固体電解質が3〜15%あるいは60〜95%であることを特徴とする請求項1〜3のいずれか記載の固体電解質。 The solid electrolyte according to any one of claims 1 to 3, wherein the amorphous solid electrolyte, which is the first solid electrolyte by weight, is 3 to 15% or 60 to 95%. Li、Zr、Ti、Sn、Si、Ge、Sc、Y、La、Nb、Al、Ca、Mg、Fe、Mn、Co、Cr、O、P、B、F、Cl、Inの3元素以上からなり、菱面体晶系を含むリチウム含有リン酸化合物、NASICON構造、ペロブスカイト構造、LISICON構造、ガーネット構造、β―Fe(SO型構造を示すいずれか1種以上の結晶性固体電解質あるいはガラスセラミックスを第二の固体電解質、請求項1〜4のいずれか記載の非晶質固体電解質を第一の固体電解質として混合されていることを特徴とする全固体二次電池。From 3 or more elements of Li, Zr, Ti, Sn, Si, Ge, Sc, Y, La, Nb, Al, Ca, Mg, Fe, Mn, Co, Cr, O, P, B, F, Cl, In One or more crystalline solid electrolytes showing a lithium-containing phosphoric acid compound containing a rhombic crystal system, a NASICON structure, a perovskite structure, a LISION structure, a garnet structure, and a β-Fe 2 (SO 4 ) type 3 structure. An all-solid-state secondary battery in which glass ceramics is mixed as a second solid electrolyte, and the amorphous solid electrolyte according to any one of claims 1 to 4 is mixed as a first solid electrolyte. 請求項1〜5のいずれかに記載の固体電解質を正極層、負極層、電解質層のいずれか1層以上に用いることを特徴とした全固体二次電池。


An all-solid-state secondary battery characterized in that the solid electrolyte according to any one of claims 1 to 5 is used in any one or more of a positive electrode layer, a negative electrode layer, and an electrolyte layer.


JP2020525419A 2018-06-15 2019-05-29 Amorphous solid electrolyte and all-solid-state secondary battery using it Active JP7394757B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018114300 2018-06-15
JP2018114300 2018-06-15
PCT/JP2019/021246 WO2019239890A1 (en) 2018-06-15 2019-05-29 Amorphous solid electrolyte and all solid secondary battery using same

Publications (2)

Publication Number Publication Date
JPWO2019239890A1 true JPWO2019239890A1 (en) 2021-07-08
JP7394757B2 JP7394757B2 (en) 2023-12-08

Family

ID=68843270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020525419A Active JP7394757B2 (en) 2018-06-15 2019-05-29 Amorphous solid electrolyte and all-solid-state secondary battery using it

Country Status (2)

Country Link
JP (1) JP7394757B2 (en)
WO (1) WO2019239890A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186845A1 (en) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same
CN111430808B (en) * 2020-03-23 2022-07-29 广东东邦科技有限公司 Lithium-containing chalcogenide-germanite solid electrolyte with dopant and preparation method thereof
CN112499965B (en) * 2020-11-13 2022-12-13 西安理工大学 Transparent phosphate proton conductor and preparation method thereof
WO2022209464A1 (en) * 2021-03-31 2022-10-06 株式会社オハラ Lithium-ion-conductive material
WO2023286512A1 (en) * 2021-07-16 2023-01-19 パナソニックIpマネジメント株式会社 Battery
CN115073162A (en) * 2022-04-06 2022-09-20 东风汽车集团股份有限公司 Ceramic solid electrolyte and preparation method and application thereof
WO2023248921A1 (en) * 2022-06-21 2023-12-28 株式会社オハラ Lithium-ion-conductive glass material
CN115799619B (en) * 2023-01-05 2023-11-10 河北光兴半导体技术有限公司 Oxide solid electrolyte and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076988A (en) * 2010-09-06 2012-04-19 Hyogo Prefecture Ionically conductive thin film material and method for producing the same
JP2013243006A (en) * 2012-05-18 2013-12-05 Ohara Inc All-solid secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4174816B2 (en) * 2001-02-28 2008-11-05 住友電気工業株式会社 Inorganic solid electrolyte and lithium battery member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076988A (en) * 2010-09-06 2012-04-19 Hyogo Prefecture Ionically conductive thin film material and method for producing the same
JP2013243006A (en) * 2012-05-18 2013-12-05 Ohara Inc All-solid secondary battery

Also Published As

Publication number Publication date
WO2019239890A1 (en) 2019-12-19
JP7394757B2 (en) 2023-12-08

Similar Documents

Publication Publication Date Title
JP7394757B2 (en) Amorphous solid electrolyte and all-solid-state secondary battery using it
KR102410194B1 (en) Electrode mixture for sodium ion batteries, production method therefor, and all-solid-state sodium battery
US20200194831A1 (en) Solid electrolyte sheet, method for manufacturing same, and sodium ion all-solid-state secondary cell
JP5288816B2 (en) Solid battery
US9580320B2 (en) Lithium ion conductive solid electrolyte and method for manufacturing the same
KR100883376B1 (en) Lithium ion conductive solid electrolyte and method for manufacturing the same
US11404726B2 (en) All-solid-state sodium ion secondary battery
CN111213272B (en) Bipolar all-solid sodium ion secondary battery
JP5198080B2 (en) Solid battery
WO2019102762A1 (en) Negative electrode material, negative electrode and battery
JP2019125547A (en) Solid electrolyte powder, electrode mixture using the same, and all-solid sodium ion secondary battery
WO2018020990A1 (en) Solid electrolyte powder, and electrode composite material and all-solid sodium ion secondary battery formed using same
JP2010056027A (en) Aqueous lithium secondary battery, and electrode for aqueous lithium secondary battery
CN111247106B (en) Lithium ion conductor precursor glass and lithium ion conductor
WO2018235575A1 (en) Sodium ion secondary battery
JP2020035643A (en) Glass electrolyte and all-solid lithium-ion secondary battery
WO2023248921A1 (en) Lithium-ion-conductive glass material
JP2017191646A (en) Composite laminate, lithium battery, and method for manufacturing composite laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211022

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231128

R150 Certificate of patent or registration of utility model

Ref document number: 7394757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150