JPWO2019217047A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019217047A5
JPWO2019217047A5 JP2020562611A JP2020562611A JPWO2019217047A5 JP WO2019217047 A5 JPWO2019217047 A5 JP WO2019217047A5 JP 2020562611 A JP2020562611 A JP 2020562611A JP 2020562611 A JP2020562611 A JP 2020562611A JP WO2019217047 A5 JPWO2019217047 A5 JP WO2019217047A5
Authority
JP
Japan
Prior art keywords
node
data
mesh
time
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020562611A
Other languages
Japanese (ja)
Other versions
JP2021523613A (en
Publication date
Priority claimed from US15/972,818 external-priority patent/US10340980B1/en
Application filed filed Critical
Publication of JP2021523613A publication Critical patent/JP2021523613A/en
Publication of JPWO2019217047A5 publication Critical patent/JPWO2019217047A5/ja
Priority to JP2023020126A priority Critical patent/JP7429317B2/en
Pending legal-status Critical Current

Links

Claims (24)

通信ノード間で共有される電力関連データを有する配電システムにて用いる装置であって、
前記装置は、
配電システムで消費される電力に関連する電力関連データを通信するように構成された、第1のノードと第2のノードを含む、メッシュベースの通信ネットワークであって、第1のノードと第2のノードの夫々が、電力関連データを通信するように構成され配置された通信回路を含む、メッシュベースの通信ネットワークを備え、
クロック回路を更に含む、前記第1のノードと第2のノードの少なくとも一つは、
複数の他の通信ノードの夫々の識別を含むノード―ノード間の相互作用のために使用される下位レベル層を含み、及び、上位レベル層を含む、複数の抽象化層を用いて、前記メッシュベースの通信ネットワーク内で通信することと、
前記メッシュベースの通信ネットワーク内への結合を許可された後に、通信ノードの他のノードに時間同期化要求を提供することと、
前記上位レベル層の一つを介して通信されるように、一意的に認識可能なデータフレーム内で提供されるタイミング情報を介して前記他のノードから伝達されるパラメータに、前記クロック回路を設定することと、及び、
所定の時間範囲内で追加の時間同期化要求を通信することにより、継続的な時間同期化を維持ことと
を、行うように構成され配置されている、
装置。
A device used in a power distribution system that has power-related data shared between communication nodes.
The device is
A mesh-based communication network that includes a first node and a second node, configured to communicate power-related data related to the power consumed by a power distribution system, the first node and the second node. Each node of the node has a mesh-based communication network that includes communication circuits configured and arranged to communicate power-related data.
At least one of the first node and the second node, further including a clock circuit,
The mesh with multiple abstraction layers, including lower level layers used for node-node interactions, including identification of each of the other communication nodes, and higher level layers. Communicating within the base communication network and
To provide a time synchronization request to other nodes of the communication node after being allowed to join into the mesh-based communication network.
The clock circuit is set to a parameter transmitted from the other node via timing information provided in a uniquely recognizable data frame so as to be communicated via one of the higher level layers. What to do and
It is configured and arranged to maintain continuous time synchronization by communicating additional time synchronization requests within a predetermined time range.
Device.
前記データフレームは、一意的な識別子を有するデータによって識別可能であり、
前記ノードは、前記一つの上位レベル層を介して他方のノードに時間同期化要求を提供し、前記メッシュベースの通信ネットワーク内で相互に時間同期化しながら他方のノードとデータを通信するように構成され配置されている、請求項1に記載の装置。
The data frame can be identified by the data having a unique identifier and
The node is configured to provide a time synchronization request to the other node via the one higher level layer and communicate data with the other node while time-synchronizing with each other within the mesh-based communication network. The device according to claim 1, which is arranged and arranged.
前記ノードは、前記一つの上位レベル層を介して時間同期化要求を提供し、前記一つの上位レベル層を介してタイミング情報を受信し、インターネットプロトコル(IP)スタックの一つ若しくは複数の他の層を介してタイミング情報をプッシュすることなく、前記クロック回路を前記パラメータに設定するように構成され配置されている、請求項1に記載の装置。 The node provides a time synchronization request via the one higher level layer, receives timing information through the one higher level layer, and has one or more other Internet Protocol (IP) stacks. The device of claim 1, wherein the clock circuit is configured and arranged to set the parameters to the parameters without pushing timing information through the layers. 前記第1のノードと前記第2のノードのうちの少なくとも一つが、前記メッシュベースの通信ネットワーク内への結合を許可された後に、任意に設定された間隔若しくはランダム間隔内で、前記通信ノードの他方のノードに前記時間同期化要求を提供するように、更に構成され配置され、
前記任意に設定された間隔若しくはランダム間隔は、各要求に対して第1の時間スパン内の時間としてランダム化され、前記第1の時間スパンは、前記他方のノードとのリンクを形成した後に提供される、
請求項1に記載の装置。
After at least one of the first node and the second node is allowed to join into the mesh-based communication network, within an arbitrarily set interval or a random interval, the communication node Further configured and arranged to provide the time synchronization request to the other node.
The arbitrarily set interval or random interval is randomized as time within a first time span for each request, the first time span being provided after forming a link with the other node. Will be
The device according to claim 1.
前記第1のノードと前記第2のノードのうちの少なくとも一つが、前記メッシュベースの通信ネットワーク内への結合を許可された後に、ある間隔内で前記通信ノードの他方のノードに前記時間同期化要求を提供するように、更に構成され配置され、
前記間隔は、各要求に対して第1の時間スパン内の時間としてランダム化されておらず、前記第1の時間スパンは、前記他方のノードとのリンクを形成した後に提供される、
請求項1に記載の装置。
After at least one of the first node and the second node is allowed to join into the mesh-based communication network, the time synchronization to the other node of the communication node within a certain interval. Further configured and arranged to serve the request,
The intervals are not randomized as time within a first time span for each request, the first time span being provided after forming a link with the other node.
The device according to claim 1.
前記上位レベル層の前記一つは、データリンク層である、又は、データリンク層を含む、請求項1に記載の装置。 The apparatus according to claim 1 , wherein the one of the upper level layers is a data link layer or includes a data link layer. 前記第1のノードと前記第2のノードの間のデータが複数の抽象化層を用いて通信されるビーコンベースの通信プロトコルを介して、電力関連データを含むデータを前記メッシュベースの通信ネットワーク内で通信するためのデータパスを、提供するように構成され配置されたメッシュネットワーク通信コントローラを更に含む、
請求項1に記載の装置。
Data including power-related data in the mesh-based communication network via a beacon-based communication protocol in which data between the first node and the second node are communicated using a plurality of abstraction layers. Further includes a mesh network communication controller configured and arranged to provide a data path for communication with.
The device according to claim 1.
通信ネットワーク内のノード間で電力関連データを共有する配電システムにて用いる装置であって、
前記装置は、第1のノードと第2のノードを含み、
夫々がクロック回路を含む、前記第1のノードと前記第2のノードの夫々は、
複数の他の通信ノードの夫々の識別を含むノード―ノード間の相互作用のために使用される下位レベル層を含み、及び上位レベル層を含む、複数の抽象化層を含む複数の抽象化層を用いて、メッシュベースの通信ネットワーク内で通信することと、
前記メッシュベースの通信ネットワーク内への結合が許可された後に、任意に設定された間隔若しくはランダム間隔内で、前記通信ノードの他方のノードに時間同期化要求を提供することと、
前記上位レベル層のうちの一つを介して通信されるように、一意的に認識可能なデータフレーム内で提供されるタイミング情報を介して前記他方のノードから伝達されるパラメータに、前記クロック回路を設定することと、及び、
所定の時間範囲内で追加の時間同期化要求を通信することにより、継続的な時間同期化を維持することと
を行うように構成され配置されている、装置。
A device used in a power distribution system that shares power-related data between nodes in a communication network.
The device includes a first node and a second node.
Each of the first node and the second node, each containing a clock circuit,
Multiple abstraction layers, including multiple abstraction layers, including lower level layers used for node-node interactions, including identification of each of multiple other communication nodes, and higher level layers. To communicate within a mesh-based communication network using
To provide a time synchronization request to the other node of the communication node within an arbitrarily set interval or a random interval after the connection into the mesh-based communication network is allowed.
The clock circuit to a parameter transmitted from the other node via timing information provided within a uniquely recognizable data frame so that it is communicated via one of the higher level layers. And,
A device configured and arranged to maintain continuous time synchronization by communicating additional time synchronization requests within a predetermined time range.
各ノードが、配電システム内の消費電力を示す電力関連データに基づいて動作するように構成され配置され、
更に、
前記通信ノード間で電力関連データを通信するように構成され配置された通信回路を含む、
請求項8に記載の装置。
Each node is configured and arranged to operate based on power-related data that indicates power consumption in the distribution system.
In addition,
Includes communication circuits configured and arranged to communicate power-related data between the communication nodes.
The device according to claim 8.
前記第1のノードと前記第2のノードの各々が、時間同期化要求を受信することに応答して、一意的に認識可能なデータフレーム内の時間値を介して、前記パラメータを設定するためのタイミング情報を、前記上位レベル層の前記一つを介して通信するように構成され配置されている、
請求項8に記載の装置。
To set the parameters via a time value in a uniquely recognizable data frame in response to each of the first node and the second node receiving a time synchronization request. Is configured and arranged to communicate the timing information of the above through the one of the upper level layer .
The device according to claim 8.
更に、
メッシュネットワーク通信コントローラ回路と、前記他方のノードとを含み、
前記メッシュネットワーク通信コントローラ回路、前記第1のノード、及び前記第2のノードは、前記ノード及び前記第2のノードを含む、通信ノード内の回路間のデータが複数の抽象化層を用いて通信されるビーコンベースの通信プロトコルを介して、前記メッシュベースの通信ネットワーク内のデータを通信するためのデータパスを、提供するように構成され配置されている、
請求項8に記載の装置。
In addition,
The mesh network communication controller circuit and the other node are included.
In the mesh network communication controller circuit, the first node, and the second node, data between circuits in the communication node including the node and the second node communicate using a plurality of abstraction layers. It is configured and arranged to provide a data path for communicating data in the mesh-based communication network via a beacon-based communication protocol.
The device according to claim 8.
配電システムの通信ノード間でデータを通信する方法であって、
第1のノードと第2のノードを含む通信ノード内の回路間のデータが、通信ノードの夫々の識別を含むノード―ノード間の相互作用のために使用される下位レベル層を含み、及び、上位レベル層を含む複数の抽象化層を用いて、通信される、通信プロトコルを介して、メッシュベースの通信ネットワーク内で、データを通信するためのデータパスを提供するステップと、
前記第1のノードが前記メッシュベースの通信ネットワーク内への結合を許可された後に、任意に設定された間隔若しくはランダム間隔内で、前記第1のノードによって、時間同期化要求を提供するステップと、
前記時間同期化要求を受信することに応答して、前記上位レベル層の一つを介して、一意的に認識可能なデータフレーム内の時間値として、前記第1のノードにタイミング情報を提供するステップと、
前記第1のノードのクロック回路を、前記タイミング情報内の前記第2のノードから伝達されるパラメータに、設定するステップと、及び、
前記第1のノードと前記第2のノードによって、所定の時間範囲内で時間値を後続的に更新することによって、相互に継続的な時間同期化を維持するステップと
を含む、方法。
A method of communicating data between the communication nodes of a power distribution system.
Data between circuits within a communication node, including a first node and a second node, contains a lower level layer used for node-to-node interactions, including identification of each of the communication nodes, and A step that provides a data path for communicating data within a mesh-based communication network over a communication protocol that is communicated using multiple layers of abstraction, including higher level layers.
With the step of providing a time synchronization request by the first node within an arbitrarily set interval or a random interval after the first node is allowed to join into the mesh-based communication network. ,
In response to receiving the time synchronization request, the first node is provided with timing information as a time value in a uniquely recognizable data frame via one of the higher level layers. Steps and
A step of setting the clock circuit of the first node to a parameter transmitted from the second node in the timing information, and.
A method comprising the steps of maintaining continuous time synchronization with each other by subsequently updating the time values within a predetermined time range by the first node and the second node.
更に、
前記第1のノード及び前記第2のノードによって、前記メッシュベースの通信ネットワーク内で相互に時間同期化しながら、電力関連データを通信するステップを含み、
前記電力関連データは、前記配電システム内の電力消費を示すものである、
請求項12に記載の方法。
In addition,
The first node and the second node include a step of communicating power-related data while synchronizing time with each other in the mesh-based communication network.
The power-related data indicates the power consumption in the distribution system.
The method according to claim 12.
前記任意に設定された間隔若しくはランダム間隔は、各要求に対して第1の時間スパン内の時間としてランダム化され、前記第1の時間スパンは、前記第2のノードとのリンクを形成した後に提供される、
請求項12に記載の方法。
The arbitrarily set interval or random interval is randomized as the time within the first time span for each request, the first time span after forming a link with the second node. Provided,
The method according to claim 12.
更に、前記任意に設定された間隔若しくはランダム間隔を設定するステップを含む、請求項12に記載の方法。 12. The method of claim 12, further comprising the step of setting the arbitrarily set interval or the random interval . 更に、前記任意に設定された間隔若しくはランダム間隔を調整するステップを含む、請求項12に記載の方法。 12. The method of claim 12, further comprising the step of adjusting the arbitrarily set interval or random interval . メッシュネットワーク通信コントローラ回路と、第1のノード及び第2のノードとを含み、
前記第1のノード及び前記第2のノードは、前記第1のノードと前記第2のノードを含む通信ノード内の回路間のデータが、前記通信ノードの夫々の識別を含むノード―ノード間の相互作用のために使用される下位レベル層を含み、及び、上位レベル層を含む複数の抽象化層を用いて通信される、ビーコンベースの通信プロトコルを介して、メッシュベースの通信ネットワーク内でデータを通信するためのデータパスを提供するように構成され配置されており、
前記第1のノードはクロック回路を含み、前記第1のノードが前記メッシュネットワーク通信コントローラ回路によって前記メッシュベースの通信ネットワーク内への結合が許可された後に、任意に設定された間隔若しくはランダム間隔内で時間同期化要求を送信し、前記クロック回路を前記第2のノードから伝達されたパラメータに設定するように構成され配置されており、
前記第2のノードは、前記時間同期化要求を受信することに応答して、前記パラメータを設定するために前記第1のノードによって用いられるタイミング情報を、一意的に認識可能なデータフレーム内の時間値を介して、上位レベル層の一つを介して前記第1のノードに提供するように構成され配置されており、
前記第1のノード及び前記第2のノードは、前記メッシュベースの通信ネットワーク内で相互に時間同期化しながらデータを通信し、所定の時間範囲内で前記時間値を後続的に更新することにより相互に継続的な時間同期化を維持するように構成され配置されている、
装置。
Includes a mesh network communication controller circuit and a first node and a second node.
In the first node and the second node, the data between the circuits in the communication node including the first node and the second node includes the identification of each of the communication nodes between the nodes. Data within a mesh-based communication network via a beacon-based communication protocol that includes a lower level layer used for interaction and is communicated using multiple abstraction layers that include a higher level layer. It is configured and arranged to provide a data path for communicating with
The first node includes a clock circuit, within an arbitrarily set or random interval after the first node is allowed to be coupled into the mesh-based communication network by the mesh network communication controller circuit. Is configured and arranged to send a time synchronization request and set the clock circuit to the parameters transmitted from the second node.
The second node is in a data frame that can uniquely recognize the timing information used by the first node to set the parameters in response to receiving the time synchronization request. It is configured and arranged to provide to the first node via one of the higher level layers via a time value.
The first node and the second node communicate data with each other in time synchronization within the mesh-based communication network, and subsequently update the time value within a predetermined time range to each other. Is configured and arranged to maintain continuous time synchronization,
Device.
前記第1のノード及び前記第2のノードは、配電システム内の通信ノードであり、更に、前記配電システム内の電力消費を示す電力関連データに基づいて動作するように構成され配置されている、
請求項17に記載の装置。
The first node and the second node are communication nodes in the power distribution system, and are configured and arranged to operate based on power-related data indicating power consumption in the power distribution system.
The device according to claim 17.
前記第1のノード及び前記第2のノードの各々が、更に、前記配電システムの通信ノード間で前記電力関連データを通信するように構成され配置された通信回路を含む、
請求項18に記載の装置。
Each of the first node and the second node further includes a communication circuit configured and arranged to communicate the power-related data between the communication nodes of the distribution system.
The device according to claim 18.
前記第1のノード及び前記第2のノードが、前記時間値を通信し、時間同期化プロトコルの一部として時間同期化のためのパラメータを設定するように構成され配置されており、
前記第1のノードが、更に、前記時間同期化プロトコルを介して、前記他の通信ノードとの時間同期化を提供するためのタイミング情報を、別の他の通信ノードから、受信するように構成され配置されている、
請求項17に記載の装置。
The first node and the second node are configured and arranged to communicate the time values and set parameters for time synchronization as part of a time synchronization protocol.
The first node is configured to further receive timing information from another communication node for providing time synchronization with the other communication node via the time synchronization protocol. Have been placed,
The device according to claim 17.
前記タイミング情報が、一意的な識別子と時間値を含み、
前記時間値が、日付、時間、及びそれらの組み合わせからなる群から選択される情報を含む、
請求項17に記載の装置。
The timing information includes a unique identifier and a time value.
The time value comprises information selected from the group consisting of dates, times, and combinations thereof.
The device according to claim 17.
前記第1のノードが、インターネットプロトコル(IP)スタックの一つ若しくは複数の他の層を介して前記時間値をプッシュすることなく、前記第2のノードから伝達されるパラメータに、前記クロック回路を設定するように構成され配置されている、
請求項17に記載の装置。
The clock circuit is added to the parameters transmitted from the second node without the first node pushing the time value through one or more other layers of the Internet Protocol (IP) stack. Configured and arranged to set,
The device according to claim 17.
前記任意に設定された間隔若しくはランダム間隔が、各要求に対して第1の時間スパン内の時間としてランダム化されており、前記第1の時間スパンが、前記第2のノードとのリンクを形成した後に提供される、
請求項17に記載の装置。
The arbitrarily set interval or random interval is randomized as the time within the first time span for each request, and the first time span forms a link with the second node. Provided after
The device according to claim 17.
前記上位レベル層の前記一つが、データリンク層である、又は、データリンク層を含み、
前記第1のノードが、前記第2のノードにビーコン要求を提供して前記データリンク層を介して前記第2のノードからビーコン応答を受信することにより、前記第2のノードにリンクするように構成され配置されている、
請求項17に記載の装置。
One of the upper level layers is a data link layer or includes a data link layer.
The first node links to the second node by providing a beacon request to the second node and receiving a beacon response from the second node via the data link layer. Configured and arranged,
The device according to claim 17.
JP2020562611A 2018-05-07 2019-04-17 Time synchronization device and method for power distribution system, etc. Pending JP2021523613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023020126A JP7429317B2 (en) 2018-05-07 2023-02-13 Time synchronization device and method for power distribution systems, etc.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/972,818 2018-05-07
US15/972,818 US10340980B1 (en) 2018-05-07 2018-05-07 Time synchronization apparatuses and methods for power-distribution systems and the like
PCT/US2019/027990 WO2019217047A1 (en) 2018-05-07 2019-04-17 Time synchronization apparatuses and methods for power-distribution systems and the like

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023020126A Division JP7429317B2 (en) 2018-05-07 2023-02-13 Time synchronization device and method for power distribution systems, etc.

Publications (2)

Publication Number Publication Date
JP2021523613A JP2021523613A (en) 2021-09-02
JPWO2019217047A5 true JPWO2019217047A5 (en) 2022-04-22

Family

ID=66429598

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020562611A Pending JP2021523613A (en) 2018-05-07 2019-04-17 Time synchronization device and method for power distribution system, etc.
JP2023020126A Active JP7429317B2 (en) 2018-05-07 2023-02-13 Time synchronization device and method for power distribution systems, etc.

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023020126A Active JP7429317B2 (en) 2018-05-07 2023-02-13 Time synchronization device and method for power distribution systems, etc.

Country Status (7)

Country Link
US (1) US10340980B1 (en)
EP (1) EP3791644A1 (en)
JP (2) JP2021523613A (en)
CN (1) CN112703787B (en)
AU (1) AU2019266064B2 (en)
CA (1) CA3098325A1 (en)
WO (1) WO2019217047A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124275A (en) * 2020-08-31 2022-03-01 深圳市中兴微电子技术有限公司 Time synchronization method, device, equipment and storage medium
CN112511257A (en) * 2020-11-24 2021-03-16 泰斗微电子科技有限公司 Processing method of time service state
US11456944B1 (en) * 2021-04-21 2022-09-27 Landis+Gyr Innovations, Inc. Managing outage reporting using last gasps

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146473A (en) 1989-08-14 1992-09-08 International Mobile Machines Corporation Subscriber unit for wireless digital subscriber communication system
US5581229A (en) 1990-12-19 1996-12-03 Hunt Technologies, Inc. Communication system for a power distribution line
US5467011A (en) 1992-05-06 1995-11-14 National Rural Electric Cooperative Assn. System for detection of the phase of an electrical signal on an alternating circuit power line
SI0638886T1 (en) 1993-08-12 1999-04-30 Landis & Gyr Technology Innovation Ag Method for transmitting a message between two subscriber stations and device for performing the method
US5535240A (en) 1993-10-29 1996-07-09 Airnet Communications Corporation Transceiver apparatus employing wideband FFT channelizer and inverse FFT combiner for multichannel communication network
US6154488A (en) 1997-09-23 2000-11-28 Hunt Technologies, Inc. Low frequency bilateral communication over distributed power lines
US6341148B1 (en) 1998-11-04 2002-01-22 Level One Communications, Inc. Method and apparatus for minimizing transient sampling fluctuations upon transition between modes of communication
US7184413B2 (en) * 1999-02-10 2007-02-27 Nokia Inc. Adaptive communication protocol for wireless networks
US6965502B2 (en) 2001-03-21 2005-11-15 Primarion, Inc. System, device and method for providing voltage regulation to a microelectronic device
US20030133473A1 (en) 2001-08-04 2003-07-17 Manis Constantine N. Power line communication system
US7102490B2 (en) 2003-07-24 2006-09-05 Hunt Technologies, Inc. Endpoint transmitter and power generation system
US7742393B2 (en) 2003-07-24 2010-06-22 Hunt Technologies, Inc. Locating endpoints in a power line communication system
US7236765B2 (en) 2003-07-24 2007-06-26 Hunt Technologies, Inc. Data communication over power lines
US7145438B2 (en) 2003-07-24 2006-12-05 Hunt Technologies, Inc. Endpoint event processing system
US6998963B2 (en) 2003-07-24 2006-02-14 Hunt Technologies, Inc. Endpoint receiver system
US7180412B2 (en) 2003-07-24 2007-02-20 Hunt Technologies, Inc. Power line communication system having time server
US20050169415A1 (en) 2004-01-30 2005-08-04 Agere Systems Inc. Timing error recovery system
US8072945B2 (en) * 2004-09-24 2011-12-06 Aes Corporation Link layered networks
US7706320B2 (en) * 2005-10-28 2010-04-27 Hunt Technologies, Llc Mesh based/tower based network
JP4542027B2 (en) * 2005-11-30 2010-09-08 日本電信電話株式会社 Time synchronization method, time client, time server, application device, and time synchronization system
US7904034B2 (en) 2006-12-18 2011-03-08 Samsung Electronics Co., Ltd. Method and system for providing an interference cancellation in a wireless communication system
US8233905B2 (en) * 2007-06-15 2012-07-31 Silver Spring Networks, Inc. Load management in wireless mesh communications networks
CN201226521Y (en) * 2008-02-28 2009-04-22 江苏电力调度通信中心 System for monitoring time synchronization
JP5654198B2 (en) 2008-06-16 2015-01-14 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment
US8238263B2 (en) 2009-03-18 2012-08-07 Landis+Gyr Technologies, Llc Network status detection
US9037305B2 (en) 2010-03-02 2015-05-19 Landis+Gyr Technologies, Llc Power outage verification
US8428201B1 (en) 2010-03-02 2013-04-23 Landis+Gyr Technologies, Llc Receiver gain adjustment
US8681619B2 (en) 2010-04-08 2014-03-25 Landis+Gyr Technologies, Llc Dynamic modulation selection
US8325728B2 (en) 2010-09-07 2012-12-04 Landis+Gyr Technologies, Llc Dynamic data routing in a utility communications network
US8675779B2 (en) 2010-09-28 2014-03-18 Landis+Gyr Technologies, Llc Harmonic transmission of data
US20120084559A1 (en) 2010-09-30 2012-04-05 Hunt Technologies, Llc Communications Source Authentication
US8731076B2 (en) 2010-11-01 2014-05-20 Landis+Gyr Technologies, Llc Variable symbol period assignment and detection
US8693580B2 (en) 2011-03-30 2014-04-08 Landis+Gyr Technologies, Llc Grid event detection
US8619846B2 (en) 2011-04-21 2013-12-31 Landis+Gyr Amplitude control in a variable load environment
US8897342B2 (en) 2011-08-04 2014-11-25 National Semiconductor Corporation Distributed modem architectures for power line communication systems and other wired communication systems
EP2764631B1 (en) 2011-10-07 2020-11-25 Audinate Pty Limited Systems, methods and devices for networking over high impedance cabling
EP2597911A1 (en) 2011-10-14 2013-05-29 Mitsubishi Electric R&D Centre Europe B.V. Method for reducing a time period to collect data from nodes of a wireless mesh communications network
US9106317B1 (en) 2011-12-22 2015-08-11 Landis+Gyr Technologies, Llc Assignment and setup in power line communication systems
US9019121B1 (en) 2011-12-22 2015-04-28 Landis+Gyr Technologies, Llc Configuration over power distribution lines
US8711995B2 (en) 2011-12-22 2014-04-29 Landis+ Gyr Technologies, LLC Powerline communication receiver
US8848521B1 (en) 2011-12-22 2014-09-30 Landis+Gyr Technologies, Llc Channel allocation and device configuration
US8693605B2 (en) 2011-12-22 2014-04-08 Landis+Gyr Technologies, Llc Coordinating power distribution line communications
US8737555B2 (en) 2011-12-22 2014-05-27 Landis+Gyr Technologies, Llc Digital signal processing for PLC communications having communication frequencies
US8958487B2 (en) 2011-12-22 2015-02-17 Landis+Gyr Technologies, Llc Power line communication transmitter with amplifier circuit
US8842563B1 (en) 2011-12-22 2014-09-23 Landis + Gyr Technologies, LLC Communication and processing for power line communication systems
US8762820B1 (en) 2011-12-22 2014-06-24 Landis+Gyr Technologies, Llc Data communications via power line
US8989693B1 (en) 2011-12-22 2015-03-24 Landis+Gyr Technologies, Llc Power line network apparatus, system and method
US8750395B1 (en) 2011-12-22 2014-06-10 Landis+Gyr Technologies, Llc Power line network system and method
US8811529B1 (en) 2011-12-22 2014-08-19 Landis+Gyr Technologies, Llc Power line communication transmitter with gain control
US9106365B1 (en) 2011-12-22 2015-08-11 Landis+Gyr Technologies, Llc Time-keeping between devices using power distribution line communications
US8875003B1 (en) 2011-12-22 2014-10-28 Landis+Gyr Technologies, Llc Interleaved data communications via power line
US8800010B2 (en) * 2012-04-20 2014-08-05 Cisco Technology, Inc. Distributed group temporal key (GTK) state management
US9647495B2 (en) 2012-06-28 2017-05-09 Landis+Gyr Technologies, Llc Power load control with dynamic capability
US9667315B2 (en) 2012-09-05 2017-05-30 Landis+Gyr Technologies, Llc Power distribution line communications with compensation for post modulation
CN104737490B (en) * 2012-11-28 2017-09-22 三菱电机株式会社 Communicator, communication system and method for synchronizing time
WO2015029590A1 (en) * 2013-08-27 2015-03-05 ソニー株式会社 Information processing device and information processing method
US9081684B2 (en) 2013-08-28 2015-07-14 Landis+Gyr Technologies, Llc Data recovery of data symbols received in error
US9369180B1 (en) 2013-09-26 2016-06-14 Landis+Gyr Technologies, Llc Signal feedback circuit in power-line-communication systems
CN105814924B (en) * 2013-10-17 2019-06-18 西门子公司 The method and apparatus for network node of the operation of control technology specific button configuration session
CA2856027A1 (en) * 2014-03-18 2015-09-18 Smartrek Technologies Inc. Mesh network system and techniques
US9148320B1 (en) 2014-09-29 2015-09-29 Landis+Gyr Technologies, Llc Transceiver front-end for communication over power lines
US9306624B1 (en) 2015-03-31 2016-04-05 Landis+Gyr Technologies, Llc Initialization of endpoint devices joining a power-line communication network
US9853883B2 (en) 2015-05-08 2017-12-26 Cisco Technology, Inc. Device mobility in a mesh network
US9461707B1 (en) 2015-05-21 2016-10-04 Landis+Gyr Technologies, Llc Power-line network with multi-scheme communication
US9614861B2 (en) * 2015-08-26 2017-04-04 Microsoft Technology Licensing, Llc Monitoring the life cycle of a computer network connection
US9525462B1 (en) 2015-12-04 2016-12-20 Landis+Gyr Technologies, Llc Data recovery of data symbols
WO2017129476A1 (en) * 2016-01-29 2017-08-03 Philips Lighting Holding B.V. Managing network traffic in application control networks
CN106452645B (en) * 2016-10-26 2018-11-23 西安空间无线电技术研究所 A kind of group of stars method for synchronizing network time based on cross layer design

Similar Documents

Publication Publication Date Title
Elsts et al. An empirical survey of autonomous scheduling methods for TSCH
CN102237718B (en) Method and device of operating wind power electric field power network with improved data transmission protocol
CN102231689B (en) Method for determining connection topology of home network
JP2010011457A5 (en)
US7904534B2 (en) Network topology aware configuration of network addresses in wireless personal area networks
CN109076104A (en) Neighbours perceive pipeline net and negotiate
CN101409666B (en) Ring network, ring network topology discovering method and node
CN101197657B (en) Data synchronization method of distributed system single panel
RU2007110486A (en) INTERFACE MODULE FOR USE WITH FIELDBUS DEVICE NETWORK AND WITH PROCESS CONTROL NETWORKS ON THE BASIS OF INTERNET OR ANOTHER NETWORK
EP2832066A1 (en) Method and system for robust precision time protocol synchronization
CN110958681B (en) Service transmission method and device
CN102986243B (en) For carrying out the method and system of synchronous communication in audio/visual network
Ee et al. Practical Data-Centric Storage.
CN103475524A (en) Layered networking method based on master-slave node communication network
WO2015139359A1 (en) Wireless network maintenance method, device and system
Brachmann et al. Concurrent transmissions for communication protocols in the internet of things
CN103259866B (en) A kind of method and system of DNS zone file multi-node transmission
EP1601124B1 (en) Method and apparatus synchronizing clocks of network nodes
WO2009148752A2 (en) Node scheduling and address assignment within an ad-hoc communication system
JP2010500848A (en) How to support federated communication services
TW200952394A (en) Data communication system and data communication apparatus
JPWO2019217047A5 (en)
WO2010109767A1 (en) Data synchronization system, data synchronization method, and synchronization control server
CN102412956B (en) Protocol unicast manner synchronization method, devices and system
EP3114883B1 (en) Method and apparatus for propagating and maintaining update information