JPWO2019195714A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019195714A5
JPWO2019195714A5 JP2020554510A JP2020554510A JPWO2019195714A5 JP WO2019195714 A5 JPWO2019195714 A5 JP WO2019195714A5 JP 2020554510 A JP2020554510 A JP 2020554510A JP 2020554510 A JP2020554510 A JP 2020554510A JP WO2019195714 A5 JPWO2019195714 A5 JP WO2019195714A5
Authority
JP
Japan
Prior art keywords
coding sequence
recombinant microorganism
composition
filaggrin
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020554510A
Other languages
Japanese (ja)
Other versions
JP2021528041A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/026045 external-priority patent/WO2019195714A1/en
Publication of JP2021528041A publication Critical patent/JP2021528041A/en
Publication of JPWO2019195714A5 publication Critical patent/JPWO2019195714A5/ja
Priority to JP2024018472A priority Critical patent/JP2024063022A/en
Pending legal-status Critical Current

Links

Description

参考文献
1. Wells RS, Kerr CB. Clinical features of autosomal dominant and sex-linked ichthyosis in an English population. British medical journal. 1966;1(5493):947-950.
2. Hernandez-Martin A, Gonzalez-Sarmiento R, De Unamuno P. X-linked ichthyosis: an update. The British journal of dermatology. 1999;141(4):617-627.
3. Marukian NV, Choate KA. Recent advances in understanding ichthyosis pathogenesis. F1000Research. 2016;5:F1000 Faculty Rev-1497.
4. Oji V, Traupe H. Ichthyosis: clinical manifestations and practical treatment options. American journal of clinical dermatology. 2009;10(6):351-364.
5. Sybert VP, Dale BA, Holbrook KA. Ichthyosis vulgaris: identification of a defect in synthesis of filaggrin correlated with an absence of keratohyaline granules. The Journal of investigative dermatology. 1985;84(3):191-194.
6. Nirunsuksiri W, Presland RB, Brumbaugh SG, Dale BA, Fleckman P. Decreased Profilaggrin Expression in Ichthyosis Vulgaris Is a Result of Selectively Impaired Posttranscriptional Control. Journal of Biological Chemistry. 1995;270(2):871-876.
7. Feinstein A, Ackerman AB, Ziprkowski L. Histology of autosomal dominant ichthyosis vulgaris and X-linked ichthyosis. Archives of dermatology. 1970;101(5):524-527.
8. Osawa R, Akiyama M, Shimizu H. Filaggrin gene defects and the risk of developing allergic disorders. Allergology international : official journal of the Japanese Society of Allergology. 2011;60(1):1-9.
9. Smith FJ, Irvine AD, Terron-Kwiatkowski A, et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nature genetics. 2006;38(3):337-342.
10. Manabe M, Sanchez M, Sun TT, Dale BA. Interaction of filaggrin with keratin filaments during advanced stages of normal human epidermal differentiation and in ichthyosis vulgaris. Differentiation; research in biological diversity. 1991;48(1):43-50.
11. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature genetics. 2006;38(4):441-446.
12. Weidinger S, Illig T, Baurecht H, et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. The Journal of allergy and clinical immunology. 2006;118(1):214-219.
13. Marenholz I, Nickel R, Ruschendorf F, et al. Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. The Journal of allergy and clinical immunology. 2006;118(4):866-871.
14. Sandilands A, Terron-Kwiatkowski A, Hull PR, et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nature genetics. 2007;39(5):650-654.
15. Gruber R, Elias PM, Crumrine D, et al. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function. The American journal of pathology. 2011;178(5):2252-2263.
16. Man MQ, Hatano Y, Lee SH, et al. Characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: structural, immunologic, and biochemical changes following single versus multiple oxazolone challenges. The Journal of investigative dermatology. 2008;128(1):79-86.
17. Fallon PG, Sasaki T, Sandilands A, et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nature genetics. 2009;41(5):602-608.
18. Oyoshi MK, Murphy GF, Geha RS. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. The Journal of allergy and clinical immunology. 2009;124(3):485-493, 493.e481.
19. Kawasaki H, Nagao K, Kubo A, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. The Journal of allergy and clinical immunology. 2012;129(6):1538-1546.e1536.
20. Brown SJ, McLean WH. One remarkable molecule: filaggrin. The Journal of investigative dermatology. 2012;132(3 Pt 2):751-762.
21. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nature reviews Molecular cell biology. 2005;6(4):328-340.
22. Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. The Journal of allergy and clinical immunology. 2010;126(6):1184-1190.e1183.
23. Vavrova K, Henkes D, Struver K, et al. Filaggrin deficiency leads to impaired lipid profile and altered acidification pathways in a 3D skin construct. The Journal of investigative dermatology. 2014;134(3):746-753.
24. Jungersted JM, Scheer H, Mempel M, et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65(7):911-918.
25. Sakai T, Hatano Y, Zhang W, Fujiwara S. Defective maintenance of pH of stratum corneum is correlated with preferential emergence and exacerbation of atopic-dermatitis-like dermatitis in flaky-tail mice. Journal of dermatological science. 2014;74(3):222-228.
26. Bandier J, Johansen JD, Petersen LJ, Carlsen BC. Skin pH, atopic dermatitis, and filaggrin mutations. Dermatitis : contact, atopic, occupational, drug. 2014;25(3):127-129.
27. Ganemo A, Sjoden PO, Johansson E, Vahlquist A, Lindberg M. Health-related quality of life among patients with ichthyosis. European journal of dermatology : EJD. 2004;14(1):61-66.
28. Ganemo A. Quality of life in Swedish children with congenital ichthyosis. Dermatology reports. 2010;2(1):e7.
29. Dreyfus I, Pauwels C, Bourrat E, et al. Burden of inherited ichthyosis: a French national survey. Acta dermato-venereologica. 2015;95(3):326-328.
30. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954-959.
31. Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nature reviews Immunology. 2016;16(6):353-366.
32. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-214.
33. Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(10):3698-3703.34. Salzman NH, Hung K, Haribhai D, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11(1):76-82.
35. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327-336.
36. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences of the United States of America. 2011;108 Suppl 1:4680-4687.
37. Grice EA, Segre JA. The skin microbiome. Nature reviews Microbiology. 2011;9(4):244-253.
38. Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(7):3047-3052.
39. Weyrich LS, Dixit S, Farrer AG, Cooper AJ, Cooper AJ. The skin microbiome: Associations between altered microbial communities and disease. The Australasian journal of dermatology. 2015.
40. Oh J, Byrd AL, Deming C, Conlan S, Kong HH, Segre JA. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59-64.
41. Oh J, Freeman AF, Park M, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome research. 2013;23(12):2103-2114.
42. Grice EA. The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Seminars in cutaneous medicine and surgery. 2014;33(2):98-103.
43. Powers CE, McShane DB, Gilligan PH, Burkhart CN, Morrell DS. Microbiome and pediatric atopic dermatitis. The Journal of dermatology. 2015.
44. Cogen AL, Yamasaki K, Sanchez KM, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010;130(1):192-200.
45. Cogen AL, Yamasaki K, Muto J, et al. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PloS one. 2010;5(1):e8557.
46. Monk IR, Shah IM, Xu M, Tan MW, Foster TJ. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. mBio. 2012;3(2).
47. Wei W, Cao Z, Zhu YL, et al. Conserved genes in a path from commensalism to pathogenicity: comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228. BMC genomics. 2006;7:112.
48. Bose JL, Fey PD, Bayles KW. Genetic tools to enhance the study of gene function and regulation in Staphylococcus aureus. Applied and environmental microbiology. 2013;79(7):2218-2224.
49. Siprashvili Z, Nguyen NT, Bezchinsky MY, Marinkovich MP, Lane AT, Khavari PA. Long-term type VII collagen restoration to human epidermolysis bullosa skin tissue. Hum Gene Ther. 2010;21(10):1299-1310.
50. Johnson LN, Cashman SM, Read SP, Kumar-Singh R. Cell penetrating peptide POD mediates delivery of recombinant proteins to retina, cornea and skin. Vision Res. 2010;50(7):686-697.
51. Hou YW, Chan MH, Hsu HR, et al. Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides. Exp Dermatol. 2007;16(12):999-1006.
52. Aufenvenne K, Larcher F, Hausser I, et al. Topical enzyme-replacement therapy restores transglutaminase 1 activity and corrects architecture of transglutaminase-1-deficient skin grafts. Am J Hum Genet. 2013;93(4):620-630.
53. Park J, Ryu J, Jin LH, et al. 9-polylysine protein transduction domain: enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol Cells. 2002;13(2):202-208.
54. Lim JM, Chang MY, Park SG, et al. Penetration enhancement in mouse skin and lipolysis in adipocytes by TAT-GKH, a new cosmetic ingredient. J Cosmet Sci. 2003;54(5):483-491.
55. Schutze-Redelmeier MP, Kong S, Bally MB, Dutz JP. Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes. Vaccine. 2004;22(15-16):1985-1991.
56. Lopes LB, Brophy CM, Furnish E, et al. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm Res. 2005;22(5):750-757.
57. Nodake Y, Matsumoto S, Miura R, et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe - A blinded randomized clinical trial. Journal of dermatological science. 2015;79(2):119-126.
58. Naik S, Bouladoux N, Linehan JL, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520(7545):104-108.
59. Li D, Lei H, Li Z, Li H, Wang Y, Lai Y. A novel lipopeptide from skin commensal activates TLR2/CD36-p38 MAPK signaling to increase antibacterial defense against bacterial infection. PloS one. 2013;8(3):e58288.
60. Lai Y, Cogen AL, Radek KA, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130(9):2211-2221.
61. Naik S, Bouladoux N, Wilhelm C, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337(6098):1115-1119.
62. Gonzalez FJ, Valdes-Rodriguez R, Ramirez-Elias MG, Castillo-Martinez C, Saavedra-Alanis VM, Moncada B. Noninvasive detection of filaggrin gene mutations using Raman spectroscopy. Biomedical optics express. 2011;2(12):3363-3366.
63. Harding CR, Aho S, Bosko CA. Filaggrin - revisited. International Journal of Cosmetic Science. 2013;35(5):412-423.
64. Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. Journal of cell science. 2009;122(Pt 9):1285-1294.
65. Denecker G, Hoste E, Gilbert B, et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nature cell biology. 2007;9(6):666-674.
66. Kamata Y, Taniguchi A, Yamamoto M, et al. Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. The Journal of biological chemistry. 2009;284(19):12829-12836.
67. Oh J, Freeman AF, Program NCS, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome research. 2013;23(12):2103-2114.
本開示は以下の実施形態を包含する。
[1] ポリペプチドを分泌することができる組換え微生物であって、該ポリペプチドを発現することができる遺伝子を含む第1のコード配列と、細胞透過性ペプチドを発現することができる遺伝子を含む第2のコード配列とを含む発現ベクターを含む、組換え微生物。
[2] 移行シグナルを発現することができる遺伝子を含む第3のコード配列をさらに含む、実施形態1に記載の組換え微生物。
[3] 第1のコード配列、第2のコード配列および第3のコード配列の発現が、プロモーターの制御下にある、実施形態1または2に記載の組換え微生物。
[4] 第1のコード配列、第2のコード配列および第3のコード配列の配置が、インフレームである、実施形態3に記載の組換え微生物。
[5] 第1のコード配列、第2のコード配列および第3のコード配列が、プロモーターに機能し得る形で連結されている、実施形態2に記載の組換え微生物。
[6] 組換え微生物が、細菌、または細菌の組合せである、実施形態2に記載の組換え微生物。
[7] ポリペプチドが、フィラグリン、またはそのバリアントである、実施形態1に記載の組換え微生物。
[8] 微生物が、ビフィドバクテリウム(Bifidobacterium)、ブレヴィバクテリウム(Brevibacterium)、プロピオニバクテリウム(Propionibacterium)、ラクトコッカス(Lactococcus)、ストレプトコッカス(Streptococcus)、スタフィロコッカス(Staphylococcus)、ラクトバチルス(Lactobacillus)、エンテロコッカス(Enterococcus)、ペディオコッカス(Pediococcus)、ロイコノストック(Leuconostoc)、もしくはオエノコッカス(Oenococcus)、またはその組合せからなる群から選択される、実施形態1に記載の組換え微生物。
[9] 組換え微生物が、表皮ブドウ球菌(Staphylococcus epidermidis)である、実施形態1に記載の組換え微生物。
[10] 微生物が、フィラグリン融合タンパク質を分泌する、実施形態1に記載の組換え微生物。
[11] フィラグリン融合タンパク質が配列番号1と95%配列同一であるアミノ酸配列を有する、実施形態10に記載の組換え微生物。
[12] 生きた生物治療組成物を製造するための方法であって、
(a)細胞に、(i)治療ポリペプチドを発現することができる核酸配列を含む第1のコード配列、および(ii)細胞透過性ペプチドを発現することができる核酸配列を含む第2のコード配列をトランスフェクトすることと、
(b)トランスフェクトされた細胞に、治療ポリペプチド融合タンパク質を産生させることと、
(c)生きた生物治療組成物を取得することと、
を含む、方法。
[13] (iii)細胞に、移行シグナルを発現することができる核酸配列を含む第3のコード配列をトランスフェクトすることをさらに含む、実施形態12に記載の方法。
[14] 第1のコード配列、第2のコード配列および第3のコード配列が、単一のプラスミド中に配置される、実施形態12に記載の方法。
[15] 第1のコード配列、第2のコード配列および第3のコード配列の配置が、プロモーターに機能し得る形で連結される、実施形態13に記載の方法。
[16] 細胞が、ビフィドバクテリウム(Bifidobacterium)、ブレヴィバクテリウム(Brevibacterium)、プロピオニバクテリウム(Propionibacterium)、ラクトコッカス(Lactococcus)、ストレプトコッカス(Streptococcus)、スタフィロコッカス(Staphylococcus)、ラクトバチルス(Lactobacillus)、エンテロコッカス(Enterococcus)、ペディオコッカス(Pediococcus)、ロイコノストック(Leuconostoc)、もしくはオエノコッカス(Oenococcus)、またはその組合せからなる群から選択される微生物からなる群から選択される、実施形態12に記載の方法。
[17] 細胞が、表皮ブドウ球菌(Staphylococcus epidermidis)である、実施形態12に記載の方法。
[18] 治療ポリペプチド融合タンパク質が、フィラグリン融合タンパク質、またはそのバリアントである、実施形態12に記載の方法。
[19] フィラグリン融合タンパク質が配列番号1と95%配列同一であるアミノ酸配列を有する、実施形態11に記載の方法。
[20] 実施形態12~19のいずれかに記載の方法によって得られた組成物。
[21] 水性溶液、エマルジョン、クリーム、ローション、ゲル、または軟膏からなる群から選択される製薬上許容し得る担体を含む、実施形態20に記載の組成物。
[22] 組換え微生物を含む生きた生物治療組成物であって、組換え微生物が、
(i)治療ポリペプチドを発現することができる核酸配列を含む第1のコード配列;
(ii)細胞透過性ペプチドを発現することができる核酸配列を含む第2のコード配列;
(iii)移行シグナルを発現することができる核酸配列を含む第3のコード配列;ならびに (iv)第1のコード配列、第2のコード配列および第3のコード配列に機能し得る形で連結されているプロモーター
を含み、
第1のコード配列、第2のコード配列および第1のコード配列が、フィラグリン融合産物、またはそのバリアントを発現することができる、生きた生物治療組成物。
[23] 組換え微生物が、表皮ブドウ球菌(Staphylococcus epidermidis)である、実施形態22に記載の組成物。
[24] 移行シグナルが、フィラグリン融合産物、またはそのバリアントを、組換え微生物から外部へ輸送する、実施形態22または23に記載の組成物。
[25] フィラグリン融合タンパク質が配列番号1と95%配列同一であるアミノ酸配列を有する、実施形態24に記載の組成物。
[26] 細胞透過性ペプチドが、フィラグリン融合産物、またはそのバリアントの、ヒトケラチノサイトへの進入を容易にする、実施形態20に記載の組成物。
[27] 水性溶液、エマルジョン、クリーム、ローション、ゲル、または軟膏からなる群から選択される製薬上許容し得る担体を含む、実施形態22に記載の組成物。
[28] 実施形態22~27のいずれかに記載の組成物、および、使用のための指示書を含む、キット。
[29] 皮膚疾患の処置を必要とする対象に、実施形態1~10または18~23のいずれかに記載の組成物を投与することを含む、皮膚疾患を処置する方法。
[30] 皮膚疾患が尋常性魚鱗癬(IV)である、実施形態29に記載の方法。
[31] 皮膚疾患がアトピー性皮膚炎である、実施形態29に記載の方法。
[32] フィラグリンポリペプチド、またはそのバリアントを含む、組成物。
[33] フィラグリンポリペプチドが融合タンパク質である、実施形態32に記載の組成物。
[34] フィラグリン融合タンパク質が配列番号1と95%配列同一であるアミノ酸配列を有する、実施形態33に記載の組成物。
[35] フィラグリン融合タンパク質が配列番号1のアミノ酸配列からなる、実施形態33に記載の組成物。
References
1. Wells RS, Kerr CB. Clinical features of autosomal dominant and sex-linked ichthyosis in an English population. British medical journal. 1966; 1 (5493): 947-950.
2. Hernandez-Martin A, Gonzalez-Sarmiento R, De Unamuno P. X-linked ichthyosis: an update. The British journal of dermatology. 1999; 141 (4): 617-627.
3. Marukian NV, Choate KA. Recent advances in understanding ichthyosis pathogenesis. F1000Research. 2016; 5: F1000 Faculty Rev-1497.
4. Oji V, Traupe H. Ichthyosis: clinical manifestations and practical treatment options. American journal of clinical dermatology. 2009; 10 (6): 351-364.
5. Sybert VP, Dale BA, Holbrook KA. Ichthyosis vulgaris: identification of a defect in synthesis of filaggrin correlated with an absence of keratohyaline granules. The Journal of investigative dermatology. 1985; 84 (3): 191-194.
6. Nirunsuksiri W, Presland RB, Brumbaugh SG, Dale BA, Fleckman P. Decreased Profilaggrin Expression in Ichthyosis Vulgaris Is a Result of Selectively Impaired Posttranscriptional Control. Journal of Biological Chemistry. 1995; 270 (2): 871-876.
7. Feinstein A, Ackerman AB, Ziprkowski L. Histology of autosomal dominant ichthyosis vulgaris and X-linked ichthyosis. Archives of dermatology. 1970; 101 (5): 524-527.
8. Osawa R, Akiyama M, Shimizu H. Filaggrin gene defects and the risk of developing allergic disorders. Allergology international: official journal of the Japanese Society of Allergology. 2011; 60 (1): 1-9.
9. Smith FJ, Irvine AD, Terron-Kwiatkowski A, et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nature genetics. 2006; 38 (3): 337-342.
10. Manabe M, Sanchez M, Sun TT, Dale BA. Interaction of filaggrin with keratin filaments during advanced stages of normal human epidermal differentiation and in ichthyosis vulgaris. Differentiation; research in biological diversity. 1991; 48 (1): 43-50 ..
11. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature genetics. 2006; 38 (4): 441- 446.
12. Weidinger S, Illig T, Baurecht H, et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. The Journal of allergy and clinical immunology. 2006; 118 (1): 214-219 ..
13. Marenholz I, Nickel R, Ruschendorf F, et al. Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. The Journal of allergy and clinical immunology. 2006; 118 (4): 866-871.
14. Sandilands A, Terron-Kwiatkowski A, Hull PR, et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nature genetics. 2007; 39 (5): 650-654.
15. Gruber R, Elias PM, Crumrine D, et al. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function. The American journal of pathology. 2011; 178 (5): 2252-2263.
16. Man MQ, Hatano Y, Lee SH, et al. characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: structural, immunologic, and biochemical changes following single versus multiple oxazolone challenges. The Journal of investigative dermatology. 2008; 128 (1): 79-86.
17. Fallon PG, Sasaki T, Sandilands A, et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nature genetics. 2009; 41 (5): 602-608.
18. Oyoshi MK, Murphy GF, Geha RS. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. The Journal of allergy and clinical immunology. 2009; 124 (3): 485-493, 493 .e481.
19. Kawasaki H, Nagao K, Kubo A, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. The Journal of allergy and clinical immunology. 2012; 129 (6): 1538-1546.e1536.
20. Brown SJ, McLean WH. One remarkable molecule: filaggrin. The Journal of investigative dermatology. 2012; 132 (3 Pt 2): 751-762.
21. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nature reviews Molecular cell biology. 2005; 6 (4): 328-340.
22. Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. The Journal of allergy and clinical immunology. 2010; 126 (6): 1184-1190.e1183.
23. Vavrova K, Henkes D, Struver K, et al. Filaggrin deficiency leads to impaired lipid profile and altered acidification pathways in a 3D skin construct. The Journal of investigative dermatology. 2014; 134 (3): 746-753.
24. Jungersted JM, Scheer H, Mempel M, et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010; 65 (7): 911-918.
25. Sakai T, Hatano Y, Zhang W, Fujiwara S. Defective maintenance of pH of stratum corneum is correlated with preferential emergence and exacerbation of atopic-dermatitis-like dermatitis in flaky-tail mice. Journal of dermatological science. 2014; 74 ( 3): 222-228.
26. Bandier J, Johansen JD, Petersen LJ, Carlsen BC. Skin pH, atopic dermatitis, and filaggrin mutations. Dermatitis: contact, atopic, occupational, drug. 2014; 25 (3): 127-129.
27. Ganemo A, Sjoden PO, Johansson E, Vahlquist A, Lindberg M. Health-related quality of life among patients with ichthyosis. European journal of dermatology: EJD. 2004; 14 (1): 61-66.
28. Ganemo A. Quality of life in Swedish children with congenital ichthyosis. Dermatology reports. 2010; 2 (1): e7.
29. Dreyfus I, Pauwels C, Bourrat E, et al. Burden of inherited ichthyosis: a French national survey. Acta dermato-venereologica. 2015; 95 (3): 326-328.
30. Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014; 346 (6212): 954-959.
31. Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nature reviews Immunology. 2016; 16 (6): 353-366.
32. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486 (7402): 207-214.
33. Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106 (10): 3698- 3703.34. Salzman NH, Hung K, Haribhai D, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010; 11 (1): 76-82.
35. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474 (7351): 327-336.
36. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108 Suppl 1: 4680-4687.
37. Grice EA, Segre JA. The skin microbiome. Nature reviews Microbiology. 2011; 9 (4): 244-253.
38. Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108 (7): 3047-3052.
39. Weyrich LS, Dixit S, Farrer AG, Cooper AJ, Cooper AJ. The skin microbiome: Associations between altered microbial communities and disease. The Australasian journal of dermatology. 2015.
40. Oh J, Byrd AL, Deming C, Conlan S, Kong HH, Segre JA. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014; 514 (7520): 59-64.
41. Oh J, Freeman AF, Park M, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome research. 2013; 23 (12): 2103-2114.
42. Grice EA. The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Seminars in cutaneous medicine and surgery. 2014; 33 (2): 98-103.
43. Powers CE, McShane DB, Gilligan PH, Burkhart CN, Morrell DS. Microbiome and pediatric atopic dermatitis. The Journal of dermatology. 2015.
44. Cogen AL, Yamasaki K, Sanchez KM, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010; 130 (1): 192-200 ..
45. Cogen AL, Yamasaki K, Muto J, et al. Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PloS one. 2010; 5 (1): e8557 ..
46. Monk IR, Shah IM, Xu M, Tan MW, Foster TJ. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio. 2012; 3 (2).
47. Wei W, Cao Z, Zhu YL, et al. Conserved genes in a path from commensalism to pathogenicity: comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228. BMC genomics. 2006; 7: 112.
48. Bose JL, Fey PD, Bayles KW. Genetic tools to enhance the study of gene function and regulation in Staphylococcus aureus. Applied and environmental microbiology. 2013; 79 (7): 2218-2224.
49. Siprashvili Z, Nguyen NT, Bezchinsky MY, Marinkovich MP, Lane AT, Khavari PA. Long-term type VII collagen restoration to human epidermolysis bullosa skin tissue. Hum Gene Ther. 2010; 21 (10): 1299-1310.
50. Johnson LN, Cashman SM, Read SP, Kumar-Singh R. Cell penetrating peptide POD mediates delivery of recombinant proteins to retina, cornea and skin. Vision Res. 2010; 50 (7): 686-697.
51. Hou YW, Chan MH, Hsu HR, et al. Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides. Exp Dermatol. 2007; 16 (12): 999-1006.
52. Aufenvenne K, Larcher F, Hausser I, et al. Topical enzyme-replacement therapy restores transglutaminase 1 activity and corrects architecture of transglutaminase-1-deficient skin grafts. Am J Hum Genet. 2013; 93 (4): 620-630 ..
53. Park J, Ryu J, Jin LH, et al. 9-polylysine protein transduction domain: enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol Cells. 2002; 13 (2): 202-208.
54. Lim JM, Chang MY, Park SG, et al. Penetration enhancement in mouse skin and lipolysis in adipocytes by TAT-GKH, a new cosmetic ingredient. J Cosmet Sci. 2003; 54 (5): 483-491.
55. Schutze-Redelmeier MP, Kong S, Bally MB, Dutz JP. Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes. Vaccine. 2004; 22 (15-16): 1985-1991.
56. Lopes LB, Brophy CM, Furnish E, et al. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm Res. 2005; 22 (5): 750-757.
57. Nodake Y, Matsumoto S, Miura R, et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe --A blinded randomized clinical trial. Journal of dermatological science. 2015; 79 (2): 119-126.
58. Naik S, Bouladoux N, Linehan JL, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015; 520 (7545): 104-108.
59. Li D, Lei H, Li Z, Li H, Wang Y, Lai Y. A novel lipopeptide from skin commensal activates TLR2 / CD36-p38 MAPK signaling to increase antibacterial defense against bacterial infection. PloS one. 2013; 8 (3) ): e58288.
60. Lai Y, Cogen AL, Radek KA, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010; 130 (9): 2211-2221.
61. Naik S, Bouladoux N, Wilhelm C, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012; 337 (6098): 1115-1119.
62. Gonzalez FJ, Valdes-Rodriguez R, Ramirez-Elias MG, Castillo-Martinez C, Saavedra-Alanis VM, Moncada B. Noninvasive detection of filaggrin gene mutations using Raman spectroscopy. Biomedical optics express. 2011; 2 (12): 3363 -3366.
63. Harding CR, Aho S, Bosko CA. Filaggrin --revisited. International Journal of Cosmetic Science. 2013; 35 (5): 412-423.
64. Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. Journal of cell science. 2009; 122 (Pt 9): 1285-1294.
65. Denecker G, Hoste E, Gilbert B, et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nature cell biology. 2007; 9 (6): 666-674.
66. Kamata Y, Taniguchi A, Yamamoto M, et al. Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. The Journal of biological chemistry. 2009; 284 (19): 12829-12836.
67. Oh J, Freeman AF, Program NCS, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome research. 2013; 23 (12): 2103-2114.
The present disclosure includes the following embodiments.
[1] A recombinant microorganism capable of secreting a polypeptide, which comprises a first coding sequence containing a gene capable of expressing the polypeptide and a gene capable of expressing a cell-permeable peptide. A recombinant microorganism comprising an expression vector comprising a second coding sequence.
[2] The recombinant microorganism according to embodiment 1, further comprising a third coding sequence comprising a gene capable of expressing a translocation signal.
[3] The recombinant microorganism according to embodiment 1 or 2, wherein the expression of the first coding sequence, the second coding sequence and the third coding sequence is under the control of a promoter.
[4] The recombinant microorganism according to embodiment 3, wherein the arrangement of the first coding sequence, the second coding sequence and the third coding sequence is in-frame.
[5] The recombinant microorganism according to embodiment 2, wherein the first coding sequence, the second coding sequence, and the third coding sequence are linked in a manner capable of functioning as a promoter.
[6] The recombinant microorganism according to Embodiment 2, wherein the recombinant microorganism is a bacterium or a combination of bacteria.
[7] The recombinant microorganism according to embodiment 1, wherein the polypeptide is filaggrin or a variant thereof.
[8] Microbes are Bifidobacterium, Brevibacterium, Propionibacterium, Lactococcus, Streptococcus, Staphylococcus, Lactobacillus. The recombinant microorganism according to embodiment 1, selected from the group consisting of (Lactobacillus), Enterococcus, Pediococcus, Leuconostoc, or Oenococcus, or a combination thereof.
[9] The recombinant microorganism according to Embodiment 1, wherein the recombinant microorganism is Staphylococcus epidermidis.
[10] The recombinant microorganism according to embodiment 1, wherein the microorganism secretes a filaggrin fusion protein.
[11] The recombinant microorganism according to embodiment 10, wherein the filaggrin fusion protein has an amino acid sequence that is 95% identical in sequence to SEQ ID NO: 1.
[12] A method for producing a living biotherapeutic composition.
A first coding sequence containing (i) a nucleic acid sequence capable of expressing a therapeutic polypeptide in a cell, and (ii) a second coding sequence containing a nucleic acid sequence capable of expressing a cell-permeable peptide. Transfecting the sequence and
(b) To cause the transfected cells to produce a therapeutic polypeptide fusion protein.
(c) Obtaining a living biotherapeutic composition and
Including, how.
[13] (iii) The method of embodiment 12, further comprising transfecting cells with a third coding sequence comprising a nucleic acid sequence capable of expressing a translocation signal.
[14] The method of embodiment 12, wherein the first coding sequence, the second coding sequence and the third coding sequence are located in a single plasmid.
[15] The method of embodiment 13, wherein the first coding sequence, the second coding sequence and the arrangement of the third coding sequence are ligated in a manner capable of functioning as a promoter.
[16] The cells are Bifidobacterium, Brevibacterium, Propionibacterium, Lactococcus, Streptococcus, Staphylococcus, Lactobacillus. Embodiment selected from the group consisting of microorganisms selected from the group consisting of (Lactobacillus), Enterococcus, Pediococcus, Leuconostoc, or Oenococcus, or a combination thereof. 12. The method according to 12.
[17] The method of embodiment 12, wherein the cells are Staphylococcus epidermidis.
[18] The method of embodiment 12, wherein the therapeutic polypeptide fusion protein is a filaggrin fusion protein, or a variant thereof.
[19] The method of embodiment 11, wherein the filaggrin fusion protein has an amino acid sequence that is 95% identical in sequence to SEQ ID NO: 1.
[20] The composition obtained by the method according to any one of embodiments 12 to 19.
[21] The composition according to embodiment 20, comprising a pharmaceutically acceptable carrier selected from the group consisting of aqueous solutions, emulsions, creams, lotions, gels, or ointments.
[22] A living biotherapeutic composition comprising a recombinant microorganism, wherein the recombinant microorganism is:
(i) A first coding sequence containing a nucleic acid sequence capable of expressing a therapeutic polypeptide;
(ii) A second coding sequence containing a nucleic acid sequence capable of expressing a cell-permeable peptide;
(iii) A third coding sequence containing a nucleic acid sequence capable of expressing a translocation signal; and (iv) linked to a first coding sequence, a second coding sequence and a third coding sequence in a functional manner. Promoter
Including
A living biotherapeutic composition in which the first coding sequence, the second coding sequence and the first coding sequence can express a filaggrin fusion product or a variant thereof.
[23] The composition according to embodiment 22, wherein the recombinant microorganism is Staphylococcus epidermidis.
[24] The composition according to embodiment 22 or 23, wherein the migration signal transports the filaggrin fusion product, or a variant thereof, out of the recombinant microorganism.
[25] The composition of embodiment 24, wherein the filaggrin fusion protein has an amino acid sequence that is 95% identical in sequence to SEQ ID NO: 1.
[26] The composition according to embodiment 20, wherein the cell-permeable peptide facilitates entry of the filaggrin fusion product, or variant thereof, into human keratinocytes.
[27] The composition according to embodiment 22, comprising a pharmaceutically acceptable carrier selected from the group consisting of aqueous solutions, emulsions, creams, lotions, gels, or ointments.
[28] A kit comprising the composition according to any of embodiments 22-27 and instructions for use.
[29] A method for treating a skin disease, which comprises administering the composition according to any one of embodiments 1 to 10 or 18 to 23 to a subject in need of treatment for the skin disease.
[30] The method of embodiment 29, wherein the skin disease is ichthyosis vulgaris (IV).
[31] The method according to embodiment 29, wherein the skin disease is atopic dermatitis.
[32] A composition comprising a filaggrin polypeptide, or a variant thereof.
[33] The composition according to embodiment 32, wherein the filaggrin polypeptide is a fusion protein.
[34] The composition of embodiment 33, wherein the filaggrin fusion protein has an amino acid sequence that is 95% identical in sequence to SEQ ID NO: 1.
[35] The composition according to embodiment 33, wherein the filaggrin fusion protein comprises the amino acid sequence of SEQ ID NO: 1.

Claims (33)

ポリペプチドを分泌することができる組換え微生物であって、該ポリペプチドを発現することができる遺伝子を含む第1のコード配列と、細胞透過性ペプチドを発現することができる遺伝子を含む第2のコード配列とを含む発現ベクターを含む、組換え微生物。 A recombinant microorganism capable of secreting a polypeptide, the first coding sequence containing a gene capable of expressing the polypeptide and the second coding sequence containing a gene capable of expressing a cell-permeable peptide. Recombinant microorganisms comprising an expression vector comprising a coding sequence. 移行シグナルを発現することができる遺伝子を含む第3のコード配列をさらに含む、請求項1に記載の組換え微生物。 The recombinant microorganism according to claim 1, further comprising a third coding sequence comprising a gene capable of expressing a translocation signal. 第1のコード配列、第2のコード配列および第3のコード配列の発現が、プロモーターの制御下にある、請求項1または2に記載の組換え微生物。 The recombinant microorganism according to claim 1 or 2, wherein the expression of the first coding sequence, the second coding sequence and the third coding sequence is under the control of a promoter. 第1のコード配列、第2のコード配列および第3のコード配列の配置が、インフレームである、請求項3に記載の組換え微生物。 The recombinant microorganism according to claim 3, wherein the arrangement of the first coding sequence, the second coding sequence and the third coding sequence is in-frame. 第1のコード配列、第2のコード配列および第3のコード配列が、プロモーターに機能し得る形で連結されている、請求項2に記載の組換え微生物。 The recombinant microorganism according to claim 2, wherein the first coding sequence, the second coding sequence, and the third coding sequence are linked in a manner capable of functioning as a promoter. 組換え微生物が、細菌、または細菌の組合せである、請求項2に記載の組換え微生物。 The recombinant microorganism according to claim 2, wherein the recombinant microorganism is a bacterium or a combination of bacteria. ポリペプチドが、フィラグリン、またはそのバリアントである、請求項1に記載の組換え微生物。 The recombinant microorganism according to claim 1, wherein the polypeptide is filaggrin or a variant thereof. 微生物が、ビフィドバクテリウム(Bifidobacterium)、ブレヴィバクテリウム(Brevibacterium)、プロピオニバクテリウム(Propionibacterium)、ラクトコッカス(Lactococcus)、ストレプトコッカス(Streptococcus)、スタフィロコッカス(Staphylococcus)、ラクトバチルス(Lactobacillus)、エンテロコッカス(Enterococcus)、ペディオコッカス(Pediococcus)、ロイコノストック(Leuconostoc)、もしくはオエノコッカス(Oenococcus)、またはその組合せからなる群から選択される、請求項1に記載の組換え微生物。 The microorganisms are Bifidobacterium, Brevibacterium, Propionibacterium, Lactococcus, Streptococcus, Staphylococcus, Lactobacillus. , Enterococcus, Pediococcus, Leuconostoc, or Oenococcus, or a combination thereof, the recombinant microorganism according to claim 1. 組換え微生物が、表皮ブドウ球菌(Staphylococcus epidermidis)である、請求項1に記載の組換え微生物。 The recombinant microorganism according to claim 1, wherein the recombinant microorganism is Staphylococcus epidermidis. 微生物が、フィラグリン融合タンパク質を分泌する、請求項1に記載の組換え微生物。 The recombinant microorganism according to claim 1, wherein the microorganism secretes a filaggrin fusion protein. フィラグリン融合タンパク質が配列番号1と95%配列同一であるアミノ酸配列を有する、請求項10に記載の組換え微生物。 The recombinant microorganism according to claim 10, wherein the filaggrin fusion protein has an amino acid sequence that is 95% identical in sequence to SEQ ID NO: 1. 生きた生物治療組成物を製造するための方法であって、
(a)細胞に、(i)治療ポリペプチドを発現することができる核酸配列を含む第1のコード配列、および(ii)細胞透過性ペプチドを発現することができる核酸配列を含む第2のコード配列をトランスフェクトすることと、
(b)トランスフェクトされた細胞に、治療ポリペプチド融合タンパク質を産生させることと、
(c)生きた生物治療組成物を取得することと、
を含む、方法。
A method for producing a living biotherapeutic composition,
A first coding sequence containing (i) a nucleic acid sequence capable of expressing a therapeutic polypeptide in a cell, and (ii) a second coding sequence containing a nucleic acid sequence capable of expressing a cell-permeable peptide. Transfecting the sequence and
(b) To cause the transfected cells to produce a therapeutic polypeptide fusion protein.
(c) Obtaining a living biotherapeutic composition and
Including, how.
(iii)細胞に、移行シグナルを発現することができる核酸配列を含む第3のコード配列をトランスフェクトすることをさらに含む、請求項12に記載の方法。 (iii) The method of claim 12, further comprising transfecting cells with a third coding sequence comprising a nucleic acid sequence capable of expressing a translocation signal. 第1のコード配列、第2のコード配列および第3のコード配列が、単一のプラスミド中に配置される、請求項12に記載の方法。 12. The method of claim 12, wherein the first coding sequence, the second coding sequence and the third coding sequence are located in a single plasmid. 第1のコード配列、第2のコード配列および第3のコード配列の配置が、プロモーターに機能し得る形で連結される、請求項13に記載の方法。 13. The method of claim 13, wherein the first coding sequence, the second coding sequence, and the arrangement of the third coding sequence are linked in a manner capable of functioning as a promoter. 細胞が、ビフィドバクテリウム(Bifidobacterium)、ブレヴィバクテリウム(Brevibacterium)、プロピオニバクテリウム(Propionibacterium)、ラクトコッカス(Lactococcus)、ストレプトコッカス(Streptococcus)、スタフィロコッカス(Staphylococcus)、ラクトバチルス(Lactobacillus)、エンテロコッカス(Enterococcus)、ペディオコッカス(Pediococcus)、ロイコノストック(Leuconostoc)、もしくはオエノコッカス(Oenococcus)、またはその組合せからなる群から選択される微生物からのものである、請求項12に記載の方法。 The cells are Bifidobacterium, Brevibacterium, Propionibacterium, Lactococcus, Streptococcus, Staphylococcus, Lactobacillus. , Enterococcus, Pediococcus, Leuconostoc, or Oenococcus, or a combination thereof, from a microorganism selected from the group. .. 細胞が、表皮ブドウ球菌(Staphylococcus epidermidis)からのものである、請求項12に記載の方法。 12. The method of claim 12, wherein the cells are from Staphylococcus epidermidis. 治療ポリペプチド融合タンパク質が、フィラグリン融合タンパク質、またはそのバリアントである、請求項12に記載の方法。 12. The method of claim 12, wherein the therapeutic polypeptide fusion protein is a filaggrin fusion protein, or a variant thereof. フィラグリン融合タンパク質が配列番号1と95%配列同一であるアミノ酸配列を有する、請求項11に記載の方法。 11. The method of claim 11, wherein the filaggrin fusion protein has an amino acid sequence that is 95% identical in sequence to SEQ ID NO: 1. 請求項12~19のいずれか一項に記載の方法によって得られた組成物。 The composition obtained by the method according to any one of claims 12 to 19. 水性溶液、エマルジョン、クリーム、ローション、ゲル、または軟膏からなる群から選択される製薬上許容し得る担体を含む、請求項20に記載の組成物。 20. The composition of claim 20, comprising a pharmaceutically acceptable carrier selected from the group consisting of aqueous solutions, emulsions, creams, lotions, gels, or ointments. 組換え微生物を含む生きた生物治療組成物であって、組換え微生物が、
(i)治療ポリペプチドを発現することができる核酸配列を含む第1のコード配列;
(ii)細胞透過性ペプチドを発現することができる核酸配列を含む第2のコード配列;
(iii)移行シグナルを発現することができる核酸配列を含む第3のコード配列;ならびに (iv)第1のコード配列、第2のコード配列および第3のコード配列に機能し得る形で連結されているプロモーター
を含み、
第1のコード配列、第2のコード配列および第1のコード配列が、フィラグリン融合産物、またはそのバリアントを発現することができる、生きた生物治療組成物。
A living biotherapeutic composition comprising a recombinant microorganism, wherein the recombinant microorganism is:
(i) A first coding sequence containing a nucleic acid sequence capable of expressing a therapeutic polypeptide;
(ii) A second coding sequence containing a nucleic acid sequence capable of expressing a cell-permeable peptide;
(iii) A third coding sequence containing a nucleic acid sequence capable of expressing a translocation signal; and (iv) linked to a first coding sequence, a second coding sequence and a third coding sequence in a functional manner. Including promoters
A living biotherapeutic composition in which the first coding sequence, the second coding sequence and the first coding sequence can express a filaggrin fusion product or a variant thereof.
組換え微生物が、表皮ブドウ球菌(Staphylococcus epidermidis)である、請求項22に記載の組成物。 22. The composition of claim 22, wherein the recombinant microorganism is Staphylococcus epidermidis. 移行シグナルが、フィラグリン融合産物、またはそのバリアントを、組換え微生物から外部へ輸送する、請求項22に記載の組成物。 22. The composition of claim 22 , wherein the translocation signal transports the filaggrin fusion product, or a variant thereof, out of the recombinant microorganism. フィラグリン融合タンパク質が配列番号1と95%配列同一であるアミノ酸配列を有する、請求項24に記載の組成物。 24. The composition of claim 24, wherein the filaggrin fusion protein has an amino acid sequence that is 95% identical in sequence to SEQ ID NO: 1. 細胞透過性ペプチドが、フィラグリン融合産物、またはそのバリアントの、ヒトケラチノサイトへの進入を容易にする、請求項20に記載の組成物。 20. The composition of claim 20, wherein the cell-permeable peptide facilitates entry of the filaggrin fusion product, or variant thereof, into human keratinocytes. 水性溶液、エマルジョン、クリーム、ローション、ゲル、または軟膏からなる群から選択される製薬上許容し得る担体を含む、請求項22に記載の組成物。 22. The composition of claim 22, comprising a pharmaceutically acceptable carrier selected from the group consisting of aqueous solutions, emulsions, creams, lotions, gels, or ointments. 請求項22~27のいずれか一項に記載の組成物、および、使用のための指示書を含む、キット。 A kit comprising the composition according to any one of claims 22 to 27 and instructions for use. 求項1~10または22~26のいずれか一項に記載の組換え微生物を含む、皮膚疾患を処置するための医薬組成物 A pharmaceutical composition for treating a skin disease, which comprises the recombinant microorganism according to any one of claims 1 to 10 or 22 to 26 . 皮膚疾患が尋常性魚鱗癬(IV)である、請求項29に記載の医薬組成物29. The pharmaceutical composition of claim 29, wherein the skin disease is ichthyosis vulgaris (IV). 皮膚疾患がアトピー性皮膚炎である、請求項29に記載の医薬組成物The pharmaceutical composition according to claim 29, wherein the skin disease is atopic dermatitis. フィラグリン融合ポリペプチド、またはそのバリアントを含む、組成物であって、前記フィラグリン融合タンパク質が配列番号1と95%配列同一であるアミノ酸配列を有する、組成物A composition comprising a filaggrin fusion polypeptide or a variant thereof , wherein the filaggrin fusion protein has an amino acid sequence that is 95% identical in sequence to SEQ ID NO: 1 . フィラグリン融合タンパク質が配列番号1のアミノ酸配列からなる、請求項32に記載の組成物。 32. The composition of claim 32 , wherein the filaggrin fusion protein comprises the amino acid sequence of SEQ ID NO: 1.
JP2020554510A 2018-04-05 2019-04-05 Methods and Compositions for Treating Skin Diseases with Recombinant Microorganisms Pending JP2021528041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024018472A JP2024063022A (en) 2018-04-05 2024-02-09 Methods and compositions for treating skin diseases using recombinant microorganisms

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862653021P 2018-04-05 2018-04-05
US62/653,021 2018-04-05
PCT/US2019/026045 WO2019195714A1 (en) 2018-04-05 2019-04-05 Methods and compositions for treating skin disease with recombinant microorganisms

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024018472A Division JP2024063022A (en) 2018-04-05 2024-02-09 Methods and compositions for treating skin diseases using recombinant microorganisms

Publications (2)

Publication Number Publication Date
JP2021528041A JP2021528041A (en) 2021-10-21
JPWO2019195714A5 true JPWO2019195714A5 (en) 2022-04-07

Family

ID=68101164

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020554510A Pending JP2021528041A (en) 2018-04-05 2019-04-05 Methods and Compositions for Treating Skin Diseases with Recombinant Microorganisms
JP2024018472A Pending JP2024063022A (en) 2018-04-05 2024-02-09 Methods and compositions for treating skin diseases using recombinant microorganisms

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024018472A Pending JP2024063022A (en) 2018-04-05 2024-02-09 Methods and compositions for treating skin diseases using recombinant microorganisms

Country Status (7)

Country Link
US (1) US11850267B2 (en)
JP (2) JP2021528041A (en)
KR (1) KR20200139760A (en)
CN (1) CN112236153A (en)
AU (1) AU2019249249A1 (en)
CA (1) CA3096081A1 (en)
WO (1) WO2019195714A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3144162A1 (en) * 2022-12-21 2024-06-28 L'oreal Use of Staphylococcus epidermidis strains producing indole metabolites to improve the skin barrier
CN116874576B (en) * 2023-06-28 2024-03-12 胡荣洋 Recombinant humanized silk fibroin and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0525492D0 (en) 2005-12-15 2006-01-25 Univ Dundee Filaggrin
AU2010321784B2 (en) * 2009-11-23 2014-04-24 Research Development Foundation Recombinant filaggrin polypeptides for cell importation
AU2014203006B2 (en) 2009-11-23 2016-05-19 Research Development Foundation Recombinant filaggrin polypeptides for cell importation
US9283287B2 (en) * 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
EP2909321A4 (en) * 2012-10-16 2016-06-22 Massachusetts Inst Technology Production of stable non-polyadenylated rnas
EP4249036A3 (en) * 2014-01-31 2023-10-25 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
US10702558B2 (en) * 2014-05-30 2020-07-07 Azitra Inc Therapeutic treatment of skin disease with recombinant commensal skin microorganisms
KR20200051001A (en) * 2017-09-05 2020-05-12 아지트라 인코포레이티드 Methods and compositions for treating inflammatory skin diseases using recombinant microorganisms

Similar Documents

Publication Publication Date Title
JP7227903B2 (en) Compounds useful for the treatment and/or care of skin, hair, nails and/or mucous membranes
CA2892905C (en) Compounds useful in the treatment and/or care of the skin, hair and/or mucous membranes and their cosmetic or pharmaceutical compositions
CN103314005B (en) Useful peptide and their purposes in cosmetic composition or Pharmaceutical composition in skin and/or the treatment of mucosa and/or nursing
US11896704B2 (en) Compounds useful for the treatment and/or care of the skin, hair, nails and/or mucous membranes
KR102113998B1 (en) Compounds for the treatment and/or care of the skin and/or mucous membranes and their use in cosmetic or pharmaceutical compositions
BR112020003508A2 (en) purified polypeptide, topical formulation, isolated polynucleotide, vector, recombinant microorganism, topical probiotic composition, drug composition, and, methods of treating a dermatological disorder, treating a skin disease or disorder, and delivering drugs through the skin.
JP6431367B2 (en) Peptides that regulate PGC-1α
US20080119433A1 (en) Compositions and Methods for Genetic Modification of Cells Having Cosmetic Function to Enhance Cosmetic Appearance
JP2019502677A (en) Compounds useful in the treatment and / or care of skin, hair, nails and / or mucous membranes
CN104379177B (en) Short antimicrobial lipopeptid
US20090186805A1 (en) Compositions and Methods for Genetic Modification of Cells Having Cosmetic Function to Enhance Cosmetic Appearance
US20120115938A1 (en) Compositions and methods for genetic modification of cells having cosmetic function to enhance cosmetic appearance
US20060165657A1 (en) Method for delivery of cosmetic by topical application
CN104321049B (en) The compound of inhibitory neuron exocytosis
WO2023015533A1 (en) Synthetic peptide, and cosmetic composition or pharmaceutical composition and application thereof
JP2024063022A (en) Methods and compositions for treating skin diseases using recombinant microorganisms
US20100261658A1 (en) Peptide for activating aquaporin synthesis
JPWO2019195714A5 (en)
EP3831358A1 (en) Peptides and compositions for use in cosmetics and medicine