JPWO2019236726A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019236726A5
JPWO2019236726A5 JP2020567787A JP2020567787A JPWO2019236726A5 JP WO2019236726 A5 JPWO2019236726 A5 JP WO2019236726A5 JP 2020567787 A JP2020567787 A JP 2020567787A JP 2020567787 A JP2020567787 A JP 2020567787A JP WO2019236726 A5 JPWO2019236726 A5 JP WO2019236726A5
Authority
JP
Japan
Prior art keywords
ssna
ssb
bound
oligonucleotide
adapter oligonucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020567787A
Other languages
Japanese (ja)
Other versions
JP7537748B2 (en
JP2021526798A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/035617 external-priority patent/WO2019236726A1/en
Publication of JP2021526798A publication Critical patent/JP2021526798A/en
Publication of JPWO2019236726A5 publication Critical patent/JPWO2019236726A5/ja
Application granted granted Critical
Publication of JP7537748B2 publication Critical patent/JP7537748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本開示は以下の実施形態を含む。
実施形態1
核酸ライブラリを生成する方法であって、
一本鎖核酸(ssNA)を一本鎖核酸結合タンパク質(SSB)と接触させて、SSB結合ssNAを生成することと、
前記SSB結合ssNA、
第1のアダプターオリゴヌクレオチド、ならびに
SSB結合ssNAハイブリダイゼーション領域および第1のアダプターオリゴヌクレオチドハイブリダイゼーション領域を含む、第1のスプリントオリゴヌクレオチド
を組み合わせることと、
を含み、
前記SSB結合ssNAハイブリダイゼーション領域を介して前記SSB結合ssNAの末端領域にハイブリダイズされた前記第1のスプリントオリゴヌクレオチドと、前記第1のアダプターオリゴヌクレオチドハイブリダイゼーション領域を介して前記第1のアダプターオリゴヌクレオチドにハイブリダイズされた前記第1のスプリントオリゴヌクレオチドを含む複合体を形成し、これにより、前記第1のアダプターオリゴヌクレオチドの末端が前記SSB結合ssNAの前記末端領域の末端に隣接する、方法。
実施形態2
前記第1のアダプターオリゴヌクレオチドおよびSSB結合ssNAの前記隣接する末端を共有結合させることをさらに含む、実施形態1に記載の方法。
実施形態3
前記接触、組み合わせること、および共有結合のステップの合計持続時間が、3時間以下である、実施形態2に記載の方法。
実施形態4
前記複合体が、前記SSBと接触された前記ssNAの80%以上から形成される、実施形態1~3のいずれか一項に記載の方法。
実施形態5
前記ssNAが、分解された核酸試料からのものである、実施形態1~4のいずれか一項に記載の方法。
実施形態6
前記ssNAが、古代核酸試料からのものである、実施形態5に記載の方法。
実施形態7
前記ssNAが、法医学核酸試料からのものである、実施形態1~6のいずれか一項に記載の方法。
実施形態8
前記ssNAが、一本鎖DNA(ssDNA)である、実施形態1~7のいずれか一項に記載の方法。
実施形態9
前記ssDNAは二本鎖DNA(dsDNA)に由来するものである、実施形態8に記載の方法。
実施形態10
前記ssDNAをSSBと接触させる前に、前記dsDNAを変性させることによって前記ssDNAを生成することをさらに含む、実施形態9に記載の方法。
実施形態11
前記複合体の形成後、前記ssDNAを再ハイブリダイズさせて、dsDNAを生成することをさらに含む、実施形態9または実施形態10に記載の方法。
実施形態12
前記生成されたdsDNAを配列決定することをさらに含む、実施形態11に記載の方法。
実施形態13
前記生成されたdsDNAのサブサンプルが配列決定される、実施形態12に記載の方法。
実施形態14
前記ssNAが、一本鎖RNA(ssRNA)である、実施形態1~6のいずれか一項に記載の方法。
実施形態15
前記組み合わせることが、
前記第1のアダプターオリゴヌクレオチドハイブリダイゼーション領域を介して前記第1のアダプターオリゴヌクレオチドにハイブリダイズされた前記第1のスプリントオリゴヌクレオチドを含む複合体と、
前記SSB結合ssNAと
を組み合わせることを含む、実施形態1~14のいずれか一項に記載の方法。
実施形態16
前記組み合わせることが、
前記SSB結合ssNAハイブリダイゼーション領域を介して前記SSB結合ssNAにハイブリダイズされた前記第1のスプリントオリゴヌクレオチドを含む複合体と、
前記第1のアダプターオリゴヌクレオチドと
を組み合わせることを含む、実施形態1~14のいずれか一項に記載の方法。
実施形態17
前記組み合わせることが、
前記SSB結合ssNAと、
第2のアダプターオリゴヌクレオチドと、
SSB結合ssNAハイブリダイゼーション領域および第2のアダプターオリゴヌクレオチドハイブリダイゼーション領域を含む、第2のスプリントオリゴヌクレオチドと
を組み合わせることをさらに含み、
前記形成された複合体が、前記SSB結合ssNAのうち前記第1のスプリントオリゴヌクレオチドにハイブリダイズされた前記末端領域とは反対側の末端領域に、前記SSB結合ssNAハイブリダイゼーション領域を介してハイブリダイズされた前記第2のスプリントオリゴヌクレオチドと、前記第2のアダプターオリゴヌクレオチドハイブリダイゼーション領域を介して前記第2のアダプターオリゴヌクレオチドにハイブリダイズされた前記第2のスプリントオリゴヌクレオチドをさらに含み、これにより、前記第2のアダプターオリゴヌクレオチドの末端が、前記SSB結合ssNAのうち前記第1のアダプターオリゴヌクレオチドに隣接する前記末端とは反対側の末端に隣接する、実施形態1~16のいずれか一項に記載の方法。
実施形態18
前記第2のアダプターオリゴヌクレオチドおよびSSB結合ssNAの前記隣接する末端を共有結合させることをさらに含む、実施形態17に記載の方法。
実施形態19
前記共有結合させることが、前記隣接する末端をライゲーションすることを含む、実施形態1~18のいずれか一項に記載の方法。
実施形態20
前記ライゲーションが、酵素ライゲーションによって行われる、実施形態19に記載の方法。
実施形態21
アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端が、ブロッキング修飾を含む、実施形態1~20のいずれか一項に記載の方法。
実施形態22
前記ブロッキング修飾が、ライゲーションをブロックする修飾である、実施形態21に記載の方法。
実施形態23
前記ブロッキング修飾が、前記アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端における3’OHの不在、および、前記アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端におけるアクセス不可能な3’OHからなる群から選択される、実施形態21または実施形態22に記載の方法。
実施形態24
前記ブロッキング修飾が、前記アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端におけるアクセス不可能な3’OHであり、前記ブロッキング修飾が、アミノ修飾因子、スペーサー、ジデオキシ塩基、反転ジデオキシ塩基、および3’ホスフェートからなる群から選択される、実施形態23に記載の方法。
実施形態25
前記SSB結合ssNAハイブリダイゼーション領域が、ランダム配列を含む、実施形態1~24のいずれか一項に記載の方法。
実施形態26
前記SSB結合ssNAハイブリダイゼーション領域が、ユニバーサル塩基を含む、実施形態1~25のいずれか一項に記載の方法。
実施形態27
前記SSB結合ssNAハイブリダイゼーション領域の長さが、10ヌクレオチド以下である、実施形態1~26のいずれか一項に記載の方法。
実施形態28
前記アダプターオリゴヌクレオチドが、PCR増幅のためのアダプターまたはその相補体を含む、実施形態1~27のいずれか一項に記載の方法。
実施形態29
前記アダプターオリゴヌクレオチドが、部分的もしくは完全な配列決定アダプターまたはその相補体を含む、実施形態1~28のいずれか一項に記載の方法。
実施形態30
前記ssNAまたはその誘導体の少なくとも一部分を配列決定することをさらに含む、実施形態1~29のいずれか一項に記載の方法。
実施形態31
一本鎖核酸結合タンパク質に結合した一本鎖核酸(SSB結合ssNA)と、
第1のアダプターオリゴヌクレオチドと、
SSB結合ssNAハイブリダイゼーション領域および第1のアダプターオリゴヌクレオチドハイブリダイゼーション領域を含む、第1のスプリントオリゴヌクレオチドと
を含む、組成物。
実施形態32
第2のアダプターオリゴヌクレオチドと、
SSB結合ssNAハイブリダイゼーション領域および第2のアダプターオリゴヌクレオチドハイブリダイゼーション領域を含む、第2のスプリントオリゴヌクレオチドと
をさらに含む、実施形態31に記載の組成物。
実施形態33
前記ssNAが、分解された核酸試料からのものである、実施形態31または実施形態32に記載の組成物。
実施形態34
前記ssNAが、古代核酸試料からのものである、実施形態33に記載の組成物。
実施形態35
前記ssNAが、法医学核酸試料からのものである、実施形態31~33のいずれか一項に記載の組成物。
実施形態36
前記ssNAが、一本鎖DNA(ssDNA)である、実施形態31~35のいずれか一項に記載の組成物。
実施形態37
前記ssDNAが二本鎖DNA(dsDNA)に由来するものである、実施形態36に記載の組成物。
実施形態38
前記ssNAが、一本鎖RNA(ssRNA)である、実施形態31~35のいずれか一項に記載の組成物。
実施形態39
アダプターオリゴヌクレオチド末端を、前記SSB結合ssNAの末端に共有結合させるための試薬をさらに含む、実施形態31~38のいずれか一項に記載の組成物。
実施形態40
前記試薬が、リガーゼである、実施形態39に記載の組成物。
実施形態41
一本鎖核酸結合タンパク質(SSB)と、
第1のアダプターオリゴヌクレオチドと、
SSB結合ssNAハイブリダイゼーション領域および第1のアダプターオリゴヌクレオチドハイブリダイゼーション領域を含む、第1のスプリントオリゴヌクレオチドと、
前記SSB、第1のアダプターオリゴヌクレオチド、および第1のスプリントオリゴヌクレオチドを使用して核酸ライブラリを生成するための指示と
を含む、キット。
実施形態42
第2のアダプターオリゴヌクレオチドと、
SSB結合ssNAハイブリダイゼーション領域および第2のアダプターオリゴヌクレオチドハイブリダイゼーション領域を含む、第2のスプリントオリゴヌクレオチドと
をさらに含み、
前記指示が、前記SSB、第1のアダプターオリゴヌクレオチド、第1のスプリントオリゴヌクレオチド、第2のアダプターオリゴヌクレオチド、および第2のスプリントオリゴヌクレオチドを使用して核酸ライブラリを生成するためのものである、実施形態41に記載のキット。
実施形態43
前記SSBが、一本鎖DNA結合タンパク質である、実施形態41または42に記載のキット。
実施形態44
前記SSBが、一本鎖RNA結合タンパク質である、実施形態41または42に記載のキット。
実施形態45
アダプターオリゴヌクレオチドの末端を、一本鎖核酸結合タンパク質に結合した一本鎖核酸(SSB結合ssNA)の末端に連結するための試薬をさらに含む、実施形態41~44のいずれか一項に記載のキット。
実施形態46
前記試薬が、リガーゼである、実施形態45に記載のキット。
実施形態47
アダプターオリゴヌクレオチドの末端が、ブロッキング修飾を含む、実施形態41~46のいずれか一項に記載のキット。
実施形態48
前記ブロッキング修飾が、ライゲーションをブロックする修飾である、実施形態47に記載のキット。
実施形態49
前記ブロッキング修飾が、前記アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端における3’OHの不在、および、前記アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端におけるアクセス不可能な3’OHからなる群から選択される、実施形態47または実施形態48に記載のキット。
実施形態50
前記ブロッキング修飾が、前記アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端におけるアクセス不可能な3’OHであり、前記ブロッキング修飾が、アミノ修飾因子、スペーサー、ジデオキシ塩基、反転ジデオキシ塩基、および3’ホスフェートからなる群から選択される、実施形態47または実施形態48に記載のキット。
実施形態51
前記SSB結合ssNAハイブリダイゼーション領域が、ランダム配列を含む、実施形態41~50に記載のキット。
実施形態52
前記SSB結合ssNAハイブリダイゼーション領域が、ユニバーサル塩基を含む、実施形態41~51に記載のキット。
実施形態53
前記SSB結合ssNAハイブリダイゼーション領域の長さが、10ヌクレオチド以下である、実施形態41~52に記載のキット。
以下の実施例は例示のために提供され、限定するものではない。
The disclosure includes the following embodiments:
Embodiment 1
A method of generating a nucleic acid library
Contacting a single-stranded nucleic acid (ssNA) with a single-stranded nucleic acid-binding protein (SSB) to generate SSB-bound ssNA,
The SSB-bound ssNA,
First adapter oligonucleotide, as well
A first sprint oligonucleotide containing an SSB-bound ssNA hybridization region and a first adapter oligonucleotide hybridization region.
And to combine
Including
The first sprint oligonucleotide hybridized to the terminal region of the SSB-bound ssNA via the SSB-bound ssNA hybridization region and the first adapter oligonucleotide via the first adapter oligonucleotide hybridization region. A method of forming a complex comprising the first sprint oligonucleotide hybridized to a nucleotide, whereby the end of the first adapter oligonucleotide is flanked by the end of the terminal region of the SSB-bound ssNA.
Embodiment 2
The method according to embodiment 1, further comprising covalently attaching the first adapter oligonucleotide and the adjacent end of the SSB-bound ssNA.
Embodiment 3
The method of embodiment 2, wherein the total duration of the contact, combination, and covalent steps is 3 hours or less.
Embodiment 4
The method according to any one of embodiments 1 to 3, wherein the complex is formed from 80% or more of the ssNA in contact with the SSB.
Embodiment 5
The method according to any one of embodiments 1 to 4, wherein the ssNA is from a degraded nucleic acid sample.
Embodiment 6
The method of embodiment 5, wherein the ssNA is from an ancient nucleic acid sample.
Embodiment 7
The method according to any one of embodiments 1 to 6, wherein the ssNA is from a forensic nucleic acid sample.
8th embodiment
The method according to any one of embodiments 1 to 7, wherein the ssNA is a single-stranded DNA (ssDNA).
Embodiment 9
The method according to embodiment 8, wherein the ssDNA is derived from double-stranded DNA (dsDNA).
Embodiment 10
9. The method of embodiment 9, further comprising producing the ssDNA by denaturing the dsDNA prior to contacting the ssDNA with the SSB.
Embodiment 11
The method according to embodiment 9 or 10, further comprising rehybridizing the ssDNA after formation of the complex to produce dsDNA.
Embodiment 12
11. The method of embodiment 11, further comprising sequencing the generated dsDNA.
Embodiment 13
12. The method of embodiment 12, wherein the generated dsDNA subsamples are sequenced.
Embodiment 14
The method according to any one of embodiments 1 to 6, wherein the ssNA is a single-strand RNA (ssRNA).
Embodiment 15
The combination mentioned above
A complex comprising the first sprint oligonucleotide hybridized to the first adapter oligonucleotide via the first adapter oligonucleotide hybridization region.
With the SSB-bound ssNA
The method according to any one of embodiments 1 to 14, comprising combining the above.
Embodiment 16
The combination mentioned above
A complex comprising the first sprint oligonucleotide hybridized to the SSB-bound ssNA via the SSB-bound ssNA hybridization region.
With the first adapter oligonucleotide
The method according to any one of embodiments 1 to 14, comprising combining the above.
Embodiment 17
The combination mentioned above
With the SSB-bound ssNA,
With the second adapter oligonucleotide,
With a second sprint oligonucleotide, including an SSB-bound ssNA hybridization region and a second adapter oligonucleotide hybridization region.
Including further combining
The formed complex hybridizes to the terminal region of the SSB-bound ssNA opposite to the terminal region hybridized to the first sprint oligonucleotide via the SSB-bound ssNA hybridization region. It further comprises the second sprint oligonucleotide that has been hybridized to the second adapter oligonucleotide via the second adapter oligonucleotide hybridization region, thereby further comprising the second sprint oligonucleotide. In any one of Embodiments 1 to 16, the end of the second adapter oligonucleotide is adjacent to the end of the SSB-bound ssNA adjacent to the first adapter oligonucleotide on the opposite side of the terminal. The method described.
Embodiment 18
17. The method of embodiment 17, further comprising covalently attaching the second adapter oligonucleotide and the adjacent terminal of the SSB-bound ssNA.
Embodiment 19
13. The method of any one of embodiments 1-18, wherein the covalent bond comprises ligating the adjacent ends.
20th embodiment
19. The method of embodiment 19, wherein the ligation is performed by enzyme ligation.
21st embodiment
The method according to any one of embodiments 1 to 20, wherein the terminal of the adapter oligonucleotide on the side not adjacent to the SSB-bound ssNA comprises a blocking modification.
Embodiment 22
21. The method of embodiment 21, wherein the blocking modification is a modification that blocks ligation.
23rd Embodiment
The blocking modification is the absence of 3'OH at the end of the adapter oligonucleotide not adjacent to the SSB-bound ssNA, and inaccessible at the end of the adapter oligonucleotide not adjacent to the SSB-bound ssNA. 21. The method of embodiment 22, which is selected from the group consisting of 3'OH.
Embodiment 24
The blocking modification is an inaccessible 3'OH at the end of the adapter oligonucleotide not adjacent to the SSB-binding ssNA, and the blocking modification is an amino modifier, spacer, dideoxy base, inverted dideoxy base, 23. The method of embodiment 23, selected from the group consisting of and 3'phosphates.
25th embodiment
The method according to any one of embodiments 1 to 24, wherein the SSB-bound ssNA hybridization region comprises a random sequence.
Embodiment 26
The method according to any one of embodiments 1 to 25, wherein the SSB-bound ssNA hybridization region comprises a universal base.
Embodiment 27
The method according to any one of embodiments 1 to 26, wherein the length of the SSB-bound ssNA hybridization region is 10 nucleotides or less.
Embodiment 28
The method according to any one of embodiments 1-27, wherein the adapter oligonucleotide comprises an adapter for PCR amplification or a complement thereof.
Embodiment 29
The method according to any one of embodiments 1-28, wherein the adapter oligonucleotide comprises a partial or complete sequencing adapter or a complement thereof.
30th embodiment
The method of any one of embodiments 1-29, further comprising sequencing at least a portion of the ssNA or derivative thereof.
Embodiment 31
Single-stranded nucleic acid bound to a single-stranded nucleic acid-binding protein (SSB-bound ssNA) and
The first adapter oligonucleotide,
With a first sprint oligonucleotide containing an SSB-bound ssNA hybridization region and a first adapter oligonucleotide hybridization region
A composition comprising.
Embodiment 32
With the second adapter oligonucleotide,
With a second sprint oligonucleotide, including an SSB-bound ssNA hybridization region and a second adapter oligonucleotide hybridization region.
31. The composition according to embodiment 31.
Embodiment 33
The composition according to embodiment 31 or 32, wherein the ssNA is from a degraded nucleic acid sample.
Embodiment 34
33. The composition of embodiment 33, wherein the ssNA is from an ancient nucleic acid sample.
Embodiment 35
The composition according to any one of embodiments 31 to 33, wherein the ssNA is from a forensic nucleic acid sample.
Embodiment 36
The composition according to any one of embodiments 31 to 35, wherein the ssNA is a single-stranded DNA (ssDNA).
Embodiment 37
The composition according to embodiment 36, wherein the ssDNA is derived from double-stranded DNA (dsDNA).
Embodiment 38
The composition according to any one of embodiments 31 to 35, wherein the ssNA is a single-strand RNA (ssRNA).
Embodiment 39
The composition according to any one of embodiments 31 to 38, further comprising a reagent for covalently attaching the adapter oligonucleotide terminal to the terminal of the SSB-bonded ssNA.
Embodiment 40
The composition according to embodiment 39, wherein the reagent is ligase.
Embodiment 41
Single-stranded nucleic acid binding protein (SSB) and
The first adapter oligonucleotide,
A first sprint oligonucleotide comprising an SSB-bound ssNA hybridization region and a first adapter oligonucleotide hybridization region,
With instructions for generating a nucleic acid library using the SSB, the first adapter oligonucleotide, and the first sprint oligonucleotide.
Including, kit.
42nd embodiment
With the second adapter oligonucleotide,
With a second sprint oligonucleotide, including an SSB-bound ssNA hybridization region and a second adapter oligonucleotide hybridization region.
Including
The instructions are for using the SSB, a first adapter oligonucleotide, a first sprint oligonucleotide, a second adapter oligonucleotide, and a second sprint oligonucleotide to generate a nucleic acid library. The kit according to embodiment 41.
Embodiment 43
The kit according to embodiment 41 or 42, wherein the SSB is a single-stranded DNA binding protein.
Embodiment 44
The kit according to embodiment 41 or 42, wherein the SSB is a single-stranded RNA-binding protein.
Embodiment 45
13. kit.
Embodiment 46
The kit according to embodiment 45, wherein the reagent is ligase.
Embodiment 47
The kit according to any one of embodiments 41 to 46, wherein the end of the adapter oligonucleotide comprises a blocking modification.
Embodiment 48
The kit according to embodiment 47, wherein the blocking modification is a modification that blocks ligation.
Embodiment 49
The blocking modification is the absence of 3'OH at the end of the adapter oligonucleotide not adjacent to the SSB-bound ssNA, and inaccessible at the end of the adapter oligonucleotide not adjacent to the SSB-bound ssNA. The kit according to embodiment 47 or 48, which is selected from the group consisting of 3'OH.
Embodiment 50
The blocking modification is an inaccessible 3'OH at the end of the adapter oligonucleotide not adjacent to the SSB-binding ssNA, and the blocking modification is an amino modifier, spacer, dideoxy base, inverted dideoxy base, The kit according to embodiment 47 or 48, selected from the group consisting of and 3'phosphates.
Embodiment 51
The kit according to embodiments 41-50, wherein the SSB-bound ssNA hybridization region comprises a random sequence.
52nd embodiment
The kit according to embodiments 41-51, wherein the SSB-bound ssNA hybridization region comprises a universal base.
Embodiment 53
The kit according to embodiments 41-52, wherein the SSB-bound ssNA hybridization region has a length of 10 nucleotides or less.
The following examples are provided for illustration purposes only and are not limiting.

Claims (17)

核酸ライブラリを生成する方法であって、
一本鎖核酸(ssNA)を一本鎖核酸結合タンパク質(SSB)と接触させて、SSB結合ssNAを生成することと、
前記SSB結合ssNA、
第1のアダプターオリゴヌクレオチド、
SSB結合ssNAハイブリダイゼーション領域および第1のアダプターオリゴヌクレオチドハイブリダイゼーション領域を含む、第1のスプリントオリゴヌクレオチド
第2のアダプターオリゴヌクレオチド、ならびに
SSB結合ssNAハイブリダイゼーション領域および第2のアダプターオリゴヌクレオチドハイブリダイゼーション領域を含む、第2のスプリントオリゴヌクレオチド
を組み合わせることと、
を含んで
前記SSB結合ssNAハイブリダイゼーション領域を介して前記SSB結合ssNAの末端領域にハイブリダイズされた前記第1のスプリントオリゴヌクレオチドと、前記第1のアダプターオリゴヌクレオチドハイブリダイゼーション領域を介して前記第1のアダプターオリゴヌクレオチドにハイブリダイズされた前記第1のスプリントオリゴヌクレオチドと、
前記SSB結合ssNAのうち前記第1のスプリントオリゴヌクレオチドにハイブリダイズされた前記末端領域とは反対側の末端領域に、前記SSB結合ssNAハイブリダイゼーション領域を介してハイブリダイズされた前記第2のスプリントオリゴヌクレオチドと、前記第2のアダプターオリゴヌクレオチドハイブリダイゼーション領域を介して前記第2のアダプターオリゴヌクレオチドにハイブリダイズされた前記第2のスプリントオリゴヌクレオチドと
を含む複合体を形成し、これにより、前記第1のアダプターオリゴヌクレオチドの末端が前記SSB結合ssNAの前記末端領域の末端に隣接し、前記第2のアダプターオリゴヌクレオチドの末端が、前記SSB結合ssNAのうち前記第1のアダプターオリゴヌクレオチドに隣接する前記末端とは反対側の末端に隣接する、
方法。
A method of generating a nucleic acid library
Contacting a single-stranded nucleic acid (ssNA) with a single-stranded nucleic acid-binding protein (SSB) to generate SSB-bound ssNA,
The SSB-bound ssNA,
First adapter oligonucleotide,
A first sprint oligonucleotide containing an SSB-bound ssNA hybridization region and a first adapter oligonucleotide hybridization region.
Second adapter oligonucleotide, as well
A second sprint oligonucleotide containing an SSB-bound ssNA hybridization region and a second adapter oligonucleotide hybridization region.
And to combine
Including
The first sprint oligonucleotide hybridized to the terminal region of the SSB-bound ssNA via the SSB-bound ssNA hybridization region and the first adapter oligonucleotide via the first adapter oligonucleotide hybridization region. The first sprint oligonucleotide hybridized to the nucleotide and
The second sprint oligo hybridized to the terminal region of the SSB-bound ssNA opposite to the terminal region hybridized to the first sprint oligonucleotide via the SSB-bound ssNA hybridization region. The nucleotide and the second sprint oligonucleotide hybridized to the second adapter oligonucleotide via the second adapter oligonucleotide hybridization region.
The terminal of the first adapter oligonucleotide is adjacent to the end of the terminal region of the SSB-bound ssNA, and the end of the second adapter oligonucleotide is adjacent to the end of the SSB-bound ssNA. Adjacent to the end opposite to the end adjacent to the first adapter oligonucleotide.
Method.
前記第1のアダプターオリゴヌクレオチドおよびSSB結合ssNAの前記隣接する末端を共有結合させること、および前記第2のアダプターオリゴヌクレオチドおよびSSB結合ssNAの前記隣接する末端を共有結合させることをさらに含む、請求項1に記載の方法。 A claim further comprising covalently binding the adjacent ends of the first adapter oligonucleotide and the SSB-bound ssNA, and covalently binding the adjacent ends of the second adapter oligonucleotide and the SSB-bound ssNA. The method according to 1. 前記接触、組み合わせること、および共有結合のステップの合計持続時間が、3時間以下である、請求項2に記載の方法。 The method of claim 2, wherein the total duration of the contact, combination, and covalent steps is 3 hours or less. 前記ssNAが、分解された核酸試料および/または法医学核酸試料からのものである、請求項1~のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3 , wherein the ssNA is from a degraded nucleic acid sample and / or a forensic nucleic acid sample . 前記ssNAが、一本鎖DNA(ssDNA)であり、前記ssDNAは二本鎖DNA(dsDNA)に由来するものであり、前記方法は、前記ssDNAをSSBと接触させる前に、前記dsDNAを変性させることによって前記ssDNAを生成することをさらに含む、請求項1~のいずれか一項に記載の方法。 The ssNA is a single-stranded DNA (ssDNA), the ssDNA is derived from a double-stranded DNA (dsDNA), and the method denatures the dsDNA before contacting the ssDNA with the SSB. The method according to any one of claims 1 to 4 , further comprising producing the ssDNA by causing the ssDNA to be generated . 前記組み合わせることが、
前記第1のアダプターオリゴヌクレオチドハイブリダイゼーション領域を介して前記第1のアダプターオリゴヌクレオチドにハイブリダイズされた前記第1のスプリントオリゴヌクレオチドを含む複合体と、
前記第2のアダプターオリゴヌクレオチドハイブリダイゼーション領域を介して前記第2のアダプターオリゴヌクレオチドにハイブリダイズされた前記第2のスプリントオリゴヌクレオチドを含む複合体と、
前記SSB結合ssNAと
を組み合わせることを含む、請求項1~のいずれか一項に記載の方法。
The combination mentioned above
A complex comprising the first sprint oligonucleotide hybridized to the first adapter oligonucleotide via the first adapter oligonucleotide hybridization region.
A complex comprising the second sprint oligonucleotide hybridized to the second adapter oligonucleotide via the second adapter oligonucleotide hybridization region.
The method according to any one of claims 1 to 5 , comprising combining with the SSB-bound ssNA.
前記組み合わせることが、
前記SSB結合ssNAハイブリダイゼーション領域を介して前記SSB結合ssNAにハイブリダイズされた前記第1のスプリントオリゴヌクレオチドを含む複合体と、
前記SSB結合ssNAハイブリダイゼーション領域を介して前記SSB結合ssNAにハイブリダイズされた前記第2のスプリントオリゴヌクレオチドを含む複合体と、
前記第1のアダプターオリゴヌクレオチドと
前記第2のアダプターオリゴヌクレオチドと
を組み合わせることを含む、請求項1~のいずれか一項に記載の方法。
The combination mentioned above
A complex comprising the first sprint oligonucleotide hybridized to the SSB-bound ssNA via the SSB-bound ssNA hybridization region.
A complex comprising the second sprint oligonucleotide hybridized to the SSB-bound ssNA via the SSB-bound ssNA hybridization region.
With the first adapter oligonucleotide
With the second adapter oligonucleotide
The method according to any one of claims 1 to 5 , which comprises combining the above.
前記共有結合させることが、前記隣接する末端をライゲーションすることを含む、請求項2~7のいずれか一項に記載の方法。 The method of any one of claims 2-7 , wherein the covalent bond comprises ligating the adjacent ends. 前記ライゲーションが、酵素ライゲーションによって行われる、請求項に記載の方法。 The method of claim 8 , wherein the ligation is performed by enzyme ligation. アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端が、ブロッキング修飾を含む、請求項1~のいずれか一項に記載の方法。 The method according to any one of claims 1 to 9 , wherein the terminal of the adapter oligonucleotide on the side not adjacent to the SSB-bound ssNA comprises a blocking modification. 前記ブロッキング修飾が、ライゲーションをブロックする修飾である、請求項10に記載の方法。 The method of claim 10 , wherein the blocking modification is a modification that blocks ligation. 前記ブロッキング修飾が、前記アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端における3’OHの不在、および、前記アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端におけるアクセス不可能な3’OHからなる群から選択される、請求項10または請求項11に記載の方法。 The blocking modification is the absence of 3'OH at the end of the adapter oligonucleotide not adjacent to the SSB-bound ssNA, and inaccessible at the end of the adapter oligonucleotide not adjacent to the SSB-bound ssNA. The method according to claim 10 or 11 , which is selected from the group consisting of 3'OH. 前記ブロッキング修飾が、前記アダプターオリゴヌクレオチドのうち前記SSB結合ssNAに隣接しない側の末端におけるアクセス不可能な3’OHであり、前記ブロッキング修飾が、アミノ修飾因子、スペーサー、ジデオキシ塩基、反転ジデオキシ塩基、および3’ホスフェートからなる群から選択される、請求項12に記載の方法。 The blocking modification is an inaccessible 3'OH at the end of the adapter oligonucleotide not adjacent to the SSB-binding ssNA, and the blocking modification is an amino modifier, spacer, dideoxy base, inverted dideoxy base, 12. The method of claim 12 , selected from the group consisting of 3'phosphates and 3'phosphates. 前記SSB結合ssNAハイブリダイゼーション領域が、ランダム配列を含む、請求項1~13のいずれか一項に記載の方法。 The method according to any one of claims 1 to 13 , wherein the SSB-bound ssNA hybridization region comprises a random sequence. 前記SSB結合ssNAハイブリダイゼーション領域が、ユニバーサル塩基を含む、請求項1~14のいずれか一項に記載の方法。 The method according to any one of claims 1 to 14 , wherein the SSB-bound ssNA hybridization region comprises a universal base. 前記アダプターオリゴヌクレオチドが、
PCR増幅のためのアダプターまたはその相補体を含み、および/または
部分的もしくは完全な配列決定アダプターまたはその相補体を含む、
請求項1~15のいずれか一項に記載の方法。
The adapter oligonucleotide is
Includes adapter or complement thereof for PCR amplification and / or
Includes a partial or complete sequencing adapter or its complement,
The method according to any one of claims 1 to 15 .
前記ssNAまたはその誘導体の少なくとも一部分を配列決定することをさらに含む、請求項1~16のいずれか一項に記載の方法。 The method of any one of claims 1-16 , further comprising sequencing at least a portion of the ssNA or derivative thereof .
JP2020567787A 2018-06-06 2019-06-05 Methods for generating nucleic acid libraries and compositions and kits for carrying out the same - Patents.com Active JP7537748B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862681524P 2018-06-06 2018-06-06
US62/681,524 2018-06-06
PCT/US2019/035617 WO2019236726A1 (en) 2018-06-06 2019-06-05 Methods of producing nucleic acid libraries and compositions and kits for practicing same

Publications (3)

Publication Number Publication Date
JP2021526798A JP2021526798A (en) 2021-10-11
JPWO2019236726A5 true JPWO2019236726A5 (en) 2022-06-09
JP7537748B2 JP7537748B2 (en) 2024-08-21

Family

ID=67211813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020567787A Active JP7537748B2 (en) 2018-06-06 2019-06-05 Methods for generating nucleic acid libraries and compositions and kits for carrying out the same - Patents.com

Country Status (8)

Country Link
US (2) US11629345B2 (en)
EP (1) EP3802864A1 (en)
JP (1) JP7537748B2 (en)
KR (1) KR20210016560A (en)
CN (1) CN112243462A (en)
AU (1) AU2019280712A1 (en)
CA (1) CA3100983A1 (en)
WO (1) WO2019236726A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3802864A1 (en) 2018-06-06 2021-04-14 The Regents Of The University Of California Methods of producing nucleic acid libraries and compositions and kits for practicing same
US20230014607A1 (en) 2019-10-09 2023-01-19 Claret Bioscience, Llc Methods and compositions for analyzing nucleic acid
WO2022076574A1 (en) 2020-10-08 2022-04-14 Claret Bioscience, Llc Methods and compositions for analyzing nucleic acid

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2318288A (en) 1987-08-07 1989-03-09 Genelabs Incorporated Coincidence cloning method and library
US6261774B1 (en) 1990-06-11 2001-07-17 Gilead Sciences, Inc. Truncation selex method
US5744306A (en) 1993-04-19 1998-04-28 Emory University Methods for nucleic acid detection, sequencing, and cloning using exonuclease
US5871697A (en) 1995-10-24 1999-02-16 Curagen Corporation Method and apparatus for identifying, classifying, or quantifying DNA sequences in a sample without sequencing
WO1997020070A1 (en) 1995-11-29 1997-06-05 The Anthony Nolan Bone Marrow Trust Methods for separating and/or identifying dna molecules
US5861246A (en) 1996-01-24 1999-01-19 Yale University Multiple selection process for binding sites of DNA-binding proteins
WO1997034015A1 (en) 1996-03-15 1997-09-18 The Penn State Research Foundation Detection of extracellular tumor-associated nucleic acid in blood plasma or serum using nucleic acid amplification assays
DE69737450T2 (en) 1996-06-06 2007-11-29 Solexa, Inc., Hayward SEQUENCING BY LIGATION-CODED ADAPTER
US6083693A (en) 1996-06-14 2000-07-04 Curagen Corporation Identification and comparison of protein-protein interactions that occur in populations
US6013438A (en) 1996-11-27 2000-01-11 Baylor College Of Medicine Assay for detecting apoptotic cells
AU8234798A (en) 1997-07-11 1999-02-08 Brax Group Limited Categorising nucleic acid
US6607878B2 (en) 1997-10-06 2003-08-19 Stratagene Collections of uniquely tagged molecules
WO2000039333A1 (en) 1998-12-23 2000-07-06 Jones Elizabeth Louise Sequencing method using magnifying tags
NO986133D0 (en) 1998-12-23 1998-12-23 Preben Lexow Method of DNA Sequencing
JP2002540802A (en) 1999-04-06 2002-12-03 イェール ユニバーシティ Fixed address analysis of sequence indicators
AU6638000A (en) 1999-08-13 2001-03-13 Yale University Binary encoded sequence tags
US7166429B2 (en) 1999-12-29 2007-01-23 Keygene N.V. Method for generating oligonucleotides, in particular for the detection of amplified restriction fragments obtained using AFLP®
US7300751B2 (en) 2000-06-30 2007-11-27 Syngenta Participations Ag Method for identification of genetic markers
US6596490B2 (en) 2000-07-14 2003-07-22 Applied Gene Technologies, Inc. Nucleic acid hairpin probes and uses thereof
EP1325118B1 (en) 2000-10-05 2016-05-25 Riken Oligonucleotide linkers comprising a variable cohesive portion and method for the preparation of polynucleotide libraries by using said linkers.
KR20030082535A (en) 2001-03-09 2003-10-22 뉴젠 테크놀로지스 인코포레이티드 Methods and compositions for amplification of rna sequences
US9261460B2 (en) 2002-03-12 2016-02-16 Enzo Life Sciences, Inc. Real-time nucleic acid detection processes and compositions
US20040006033A1 (en) 2001-08-06 2004-01-08 Zhu York Yuan-Yuan Methods for identifying low-abundance polynucleotides and related compositions
US6927028B2 (en) 2001-08-31 2005-08-09 Chinese University Of Hong Kong Non-invasive methods for detecting non-host DNA in a host using epigenetic differences between the host and non-host DNA
US20030219878A1 (en) 2002-03-13 2003-11-27 Large Scale Biology Corporation Sticky rice
ES2368215T3 (en) 2002-10-30 2011-11-15 Nuevolution A/S ENZYMATIC CODING.
US8114978B2 (en) 2003-08-05 2012-02-14 Affymetrix, Inc. Methods for genotyping selected polymorphism
DE60328193D1 (en) 2003-10-16 2009-08-13 Sequenom Inc Non-invasive detection of fetal genetic traits
US8192937B2 (en) 2004-04-07 2012-06-05 Exiqon A/S Methods for quantification of microRNAs and small interfering RNAs
WO2006056480A2 (en) 2004-11-29 2006-06-01 Klinikum Der Universität Regensburg Means and methods for detecting methylated dna
EP1831401B1 (en) 2004-12-29 2010-02-10 Applied Biosystems, LLC Methods, compositions, and kits for forming self-complementary polynucleotides
DK1924704T3 (en) 2005-08-02 2011-09-05 Rubicon Genomics Inc Compositions and Methods for Processing and Multiplying DNA, including Using Multiple Enzymes in a Single Reaction
MY143596A (en) 2005-08-11 2011-06-15 Synthetic Genomics Inc In vitro recombination method
EP1922420B1 (en) 2005-08-19 2010-01-20 Bioventures, Inc. METHOD AND SUBSTANCES FOR ISOLATING miRNAs
EP1929039B2 (en) 2005-09-29 2013-11-20 Keygene N.V. High throughput screening of mutagenized populations
GB0522310D0 (en) 2005-11-01 2005-12-07 Solexa Ltd Methods of preparing libraries of template polynucleotides
GB0524069D0 (en) 2005-11-25 2006-01-04 Solexa Ltd Preparation of templates for solid phase amplification
EP2602321B1 (en) 2006-05-31 2017-08-23 Sequenom, Inc. Methods and compositions for the extraction and amplification of nucleic acid from a sample
WO2007147063A2 (en) 2006-06-16 2007-12-21 Sequenom, Inc. Methods and compositions for the amplification, detection and quantification of nucleic acid from a sample
WO2008023179A2 (en) 2006-08-24 2008-02-28 Solexa Limited Method for retaining even coverage of short insert libraries
WO2008045575A2 (en) 2006-10-13 2008-04-17 J. Craig Venter Institute, Inc. Sequencing method
WO2008093098A2 (en) 2007-02-02 2008-08-07 Illumina Cambridge Limited Methods for indexing samples and sequencing multiple nucleotide templates
WO2009032779A2 (en) 2007-08-29 2009-03-12 Sequenom, Inc. Methods and compositions for the size-specific seperation of nucleic acid from a sample
ATE549419T1 (en) 2007-08-29 2012-03-15 Sequenom Inc METHODS AND COMPOSITIONS FOR UNIVERSAL SIZE-SPECIFIC POLYMERASE CHAIN REACTION
WO2009091719A1 (en) 2008-01-14 2009-07-23 Applera Corporation Compositions, methods, and kits for detecting ribonucleic acid
US20090203531A1 (en) 2008-02-12 2009-08-13 Nurith Kurn Method for Archiving and Clonal Expansion
CA2718905A1 (en) 2008-03-17 2009-09-24 Expressive Research B.V. Expression-linked gene discovery
AU2009228312B2 (en) 2008-03-26 2015-05-21 Sequenom, Inc. Restriction endonuclease enhanced polymorphic sequence detection
US9115352B2 (en) 2008-03-31 2015-08-25 Sloning Biotechnology Gmbh Method for the preparation of a nucleic acid library
US8029993B2 (en) 2008-04-30 2011-10-04 Population Genetics Technologies Ltd. Asymmetric adapter library construction
US8476013B2 (en) 2008-09-16 2013-07-02 Sequenom, Inc. Processes and compositions for methylation-based acid enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses
CN102216456A (en) 2008-09-16 2011-10-12 塞昆纳姆股份有限公司 Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses
EP2414545B1 (en) 2009-04-03 2017-01-11 Sequenom, Inc. Nucleic acid preparation compositions and methods
US9631227B2 (en) 2009-07-06 2017-04-25 Trilink Biotechnologies, Inc. Chemically modified ligase cofactors, donors and acceptors
GB0912909D0 (en) 2009-07-23 2009-08-26 Olink Genomics Ab Probes for specific analysis of nucleic acids
SG185544A1 (en) 2010-05-14 2012-12-28 Fluidigm Corp Nucleic acid isolation methods
US8828688B2 (en) 2010-05-27 2014-09-09 Affymetrix, Inc. Multiplex amplification methods
WO2011156529A2 (en) 2010-06-08 2011-12-15 Nugen Technologies, Inc. Methods and composition for multiplex sequencing
US8575071B2 (en) 2010-11-03 2013-11-05 Illumina, Inc. Reducing adapter dimer formation
WO2012103154A1 (en) 2011-01-24 2012-08-02 Nugen Technologies, Inc. Stem-loop composite rna-dna adaptor-primers: compositions and methods for library generation, amplification and other downstream manipulations
GB201101621D0 (en) * 2011-01-31 2011-03-16 Olink Ab Method and product
SG10201605049QA (en) 2011-05-20 2016-07-28 Fluidigm Corp Nucleic acid encoding reactions
US9139874B2 (en) 2011-07-07 2015-09-22 Life Technologies Corporation Bi-directional sequencing compositions and methods
US9914958B2 (en) 2011-11-05 2018-03-13 President And Fellows Of Harvard College Nucleic acid-based linkers for detecting and measuring interactions
WO2013102091A1 (en) 2011-12-28 2013-07-04 Ibis Biosciences, Inc. Nucleic acid ligation systems and methods
US10227587B2 (en) 2012-01-10 2019-03-12 Berry Genomics Co., Ltd. Method for constructing a plasma DNA sequencing library
EP2802666B1 (en) 2012-01-13 2018-09-19 Data2Bio Genotyping by next-generation sequencing
ES2930180T3 (en) 2012-03-02 2022-12-07 Sequenom Inc Methods for enriching for cancer nucleic acid from a biological sample
KR101922124B1 (en) 2012-08-27 2018-11-26 삼성전자주식회사 Method for amplifying DNA from RNA in a sample
EP2893040B1 (en) 2012-09-04 2019-01-02 Guardant Health, Inc. Methods to detect rare mutations and copy number variation
US9416405B2 (en) 2012-11-02 2016-08-16 Life Technologies Corporation Compositions, methods and kits for enhancing PCR specificity
US9816120B2 (en) 2013-01-09 2017-11-14 The Penn State Research Foundation Low sequence bias single-stranded DNA ligation
US9982255B2 (en) 2013-03-11 2018-05-29 Kailos Genetics, Inc. Capture methodologies for circulating cell free DNA
UA123532C2 (en) 2013-03-12 2021-04-21 Е. І. Дю Пон Де Немур Енд Компані Methods for the identification of variant recognition sites for rare-cutting engineered double-strand-break-inducing agents and compositions and uses thereof
CA3156663A1 (en) 2013-03-15 2014-09-18 Verinata Health, Inc. Generating cell-free dna libraries directly from blood
US9255265B2 (en) 2013-03-15 2016-02-09 Illumina, Inc. Methods for producing stranded cDNA libraries
US20160032396A1 (en) 2013-03-15 2016-02-04 The Board Of Trustees Of The Leland Stanford Junior University Identification and Use of Circulating Nucleic Acid Tumor Markers
CA2915499A1 (en) 2013-06-27 2014-12-31 10X Genomics, Inc. Compositions and methods for sample processing
US9765375B2 (en) 2013-06-28 2017-09-19 General Electric Company Methods for developing binding-elements and uses thereof
CA2921620C (en) 2013-08-19 2021-01-19 Abbott Molecular Inc. Next-generation sequencing libraries
JP6525473B2 (en) 2013-11-13 2019-06-05 ニューゲン テクノロジーズ, インコーポレイテッド Compositions and methods for identifying replicate sequencing leads
WO2015094861A1 (en) 2013-12-17 2015-06-25 Clontech Laboratories, Inc. Methods for adding adapters to nucleic acids and compositions for practicing the same
EP3363904B1 (en) 2014-01-31 2019-10-23 Swift Biosciences, Inc. Improved methods for processing dna substrates
JP6767870B2 (en) 2014-02-05 2020-10-14 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. Error-free DNA sequencing
EP3114231B1 (en) 2014-03-03 2019-01-02 Swift Biosciences, Inc. Enhanced adaptor ligation
AU2015292311B2 (en) 2014-07-25 2022-01-20 University Of Washington Methods of determining tissues and/or cell types giving rise to cell-free DNA, and methods of identifying a disease or disorder using same
AU2014406026B2 (en) 2014-09-12 2018-08-23 Mgi Tech Co., Ltd. Isolated oligonucleotide and use thereof in nucleic acid sequencing
US20180044668A1 (en) * 2014-10-14 2018-02-15 Bgi Shenzhen Co., Limited Mate pair library construction
US9783799B2 (en) 2014-10-24 2017-10-10 Abbott Molecular Inc. Enrichment of small nucleic acids
WO2016081798A1 (en) 2014-11-20 2016-05-26 Children's Medical Center Corporation Methods relating to the detection of recurrent and non-specific double strand breaks in the genome
JP2018504899A (en) 2014-12-24 2018-02-22 キージーン・エン・フェー Backbone-mediated mate pair sequencing
US20180148716A1 (en) * 2015-03-31 2018-05-31 Qiagen Gmbh Efficiency improving ligation methods
WO2017205540A1 (en) 2016-05-24 2017-11-30 The Translational Genomics Research Institute Molecular tagging methods and sequencing libraries
EP3464629B1 (en) 2016-06-01 2021-09-08 F. Hoffmann-La Roche AG Immuno-pete
US20200248229A1 (en) * 2016-06-17 2020-08-06 The Broad Institute, Inc. Unbiased detection of nucleic acid modifications
CA3024984C (en) 2016-06-30 2021-12-07 Grail, Inc. Differential tagging of rna for preparation of a cell-free dna/rna sequencing library
US10590451B2 (en) 2016-07-01 2020-03-17 Personal Genomics, Inc. Methods of constructing a circular template and detecting DNA molecules
US11299780B2 (en) 2016-07-15 2022-04-12 The Regents Of The University Of California Methods of producing nucleic acid libraries
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
EP3573646B1 (en) 2017-01-27 2022-02-23 Integrated DNA Technologies, Inc. Construction of next generation sequencing (ngs) libraries using competitive strand displacement
EP3601560A1 (en) 2017-03-20 2020-02-05 Illumina, Inc. Methods and compositions for preparing nucleic acid libraries
EP3601598B1 (en) 2017-03-23 2022-08-03 University of Washington Methods for targeted nucleic acid sequence enrichment with applications to error corrected nucleic acid sequencing
US11198865B2 (en) 2017-11-02 2021-12-14 Amanda Raine Splinted ligation adapter tagging
WO2019140201A1 (en) 2018-01-12 2019-07-18 Claret Bioscience, Llc Methods and compositions for analyzing nucleic acid
EP3802864A1 (en) 2018-06-06 2021-04-14 The Regents Of The University Of California Methods of producing nucleic acid libraries and compositions and kits for practicing same
JP2022528139A (en) 2019-04-05 2022-06-08 クラレット バイオサイエンス, エルエルシー Methods and Compositions for Analyzing Nucleic Acids

Similar Documents

Publication Publication Date Title
US11964997B2 (en) Methods of library construction for polynucleotide sequencing
US11396673B2 (en) Closed nucleic acid structures
EP3625356B1 (en) In vitro isolation and enrichment of nucleic acids using site-specific nucleases
JP6219944B2 (en) Amplification dependent on 5 'protection
JP2005517427A5 (en)
JP2023519782A (en) Methods of targeted sequencing
CN111542532B (en) Method and system for synthesizing oligonucleotide by enzyme method
KR20230012554A (en) Method of ligation-linked PCR
EP3638810A1 (en) Methods of library construction for target polynucleotides
WO2019090621A1 (en) Hooked probe, method for ligating nucleic acid and method for constructing sequencing library
US11761033B2 (en) Methods to amplify highly uniform and less error prone nucleic acid libraries
JP2003504018A5 (en)
JPWO2019236726A5 (en)
AU2022407332A1 (en) A method of capturing crispr endonuclease cleavage products
US20240271126A1 (en) Oligo-modified nucleotide analogues for nucleic acid preparation
US20230044684A1 (en) Rapid precipitation-driven kilobase size selection of hmw dna
US20240209407A1 (en) Compositions and methods for phosphoramidite-free enzymatic synthesis of nucleic acids
CN115279918A (en) Novel nucleic acid template structure for sequencing