JPWO2019236761A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019236761A5
JPWO2019236761A5 JP2020567524A JP2020567524A JPWO2019236761A5 JP WO2019236761 A5 JPWO2019236761 A5 JP WO2019236761A5 JP 2020567524 A JP2020567524 A JP 2020567524A JP 2020567524 A JP2020567524 A JP 2020567524A JP WO2019236761 A5 JPWO2019236761 A5 JP WO2019236761A5
Authority
JP
Japan
Prior art keywords
nucleic acid
candidate
microorganism
station
translation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020567524A
Other languages
Japanese (ja)
Other versions
JP2021527398A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/035666 external-priority patent/WO2019236761A1/en
Publication of JP2021527398A publication Critical patent/JP2021527398A/en
Publication of JPWO2019236761A5 publication Critical patent/JPWO2019236761A5/ja
Pending legal-status Critical Current

Links

Claims (22)

抗菌ぺプチドを遺伝子操作する方法であって、
(a)候補抗菌ぺプチドをコードする候補核酸を翻訳溶液中でインビトロで翻訳し、それにより前記翻訳溶液が、前記候補抗菌ぺプチドを含むこと;
(b)前記候補抗菌ぺプチド及び微生物体を溶液環境中で複合させること;
(c)前記溶液環境中の前記微生物体及び前記候補抗菌ぺプチドを選択培養条件下で培養すること;
(d)前記溶液環境中の前記微生物体の成長及び/又は繁殖の阻害、又はその欠落を検出すること;
(e)前記選択培養条件下での前記溶液環境中の前記微生物体の成長及び/又は繁殖の阻害の検出時、前記候補核酸を選択すること;
(f)前記選択候補核酸のバリアント核酸を産生することであって、前記バリアント核酸が、前記候補抗菌ぺプチドのバリアントをコードすること;並びに
前記選択培養条件下での前記溶液環境中の前記微生物体の成長及び/又は繁殖の所定レベルの阻害が達成されるまで、前記候補核酸としての1つ以上の連続バリアント核酸を使用して(a)~(f)を繰り返し、それにより前記抗菌ぺプチドが、遺伝子操作されること
を含む方法。
A method of genetically manipulating antibacterial peptides,
(A) The candidate nucleic acid encoding the candidate antibacterial peptide is translated in vitro in a translation solution, whereby the translation solution contains the candidate antibacterial peptide;
(B) Combining the candidate antibacterial peptide and microbial organisms in a solution environment;
(C) Culturing the microorganism and the candidate antibacterial peptide in the solution environment under selective culture conditions;
(D) To detect the inhibition or lack of growth and / or reproduction of the microorganism in the solution environment;
(E) Selection of the candidate nucleic acid upon detection of inhibition of growth and / or reproduction of the microorganism in the solution environment under the selective culture conditions;
(F) Producing a variant nucleic acid of the candidate nucleic acid of choice, wherein the variant nucleic acid encodes a variant of the candidate antibacterial peptide; and the microorganism in the solution environment under the selective culture conditions. Repeat (a)-(f) with one or more continuous variant nucleic acids as the candidate nucleic acid until a predetermined level of inhibition of body growth and / or reproduction is achieved, thereby the antibacterial peptide. However, methods involving genetic engineering.
前記選択候補核酸の配列を得ること;並びに
前記配列を(d)の前記溶液環境中の前記微生物体の成長及び/又は繁殖の前記検出された阻害に対してインデックス化すること
をさらに含み、
(f)が、前記候補核酸の前記インデックス化配列に基づき前記バリアント核酸を産生することを含む、請求項1に記載の方法。
Further comprising indexing the sequence of said candidate nucleic acid; and indexing the sequence to said detected inhibition of growth and / or reproduction of said microorganism in said solution environment of (d).
The method of claim 1, wherein (f) produces the variant nucleic acid based on the indexed sequence of the candidate nucleic acid.
前記選択培養条件下での別の溶液環境中の前記微生物体の成長及び/又は繁殖の阻害の欠落が検出されたの候補核酸の配列を得ること;並びに
前記の候補核酸の前記配列を前記微生物体の成長及び/又は繁殖の阻害の前記欠落に対してインデックス化すること
をさらに含み、
(f)が、前記の候補核酸の前記インデックス化配列に基づき前記選択候補核酸の前記バリアント核酸を産生することを含む、請求項1又は2に記載の方法。
Obtain a sequence of another candidate nucleic acid in which a lack of inhibition of growth and / or reproduction of the microorganism in another solution environment under the selective culture conditions is detected; and the sequence of the other candidate nucleic acid. Further comprising indexing for the lack of inhibition of growth and / or reproduction of the microorganism.
The method according to claim 1 or 2, wherein (f) produces the variant nucleic acid of the selection candidate nucleic acid based on the indexed sequence of the other candidate nucleic acid.
前記の候補核酸が前記候補核酸よりも低いレベルの、前記選択培養条件下での前記溶液環境中の前記微生物体の成長及び/又は繁殖の阻害を産生する場合、前記の候補核酸の前記配列を得る、請求項3に記載の方法。 If the other candidate nucleic acid produces a lower level of inhibition of the growth and / or reproduction of the microorganism in the solution environment under the selective culture conditions, the said another candidate nucleic acid. The method of claim 3, wherein the sequence is obtained. (i)インデックス化配列情報に基づく前記バリアント核酸配列の産生が、自動機械学習のような機械学習を含む、
(ii)(e)の後に、前記候補抗菌ぺプチドによる、前記溶液環境中の前記微生物体の成長及び/又は繁殖の前記阻害を確認することをさらに含み、前記確認が、前記候補核酸又はそのコピーについて(a)~(d)を繰り返すことを含み、(d)の繰り返しにおいて、前記溶液環境中の微生物体の量が前記選択培養条件下での前記溶液環境中の前記微生物体の成長及び/又は繁殖の阻害を示す場合、成長及び/又は繁殖の前記阻害を確認する、
(iii)前記微生物体の成長及び/又は繁殖の阻害、又はその欠落の前記検出が、前記溶液環境中の前記微生物体を定量することを含み、経時的な前記溶液環境中の前記微生物体の量の減少が、前記微生物体の成長及び/又は繁殖の阻害を示す、
(iv)前記選択培養条件下での前記溶液環境中の前記微生物体の成長及び/又は繁殖の前記所定レベルの阻害が、参照天然存在又は遺伝子操作抗菌ぺプチドのものよりも大きいレベルの阻害である、
(v)方法のより早期の反復の前記遺伝子操作抗菌ぺプチド及び前記候補抗菌ぺプチドが、それぞれ効力を有し、前記遺伝子操作抗菌ぺプチドの効力が、前記候補抗菌ぺプチドの効力よりも大きい、及び/又は
(vi)前記遺伝子操作抗菌ぺプチドが、様々な培養条件にわたり、及び/又は様々な微生物体株及び/又は種に対して前記候補抗菌ぺプチドよりも大きい効力を有する、
請求項1~4のいずれか一項に記載の方法。
(I) Production of the variant nucleic acid sequence based on indexed sequence information involves machine learning such as automated machine learning.
(Ii) (e) further comprises confirming the inhibition of the growth and / or reproduction of the microorganism in the solution environment by the candidate antibacterial peptide, said confirmation being the candidate nucleic acid or its. Containing the repetition of (a)-(d) for copying, in the repetition of (d), the amount of the microorganism in the solution environment is the growth of the microorganism in the solution environment under the selective culture conditions and If / or indicates inhibition of reproduction, confirm the inhibition of growth and / or reproduction.
(Iii) The detection of inhibition of growth and / or reproduction of the microorganism or its lack thereof comprises quantifying the microorganism in the solution environment and of the microorganism in the solution environment over time. Decreased amounts indicate inhibition of growth and / or reproduction of said microorganisms.
(Iv) The inhibition of the predetermined level of growth and / or reproduction of the microorganism in the solution environment under the selective culture conditions is greater than that of the reference naturally occurring or genetically engineered antibacterial peptide. be,
(V) The genetically engineered antibacterial peptide and the candidate antibacterial peptide, respectively, of earlier repetition of the method have efficacy, and the efficacy of the genetically engineered antibacterial peptide is greater than that of the candidate antibacterial peptide. , And / or
(Vi) The genetically engineered antibacterial peptide has greater potency than the candidate antibacterial peptide over various culture conditions and / or against various microbial strains and / or species.
The method according to any one of claims 1 to 4.
(a)~(f)の(b)の繰り返しが、前記翻訳溶液を(b)の事前反復のものと異なる株又は種の微生物体と複合させることを含む、請求項1~のいずれか一項に記載の方法。 Any of claims 1 to 5 , wherein the repetition of (b) of (a)-(f) comprises conjugating the translation solution with a microorganism of a strain or species different from that of the pre-repetition of (b). The method described in paragraph 1. (a)~(f)の(b)の繰り返しが、前記翻訳溶液を(b)の事前反復と同一の種又は株の微生物体と複合させることを含む、請求項1~のいずれか一項に記載の方法。 Any one of claims 1 to 5 , wherein the repetition of (b) of (a)-(f) comprises conjugating the translation solution with a microorganism of the same species or strain as the pre-repetition of (b). The method described in the section. (a)~(f)の(c)の繰り返しが、前記微生物体を(c)の事前反復と異なる培養環境中で培養することを含む、請求項1~のいずれか一項に記載の方法。 The invention according to any one of claims 1 to 7 , wherein the repetition of (c) of (a) to (f) comprises culturing the microorganism in a culture environment different from that of the prior repetition of (c). Method. (a)~(f)の(c)の繰り返しが、前記微生物体を(c)の事前反復と同一の培養環境中で培養することを含む、請求項1~のいずれか一項に記載の方法。 The invention according to any one of claims 1 to 7 , wherein the repetition of (c) of (a) to (f) comprises culturing the microorganism in the same culture environment as the prior repetition of (c). the method of. (i)前記候補核酸が、DNAを含み、前記候補核酸を転写させることをさらに含む、
(ii)前記翻訳溶液が、転写溶液をさらに含み、それにより前記翻訳溶液が、前記候補核酸の転写及び翻訳のために構成されている、
(iii)前記翻訳溶液が、リボソームのような翻訳試薬を含む、
(iv)前記翻訳溶液が、1つ以上の翻訳後修飾酵素を含む、
(v)前記翻訳溶液が、候補抗菌ぺプチドをコードする1つのみの候補核酸配列を含む、
(vi)前記候補核酸が、2つ以上の異なる候補抗菌ぺプチドをコードし、それにより前記溶液環境が、2つ以上の候補抗菌ぺプチドを含み、前記バリアント核酸が、前記2つ以上の候補抗菌ぺプチドの少なくとも1つのバリアントをコードし、それにより2つ以上の抗菌ぺプチドを、前記選択培養条件下で前記微生物体の成長及び/又は繁殖を阻害するように同時遺伝子操作する、
(vii)前記候補抗菌ぺプチドが、キメラタンパク質を含む、
(viii)前記選択培養条件が、工業プロセス、医薬品製造プロセス、又は哺乳動物微生物叢の条件を含む、
(ix)前記溶液環境が、2つ以上の種の微生物体を含む、及び/又は
(x)前記翻訳溶液が、基材をさらに含み、前記候補核酸が、前記基材に固定化されている、
請求項1~のいずれか一項に記載の方法。
(I) The candidate nucleic acid comprises DNA and further comprises transcribing the candidate nucleic acid.
(Ii) The translation solution further comprises a transcription solution, whereby the translation solution is configured for transcription and translation of the candidate nucleic acid.
(Iii) The translation solution contains a translation reagent such as a ribosome.
(Iv) The translation solution comprises one or more post-translational modification enzymes.
(V) The translation solution contains only one candidate nucleic acid sequence encoding a candidate antibacterial peptide.
(Vi) The candidate nucleic acid encodes two or more different candidate antibacterial peptides such that the solution environment comprises two or more candidate antibacterial peptides and the variant nucleic acid is the two or more candidates. Encoding at least one variant of an antibacterial peptide, whereby two or more antibacterial peptides are co-genetically engineered to inhibit the growth and / or reproduction of the microorganism under said selective culture conditions.
(Vii) The candidate antibacterial peptide comprises a chimeric protein.
(Viii) The selective culture conditions include conditions of an industrial process, a pharmaceutical manufacturing process, or a mammalian microbial flora.
(Ix) The solution environment comprises two or more species of microorganisms and / or
(X) The translation solution further contains a substrate, and the candidate nucleic acid is immobilized on the substrate.
The method according to any one of claims 1 to 9 .
(i)前記バリアント核酸の前記産生が、縮重ポリメラーゼにより前記選択候補核酸を増幅させること;縮重プライマーの存在下で前記選択候補核酸を増幅させること;縮重ヌクレオチドの存在下で前記選択候補核酸を増幅させること;及び前記選択候補核酸に対する突然変異誘発反応の1つ以上を含む、
(ii)候補核酸のライブラリーをスクリーニングする、
(iii)前記バリアント核酸の産生が、バリアント核酸のライブラリーを産生することを含み、バリアント核酸の前記ライブラリーに対して(a)~(e)を実施することをさらに含む、
(iv)マイクロ流体系中で実施する、及び/又は
(v)前記翻訳溶液及び/又は前記溶液環境が、マイクロリットルスケールである、
請求項1~10のいずれか一項に記載の方法。
(I) The production of the variant nucleic acid amplifies the selection candidate nucleic acid by a degenerate polymerase; amplifies the selection candidate nucleic acid in the presence of a degenerate primer; the selection candidate in the presence of a degenerate nucleotide. Amplifying nucleic acid; and comprising one or more mutagenetic reactions to said candidate nucleic acid.
(Ii) Screening for a library of candidate nucleic acids,
(Iii) Production of the variant nucleic acid comprises producing a library of variant nucleic acids, further comprising performing (a)-(e) on the library of variant nucleic acids.
(Iv) Perform in a microfluidic system and / or
(V) The translation solution and / or the solution environment is on a microliter scale.
The method according to any one of claims 1 to 10 .
抗菌ぺプチドを遺伝子操作するためのマイクロ流体系であって、
インビトロ転写を実施するように構成されている転写ステーションであって、転写試薬を含む、転写ステーション;
前記転写ステーションと流体連結されている翻訳ステーションであって、インビトロ翻訳を実施するように構成されており、翻訳試薬を含む、翻訳ステーション:
前記翻訳ステーションと流体連結されており、微生物体を、前記微生物体、候補抗菌ぺプチドをコードする候補核酸、及び前記候補抗菌ぺプチドを含む溶液環境中で選択培養条件下で培養するように構成されている培養ステーション;
前記培養ステーションと流体連結されており、前記溶液環境中の前記微生物体の成長及び/又は繁殖の阻害、又はその欠落を検出するように構成されている検出器;並びに
前記候補抗菌ぺプチドをコードする前記核酸のバリアント核酸を産生するように構成されているバリアントステーション
を含み、
前記バリアントステーションが、前記転写ステーションと流体連結されているマイクロ流体系。
A microfluidic system for genetically manipulating antibacterial peptides,
A transcription station configured to perform in vitro transcription, comprising a transcription reagent;
A translation station fluidly coupled to the transfer station, configured to perform in vitro translation and comprising a translation reagent:
Fluidly linked to the translation station, the microorganism is configured to be cultured under selective culture conditions in a solution environment containing the microorganism, a candidate nucleic acid encoding a candidate antibacterial peptide, and the candidate antibacterial peptide. Culture station;
A detector that is fluid-coupled to the culture station and configured to detect inhibition of growth and / or reproduction of the microorganism in the solution environment, or lack thereof; and encodes the candidate antibacterial peptide. Contains a variant station configured to produce a variant nucleic acid of said nucleic acid.
A microfluidic system in which the variant station is fluidly connected to the transfer station.
プロセッサをさらに含み、
前記バリアントステーションが、前記候補核酸から配列情報を得るように構成されているシーケンシングモジュールをさらに含み、
前記プロセッサが、前記配列情報を前記微生物体についての成長及び/又は繁殖の阻害又はその欠落の前記検出に対してインデックス化するように構成されている、
請求項12に記載のマイクロ流体系。
Including more processors
The variant station further comprises a sequencing module configured to obtain sequence information from the candidate nucleic acid.
The processor is configured to index the sequence information for said detection of growth and / or reproduction inhibition or lack thereof for the microorganism.
The microfluidic system according to claim 12 .
前記プロセッサが、自動機械学習のような機械学習により、前記インデックス化情報に基づき前記バリアント核酸の配列を選択するように構成されている、請求項13に記載のマイクロ流体系。 13. The microfluidic system of claim 13 , wherein the processor is configured to select the sequence of the variant nucleic acid based on the indexing information by machine learning such as automated machine learning. (i)前記バリアントステーションが、前記検出器が前記溶液環境中の前記微生物体の成長及び/又は繁殖の阻害を検出する場合にのみ、前記バリアント核酸を産生する、
(ii)前記バリアントステーションが、縮重ポリメラーゼを含む、
(iii)前記転写ステーション、前記翻訳ステーション、前記培養ステーション、及び/又は前記バリアントステーションの2つ以上が、互いに離隔されている別々のチャンバー内に含まれる、及び/又は
(iv)前記転写ステーション及び前記翻訳ステーションが、同一のステーションであり、又は互いに重複する、
請求項1214のいずれか一項に記載のマイクロ流体系。
(I) The variant station produces the variant nucleic acid only if the detector detects inhibition of growth and / or reproduction of the microorganism in the solution environment.
(Ii) The variant station comprises a degenerate polymerase.
(Iii) Two or more of the transcription station, the translation station, the culture station, and / or the variant station are contained in separate chambers separated from each other and / or.
(Iv) The transcription station and the translation station are the same station or overlap with each other.
The microfluidic system according to any one of claims 12 to 14 .
前記転写ステーション、前記翻訳ステーション、前記培養ステーション、及び前記バリアントステーションの2つ以上が、単一チャンバー内に含まれる、請求項1215のいずれか一項に記載のマイクロ流体系。 The microfluidic system according to any one of claims 12 to 15 , wherein two or more of the transcription station, the translation station, the culture station, and the variant station are contained in a single chamber. 前記単一チャンバーが、第1の試薬のセットを放出し、続いて前記第1のセットと異なる第2の試薬のセットを受容するように構成されている、請求項16に記載のマイクロ流体系。 16. The microfluidic system of claim 16 , wherein the single chamber is configured to release a first set of reagents and subsequently receive a second set of reagents different from the first set. .. (i)前記培養ステーションの前記選択培養条件が、工業プロセス、医薬品製造プロセス、又は哺乳動物微生物叢の条件を含む、
(ii)前記翻訳ステーションが、固定化されている前記候補核酸を含む基材と流体連結されている、
(iii)前記翻訳ステーションが、マイクロリットルスケールであるチャンバーを含み、及び/又は前記溶液環境が、マイクロリットルスケールである、
(iv)前記翻訳ステーションが、異なる候補抗菌ぺプチドの混合物を含む、
(v)前記微生物体が、複数種の微生物体を含む、及び/又は
(vi)前記翻訳ステーションが、1つ以上の翻訳後修飾酵素を含む、
請求項1217のいずれか一項に記載のマイクロ流体系。
(I) The selective culture conditions of the culture station include conditions of an industrial process, a pharmaceutical manufacturing process, or a mammalian microbial flora.
(Ii) The translation station is fluid-coupled to a substrate containing the immobilized candidate nucleic acid.
(Iii) The translation station comprises a chamber that is microliter scale and / or the solution environment is microliter scale.
(Iv) The translation station comprises a mixture of different candidate antibacterial peptides.
(V) The microorganism comprises and / or has a plurality of species.
(Vi) The translation station comprises one or more post-translational modification enzymes.
The microfluidic system according to any one of claims 12 to 17 .
抗菌ぺプチドを遺伝子操作するためのキットであって、
候補抗菌ぺプチドをコードする候補核酸;
請求項1218のいずれか一項に記載のマイクロ流体系
を含むキット。
A kit for genetically manipulating antibacterial peptides,
Candidate nucleic acid encoding a candidate antibacterial peptide;
A kit comprising the microfluidic system according to any one of claims 12 to 18 .
候補核酸のライブラリー及び/又は微生物体をさらに含む、請求項19に記載のキット。 19. The kit of claim 19 , further comprising a library of candidate nucleic acids and / or microorganisms . 前記微生物体が、細菌を含む、請求項1~11のいずれか一項に記載の方法。 The method according to any one of claims 1 to 11 , wherein the microorganism comprises a bacterium. 前記抗菌ぺプチドが、バクテリオシンを含む、又はバクテリオシンである、請求項1~11又は21のいずれか一項に記載の方法、請求項1218のいずれか一項に記載のマイクロ流体系、又は請求項19又は20に記載のキット。 The method according to any one of claims 1 to 11 or 21 , wherein the antibacterial peptide contains or is a bacteriocin, and the microfluidic system according to any one of claims 12 to 18 . , Or the kit of claim 19 or 20 .
JP2020567524A 2018-06-06 2019-06-05 Genetic engineering of antibacterial peptides Pending JP2021527398A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862681529P 2018-06-06 2018-06-06
US62/681,529 2018-06-06
PCT/US2019/035666 WO2019236761A1 (en) 2018-06-06 2019-06-05 Engineering antimicrobial peptides

Publications (2)

Publication Number Publication Date
JP2021527398A JP2021527398A (en) 2021-10-14
JPWO2019236761A5 true JPWO2019236761A5 (en) 2022-06-03

Family

ID=68769566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020567524A Pending JP2021527398A (en) 2018-06-06 2019-06-05 Genetic engineering of antibacterial peptides

Country Status (6)

Country Link
US (1) US20210238645A1 (en)
EP (1) EP3802789A4 (en)
JP (1) JP2021527398A (en)
CN (1) CN112513251A (en)
BR (1) BR112020024767A2 (en)
WO (1) WO2019236761A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7340517B2 (en) 2017-08-31 2023-09-07 シングロン エスエー Methods and compositions for producing bacteriocins and antimicrobial peptides
US11932672B2 (en) 2017-12-19 2024-03-19 Syngulon S.A. Fermentation process
CN114478722B (en) * 2022-02-09 2023-07-21 淮北师范大学 Bacteriocin A1 and application thereof
CN114437187B (en) * 2022-02-09 2023-06-20 淮北师范大学 Bacteriocin A4 and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463564A (en) * 1994-09-16 1995-10-31 3-Dimensional Pharmaceuticals, Inc. System and method of automatically generating chemical compounds with desired properties
CA2396320A1 (en) * 2000-01-11 2001-07-19 Maxygen, Inc. Integrated systems and methods for diversity generation and screening
US6653124B1 (en) * 2000-11-10 2003-11-25 Cytoplex Biosciences Inc. Array-based microenvironment for cell culturing, cell monitoring and drug-target validation
US7550558B2 (en) * 2001-06-01 2009-06-23 Fundacao De Ampara A Pesquiso Do Estado De Sao Paolo (Fapesp) Antimicrobial peptides and methods for identifying and using such peptides
US7603239B2 (en) * 2004-05-05 2009-10-13 Massachusetts Institute Of Technology Methods and systems for generating peptides
US7968287B2 (en) * 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
WO2006048262A2 (en) * 2004-11-04 2006-05-11 Roche Diagnostics Gmbh Classification of acute myeloid leukemia
US8835604B2 (en) * 2010-06-12 2014-09-16 Adenium Biotech Aos Antimicrobial peptide variants and polynucleotides encoding same
WO2015144859A2 (en) * 2014-03-26 2015-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Automation of cell-free protein synthesis with semi-continuous or continuous supply of freshly synthesized rna template
US11136613B2 (en) * 2015-04-30 2021-10-05 Board Of Regents, The University Of Texas System Antibacterial polypeptide libraries and methods for screening the same
US20180237847A1 (en) * 2015-08-20 2018-08-23 Genomatica, Inc. Compositions and multiplexed systems for coupled cell-free transcription-translation and protein synthesis and methods for using them
JP7340517B2 (en) * 2017-08-31 2023-09-07 シングロン エスエー Methods and compositions for producing bacteriocins and antimicrobial peptides

Similar Documents

Publication Publication Date Title
US10876110B2 (en) Synthesis of sequence-verified nucleic acids
US11932848B2 (en) Mapping of genomic interactions
Matzas et al. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing
Nagel et al. Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992)
Youssef et al. Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma)
JPH02501532A (en) Selective amplification of target polynucleotide sequences
US20230076949A1 (en) Targeted, long-read nucleic acid sequencing for the determination of cytosine modifications
KR20190098213A (en) Method for preparing fungal production strains using automated steps for genetic engineering and strain purification
Sawasaki et al. Genome-scale, biochemical annotation method based on the wheat germ cell-free protein synthesis system
Madhuri et al. Recent approaches in the production of novel enzymes from environmental samples by enrichment culture and metagenomic approach
CN108350492A (en) The nucleic acid cyclisation and amplification of ligase auxiliary
US11345959B2 (en) Method for exploring useful genetic resources through bulk metagenome analysis and use thereof
JPWO2019236761A5 (en)
OH et al. Fabrication of a partial genome microarray of the methylotrophic yeast Hansenula polymorpha: optimization and evaluation of transcript profiling
KR101811737B1 (en) Method for Screening Useful Gene Products via Metagenomics-based Mega-throughput Screening System and Uses Thereof
El-Gawahergy et al. Mining for NRPS and PKS Genes in Actinobacteria Using Whole-Genome Sequencing and Bioinformatic Tools
Baunach et al. Harnessing the potential: advances in cyanobacterial natural product research and biotechnology
Matzas et al. Next Generation Gene Synthesis by targeted retrieval of bead-immobilized, sequence verified DNA clones from a high throughput pyrosequencing device
RU2249045C2 (en) Method for identifying and characterization of function potentially presenting in nucleic acids-containing biological sample
Mejia et al. An Arrayed Transposon Library of Ruegeria pomeroyi DSS-3
Shoji Methylation of 23S rRNA G748 and the ribosomal protein L22 Lys-94 are critical factors for maintaining the association between ribosome stalling and proteome composition in Streptococcus pneumoniae
US20230374492A1 (en) Process for selection of aptamers, riboswitches and desoxyriboswitches
CN102549154A (en) Method for amplifying nucleic acid
CN116574710A (en) DNA polymerase with strand displacement function and application thereof
CN112888784A (en) Method for identifying protein of interest