JPWO2019235566A1 - Fixtures, optics, and methods of manufacturing optics - Google Patents

Fixtures, optics, and methods of manufacturing optics Download PDF

Info

Publication number
JPWO2019235566A1
JPWO2019235566A1 JP2020523172A JP2020523172A JPWO2019235566A1 JP WO2019235566 A1 JPWO2019235566 A1 JP WO2019235566A1 JP 2020523172 A JP2020523172 A JP 2020523172A JP 2020523172 A JP2020523172 A JP 2020523172A JP WO2019235566 A1 JPWO2019235566 A1 JP WO2019235566A1
Authority
JP
Japan
Prior art keywords
component
optical
holding component
fixing
virtual plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020523172A
Other languages
Japanese (ja)
Inventor
直人 飯田
直人 飯田
威男 馬目
威男 馬目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2019235566A1 publication Critical patent/JPWO2019235566A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Accessories Of Cameras (AREA)

Abstract

光学部品を固定台に固定する固定器具であって、光学部品が固定される保持部品と、保持部品が固定される第1部材と、固定台に固定される第3部材と、第1部材と第3部材とを接続して固定する第2部材と、保持部品を第1部材に、第1部材を第2部材に、第2部材を第3部材にそれぞれ締結するボルトと、を備えている。また、保持部品と第1部材とが対向する第1仮想平面と、第1部材と第2部材とが互いに対向する第2仮想平面と、第2部材と前記第3部材とが互いに対向する第3仮想平面とは、同一面上にない。A fixing instrument for fixing an optical component to a fixing base, a holding component for fixing the optical component, a first member for fixing the holding component, a third member fixed to the fixing base, and a first member. It is provided with a second member for connecting and fixing the third member, and a bolt for fastening the holding component to the first member, the first member to the second member, and the second member to the third member. .. Further, a first virtual plane in which the holding component and the first member face each other, a second virtual plane in which the first member and the second member face each other, and a second member in which the second member and the third member face each other. 3 Virtual planes are not on the same plane.

Description

本開示は、光学部品を固定するための固定器具、光学装置、および光学装置の製造方法に関する。 The present disclosure relates to a fixture for fixing an optical component, an optical device, and a method for manufacturing the optical device.

望遠鏡などの光学装置に使用される光学部品は、位置及び角度が高精度に固定される必要がある。また、宇宙空間、極低温など、様々な環境で使用されるものもある(非特許文献1参照)。光学装置に光学部品を高精度に固定するため固定器具として、例えば、特許文献1には、6自由度固定器具が記載されている。また、特許文献2には、光学部品を、位置調整器具を用いて位置決めした後に、接着剤を用いて接着固定することが記載されている。 Optical components used in optical devices such as telescopes need to be fixed in position and angle with high precision. In addition, some are used in various environments such as outer space and extremely low temperature (see Non-Patent Document 1). As a fixing device for fixing an optical component to an optical device with high accuracy, for example, Patent Document 1 describes a six-DOF fixing device. Further, Patent Document 2 describes that an optical component is positioned by using a position adjusting instrument and then adhesively fixed by using an adhesive.

VINROUGE : a very compact 2-5 μm high-resolution spectrograph with Germanium immersion grating(Takayuki. Arasaki等)VINROUGE: a very compact 2-5 μm high-resolution spectrograph with Germanium diffraction grating (Takayuki. Arasaki etc.)

特開2004−354616号公報Japanese Unexamined Patent Publication No. 2004-354616 特開平5−107433号公報Japanese Unexamined Patent Publication No. 5-107433

本開示の一実施形態に係る固定器具は、光学部品を固定台に固定する固定器具であって、前記光学部品が固定される保持部品と、保持部品が固定される第1部材と、前記固定台に固定される第3部材と、前記第1部材と前記第3部材とを接続して固定する第2部材と、前記保持部品を前記第1部材に、前記第1部材を前記第2部材に、前記第2部材を前記第3部材にそれぞれ締結するボルトと、を備えている。また、前記保持部品と前記第1部材とが対向する第1仮想平面と、前記第1部材と前記第2部材とが互いに対向する第2仮想平面と、前記第2部材と前記第3部材とが互いに対向する第3仮想平面とは、同一面上にない。 The fixing device according to the embodiment of the present disclosure is a fixing device for fixing an optical component to a fixing base, and is a holding component to which the optical component is fixed, a first member to which the holding component is fixed, and the fixing. The third member fixed to the table, the second member that connects and fixes the first member and the third member, the holding component is the first member, and the first member is the second member. The second member is provided with a bolt for fastening the second member to the third member, respectively. Further, a first virtual plane in which the holding component and the first member face each other, a second virtual plane in which the first member and the second member face each other, and the second member and the third member. Are not on the same plane as the third virtual planes that face each other.

本開示の一実施形態にかかる固定器具は、光学部品を固定台に固定する固定器具であって、前記光学部品が固定される保持部品と、前記保持部品が固定される第1部材と、前記固定台と前記第1部材とを接続して固定する第4部材と、前記保持部品を前記第1部材に、前記第1部材を前記第4部材に、前記第4部材を前記固定台にそれぞれ締結するボルトと、を備えている。また、前記保持部品と前記第1部材とが互いに対向する第1仮想平面と、前記第1部材と前記第4部材とが互いに対向する第2仮想平面と、前記第4部材と前記固定台とが互いに対向する第4仮想平面とは、同一面上にない。 The fixing device according to the embodiment of the present disclosure is a fixing device for fixing an optical component to a fixing base, and includes a holding component to which the optical component is fixed, a first member to which the holding component is fixed, and the above. A fourth member that connects and fixes the fixing base and the first member, the holding component is attached to the first member, the first member is attached to the fourth member, and the fourth member is attached to the fixing base. It is equipped with bolts to be fastened. Further, a first virtual plane in which the holding component and the first member face each other, a second virtual plane in which the first member and the fourth member face each other, the fourth member and the fixing base, and the like. Are not on the same plane as the fourth virtual planes that face each other.

本開示の一実施形態に係る光学装置は、前記固定器具を備える。 The optical device according to the embodiment of the present disclosure includes the fixing device.

また、本開示の一実施形態に係る光学装置の製造方法は、光学部品を、異なる3方向に移動可能なステージに取り付けて位置出しする工程と、位置出しした前記光学部品を、異なる3つの面内で位置及び角度を調整可能な固定器具で固定台に固定する工程と、前記光学部品から前記ステージを取り外す工程とを備える。 Further, the method for manufacturing an optical device according to an embodiment of the present disclosure includes a step of mounting an optical component on a stage that can move in three different directions and positioning the optical component, and three different surfaces of the positioned optical component. It includes a step of fixing the stage to the fixing base with a fixing device whose position and angle can be adjusted inside, and a step of removing the stage from the optical component.

本実施形態の光学装置の概略の一例を示す平面図である。It is a top view which shows the schematic example of the optical apparatus of this embodiment. 本実施形態の固定器具の一例を示す、(a)は斜視図であり、(b)は(a)のAA’線における断面図である。(A) is a perspective view, and (b) is a sectional view taken along the line AA'in (a) which shows an example of the fixing device of this embodiment. 本実施形態の光学装置と、光学部品の位置決めをするためのステージとを示す斜視図である。It is a perspective view which shows the optical apparatus of this embodiment, and the stage for positioning an optical component.

本開示の光学装置について、天体望遠鏡用光学装置を例として、図を参照しながら説明する。図1は、本実施形態の光学装置の概略の一例を示す平面図である。 The optical device of the present disclosure will be described with reference to the drawings, taking an optical device for an astronomical telescope as an example. FIG. 1 is a plan view showing a schematic example of the optical device of the present embodiment.

光学装置10は、外部からの電磁波Wを制限して通過させるスリット20と、電磁波Wを反射する主鏡40および副鏡50と、撮像手段であるカメラ60と、を備えている。スリット20を通過した電磁波Wは、主鏡40、副鏡50、主鏡40の順で反射されて、カメラ60に導かれる。主鏡40とカメラ60との間には、各種レンズまたはミラーが配置される場合もある。これらの光学部品は、それぞれ固定台5に固定されて、窓部を備えた低温保持機構(不図示)に収容され、温度変動が抑制されている。外部から光学装置10内に入射した電磁波Wは、光路に沿って進行し、カメラ60で結像され、観測対象物の情報を解析することができる。 The optical device 10 includes a slit 20 that limits and passes an electromagnetic wave W from the outside, a primary mirror 40 and a secondary mirror 50 that reflect the electromagnetic wave W, and a camera 60 that is an imaging means. The electromagnetic wave W that has passed through the slit 20 is reflected in the order of the primary mirror 40, the secondary mirror 50, and the primary mirror 40, and is guided to the camera 60. Various lenses or mirrors may be arranged between the primary mirror 40 and the camera 60. Each of these optical components is fixed to a fixing base 5 and housed in a low temperature holding mechanism (not shown) provided with a window portion to suppress temperature fluctuations. The electromagnetic wave W incident on the optical device 10 from the outside travels along the optical path, is imaged by the camera 60, and can analyze the information of the observation object.

図2は、本実施形態の固定器具の一例を示す、(a)は斜視図であり、(b)は(a)のAA’線における断面図である。図2に示すように、固定器具1は、カメラ、レンズ、ミラー等の光学部品60(61)が固定される保持部品3と、保持部品3が固定される第1部材1aと、固定台5に固定される第3部材1cと、第1部材1aと第3部材1cとを接続して固定する第2部材1bと、保持部品3と第1部材1aと第2部材1bと第3部材1cと固定台5とを締結する複数のボルトを備え、光学部品61を固定台5に固定する。つまり、保持部品3は、第1部材1aに固定されており、他の第2部材1b、第3部材1cおよび固定台5には固定されていない。また、第1部材1aは、第2部材1bに固定されており、第3部材1cおよび固定台5には固定されていない。また、第2部材1bは、第3部材1cに固定されており、固定台5には固定されていない。 FIG. 2 shows an example of the fixing device of the present embodiment, (a) is a perspective view, and (b) is a cross-sectional view taken along the line AA'of (a). As shown in FIG. 2, the fixing device 1 includes a holding component 3 to which the optical component 60 (61) such as a camera, a lens, and a mirror is fixed, a first member 1a to which the holding component 3 is fixed, and a fixing base 5. The third member 1c fixed to the lens, the second member 1b connecting and fixing the first member 1a and the third member 1c, the holding component 3, the first member 1a, the second member 1b, and the third member 1c. The optical component 61 is fixed to the fixing base 5 with a plurality of bolts for fastening the fixing base 5 to the fixing base 5. That is, the holding component 3 is fixed to the first member 1a, and is not fixed to the other second member 1b, the third member 1c, and the fixing base 5. Further, the first member 1a is fixed to the second member 1b, and is not fixed to the third member 1c and the fixing base 5. Further, the second member 1b is fixed to the third member 1c, and is not fixed to the fixing base 5.

固定台5の上面の大きさは、例えば、X方向の長さが330mm〜600mmであり、y方向の長さが150mm〜600mmである。 The size of the upper surface of the fixing base 5 is, for example, 330 mm to 600 mm in the X direction and 150 mm to 600 mm in the y direction.

固定器具1は、保持部品3と第1部材1aとが互いに対向する第1仮想平面2aと、第1部材1aと第2部材1bとが互いに対向する第2仮想平面2bと、第2部材1bと第3部材1cとが互いに対向する第3仮想平面2cとは、同一面上にない。固定器具1をこのような構成にすることによって、第1仮想平面2a、第2仮想平面2bおよび第3仮想平面2cの3つの面内で、光学部品60(61)の位置及び角度を高精度に調整することができる。つまり、3次元的な自由度で配置した光学部品60(61)を、3方向および3面内角度を合わせた合計6軸の向きを吸収して固定台5に固定することができる。なお、第1仮想平面2aと、第2仮想平面2bと、第3仮想平面2cとが同一面上にないというのは、第1仮想平面2aと第2仮想平面2bとが平行ではなく交差する関係にあり、第2仮想平面2bと第3仮想平面2cとが平行ではなく交差する関係にあり、第1仮想平面2aと第3仮想平面2cとが平行ではなく交差する関係にあることをいう。 The fixing device 1 includes a first virtual plane 2a in which the holding component 3 and the first member 1a face each other, a second virtual plane 2b in which the first member 1a and the second member 1b face each other, and a second member 1b. The third virtual plane 2c in which the third member 1c and the third member 1c face each other are not on the same plane. By making the fixture 1 have such a configuration, the position and angle of the optical component 60 (61) can be accurately determined within the three planes of the first virtual plane 2a, the second virtual plane 2b, and the third virtual plane 2c. Can be adjusted to. That is, the optical component 60 (61) arranged with three-dimensional degrees of freedom can be fixed to the fixing base 5 by absorbing the directions of a total of 6 axes including the three directions and the in-plane angles. The fact that the first virtual plane 2a, the second virtual plane 2b, and the third virtual plane 2c are not on the same plane means that the first virtual plane 2a and the second virtual plane 2b intersect instead of being parallel. It means that the second virtual plane 2b and the third virtual plane 2c are not parallel but intersect, and the first virtual plane 2a and the third virtual plane 2c are not parallel but intersect. ..

固定器具1は、上記のような構成により、光学部品60(61)を、高精度に固定可能で、宇宙空間、極低温などの様々な環境でも使用可能となる。従来の特許文献1に示す6自由度固定器具では、光学部品を固定する際に位置及び角度がずれて精度が悪化する恐れがあったが、本開示の固定器具1では、光学部品60(61)を高精度に固定可能となる。また、特許文献1に示す6自由度固定器具では、光学部品を固定した後、器具が緩んで光学部品の位置や角度が変化する恐れがあったが、本開示の固定器具1では、光学部品60(61)の固定後においても、光学部品60(61)の位置や角度が変化するのを低減できる。また、従来の特許文献2に示す、接着剤を用いて光学部品を固定した固定器具では、接着剤の信頼性に懸念があり、宇宙空間、極低温などの環境では性能が低下しやすいが、本開示の固定器具1では、宇宙空間、極低温などの環境でも性能が低下しにくい。 With the above configuration, the fixing device 1 can fix the optical component 60 (61) with high accuracy, and can be used in various environments such as outer space and extremely low temperature. In the conventional 6-DOF fixing device shown in Patent Document 1, there is a risk that the position and angle may shift when fixing the optical component, and the accuracy may deteriorate. However, in the fixing device 1 of the present disclosure, the optical component 60 (61) ) Can be fixed with high accuracy. Further, in the 6-DOF fixing device shown in Patent Document 1, after fixing the optical component, the device may loosen and the position and angle of the optical component may change. However, in the fixing device 1 of the present disclosure, the optical component is used. Even after fixing the 60 (61), it is possible to reduce changes in the position and angle of the optical component 60 (61). Further, in the fixing device in which the optical component is fixed by using an adhesive as shown in Patent Document 2, there is a concern about the reliability of the adhesive, and the performance tends to deteriorate in an environment such as outer space or extremely low temperature. The fixing device 1 of the present disclosure is unlikely to deteriorate in performance even in an environment such as outer space or extremely low temperature.

また、固定部品の他の実施形態として、図2において、第2部材1bおよび第3部材1cを、1つの第4部材と見なしてもよい。この場合、保持部品3と第1部材1aとが互いに対向する第1仮想平面2aと、第1部材1aと第4部材とが互いに対向する第2仮想平面2bと、第4部材と固定台5とが互いに対向する第4仮想平面2dとは、同一面上にない。固定器具1をこのような構成にすることによって、第1仮想平面2a、第2仮想平面2bおよび第4仮想平面2dの3つの面内で、光学部品60(61)の位置及び角度を高精度に調整することができる。つまり、3次元的な自由度で配置した光学部品60(61)を、3方向および3面内角度を合わせた合計6軸の向きを吸収して固定台5に固定することができる。なお、第1仮想平面2aと、第2仮想平面2bと、第4仮想平面2dとが同一平面状にないというのは、第1仮想平面2aと第2仮想平面2bとが平行ではなく交差する関係にあり、第2仮想平面2bと第4仮想平面2dとが平行ではなく交差する関係にあり、第1仮想平面2aと第4仮想平面2dとが平行ではなく交差する関係にあることをいう。 Further, as another embodiment of the fixed component, in FIG. 2, the second member 1b and the third member 1c may be regarded as one fourth member. In this case, the first virtual plane 2a in which the holding component 3 and the first member 1a face each other, the second virtual plane 2b in which the first member 1a and the fourth member face each other, the fourth member and the fixing base 5 Are not on the same plane as the fourth virtual plane 2d that faces each other. By making the fixture 1 have such a configuration, the position and angle of the optical component 60 (61) can be accurately determined within the three planes of the first virtual plane 2a, the second virtual plane 2b, and the fourth virtual plane 2d. Can be adjusted to. That is, the optical component 60 (61) arranged with three-dimensional degrees of freedom can be fixed to the fixing base 5 by absorbing the directions of a total of 6 axes including the three directions and the in-plane angles. The fact that the first virtual plane 2a, the second virtual plane 2b, and the fourth virtual plane 2d are not in the same plane means that the first virtual plane 2a and the second virtual plane 2b intersect rather than be parallel to each other. It means that the second virtual plane 2b and the fourth virtual plane 2d are not parallel but intersect, and the first virtual plane 2a and the fourth virtual plane 2d are not parallel but intersect. ..

保持部品3、第1部材1a、第2部材1bおよび第3部材1cはボルトを通す貫通穴を有する。例えば、第1仮想平面2aを境界面として、第1部材1aに貫通穴、保持部品3にねじ穴、第2仮想平面2bを境界面として、第2部材1bに貫通穴、第1部材1aにねじ穴、第3仮想平面2cを境界面として、第2部材1bに貫通穴、第3部材1cにねじ穴、第3部材1cに貫通穴1e、固定台5にねじ穴1fが形成されており、それぞれボルトで締結する。 The holding component 3, the first member 1a, the second member 1b, and the third member 1c have through holes through which bolts are passed. For example, with the first virtual plane 2a as the boundary surface, the first member 1a has a through hole, the holding component 3 has a screw hole, the second virtual plane 2b has a boundary surface, the second member 1b has a through hole, and the first member 1a has a through hole. With the screw hole and the third virtual plane 2c as the boundary surface, a through hole is formed in the second member 1b, a screw hole is formed in the third member 1c, a through hole 1e is formed in the third member 1c, and a screw hole 1f is formed in the fixing base 5. , Fasten with bolts respectively.

なお、図2(b)では、固定台5にボルト1dで第3部材1cを締結する場合を示しているが、他の部材同士を締結する場合も同様である。 Note that FIG. 2B shows a case where the third member 1c is fastened to the fixing base 5 with bolts 1d, but the same applies to the case where other members are fastened to each other.

この時、ボルトの外径を、貫通穴の内径よりも0.1mm〜10mm、特に好ましくは0.5mm〜1mm小さくする。このような設定にすることにより、固定器具1を構成する各部品をボルトで締結する際に、第1仮想平面2a、第2仮想平面2b、第3仮想平面2cおよび第4仮想平面2dの各面内で、光学部品60(61)の位置を0.1mm〜10mmあるいは0.5mm〜1mmの範囲内で調整することができる。ねじ穴1fは、例えば、コイルインサートによって形成される内部空間であり、コイルインサートを用いた場合、ボルトはワッシャを挟んでコイルインサートに締結される。 At this time, the outer diameter of the bolt is made 0.1 mm to 10 mm, particularly preferably 0.5 mm to 1 mm smaller than the inner diameter of the through hole. With such a setting, when each component constituting the fixing device 1 is fastened with bolts, each of the first virtual plane 2a, the second virtual plane 2b, the third virtual plane 2c, and the fourth virtual plane 2d is used. In the plane, the position of the optical component 60 (61) can be adjusted within the range of 0.1 mm to 10 mm or 0.5 mm to 1 mm. The screw hole 1f is, for example, an internal space formed by the coil insert, and when the coil insert is used, the bolt is fastened to the coil insert with a washer in between.

また、保持部品3、第1部材1a、第2部材1bおよび第3部材1cの互いに対向する対向面は、開気孔率が0.5面積%以下であるとよい。 Further, it is preferable that the facing surfaces of the holding component 3, the first member 1a, the second member 1b and the third member 1c facing each other have an open porosity of 0.5 area% or less.

開気孔率が上記範囲であると、浮遊する微粒子が開気孔内に侵入するおそれが低くなるので、高精度な位置決めをしやすくなる。 When the open porosity is within the above range, the possibility that floating fine particles invade the open pores is low, so that highly accurate positioning is facilitated.

さらに、対向面における開気孔の平均径は3μm以下であって、最大径は10μm以下であるとよい。 Further, the average diameter of the open pores on the facing surface is preferably 3 μm or less, and the maximum diameter is preferably 10 μm or less.

開気孔の平均径および最大径が上記範囲であると、大きな浮遊する微粒子が開気孔内に侵入するおそれが低くなるので、さらに高精度な位置決めをしやすくなる。 When the average diameter and the maximum diameter of the open pores are in the above ranges, the possibility that large floating fine particles invade the open pores is reduced, so that more accurate positioning becomes easier.

開気孔率、開気孔の平均径および最大径を求めるには、観察の対象とする部材の表面から深さ方向に平均粒径D50が3μmのダイヤモンド砥粒を用いて銅盤にて研磨する。その後、平均粒径D50が0.5μmのダイヤモンド砥粒を用いて錫盤にて研磨する。これらの研磨によって得られる研磨面を観察面とする。 In order to obtain the open porosity, the average diameter of the open pores, and the maximum diameter, the diamond abrasive grains having an average particle diameter D50 of 3 μm are polished on a copper plate in the depth direction from the surface of the member to be observed. Then, it is polished on a tin plate using diamond abrasive grains having an average particle size D50 of 0.5 μm. The polished surface obtained by these polishings is used as an observation surface.

そして、観察面を光学顕微鏡を用いて、倍率を100倍とし、測定対象の範囲を、例えば、横方向の長さを720μm、縦方向の長さを540μmとして4か所撮影する。次に、撮影した画像のうち、周辺部を除く領域(面積が226856μm2)を計測範囲とし、画像解析ソフト(例えば、三谷商事(株)製、Win ROOF)を用いてそれぞれ4か所の計測範囲を解析することによって、気孔の円相当径を得ることができる。Then, using an optical microscope, the observation surface is photographed at four locations with a magnification of 100 times and a measurement target range of, for example, a horizontal length of 720 μm and a vertical length of 540 μm. Next, in the captured image, the area excluding the peripheral part (area: 226856 μm 2 ) is set as the measurement range, and image analysis software (for example, Win ROOF manufactured by Mitani Shoji Co., Ltd.) is used to measure each of the four locations. By analyzing the range, the diameter equivalent to the circle of the pores can be obtained.

なお、開気孔の円相当径の閾値は、0.868μmとすればよい。 The threshold value of the equivalent circle diameter of the open pores may be 0.868 μm.

また、保持部品3と第1部材1aと第2部材1bと第3部材1cは、例えば、直方体形状であればよい。 Further, the holding component 3, the first member 1a, the second member 1b, and the third member 1c may have, for example, a rectangular parallelepiped shape.

保持部品3、第1部材1a、第2部材1bおよび第3部材1cの少なくともいずれかが、使用温度(例えば10K以下)から室温までの平均線膨張率が±1.5×10-6/K以下のセラミックスまたはガラスからなる。このようなセラミックスの例として、コージェライト、リチウムアルミノシリケート、リン酸ジルコニウムカリウムまたはムライトを主成分とするセラミックスが挙げられる。At least one of the holding component 3, the first member 1a, the second member 1b, and the third member 1c has an average linear expansion coefficient of ± 1.5 × 10 -6 / K from the operating temperature (for example, 10 K or less) to room temperature. It consists of the following ceramics or glass. Examples of such ceramics include ceramics containing cordierite, lithium aluminosilicate, potassium zirconium phosphate or mullite as a main component.

コージェライトが主成分であるセラミックスは、CaがCaO換算で0.4質量%以上0.6質量%以下、AlがAl23換算で2.3質量%以上3.5質量%以下ならびにMnおよびCrがMnCr24換算で0.6質量%以上0.7質量%以下含んでいてもよい。このセラミックスは、平均線膨張率を±20×10-9/K以下にすることができる。Cordierite as a main component ceramics, Ca is less 0.6 wt% to 0.4 wt% in terms of CaO, Al is Al 2 O 3 3.5 wt% 2.3 wt% or more in terms of less and Mn And Cr may be contained in an amount of 0.6% by mass or more and 0.7% by mass or less in terms of MnCr 2 O 4. This ceramic can have an average coefficient of linear expansion of ± 20 × 10 -9 / K or less.

リチウムアルミノシリケートが主成分であるセラミックスは、炭化珪素を20質量%以下含んでいてもよい。 Ceramics containing lithium aluminosilicate as a main component may contain 20% by mass or less of silicon carbide.

また、ガラスの例として、チタニウムケイ酸を主成分とするガラスが挙げられる。平均線膨張率が小さいセラミックスまたはガラスからなる部材を用いれば、大きな温度変化に曝されても形状の変化が小さいため、その部材は高い信頼性を有する。 Further, as an example of glass, glass containing titanium silicic acid as a main component can be mentioned. If a member made of ceramics or glass having a small average coefficient of linear expansion is used, the change in shape is small even when exposed to a large temperature change, so that the member has high reliability.

ここで、保持部品3、第1部材1a、第2部材1bおよび第3部材1cの少なくともいずれかがセラミックスからなる場合、JIS R 1618:2002に準拠して、セラミックスからなる部材の平均線膨張率を求めればよい。 Here, when at least one of the holding component 3, the first member 1a, the second member 1b, and the third member 1c is made of ceramics, the average linear expansion coefficient of the members made of ceramics is in accordance with JIS R 1618: 2002. Just ask.

保持部品3、第1部材1a、第2部材1bおよび第3部材1cの少なくともいずれかがガラスからなる場合、JIS R 3251:1995に準拠して、ガラスからなる部材の平均線膨張率を求めればよい。 When at least one of the holding component 3, the first member 1a, the second member 1b, and the third member 1c is made of glass, the average coefficient of linear expansion of the member made of glass can be obtained in accordance with JIS R 3251: 1995. Good.

なお、各部材の平均線膨張率が±1×10-6/K以下である場合には、光ヘテロダイン法1光路干渉計を用いて測定すればよい。When the average coefficient of linear expansion of each member is ± 1 × 10 -6 / K or less, the measurement may be performed using an optical heterodyne method 1 optical path interferometer.

セラミックスにおける主成分とは、着目するセラミックスを構成する成分の合計100質量%のうち、60質量%以上を占める成分をいう。特に、主成分は、着目するセラミックスを構成する成分の合計100質量%のうち、95質量%以上を占める成分であるとよい。セラミックスを構成する成分は、X線回折装置(XRD)を用いて求めればよい。各成分の含有量は、成分を同定した後、蛍光X線分析装置(XRF)またはICP発光分光分析装置を用いて、成分を構成する元素の含有量を求め、同定された成分に換算すればよい。ガラスについても同様である。 The principal component in ceramics refers to a component that accounts for 60% by mass or more of the total 100% by mass of the components constituting the ceramic of interest. In particular, the main component is preferably a component that accounts for 95% by mass or more of the total 100% by mass of the components constituting the ceramic of interest. The components constituting the ceramics may be obtained by using an X-ray diffractometer (XRD). The content of each component can be determined by determining the content of the elements constituting the component using a fluorescent X-ray analyzer (XRF) or an ICP emission spectroscopic analyzer after identifying the component and converting it into the identified component. Good. The same applies to glass.

ボルトは、鉄−コバルト系合金、鉄−コバルト−炭素系合金、鉄−ニッケル系合金または鉄−ニッケル−コバルト系合金の少なくともいずれかからなるとよい。 The bolt may consist of at least one of an iron-cobalt alloy, an iron-cobalt-carbon alloy, an iron-nickel alloy or an iron-nickel-cobalt alloy.

このような合金は、セラミックスと平均線膨張率が近いからである。 This is because such an alloy has an average coefficient of linear expansion close to that of ceramics.

特に、ボルトは、鉄−36wt%ニッケル合金(商標名は、インバー(登録商標、Imphy Alloys社))などの低熱膨張金属からなるとよい。ボルトとの締結に使用するコイルインサート及びワッシャは、例えば、SUS304、SUS304L、SUS304N1、SUS304N2、SUS316、SUS317、SUS312L、SUS329J1またはSUS329J4L等のステンレス鋼であってもよい。これらのステンレス鋼は耐食性が高いからである。 In particular, the bolt may be made of a low thermal expansion metal such as iron-36 wt% nickel alloy (trademark is Invar (registered trademark, Imphy Alloys)). The coil insert and washer used for fastening with the bolt may be, for example, stainless steel such as SUS304, SUS304L, SUS304N1, SUS304N2, SUS316, SUS317, SUS312L, SUS329J1 or SUS329J4L. This is because these stainless steels have high corrosion resistance.

上記構成により、固定器具1を用いて、光学部品60(61)を固定台5に精度よく、例えば、1μm以下の精度で固定することができる。 With the above configuration, the optical component 60 (61) can be accurately fixed to the fixing base 5 by using the fixing instrument 1, for example, with an accuracy of 1 μm or less.

特に、保持部品3、第1部材1a、第2部材1bおよび第3部材1cすべてが使用温度(例えば10K以下)から室温までの平均線膨張率が±1.5×10-6/K以下のセラミックスまたはガラスからなるとよい。In particular, the average linear expansion coefficient from the operating temperature (for example, 10 K or less) to room temperature is ± 1.5 × 10 -6 / K or less for all the holding parts 3, the first member 1a, the second member 1b, and the third member 1c. It may consist of ceramics or glass.

本開示の光学装置は、固定器具1を備えており、図3に示す光学装置10は、光学部品60と固定器具1と、固定器具1を支持する固定台5とを備えており、光学装置の大きさは、600mm×600mm×600mm程度である。本実施形態では、固定器具1は、光学部品60とともに、低温保持機構に収容される。したがって固定器具1は、上記のような低熱膨張材料から構成されていることが好ましい。 The optical device of the present disclosure includes a fixing device 1, and the optical device 10 shown in FIG. 3 includes an optical component 60, a fixing device 1, and a fixing base 5 that supports the fixing device 1. The size of is about 600 mm × 600 mm × 600 mm. In the present embodiment, the fixing device 1 is housed in the low temperature holding mechanism together with the optical component 60. Therefore, the fixing device 1 is preferably made of the above-mentioned low thermal expansion material.

図3は、本実施形態の光学装置と、光学部品の位置決めをするためのステージとを示す斜視図である。 FIG. 3 is a perspective view showing the optical device of this embodiment and a stage for positioning optical components.

本開示の光学装置10の製造方法を、図3を用いて説明する。本開示の光学装置10の製造方法は、光学部品60(61)を、異なる3方向に移動可能なステージ6に取り付けて位置出しする工程と、位置出しした光学部品60(61)を、異なる3つの平面内で位置および角度を調整可能な固定器具1で固定台5に固定する工程と、光学部品60(61)からステージ6を取り外す工程とを有する。 The manufacturing method of the optical device 10 of the present disclosure will be described with reference to FIG. The manufacturing method of the optical device 10 of the present disclosure is different from the step of attaching the optical component 60 (61) to the stage 6 movable in three different directions and positioning the optical component 60 (61). It includes a step of fixing to the fixing base 5 with a fixing device 1 whose position and angle can be adjusted in one plane, and a step of removing the stage 6 from the optical component 60 (61).

固定器具1としては、本開示の固定器具1が好適である。 As the fixing device 1, the fixing device 1 of the present disclosure is suitable.

以下、本開示の光学装置10の製造方法の詳細を、図1に示す固定器具1を例として説明する。カメラ等の光学部品60(61)は、主鏡40と副鏡50で反射される電磁波Wの光路上にあって、位置及び角度が精度よく固定される必要がある。具体的には、3次元的に、位置はサブミクロンレベル、角度は数秒以下での配置が要求される。 Hereinafter, the details of the manufacturing method of the optical device 10 of the present disclosure will be described by taking the fixing device 1 shown in FIG. 1 as an example. The optical component 60 (61) such as a camera is on the optical path of the electromagnetic wave W reflected by the primary mirror 40 and the secondary mirror 50, and its position and angle need to be fixed accurately. Specifically, three-dimensionally, the position is required to be at the submicron level, and the angle is required to be arranged within a few seconds.

まず、固定台5の所定の位置に主鏡40と副鏡50とを固定する。 First, the primary mirror 40 and the secondary mirror 50 are fixed at predetermined positions on the fixing base 5.

次に、保持部品3を、異なる3方向に移動可能なステージ6に取り付ける。ここで、保持部品3は、例えば、カメラ台である。異なる3方向は、図3に示す、X方向、Y方向およびZ方向であり、互いに直交する3方向である。ステージ6は、例えば、保持部品3を直交する3方向に移動することを可能とする高精度なXYZステージである。ステージ6として、XY軸ステージ6a(例えば、シグマ光機株式会社製、TSD−602SLWP)と、Z軸ステージ6b(シグマ光機株式会社製、TSD−603RLWP)とを組み合せて使用することができる。保持部品3は、電磁波Wの光軸に対して略平行な方向とそれに垂直な2方向との調整が実施可能な状態でステージ6に取り付けられる。 Next, the holding component 3 is attached to the stage 6 which can move in three different directions. Here, the holding component 3 is, for example, a camera stand. The three different directions are the X direction, the Y direction, and the Z direction shown in FIG. 3, and are three directions orthogonal to each other. The stage 6 is, for example, a high-precision XYZ stage that enables the holding component 3 to move in three orthogonal directions. As the stage 6, an XY-axis stage 6a (for example, TSD-602SLWP manufactured by SIGMA KOKI Co., Ltd.) and a Z-axis stage 6b (TSD-603RLWP manufactured by SIGMA KOKI Co., Ltd.) can be used in combination. The holding component 3 is attached to the stage 6 in a state in which adjustment can be performed in a direction substantially parallel to the optical axis of the electromagnetic wave W and in two directions perpendicular to the direction.

次に、ステージ6を用いて、保持部品3の位置出しを行う。位置出しは、例えば、保持部品3に、カメラ60を取り付ける前にミラー(照合鏡)61を取り付け、He−Neレーザーを用い、主鏡40に入射する光と、ミラー(照合鏡)61を経由して主鏡40から反射される光との干渉を、光干渉計で測定し、保持部品3を所望の位置と角度に設定するとよい。例えば、平行な電磁波Wを入射させたときの双方の反射波のなす角度が、2秒以内となるように調整する。干渉計と光学装置10の光軸高さがあわない場合は、光学装置10の向きを適宜回転させて、主鏡40に入射する光と主鏡40から反射される光との干渉を測定をしてもよい。 Next, the stage 6 is used to position the holding component 3. Positioning is performed, for example, by attaching a mirror (collation mirror) 61 to the holding component 3 before attaching the camera 60, using a He-Ne laser, and passing the light incident on the primary mirror 40 and the mirror (collation mirror) 61. Then, the interference with the light reflected from the primary mirror 40 may be measured with an optical interferometer, and the holding component 3 may be set to a desired position and angle. For example, the angle formed by both reflected waves when a parallel electromagnetic wave W is incident is adjusted to be within 2 seconds. If the heights of the optical axes of the interferometer and the optical device 10 do not match, rotate the direction of the optical device 10 as appropriate to measure the interference between the light incident on the primary mirror 40 and the light reflected from the primary mirror 40. You may.

次に第3部材1cと固定台5をボルト1dでする。 Next, the third member 1c and the fixing base 5 are bolted 1d.

次に、第1部材1aを保持部品3にボルトで第1仮想平面2a内で位置および角度を調整することができる状態で仮止めする。同様に、第2部材1bと第3部材1c、第1部材1aと第2部材1bをそれぞれ第2仮想平面2b、第3仮想平面2c内で位置、角度調整可能な状態で仮止めする。なお、第1部材1a、第2部材1b、第3部材1cの仮止めの順番は特に問わない。 Next, the first member 1a is temporarily fixed to the holding component 3 in a state where the position and angle can be adjusted in the first virtual plane 2a with bolts. Similarly, the second member 1b and the third member 1c, and the first member 1a and the second member 1b are temporarily fixed in the second virtual plane 2b and the third virtual plane 2c in a state where the positions and angles can be adjusted, respectively. The order of temporary fixing of the first member 1a, the second member 1b, and the third member 1c is not particularly limited.

次に、第1部材1aと保持部品3、第2部材1bと第3部材1c、第1部材1aと第2部材1bをボルトで本締めして、保持部品3を第1部材1a、第2部材1bおよび第3部材1cを順次介して固定台5に固定する。ここでも、第1部材1a、第2部材1b、第3部材1cの本締めの順番は特に問わない。 Next, the first member 1a and the holding part 3, the second member 1b and the third member 1c, the first member 1a and the second member 1b are finally tightened with bolts, and the holding part 3 is tightened to the first member 1a and the second member. The member 1b and the third member 1c are sequentially fixed to the fixing base 5. Again, the order of final tightening of the first member 1a, the second member 1b, and the third member 1c is not particularly limited.

本締めする前に仮止めすることで、保持部品3の姿勢の微調整が可能である。また、固定器具1の締結時にかかる応力を低減でき、固定器具1の破損を抑制することができる。 By temporarily fixing the holding component 3 before the final tightening, the posture of the holding component 3 can be finely adjusted. In addition, the stress applied when the fixing device 1 is fastened can be reduced, and damage to the fixing device 1 can be suppressed.

そして、保持部品3からステージ6を取り外し、ミラー(照合鏡)61を取り外して、カメラ60を取り付ける。ステージ6を取り外すのは、ステージ6は線膨張率が高い材質、例えば、スチールによって形成されているからである。 Then, the stage 6 is removed from the holding component 3, the mirror (verification mirror) 61 is removed, and the camera 60 is attached. The stage 6 is removed because the stage 6 is made of a material having a high coefficient of linear expansion, for example, steel.

以上、本開示の実施形態について説明したが、本開示は前述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更、改良、組合せ等が可能である。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and various changes, improvements, combinations, and the like can be made without departing from the gist of the present disclosure.

1 固定器具
1a 第1部材
1b 第2部材
1c 第3部材
1d ボルト
1e 貫通穴
1f ねじ穴
2a 第1仮想平面
2b 第2仮想平面
2c 第3仮想平面
2d 第4仮想平面
3 保持部品
5 固定台
6 ステージ
10 光学装置
20 スリット
40 主鏡
50 副鏡
60 光学部品(カメラ)
61 光学部品(ミラー(照合鏡))
1 Fixing device 1a 1st member 1b 2nd member 1c 3rd member 1d Bolt 1e Through hole 1f Screw hole 2a 1st virtual plane 2b 2nd virtual plane 2c 3rd virtual plane 2d 4th virtual plane 3 Holding part 5 Fixing base 6 Stage 10 Optical device 20 Slit 40 Primary mirror 50 Secondary mirror 60 Optical parts (camera)
61 Optical parts (mirror (collation mirror))

Claims (11)

光学部品を固定台に固定する固定器具であって、
前記光学部品が固定される保持部品と、
前記保持部品が固定される第1部材と、
前記固定台に固定される第3部材と、
前記第1部材と前記第3部材とを接続して固定する第2部材と、
前記保持部品を前記第1部材に、前記第1部材を前記第2部材に、前記第2部材を前記第3部材にそれぞれ締結するボルトと、を備え、
前記保持部品と前記第1部材とが互いに対向する第1仮想平面と、
前記第1部材と前記第2部材とが互いに対向する第2仮想平面と、
前記第2部材と前記第3部材とが互いに対向する第3仮想平面とは、同一面上にない、固定器具。
A fixture that fixes optical components to a fixing base.
The holding component to which the optical component is fixed and the holding component
The first member to which the holding part is fixed and
The third member fixed to the fixing base and
A second member that connects and fixes the first member and the third member,
The holding component is provided with the first member, the first member is provided with the second member, and the second member is provided with a bolt for fastening the second member to the third member.
A first virtual plane in which the holding component and the first member face each other,
A second virtual plane in which the first member and the second member face each other,
A fixing device in which the second member and the third virtual plane on which the third member faces each other are not on the same plane.
前記保持部品、前記第1部材、前記第2部材および前記第3部材の少なくともいずれかが、平均線膨張率が±1.5×10-6/K以下のセラミックスまたはガラスからなり、前記ボルトは、鉄−コバルト系合金、鉄−コバルト−炭素系合金、鉄−ニッケル系合金および鉄−ニッケル−コバルト系合金の少なくともいずれかからなる、請求項1に記載の固定器具。At least one of the holding component, the first member, the second member, and the third member is made of ceramics or glass having an average linear expansion rate of ± 1.5 × 10 -6 / K or less, and the bolt is The fixing device according to claim 1, further comprising at least one of an iron-cobalt alloy, an iron-cobalt-carbon alloy, an iron-nickel alloy and an iron-nickel-cobalt alloy. 前記保持部品、前記第1部材、前記第2部材および前記第3部材の互いに対向する対向面は、開気孔率が0.5面積%以下(但し、0面積%を除く)である請求項1または2に記載の固定器具。 The holding component, the first member, the second member, and the third member facing each other have an open porosity of 0.5 area% or less (excluding 0 area%). Or the fixing device according to 2. 前記保持部品、前記第1部材、前記第2部材および前記第3部材は、前記ボルトを通す貫通穴を有し、前記ボルトの外径は、前記貫通穴の内径よりも、0.1mm〜10mm小さい、請求項1〜3のいずれかに記載の固定器具。 The holding component, the first member, the second member, and the third member have through holes through which the bolts pass, and the outer diameter of the bolts is 0.1 mm to 10 mm larger than the inner diameter of the through holes. The small fixture according to any one of claims 1-3. 光学部品を固定台に固定する固定器具であって、
前記光学部品が固定される保持部品と、
前記保持部品が固定される第1部材と、
前記固定台と前記第1部材とを接続して固定する第4部材と、
前記保持部品を前記第1部材に、前記第1部材を前記第4部材に、前記第4部材を前記固定台にそれぞれ締結するボルトと、を備え、
前記保持部品と前記第1部材とが互いに対向する第1仮想平面と、
前記第1部材と前記第4部材とが互いに対向する第2仮想平面と、
前記第4部材と前記固定台とが互いに対向する第4仮想平面とは、同一面上にない、固定器具。
A fixture that fixes optical components to a fixing base.
The holding component to which the optical component is fixed and the holding component
The first member to which the holding part is fixed and
A fourth member that connects and fixes the fixing base and the first member,
The holding component is provided with the first member, the first member is provided with the fourth member, and the fourth member is provided with a bolt for fastening the fourth member to the fixing base.
A first virtual plane in which the holding component and the first member face each other,
A second virtual plane in which the first member and the fourth member face each other,
A fixing device in which the fourth member and the fourth virtual plane on which the fixing base faces each other are not on the same plane.
前記保持部品、前記第1部材および前記第4部材の少なくともいずれかが、平均線膨張率が±1.5×10-6/K以下のセラミックスまたはガラスからなり、前記ボルトは、鉄−コバルト系合金、鉄−コバルト−炭素系合金、鉄−ニッケル系合金および鉄−ニッケル−コバルト系合金の少なくともいずれかからなる、請求項5に記載の固定器具。At least one of the holding component, the first member, and the fourth member is made of ceramics or glass having an average coefficient of linear expansion of ± 1.5 × 10 -6 / K or less, and the bolt is an iron-cobalt type. The fixing device according to claim 5, which comprises at least one of an alloy, an iron-cobalt-carbon alloy, an iron-nickel alloy and an iron-nickel-cobalt alloy. 前記保持部品、前記第1部材および前記第4部材の互いに対向する対向面は、開気孔率が0.5面積%以下(但し、0面積%を除く)である請求項5または6に記載の固定器具。 The fifth or sixth aspect of the present invention, wherein the holding component, the first member, and the fourth member facing each other have an open porosity of 0.5 area% or less (excluding 0 area%). Fixing device. 前記保持部品、前記第1部材および前記第4部材は、前記ボルトを通す貫通穴を有し、前記ボルトの外径は、前記貫通穴の内径よりも、0.1mm〜10mm小さい、請求項5〜7のいずれかに記載の固定器具。 5. The holding component, the first member, and the fourth member have through holes through which the bolts pass, and the outer diameter of the bolts is 0.1 mm to 10 mm smaller than the inner diameter of the through holes. The fixing device according to any one of 7 to 7. 請求項1〜8のいずれかに記載の固定器具を備える、光学装置。 An optical device comprising the fixture according to any one of claims 1-8. 光学部品を、異なる3方向に移動可能なステージに取り付けて位置出しする工程と、
位置出しした前記光学部品を、異なる3つの面内で位置及び角度を調整可能な固定器具で固定台に固定する工程と、
前記光学部品から前記ステージを取り外す工程とを有する、
光学装置の製造方法。
The process of mounting and positioning the optical components on a stage that can move in three different directions,
A process of fixing the positioned optical component to a fixing base with a fixing device whose position and angle can be adjusted in three different planes.
It comprises a step of removing the stage from the optical component.
Manufacturing method of optical equipment.
光学部品を、異なる3方向に移動可能なステージに取り付けて位置出しする工程と、
位置出しした前記光学部品を、前記請求項1〜8のいずれかに記載の固定器具で固定台に固定する工程と、
前記光学部品から前記ステージを取り外す工程とを有する、
光学装置の製造方法。
The process of mounting and positioning the optical components on a stage that can move in three different directions,
The step of fixing the positioned optical component to the fixing base with the fixing device according to any one of claims 1 to 8.
It comprises a step of removing the stage from the optical component.
Manufacturing method of optical equipment.
JP2020523172A 2018-06-08 2019-06-06 Fixtures, optics, and methods of manufacturing optics Pending JPWO2019235566A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018110461 2018-06-08
JP2018110461 2018-06-08
PCT/JP2019/022527 WO2019235566A1 (en) 2018-06-08 2019-06-06 Fixture, optical device, and method for manufacturing optical device

Publications (1)

Publication Number Publication Date
JPWO2019235566A1 true JPWO2019235566A1 (en) 2021-05-13

Family

ID=68770464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020523172A Pending JPWO2019235566A1 (en) 2018-06-08 2019-06-06 Fixtures, optics, and methods of manufacturing optics

Country Status (2)

Country Link
JP (1) JPWO2019235566A1 (en)
WO (1) WO2019235566A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229413A (en) * 1987-03-18 1988-09-26 Fujitsu Ltd Method and device for adjusting optical component
JP2000252715A (en) * 1999-03-04 2000-09-14 New Japan Radio Co Ltd Microwave circuit
JP2004241670A (en) * 2003-02-07 2004-08-26 Nikon Corp Assembly structure, stage apparatus, and aligner
US20040207847A1 (en) * 2003-04-18 2004-10-21 Hardy Joseph A. Apparatus and methods for alignment of optical barrier apparatus
JP2015087141A (en) * 2013-10-29 2015-05-07 京セラ株式会社 Optical component
JP2018008873A (en) * 2016-06-29 2018-01-18 Toto株式会社 Ceramic structure, and structural member for semiconductor production apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229413A (en) * 1987-03-18 1988-09-26 Fujitsu Ltd Method and device for adjusting optical component
JP2000252715A (en) * 1999-03-04 2000-09-14 New Japan Radio Co Ltd Microwave circuit
JP2004241670A (en) * 2003-02-07 2004-08-26 Nikon Corp Assembly structure, stage apparatus, and aligner
US20040207847A1 (en) * 2003-04-18 2004-10-21 Hardy Joseph A. Apparatus and methods for alignment of optical barrier apparatus
JP2015087141A (en) * 2013-10-29 2015-05-07 京セラ株式会社 Optical component
JP2018008873A (en) * 2016-06-29 2018-01-18 Toto株式会社 Ceramic structure, and structural member for semiconductor production apparatus

Also Published As

Publication number Publication date
WO2019235566A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
Drory et al. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope
Allington‐Smith et al. Integral field spectroscopy with the Gemini multiobject spectrograph. I. Design, construction, and testing
Rohloff et al. A novel athermal approach for high-performance cryogenic metal optics
Bavdaz et al. Silicon pore optics developments and status
JPWO2019235566A1 (en) Fixtures, optics, and methods of manufacturing optics
JP2022102601A (en) Support mechanism and telescope support device
JP6809991B2 (en) Spectrometer
Mohaupt et al. The high precision double slit device of the slit assembly for the FLEX instrument
WO2020203976A1 (en) Pupil mirror, planar spectrometer, telescope, and production method for pupil mirror
JP7223756B2 (en) Spectroscope, astronomical telescope, and manufacturing method of spectroscope
Dubbeldam et al. Freeform diamond machining of complex monolithic metal optics for integral field systems
Weiß et al. Alignment concept for the three mirror anastigmat telescope assembly of the Meteosat third generation flexible combined imager
Chalifoux et al. Adjustable height glass spacers for bonding and aligning x-ray mirror stacks
Ghigo et al. X-ray measurements of a prototype WFXT SiC mirror at the MSFC X-Ray Calibration Facility
Laurent et al. Optical design, manufacturing, and tests of the MUSE image slicer
EP2284508A1 (en) Optical probe preferably for spectrometric analyses
ALIVERTI Alignment and integration of optical systems based on advanced metrology
Allington-Smith et al. Integral field spectroscopy with the GEMINI multiobject spectrographs
Panin et al. A von Hamos-type parallel collection wavelength dispersive spectrometer for microbeam analysis
Berendse et al. The joint astrophysical plasmadynamic experiment extreme ultraviolet spectrometer: resolving power
Ford et al. Optomechanical design of nine cameras for the Earth Observing Systems Multiangle Imaging Spectro-Radiometer, TERRA platform
EP2284591A1 (en) Preferably miniaturized optical transfer device
Boteler Time resolved Raman spectroscopy in diamonds shock compressed along (110) and (100) orientations
Bell et al. Vibration-stable ultraprecision optical adjustment Mono-Ball mechanism
Dupuy et al. 4DAD: a device to align angularly and laterally a high-power laser using a conventional sighting telescope as metrology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220906