JPWO2019234164A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019234164A5
JPWO2019234164A5 JP2020567847A JP2020567847A JPWO2019234164A5 JP WO2019234164 A5 JPWO2019234164 A5 JP WO2019234164A5 JP 2020567847 A JP2020567847 A JP 2020567847A JP 2020567847 A JP2020567847 A JP 2020567847A JP WO2019234164 A5 JPWO2019234164 A5 JP WO2019234164A5
Authority
JP
Japan
Prior art keywords
pulse
assist system
pulse doppler
doppler measurement
prf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020567847A
Other languages
Japanese (ja)
Other versions
JP2021526884A (en
JP7376109B2 (en
Publication date
Priority claimed from DE102018208929.9A external-priority patent/DE102018208929A1/en
Application filed filed Critical
Publication of JP2021526884A publication Critical patent/JP2021526884A/en
Publication of JPWO2019234164A5 publication Critical patent/JPWO2019234164A5/ja
Application granted granted Critical
Publication of JP7376109B2 publication Critical patent/JP7376109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (9)

移植された血管補助システム(1)を流れる流体の流量を決定する方法であって、前記方法は、
前記血管補助システム(1)の超音波センサ(2)によって、第一のパルス繰返し速度PRF で第一のパルスドップラー測定を実行する工程a)と、
前記血管補助システム(1)の前記超音波センサ(2)によって、第二のパルス繰返し速度PRF >PRF で第二のパルスドップラー測定を実行する工程であって、前記第二のパルス繰返し速度は前記第一のパルス繰返し速度とは異なる、工程b)と、
整数n 、n および前記第一のパルスドップラー測定の主周波数成分f および前記第二のパルスドップラー測定の主周波数成分f を解くことにより、前記第一のパルスドップラー測定および前記第二のパルスドップラー測定の測定結果を使用して前記流量を決定することであって、以下の線形ディオファントス方程式を使用して決定する工程c)とを含むことにより特徴付けられる、方法
Figure 2019234164000001
境界条件
Figure 2019234164000002
以下と仮定:
Figure 2019234164000003
式中、
Figure 2019234164000004
および式中、f は、前記超音波センサ(2)の超音波透過周波数であり、c は、前記流体中の音速である
A method of determining the flow rate v of the fluid flowing through the transplanted vascular assist system (1), wherein the method is:
Step a) of performing the first pulse Doppler measurement at the first pulse repetition frequency PRF 1 by the ultrasonic sensor (2) of the blood vessel assist system (1).
A step of performing a second pulse Doppler measurement with a second pulse repetition frequency PRF 2 > PRF 1 by the ultrasonic sensor (2) of the vascular assist system (1), wherein the second pulse repetition rate Is different from the first pulse repetition rate, step b) and
The first pulse Doppler measurement and the second by solving the integers n 1 , n 2 and the main frequency component f 1 of the first pulse Doppler measurement and the main frequency component f 2 of the second pulse Doppler measurement. The method of determining the flow rate using the measurement results of the pulse Doppler measurement of the above, characterized by including step c) and determination using the following linear Diophantos equation :
Figure 2019234164000001
boundary condition
Figure 2019234164000002
Assuming:
Figure 2019234164000003
During the ceremony
Figure 2019234164000004
And in the equation , f 0 is the ultrasonic transmission frequency of the ultrasonic sensor (2), and c 0 is the speed of sound in the fluid .
前記二つの工程a)およびb)のうちの少なくとも一つにおいて、新しい超音波パルスが、直前に発信された該超音波パルスのエコーが受信された後にのみ発信されることにより特徴付けられる、請求項1に記載の方法。 Claimed that in at least one of the two steps a) and b), a new ultrasonic pulse is emitted only after the echo of the ultrasonic pulse emitted immediately before is received. Item 1. The method according to Item 1. PRF またはPRF は、最大発生ドップラーシフトの二倍未満であることにより特徴付けられる、請求項1または2に記載の方法。 The method of claim 1 or 2, wherein PRF 1 or PRF 2 is characterized by being less than twice the maximum Doppler shift. 前記工程c)において、前記パルスドップラー測定のドップラー周波数スペクトル(4)の検出された主周波数成分(14)と、前記パルスドップラー測定に適用される前記パルス繰返し速度との間の相関が使用されることにより特徴付けられる、請求項1~3のいずれか一項に記載の方法。 In step c), the correlation between the detected principal frequency component (14) of the Doppler frequency spectrum (4) of the pulse Doppler measurement and the pulse repetition rate applied to the pulse Doppler measurement is used. The method according to any one of claims 1 to 3, which is characterized by the above. 前記線形ディオファントス方程式は、ベズー係数または取り尽くし法を使用して求解されることにより特徴付けられる、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the linear Diophantine equation is characterized by being solved using Bezout's coefficient or exhaustion method. 請求項1~5のいずれか一項に記載の方法で決定することにより移植された血管補助システム(1)を通る流体、前記血管補助システムにおける前記流体の前記流量vおよびそこから前記血管補助システム(1)を通る流体体積流を決定する方法。 The fluid passing through the vascular assist system (1) transplanted by the method according to any one of claims 1 to 5, the flow rate v of the fluid in the vascular assist system, and the vascular assist system from there. A method for determining a fluid volume flow through (1). 超音波センサ(2)を備え、処理ユニット(3)を備える移植可能な血管補助システム(1)であって、
前記超音波センサ(2)は、異なるパルス繰返し速度PRF <PRF でパルスドップラー測定を実行するように設計されることと、
前記処理ユニット(3)は、前記異なるパルス繰返し速度での前記パルスドップラー測定の測定結果を使用して、前記血管補助システム(1)を流れる流体の流量を決定するように設計されることとにより特徴付けられ、
前記第一のパルスドップラー測定および前記第二のパルスドップラー測定の測定結果を使用して前記流量を決定することは、前記第一のパルスドップラー測定の整数n 、n および主周波数成分f 、および前記第二のパルスドップラー測定の主周波数成分f を解くことによって以下の線形ディオファントス方程式によって実行される、移植可能な血管補助システム
Figure 2019234164000005
境界条件
Figure 2019234164000006
以下と仮定:
Figure 2019234164000007
式中、
Figure 2019234164000008
および式中、f は、前記超音波センサ(2)の超音波透過周波数であり、c は、前記流体中の音速である
An implantable vascular assist system (1) equipped with an ultrasonic sensor (2) and a processing unit (3) .
The ultrasonic sensor (2) is designed to perform pulse Doppler measurements at different pulse repetition frequencies PRF 1 <PRF 2 .
The processing unit (3) is designed to determine the flow rate of fluid flowing through the vascular assist system (1) using the measurement results of the pulse Doppler measurements at the different pulse repetition rates. Characterized,
Determining the flow rate using the measurement results of the first pulse Doppler measurement and the second pulse Doppler measurement is the integers n 1 , n 2 and the main frequency component f 1 of the first pulse Doppler measurement. , And the implantable vascular assist system performed by the following linear Diophanths equation by solving the main frequency component f 2 of the second pulse Doppler measurement :
Figure 2019234164000005
boundary condition
Figure 2019234164000006
Assuming:
Figure 2019234164000007
During the ceremony
Figure 2019234164000008
And in the equation , f 0 is the ultrasonic transmission frequency of the ultrasonic sensor (2), and c 0 is the speed of sound in the fluid .
前記線形ディオファントス方程式は、ベズー係数または取り尽くし法を使用して求解されることにより特徴付けられる、請求項7に記載の移植可能な血管補助システム。The implantable vascular assist system according to claim 7, wherein the linear Diophantine equation is characterized by being solved using Bezout's coefficient or exhaustion method. 前記処理ユニット(3)は、前記流量から計算された流体流を提供するように設計されることにより特徴付けられる、請求項7または8に記載の移植可能な血管補助システム。The implantable vascular assist system according to claim 7 or 8, wherein the processing unit (3) is characterized by being designed to provide a fluid flow calculated from the flow rate.
JP2020567847A 2018-06-06 2019-06-06 Methods for Determining Fluid Flow Rate through Implanted and Implantable Vascular Assist Systems Active JP7376109B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018208929.9A DE102018208929A1 (en) 2018-06-06 2018-06-06 A method of determining a flow rate of fluid flowing through an implanted vascular support system
DE102018208929.9 2018-06-06
PCT/EP2019/064804 WO2019234164A1 (en) 2018-06-06 2019-06-06 Method for determining a flow rate of a fluid flowing through an implanted vascular support system, and implantable vascular support system

Publications (3)

Publication Number Publication Date
JP2021526884A JP2021526884A (en) 2021-10-11
JPWO2019234164A5 true JPWO2019234164A5 (en) 2022-06-14
JP7376109B2 JP7376109B2 (en) 2023-11-08

Family

ID=66821251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020567847A Active JP7376109B2 (en) 2018-06-06 2019-06-06 Methods for Determining Fluid Flow Rate through Implanted and Implantable Vascular Assist Systems

Country Status (7)

Country Link
US (1) US20210346676A1 (en)
EP (1) EP3801276B1 (en)
JP (1) JP7376109B2 (en)
CN (1) CN112584770A (en)
DE (1) DE102018208929A1 (en)
ES (1) ES2926029T3 (en)
WO (1) WO2019234164A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022109591A2 (en) 2020-11-20 2022-05-27 Kardion Gmbh Mechanical circulatory support system with insertion tool
US20230173250A1 (en) 2021-12-03 2023-06-08 Kardion Gmbh Cardiac pump with optical fiber for laser doppler
US20240011808A1 (en) 2022-07-11 2024-01-11 Kardion Gmbh Laser doppler velocimetry flow measurement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9604665D0 (en) * 1996-03-05 1996-05-01 Montec Int Ltd Flow measurement
DE10060275A1 (en) 2000-12-05 2002-06-13 Impella Cardiotech Ag Method for calibrating a pressure sensor or a flow sensor on a rotary pump
JP2005241546A (en) * 2004-02-27 2005-09-08 Fuji Electric Systems Co Ltd Doppler ultrasonic flowmeter, processing device thereof and program
WO2006080011A2 (en) 2005-01-25 2006-08-03 Ramot At Tel Aviv University Ltd. Using pulsed-wave ultrasonography for determining an aliasing-free radial velocity spectrum of matter moving in a region
US7549964B2 (en) * 2006-05-04 2009-06-23 Viasys Healthcare, Inc. Multiple frequency doppler ultrasound probe
US20080133006A1 (en) * 2006-10-27 2008-06-05 Ventrassist Pty Ltd Blood Pump With An Ultrasonic Transducer
CN101711683A (en) * 2009-10-30 2010-05-26 中国人民解放军第三军医大学第一附属医院 Method for measuring flow velocity of arterial blood
CN107632167B (en) * 2017-08-21 2019-12-06 天津大学 two-phase flow velocity measurement method based on ultrasonic pulse Doppler and electric multi-sensor

Similar Documents

Publication Publication Date Title
US6601459B1 (en) Method of volumetric blood flow measurement
Fisher et al. The effect of variations of pulsed Doppler sampling site on calculation of cardiac output: an experimental study in open-chest dogs.
JP6165634B2 (en) Device for evaluating a stenosis in a tube filled with fluid
JP7405449B2 (en) Method and system for determining fluid flow rate through an implanted vascular assist system
JPH11316180A (en) Echo inspection method for determining viscosity and pressure gradient in blood vessel and device therefor
JP7269667B2 (en) Implanted Vascular Support System and Method of Determining Fluid Flow Rate Through Implantable Vascular Support System
JP7376109B2 (en) Methods for Determining Fluid Flow Rate through Implanted and Implantable Vascular Assist Systems
JP2003310615A (en) Ultrasonic diagnostic equipment
JP2023053105A5 (en)
JP3130561B2 (en) Device for measuring and displaying physiological parameters of blood flow in a conduit
JPWO2019234164A5 (en)
JP6714144B2 (en) System and method for determining cardiac output
JPH08229040A (en) Method of calculating blood speed and blood speed spread by multiple gate doppler signal
EP2034901B1 (en) Global and local detection of blood vessel elasticity
Bazan et al. Power spectral estimation of high-harmonics in echoes of wall resonances to improve resolution in non-invasive measurements of wall mechanical properties in rubber tube and ex-vivo artery
CN103494615B (en) The computational methods of peak frequency envelope curve and device
JPH04215744A (en) Speed measuring apparatus
Cloutier et al. Experimental evaluation of intrinsic and nonstationary ultrasonic Doppler spectral broadening in steady and pulsatile flow loop models
JP3238467B2 (en) Ultrasound Doppler diagnostic device
JP2008212746A (en) Ultrasonic diagnostic apparatus
US11073612B2 (en) Flow acceleration estimation directly from beamformed ultrasound data
JP2004073672A (en) Ultrasonic diagnostic device
JP2004222754A (en) Ultrasonograph
WO2021100856A1 (en) Ultrasonic image processing device, ultrasonic image processing method, and program
Sohn et al. The sensitivity of new color systems in blood-flow diagnosis: The maximum entropy method and angio-color-comparative in vitro flow measurements to determine sensitivity