JPWO2019238466A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019238466A5
JPWO2019238466A5 JP2020568502A JP2020568502A JPWO2019238466A5 JP WO2019238466 A5 JPWO2019238466 A5 JP WO2019238466A5 JP 2020568502 A JP2020568502 A JP 2020568502A JP 2020568502 A JP2020568502 A JP 2020568502A JP WO2019238466 A5 JPWO2019238466 A5 JP WO2019238466A5
Authority
JP
Japan
Prior art keywords
map
group
magnetic resonance
interest
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020568502A
Other languages
Japanese (ja)
Other versions
JP2021527470A (en
JP7418357B2 (en
Publication date
Priority claimed from EP18176929.0A external-priority patent/EP3581090A1/en
Application filed filed Critical
Publication of JP2021527470A publication Critical patent/JP2021527470A/en
Publication of JPWO2019238466A5 publication Critical patent/JPWO2019238466A5/ja
Application granted granted Critical
Publication of JP7418357B2 publication Critical patent/JP7418357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (14)

機械実行可能命令を記憶するメモリと、
医用撮像システムを制御するプロセッサと、
を含む、医用撮像システムであって、
前記機械実行可能命令の実行は、前記プロセッサに、
被験者の関心領域のB1位相マップの休止グループを受信させ、
前記被験者の前記関心領域のB1位相マップの活動グループを受信させ、
電気特性トモグラフィアルゴリズムに従って、B1位相マップの前記休止グループを使用して、前記関心領域の導電率マップの休止グループを計算させ、
前記電気特性トモグラフィアルゴリズムに従って、B1位相マップの前記活動グループを使用して、前記関心領域の前記導電率マップの活動グループを計算させ、
前記導電率マップの前記休止グループ及び前記導電率マップの前記活動グループを使用して、前記関心領域の導電率変化マッピングを計算させる、
医用撮像システム。
Memory for storing machine-executable instructions and
The processor that controls the medical imaging system and
Is a medical imaging system, including
Execution of the machine-executable instruction is performed by the processor.
Receive a dormant group of B1 phase maps of the subject's region of interest
Receive the activity group of the B1 phase map of the subject's region of interest.
According to the electrical characteristic tomography algorithm, the dormant group of the B1 phase map is used to calculate the dormant group of the conductivity map of the region of interest.
According to the electrical property tomography algorithm, the activity group of the B1 phase map is used to calculate the activity group of the conductivity map of the region of interest.
The dormant group of the conductivity map and the activity group of the conductivity map are used to calculate the conductivity change mapping of the region of interest.
Medical imaging system.
B1位相マップの前記休止グループは、脳を画像化し、B1位相マップの前記活動グループは、前記脳を画像化し、前記導電率変化マッピングは、脳活動の差を記述している、請求項1に記載の医用撮像システム。 The dormant group of the B1 phase map images the brain, the activity group of the B1 phase map images the brain, and the conductivity change mapping describes the difference in brain activity, claim 1. The medical imaging system described. 前記導電率マップの前記活動グループ及び前記導電率マップの前記休止グループの前記計算の前記電気特性トモグラフィアルゴリズムは、機械学習アルゴリズムとして少なくとも部分的に実装される、請求項2に記載の医用撮像システム。 The medical imaging system according to claim 2, wherein the electrical characteristic tomography algorithm of the calculation of the activity group of the conductivity map and the rest group of the conductivity map is at least partially implemented as a machine learning algorithm. .. 前記導電率マップの前記活動グループ及び前記導電率マップの前記休止グループの前記計算の前記電気特性トモグラフィアルゴリズムは、前進微分方程式ソルバとして少なくとも部分的に実装される、請求項2又は3に記載の医用撮像システム。 The electric property tomography algorithm of the calculation of the activity group of the conductivity map and the rest group of the conductivity map is at least partially implemented as a forward differential equation solver, according to claim 2 or 3. Medical imaging system. 前記前進微分方程式ソルバは、各ボクセルを囲むボクセルのカーネルの前記B1位相マップのラプラシアンを使用して各ボクセルの導電率を計算する、請求項に記載の医用撮像システム。 The medical imaging system according to claim 4 , wherein the forward differential equation solver calculates the conductivity of each voxel using the Laplacian of the B1 phase map of the voxel kernel surrounding each voxel. 前記機械実行可能命令の実行はさらに、前記プロセッサに、
前記関心領域内の各ボクセルに組織タイプを割り当てる組織セグメンテーションを受信させ、
前記ラプラシアンを計算する前に、前記組織セグメンテーションを使用して各ボクセルを囲むボクセルの前記カーネルを調整させ、
各ボクセルを囲むボクセルの前記カーネルは、前記カーネル内のすべてのボクセルが同じ組織タイプを有するように調整される、
請求項5に記載の医用撮像システム。
Execution of the machine-executable instruction further applies to the processor.
Receive an organizational segmentation that assigns an organizational type to each voxel in the region of interest.
Prior to calculating the Laplacian, the tissue segmentation was used to tune the kernel of the voxels surrounding each voxel.
The kernel of voxels surrounding each voxel is adjusted so that all voxels in the kernel have the same tissue type.
The medical imaging system according to claim 5.
前記機械実行可能命令の実行はさらに、前記プロセッサに、
前記関心領域のマグニチュード画像を受信させ、
前記マグニチュード画像及び前記導電率変化マッピングをディスプレイ上にレンダリングさせ、
前記導電率変化マッピングは前記マグニチュード画像に重ねられることと、前記導電率変化マッピング及び前記マグニチュード画像は同じスケールで隣接する領域に表示されることとのうちのいずれか1つである、
請求項1から6のいずれか一項に記載の医用撮像システム。
Execution of the machine-executable instruction further applies to the processor.
A magnitude image of the region of interest is received and
The magnitude image and the conductivity change mapping are rendered on a display.
The conductivity change mapping is superimposed on the magnitude image, or the conductivity change mapping and the magnitude image are displayed in adjacent regions on the same scale.
The medical imaging system according to any one of claims 1 to 6.
前記機械実行可能命令の実行はさらに、前記プロセッサに、
前記被験者の前記関心領域を記述するB1位相マッピング磁気共鳴撮像プロトコルに従って取得された磁気共鳴撮像データを受信させ、
前記磁気共鳴撮像データの一部を、前記被験者の休止状態又は前記被験者の活動状態に割り当てるメタデータを受信させ、
前記磁気共鳴撮像データの前記一部から、前記被験者の前記関心領域の複数のB1磁気共鳴位相マップを再構成させ、
前記メタデータを使用して前記複数のB1磁気共鳴位相マップのそれぞれを割り当てることにより、B1位相マップの前記活動グループ及びB1位相マップの前記休止グループを構成させる、請求項1から7のいずれか一項に記載の医用撮像システム。
Execution of the machine-executable instruction further applies to the processor.
Receive magnetic resonance imaging data acquired according to the B1 phase mapping magnetic resonance imaging protocol that describes the subject's region of interest.
Receive metadata that allocates a portion of the magnetic resonance imaging data to the dormant state of the subject or the active state of the subject.
A plurality of B1 magnetic resonance phase maps of the subject's region of interest are reconstructed from the part of the magnetic resonance imaging data.
One of claims 1 to 7, wherein the activity group of the B1 phase map and the dormant group of the B1 phase map are configured by assigning each of the plurality of B1 magnetic resonance phase maps using the metadata. The medical imaging system described in the section.
前記被験者からの前記磁気共鳴撮像データを撮像ゾーンから取得する磁気共鳴撮像システムをさらに含み、前記メモリは、パルスシーケンスコマンドをさらに含み、前記パルスシーケンスコマンドは、前記磁気共鳴撮像システムを制御して、前記B1位相マッピング磁気共鳴撮像プロトコルに従って、前記関心領域から前記磁気共鳴撮像データを取得するように構成され、前記関心領域は前記撮像ゾーン内にあり、前記機械実行可能命令の実行はさらに、前記プロセッサに、前記磁気共鳴撮像システムを制御させて、前記パルスシーケンスコマンドを使用して前記磁気共鳴撮像データを取得させる、請求項8に記載の医用撮像システム。 The memory further includes a magnetic resonance imaging system that acquires the magnetic resonance imaging data from the subject from the imaging zone, the memory further comprising a pulse sequence command, the pulse sequence command controlling the magnetic resonance imaging system. According to the B1 phase mapping magnetic resonance imaging protocol, the magnetic resonance imaging data is configured to be acquired from the region of interest, the region of interest is within the imaging zone, and execution of the machine executable instruction is further performed by the processor. The medical imaging system according to claim 8, wherein the magnetic resonance imaging system is controlled to acquire the magnetic resonance imaging data by using the pulse sequence command. 前記B1位相マッピング磁気共鳴撮像プロトコルは、平衡定常状態自由歳差運動磁気共鳴撮像プロトコル、マルチエコー勾配エコー磁気共鳴撮像プロトコル、及びスピンエコーベースの磁気共鳴撮像プロトコル、のうちのいずれか1つである、請求項9に記載の医用撮像システム。 The B1 phase mapping magnetic resonance imaging protocol is one of an equilibrium steady state free lag motion magnetic resonance imaging protocol, a multi-echo gradient echo magnetic resonance imaging protocol, and a spin echo-based magnetic resonance imaging protocol. , The medical imaging system according to claim 9. 前記磁気共鳴撮像システムは、前記被験者に前記休止状態及び前記活動状態を示す被験者インジケータをさらに含み、前記機械実行可能命令の実行はさらに、前記プロセッサに、
前記磁気共鳴撮像システムを制御させて、前記被験者インジケータが前記休止状態と前記活動状態とを交互にする間、前記磁気共鳴撮像データを繰り返し取得させ、
前記磁気共鳴撮像データの前記取得中に、前記被験者インジケータに一致するように、前記磁気共鳴撮像データの前記メタデータを生成させる、
請求項9又は10に記載の医用撮像システム。
The magnetic resonance imaging system further includes a subject indicator indicating the dormant state and the active state to the subject, and execution of the machine executable instruction further to the processor.
The magnetic resonance imaging system is controlled to repeatedly acquire the magnetic resonance imaging data while the subject indicator alternates between the dormant state and the active state.
During the acquisition of the magnetic resonance imaging data, the metadata of the magnetic resonance imaging data is generated so as to match the subject indicator.
The medical imaging system according to claim 9 or 10.
B1位相マップの前記休止グループ及びB1位相マップの前記活動グループはそれぞれ、少なくとも5つのB1位相マップ、少なくとも10個のB1位相マップ、少なくとも20個のB1位相マップ、少なくとも40個のB1位相マップ、少なくとも60個のB1位相マップ、及び少なくとも80個のB1位相マップのうちのいずれか1つを含む、請求項1から11のいずれか一項に記載の医用撮像システム。 The dormant group of the B1 phase map and the activity group of the B1 phase map each have at least 5 B1 phase maps, at least 10 B1 phase maps, at least 20 B1 phase maps, at least 40 B1 phase maps, and at least. The medical imaging system according to any one of claims 1 to 11, comprising any one of 60 B1 phase maps and at least 80 B1 phase maps. 医用撮像システムの作動方法であって、
被験者の関心領域のB1位相マップの休止グループを受信するステップと、
前記被験者の前記関心領域のB1位相マップの活動グループを受信するステップと、
電気特性トモグラフィアルゴリズムに従って、B1位相マップの前記休止グループを使用して、前記関心領域の導電率マップの休止グループを計算するステップと、
前記電気特性トモグラフィアルゴリズムに従って、B1位相マップの前記活動グループを使用して、前記関心領域の導電率マップの活動グループを計算するステップと、
導電率マップの前記休止グループ及び導電率マップの前記活動グループを使用して、前記関心領域の導電率変化マッピングを計算するステップと、
を含む、方法。
It is a method of operating a medical imaging system.
The step of receiving the rest group of the B1 phase map of the subject's region of interest,
The step of receiving the activity group of the B1 phase map of the subject's region of interest,
Using the dormant group of the B1 phase map according to the electrical characteristic tomography algorithm, the step of calculating the dormant group of the conductivity map of the region of interest.
The step of calculating the activity group of the conductivity map of the region of interest using the activity group of the B1 phase map according to the electrical property tomography algorithm.
Using the rest group of the conductivity map and the activity group of the conductivity map to calculate the conductivity change mapping of the region of interest,
Including, how.
医用撮像システムを制御するプロセッサによる実行のための機械実行可能命令を含むコンピュータプログラムであって、前記機械実行可能命令の実行は、前記プロセッサに、
被験者の関心領域のB1位相マップの休止グループを受信させ、
前記被験者の前記関心領域のB1位相マップの活動グループを受信させ、
電気特性トモグラフィアルゴリズムに従って、B1位相マップの前記休止グループを使用して、前記関心領域の導電率マップの休止グループを計算させ、
前記電気特性トモグラフィアルゴリズムに従って、B1位相マップの前記活動グループを使用して、前記関心領域の導電率マップの活動グループを計算させ、
導電率マップの前記休止グループ及び導電率マップの前記活動グループを使用して、前記関心領域の導電率変化マッピングを計算させる、
コンピュータプログラム。
A computer program that includes machine-executable instructions for execution by a processor that controls a medical imaging system, wherein the machine-executable instructions are executed by the processor.
Receive a dormant group of B1 phase maps of the subject's region of interest
Receive the activity group of the B1 phase map of the subject's region of interest.
According to the electrical characteristic tomography algorithm, the dormant group of the B1 phase map is used to calculate the dormant group of the conductivity map of the region of interest.
According to the electrical characteristic tomography algorithm, the activity group of the B1 phase map is used to calculate the activity group of the conductivity map of the region of interest.
The dormant group of the conductivity map and the activity group of the conductivity map are used to calculate the conductivity change mapping of the region of interest.
Computer program.
JP2020568502A 2018-06-11 2019-06-04 Electrical property tomography mapping of conductivity changes Active JP7418357B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18176929.0 2018-06-11
EP18176929.0A EP3581090A1 (en) 2018-06-11 2018-06-11 Electrical properties tomography mapping of conductivity changes
PCT/EP2019/064432 WO2019238466A1 (en) 2018-06-11 2019-06-04 Electrical properties tomography mapping of conductivity changes

Publications (3)

Publication Number Publication Date
JP2021527470A JP2021527470A (en) 2021-10-14
JPWO2019238466A5 true JPWO2019238466A5 (en) 2022-06-10
JP7418357B2 JP7418357B2 (en) 2024-01-19

Family

ID=62630943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020568502A Active JP7418357B2 (en) 2018-06-11 2019-06-04 Electrical property tomography mapping of conductivity changes

Country Status (6)

Country Link
US (1) US20210259569A1 (en)
EP (1) EP3581090A1 (en)
JP (1) JP7418357B2 (en)
CN (1) CN112292067A (en)
DE (1) DE112019002932T5 (en)
WO (1) WO2019238466A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397095B1 (en) * 1999-03-01 2002-05-28 The Trustees Of The University Of Pennsylvania Magnetic resonance—electrical impedance tomography
JP3635332B2 (en) * 2003-03-20 2005-04-06 独立行政法人情報通信研究機構 Head wearing equipment
US7769438B2 (en) * 2004-10-15 2010-08-03 Brainlab Ag Method and device for determining the location of electrical activity of nerve cells
WO2007043462A1 (en) * 2005-10-12 2007-04-19 Tokyo Denki University Brain function analysis method and brain function analysis program
JP5465089B2 (en) * 2010-05-31 2014-04-09 キヤノン株式会社 Visual stimulus presentation device for brain function measurement, functional magnetic resonance imaging device, magnetoencephalograph, brain function measurement method
US20120157817A1 (en) * 2010-12-21 2012-06-21 Tucker Don M Methods for using electrical impedance tomography
JP6030143B2 (en) * 2011-10-18 2016-11-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. MR electrical property tomography
US20160061921A1 (en) * 2013-03-29 2016-03-03 Koninklijke Philips N.V. Amide proton transfer (apt) and electric properties tomography (ept) imaging in a single mr acquisition
US9949691B2 (en) * 2013-11-22 2018-04-24 Mc10, Inc. Conformal sensor systems for sensing and analysis of cardiac activity
CN106232002B (en) * 2014-04-16 2019-09-03 皇家飞利浦有限公司 The EPT method that the conductivity of stability and speed with enhancing is rebuild
EP3198292B1 (en) * 2014-09-26 2020-11-11 Koninklijke Philips N.V. Imaging system for single voxel spectroscopy
WO2016116545A1 (en) * 2015-01-21 2016-07-28 Koninklijke Philips N.V. Mri method for calculating derived values from b0 and b1 maps
US11089970B2 (en) * 2015-06-12 2021-08-17 Koninklijke Philips N.V. Imaging fluid flow into a region of interest
EP3196666A1 (en) * 2016-01-20 2017-07-26 Universität Bern Magnetic resonance imaging method for detecting neuronal activity in a subject's brain

Similar Documents

Publication Publication Date Title
US20160260208A1 (en) Direct computation of image-derived biomarkers
TWI594206B (en) Cardiac medical imaging single chamber mapping system and method
US11800978B2 (en) Deep learning based isocenter positioning and fully automated cardiac MR exam planning
US20150139503A1 (en) Motion parameter estimation
WO2013136783A1 (en) Image generation device, method, and program
EP3084726B1 (en) Moving structure motion compensation in imaging
EP2761592B1 (en) Variable-depth stereotactic surface projections
EP2391986A1 (en) Transmural perfusion gradient image analysis
US20200020127A1 (en) Examination support device, examination support method, and examination support program
CN111260703A (en) Method, system, medium and storage medium for obtaining spinal straightening image set
US20170301083A1 (en) Image registration device, method, and program
US20170301100A1 (en) Image registration device, method, and program
US10557905B2 (en) System and method for producing high-resolution magnetic relaxation parameter maps
US10561443B2 (en) Image-guided embryo transfer for in vitro fertilization
JPWO2019238466A5 (en)
Zhang et al. MR and ultrasound cardiac image dynamic visualization and synchronization over Internet for distributed heart function diagnosis
US10354416B2 (en) Non-contrast MR angiography with variable slice resolution 3D time-of-flight
US11423554B2 (en) Registering a two-dimensional image with a three-dimensional image
US11003946B2 (en) Examination support device, examination support method, and examination support program
US9662017B2 (en) Methods and systems for acquiring multiple interleaved slices in magnetic resonance imaging
CN111340934A (en) Method and computer system for generating a combined tissue-vessel representation
US20170011526A1 (en) Method and magnetic resonance system for segmenting a balloon-type volume
US20230320616A1 (en) Multimodal determination of an augmented sequence of ct parameter maps
Kirchberg et al. Modeling the human aorta for MR-driven real-time virtual endoscopy
JP2021527470A (en) Electrical characteristics of change in conductivity Tomography mapping