JPWO2019188644A1 - Method for producing transition metal compound, catalyst for olefin polymerization and olefin polymer - Google Patents

Method for producing transition metal compound, catalyst for olefin polymerization and olefin polymer Download PDF

Info

Publication number
JPWO2019188644A1
JPWO2019188644A1 JP2020510772A JP2020510772A JPWO2019188644A1 JP WO2019188644 A1 JPWO2019188644 A1 JP WO2019188644A1 JP 2020510772 A JP2020510772 A JP 2020510772A JP 2020510772 A JP2020510772 A JP 2020510772A JP WO2019188644 A1 JPWO2019188644 A1 JP WO2019188644A1
Authority
JP
Japan
Prior art keywords
group
atom
olefin
carbon atoms
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020510772A
Other languages
Japanese (ja)
Other versions
JP6986138B2 (en
Inventor
哲志 吉富
哲志 吉富
田中 健一
健一 田中
郁子 恵比澤
郁子 恵比澤
山村 雄一
雄一 山村
浩司 遠藤
浩司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JPWO2019188644A1 publication Critical patent/JPWO2019188644A1/en
Application granted granted Critical
Publication of JP6986138B2 publication Critical patent/JP6986138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

[課題]高い重合活性で、分子量の高いオレフィン重合体を製造するのに有用な遷移金属化合物等方法を提供すること。[解決手段]下記一般式[I]または[II]で表される遷移金属化合物。[式中、R1〜R14は水素原子、炭化水素基等であり、R5〜R12の少なくとも1つ以上はZRで表される置換基(Zは酸素原子等であり、Rは炭化水素基等であって、Zを介してフルオレニル配位子と結合している。)であり、Aは二価の炭化水素基、Yは炭素原子、ケイ素原子等、Mは周期表第4族遷移金属原子、jは1〜4の整数、Qはハロゲン等である。]PROBLEM TO BE SOLVED: To provide a method such as a transition metal compound useful for producing an olefin polymer having a high polymerization activity and a high molecular weight. [Solution] A transition metal compound represented by the following general formula [I] or [II]. [In the formula, R1 to R14 are hydrogen atoms, hydrocarbon groups, etc., and at least one or more of R5 to R12 are substituents represented by ZR (Z is an oxygen atom, etc., R is a hydrocarbon group, etc.) It is bonded to a fluorenyl ligand via Z.), A is a divalent hydrocarbon group, Y is a carbon atom, a silicon atom, etc., and M is a Group 4 transition metal atom in the periodic table. j is an integer of 1 to 4, Q is a halogen or the like. ]

Description

本発明は、新規な遷移金属化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法に関する。 The present invention relates to novel transition metal compounds, catalysts for olefin polymerization, and methods for producing olefin polymers.

エチレン/プロピレン/非共役ジエン共重合体ゴム(EPDM)に代表されるエチレン/α−オレフィン系ゴムは、その分子構造の主鎖に不飽和結合を有してないため、汎用されている共役ジエン系ゴムに比べ、耐熱性、耐候性に優れることから、自動車用部品、電線用材料、建築土木資材、工業材部品、各種樹脂の改質材等の用途に幅広く使用されている。 Ethylene / α-olefin rubber typified by ethylene / propylene / non-conjugated diene copolymer rubber (EPDM) does not have an unsaturated bond in the main chain of its molecular structure, and therefore is widely used as a conjugated diene. Since it is superior in heat resistance and weather resistance to rubber, it is widely used in applications such as automobile parts, electric wire materials, building civil engineering materials, industrial material parts, and various resin modifiers.

従来EPDM等のエチレン/α−オレフィン/非共役ポリエン共重合体ゴムは、一般的にチタン系触媒あるいはバナジウム系触媒と有機アルミニウム化合物の組合せからなる触媒系(いわるゆチーグラー・ナッタ触媒系)を用いて製造されてきた。この触媒系の最大の欠点はその生産性であり、重合活性が低く触媒寿命が短いが故に、0から50℃付近の低い温度での重合を余儀なくされている。このため、重合溶液の高い粘度が障害となり、重合器内のオレフィン共重合体の濃度を充分に上げることができず、生産性が著しく低いという不具合を生じている。さらには、重合活性が低いために重合終了時に共重合体中に含まれる触媒残渣の量が多く、製品要求性能を満たさない場合が多々ある。従ってこれを除去するための脱灰処理プロセスが必要となり、生産コストの面で著しく不利となっている。 Conventionally, ethylene / α-olefin / non-conjugated polyene copolymer rubbers such as EPDM generally use a catalyst system (so-called Ziegler-Natta catalyst system) composed of a titanium-based catalyst or a vanadium-based catalyst and an organoaluminum compound. Has been manufactured using. The biggest drawback of this catalyst system is its productivity, and because of its low polymerization activity and short catalyst life, it is forced to polymerize at a low temperature of around 0 to 50 ° C. For this reason, the high viscosity of the polymerization solution becomes an obstacle, the concentration of the olefin copolymer in the polymer cannot be sufficiently increased, and the productivity is remarkably low. Furthermore, since the polymerization activity is low, the amount of catalyst residue contained in the copolymer at the end of polymerization is large, and in many cases, the required performance of the product is not satisfied. Therefore, a decalcification process is required to remove it, which is a significant disadvantage in terms of production cost.

オレフィン重合用の均一系触媒としては、いわゆるメタロセン化合物がよく知られている。1980年代以降、活発に研究が行なわれてきたメタロセン触媒系は、優れた重合活性とα−オレフィン共重合能を示し、シングルサイト触媒であるが故に分子量分布、組成分布の狭いオレフィン系共重合体の製造を可能にするものである。このメタロセン化合物を触媒として用いたα−オレフィンの重合では、メタロセン化合物の配位子のシクロペンタジエニル環に置換基を導入したり、2個のシクロペンタジエニル環を架橋させたりすることにより、重合活性、得られるα−オレフィン重合体の分子量などが大きく変化することが知られ、多くの改良研究が行われている。 A so-called metallocene compound is well known as a homogeneous catalyst for olefin polymerization. The metallocene catalyst system, which has been actively studied since the 1980s, exhibits excellent polymerization activity and α-olefin copolymerization ability, and because it is a single-site catalyst, it is an olefin-based copolymer having a narrow molecular weight distribution and composition distribution. It enables the production of. In the polymerization of α-olefin using this metallocene compound as a catalyst, a substituent is introduced into the cyclopentadienyl ring of the ligand of the metallocene compound, or two cyclopentadienyl rings are crosslinked. , Polymerization activity, molecular weight of the obtained α-olefin polymer, etc. are known to change significantly, and many improved studies have been conducted.

このような研究の一環として、シクロペンタジエニル配位子およびフルオレニル配位子を有するメタロセン化合物を用いた重合結果がJ. A. Ewenによって報告されている(J. Am. Chem. Soc., 110, 6255(1988))。さらに、このメタロセン化合物の改良として、シクロペンタジエニル配位子とフルオレニル配位子とを二価のケイ素含有置換基を介して架橋したメタロセン化合物が報告されている(例えば、特許文献1、非特許文献1,2)。 As part of such studies, JA Ewen reported polymerization results with metallocene compounds with cyclopentadienyl and fluorenyl ligands (J. Am. Chem. Soc., 110, 6255). (1988)). Further, as an improvement of this metallocene compound, a metallocene compound in which a cyclopentadienyl ligand and a fluorenyl ligand are crosslinked via a divalent silicon-containing substituent has been reported (for example, Patent Document 1, Non-Patent Document 1). Patent Documents 1 and 2).

また、フルオレニル配位子に様々な置換基を導入し、種々のフルオレニル配位子の立体的及び電子的効果が重合結果に与える影響も報告されている(Chem. Rev., 100, 1205(2000)等)。これらの文献において、フルオレン上の置換基効果の一つとして、メトキシ基のような含ヘテロ原子電子供与性基を4または5位に有する場合は触媒活性およびポリマー分子量が向上し、2,3,6または7位に有する場合は著しく重合活性が低下することが報告されている(例えば、特許文献2、非特許文献3,4)。 It has also been reported that various substituents are introduced into the fluorenyl ligand and the steric and electronic effects of the various fluorenyl ligands affect the polymerization result (Chem. Rev., 100, 1205 (2000). )etc). In these documents, as one of the substituent effects on fluorene, when a heteroatom-containing electron-donating group such as a methoxy group is held at the 4- or 5-position, the catalytic activity and the polymer molecular weight are improved, and 2,3, It has been reported that the polymerization activity is significantly reduced when it is held at the 6th or 7th position (for example, Patent Document 2, Non-Patent Documents 3 and 4).

一般に、フルオレンの4,5位は置換基の導入が困難であるため、メタロセン化合物の触媒性能、製造コスト、生産効率などを考慮すると、フルオレン上にメトキシ基を有するメタロセン化合物は商業的実用化には不利である。したがって、フルオレニル配位子を有する既存のメタロセン化合物には、置換基を導入しやすい2,3,6または7位をアルキル基で修飾したものが非常に多く、隣接する置換基同士で環構造を形成することで優れたオレフィン重合触媒の実現を目指した報告例もある(特許第4367688号等)。 In general, it is difficult to introduce a substituent at the 4th and 5th positions of fluorene. Therefore, considering the catalytic performance, production cost, production efficiency, etc. of the metallocene compound, the metallocene compound having a methoxy group on fluorene is suitable for commercial practical use. Is disadvantageous. Therefore, many existing metallocene compounds having a fluorenyl ligand have the 2,3,6 or 7 positions at which substituents are easily introduced modified with an alkyl group, and adjacent substituents form a ring structure. There are also reports that aim to realize an excellent olefin polymerization catalyst by forming it (Patent No. 4376688, etc.).

メタロセン触媒系を用いたエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法に関しても多数報告されている。 Many reports have also been made on methods for producing ethylene / α-olefin / non-conjugated polyene copolymers using a metallocene catalyst system.

メタロセン触媒系を用いたエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法においては、無脱灰プロセスに適応可能な重合活性、高温重合に耐え得る高い分子量、モノマー回収工程に負荷のかからない非共役ポリエン共重合能、物性面において良好な低温特性を示すための高いモノマー交互共重合能等、生産面、コスト面、物性面における課題を解決するため、従来、メタロセン化合物に種々の改良が加えられてきている。 In the method for producing an ethylene / α-olefin / non-conjugated polyene copolymer using a metallocene catalytic system, the polymerization activity is adaptable to a non-decalcification process, the molecular weight is high enough to withstand high temperature polymerization, and the monomer recovery process is not burdened. In order to solve problems in terms of production, cost, and physical properties such as non-conjugated polyene copolymerization ability and high monomer alternating copolymerization ability to show good low temperature characteristics in terms of physical properties, various improvements have been made to metallocene compounds in the past. It has been added.

たとえば特許文献3には、特定の架橋シクロペンタジエニル-フルオレニルメタロセン化合物を含む触媒を用いたエチレン/α−オレフィン/非共役ポリエン共重合体の製造方法が開示されており、この製造方法により、良好な重合活性で、良好な非共役ポリエン共重合能で、かつ非常に高い分子量を示し、かつモノマー交互共重合性の強いエチレン/α−オレフィン/非共役ポリエン共重合体を製造することができ、さらに、重合温度をより高く設定できることが記載されている。 For example, Patent Document 3 discloses a method for producing an ethylene / α-olefin / non-conjugated polyene copolymer using a catalyst containing a specific crosslinked cyclopentadienyl-fluorenylmetallocene compound, and this production method. To produce an ethylene / α-olefin / non-conjugated polyene copolymer having good polymerization activity, good non-conjugated polyene copolymerization ability, very high molecular weight, and strong monomer alternating copolymerization. Furthermore, it is described that the polymerization temperature can be set higher.

特開平7−138275号公報Japanese Unexamined Patent Publication No. 7-138275 特開平6−172443号公報Japanese Unexamined Patent Publication No. 6-172443 国際公開第2009/081794号International Publication No. 2009/081794

J. Organomet. Chem., 497, 1(1995)J. Organomet. Chem., 497, 1 (1995) J. Organomet. Chem., 509, 63(1996)J. Organomet. Chem., 509, 63 (1996) J. Organomet. Chem., 501, 101(1995)J. Organomet. Chem., 501, 101 (1995) J. Organomet. Chem., 522, 39(1996)J. Organomet. Chem., 522, 39 (1996)

しかしながら、従来のメタロセン触媒系を用いたオレフィン重合体(たとえば、エチレン/α−オレフィン/非共役ポリエン共重合体)の製造方法には、重合活性、および製造される共重合体の高分子量化の観点から、さらなる改良の余地があった。 However, in the conventional method for producing an olefin polymer (for example, ethylene / α-olefin / non-conjugated polyene copolymer) using a metallocene catalytic system, the polymerization activity and the increase in the amount of the produced copolymer are increased. From the point of view, there was room for further improvement.

このような従来技術における問題点に鑑み、本発明は、高い重合活性で、分子量の高いオレフィン重合体(とりわけエチレン/α−オレフィン/非共役ポリエン共重合体)を製造する方法、ならびにこのようなオレフィン重合体の製造に有用なメタロセン化合物およびオレフィン重合用触媒を提供することを目的とする。 In view of such problems in the prior art, the present invention presents a method for producing an olefin polymer having a high polymerization activity and a high molecular weight (particularly ethylene / α-olefin / non-conjugated polyene copolymer), and such a method. An object of the present invention is to provide a metallocene compound useful for producing an olefin polymer and a catalyst for olefin polymerization.

本発明者らは鋭意研究したところ、特定の構造を有する架橋メタロセン化合物を含むオレフィン重合用触媒を使用したオレフィン重合体の製造方法、ならびにこのようなオレフィン重合体の製造に有用なメタロセン化合物(遷移金属化合物)およびオレフィン重合用触媒により上記課題を解決できることを見い出し、本発明を完成させた。本発明の要旨は以下のとおりである。 As a result of diligent research, the present inventors have conducted a method for producing an olefin polymer using a catalyst for olefin polymerization containing a crosslinked metallocene compound having a specific structure, and a metallocene compound (transition) useful for producing such an olefin polymer. We have found that the above problems can be solved by using a metal compound) and a catalyst for olefin polymerization, and have completed the present invention. The gist of the present invention is as follows.

[1]
下記一般式[I]または[II]で表される遷移金属化合物[A]。
[1]
The transition metal compound [A] represented by the following general formula [I] or [II].

Figure 2019188644
〔式[I]および[II]において、
1、R2、R3、R4、R13およびR14は、それぞれ独立に、水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群から選ばれる原子または置換基であり、R1からR4までの隣接した置換基は互いに結合して環を形成していてもよく、互いに結合していなくてもよく、R13およびR14は互いに結合して環を形成していてもよく、
5、R6、R7、R8、R9、R10、R11およびR12は、それぞれ独立に、水素原子、ZRで表される置換基(ただし、Zは酸素原子または硫黄原子であり、Rは炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基およびハロゲン含有基からなる群から選ばれる置換基であり、Zを介してフルオレニル配位子と結合している。)、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基(ただし、ZRで表される置換基を除く。)、ハロゲン原子およびハロゲン含有基からなる群から選ばれる原子または置換基であり、R5からR12までの隣接した置換基は互いに結合して環を形成していてもよく、R5からR12のうち、少なくとも1つはZRで表される置換基であり、
Yは炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子から選ばれ、
Aは芳香環を含んでいてもよい炭素原子数2〜20の二価の飽和もしくは不飽和の炭化水素基であり、AはYと共に形成する環を含めて2つ以上の環構造を含んでいてもよく、
Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
jは1〜4の整数であり、
Qは、ハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から選ばれ、jが2以上の場合は、複数個あるQは互いに同一であっても異なっていてもよい。〕
[2]
前記一般式[I]または[II]においてZが酸素原子である前記[1]の遷移金属化合物[A]。
Figure 2019188644
[In equations [I] and [II]
R 1 , R 2 , R 3 , R 4 , R 13 and R 14 are independently hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, aryl groups, substituted aryl groups, silicon-containing groups, and nitrogen-containing groups, respectively. , An atom or substituent selected from the group consisting of an oxygen-containing group, a halogen atom and a halogen-containing group, and adjacent substituents R 1 to R 4 may be bonded to each other to form a ring, or each other. It may not be bonded, and R 13 and R 14 may be bonded to each other to form a ring.
R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are independently represented by a hydrogen atom and a ZR (where Z is an oxygen atom or a sulfur atom). Yes, R is a substituent selected from the group consisting of a hydrocarbon group having 1 to 20 carbon atoms, an aryl group, a substituted aryl group, a silicon-containing group, a nitrogen-containing group, an oxygen-containing group and a halogen-containing group, via Z. (It is bonded to a fluorenyl ligand), a hydrocarbon group having 1 to 20 carbon atoms, an aryl group, a substituted aryl group, a silicon-containing group, a nitrogen-containing group, an oxygen-containing group (however, the substitution represented by ZR). (Excluding groups.), An atom or substituent selected from the group consisting of halogen atoms and halogen-containing groups, and adjacent substituents R 5 to R 12 may be bonded to each other to form a ring. At least one of R 5 to R 12 is a substituent represented by ZR.
Y is selected from carbon atom, silicon atom, germanium atom and tin atom,
A is a divalent saturated or unsaturated hydrocarbon group having 2 to 20 carbon atoms which may contain an aromatic ring, and A contains two or more ring structures including a ring formed with Y. May be
M is a titanium atom, a zirconium atom or a hafnium atom,
j is an integer from 1 to 4
Q is selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair. When j is 2 or more, there are a plurality of Qs. May be the same as or different from each other. ]
[2]
The transition metal compound [A] of the above [1] in which Z is an oxygen atom in the general formula [I] or [II].

[3]
前記一般式[I]または[II]においてYがケイ素原子である前記[1]または[2]の遷移金属化合物[A]。
[3]
The transition metal compound [A] of the above [1] or [2] in which Y is a silicon atom in the general formula [I] or [II].

[4]
前記一般式[I]または[II]においてMがジルコニウム原子である前記[1]〜[3]のいずれの遷移金属化合物[A]。
[4]
The transition metal compound [A] according to any one of the above [1] to [3], wherein M is a zirconium atom in the general formula [I] or [II].

[5]
前記[1]〜[4]のいずれの遷移金属化合物[A]を含有するオレフィン重合用触媒。
[5]
A catalyst for olefin polymerization containing any of the transition metal compounds [A] of [1] to [4].

[6]
[B][B-1]有機金属化合物、
[B-2]有機アルミニウムオキシ化合物、および
[B-3]遷移金属化合物[A]と反応してイオン対を形成する化合物
からなる群より選ばれる少なくとも1種の化合物をさらに含有する前記[5]のオレフィン重合用触媒。
[6]
[B] [B-1] Organometallic compounds,
The above-mentioned [5] further containing at least one compound selected from the group consisting of the [B-2] organoaluminum oxy compound and the [B-3] transition metal compound [A] to form an ion pair. ] Catalyst for olefin polymerization.

[7]
前記[5]または[6]のオレフィン重合用触媒の存在下でオレフィンを重合する工程[P]を含む、オレフィン重合体の製造方法。
[7]
A method for producing an olefin polymer, which comprises the step [P] of polymerizing an olefin in the presence of the catalyst for olefin polymerization according to the above [5] or [6].

[8]
前記工程[P]がエチレンを重合する工程である前記[7]のオレフィン重合体(すなわち、エチレン系重合体)の製造方法。
[8]
The method for producing an olefin polymer (that is, an ethylene polymer) according to the above [7], wherein the step [P] is a step of polymerizing ethylene.

[9]
前記工程[P]がエチレンと非共役ポリエンとを共重合する工程である前記[8]のオレフィン重合体の製造方法。
[9]
The method for producing an olefin polymer according to the above [8], wherein the step [P] is a step of copolymerizing ethylene and a non-conjugated polyene.

[10]
前記非共役ポリエンが下記一般式[III]で表される前記[9]のオレフィン重合体の製造方法。
[10]
The method for producing an olefin polymer according to the above [9], wherein the non-conjugated polyene is represented by the following general formula [III].

Figure 2019188644
〔式中、mは0から2の整数であり、
15、R16、R17およびR18は、それぞれ独立に、水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、該炭化水素基は二重結合を有していてもよく、
15からR18までのうちの任意の二つの置換基は互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R15とR16とで、またはR17とR18とでアルキリデン基を形成していてもよく、R15とR17とが、またはR16とR18とが互いに結合して二重結合を形成していてもよく、
以下の(i)から(iv)の要件の少なくとも一つが満たされる。
(i)R15からR18までの少なくとも一つは、二重結合を一つ以上有する炭化水素基である。
(ii)R15からR18までの任意の二つの置換基は互いに結合して環を形成し、該環は二重合を含んでいる。
(iii)R15とR16とで、またはR17とR18とでアルキリデン基を形成している。
(iv)R15とR17とが、またはR16とR18とが互いに結合して二重結合を形成している。〕
[11]
前記非共役ポリエンが、5−エチリデン−2−ノルボルネン(ENB)または5−ビニル−2−ノルボルネン(VNB)であることを特徴とする、前記[10]のオレフィン重合体の製造方法。
Figure 2019188644
[In the formula, m is an integer from 0 to 2,
R 15 , R 16 , R 17 and R 18 are independently selected from hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, silicon-containing groups, nitrogen-containing groups, oxygen-containing groups, halogen atoms and halogen-containing groups, respectively. The hydrocarbon group may have a double bond.
Any two substituents from R 15 to R 18 may be bonded to each other to form a ring, which ring may contain a double bond, with R 15 and R 16 . Alternatively, R 17 and R 18 may form an alkylidene group, R 15 and R 17 may be bonded to each other, or R 16 and R 18 may be bonded to each other to form a double bond.
At least one of the following requirements (i) to (iv) is met.
(I) At least one of R 15 to R 18 is a hydrocarbon group having one or more double bonds.
(Ii) Any two substituents from R 15 to R 18 bond to each other to form a ring, which contains dipolymerization.
(Iii) An alkylidene group is formed between R 15 and R 16 or between R 17 and R 18 .
(Iv) R 15 and R 17 or R 16 and R 18 are bonded to each other to form a double bond. ]
[11]
The method for producing an olefin polymer according to the above [10], wherein the non-conjugated polyene is 5-ethylidene-2-norbornene (ENB) or 5-vinyl-2-norbornene (VNB).

[12]
前記工程[P]がエチレンと炭素数が3から20のα−オレフィンと非共役ポリエンとを共重合する工程である前記[9]〜[11]のいずれかのオレフィン重合体の製造方法。
[12]
The method for producing an olefin polymer according to any one of [9] to [11], wherein the step [P] is a step of copolymerizing ethylene, an α-olefin having 3 to 20 carbon atoms and a non-conjugated polyene.

[13]
前記α−オレフィンがプロピレンである前記[12]のオレフィン重合体の製造方法。
[13]
The method for producing the olefin polymer according to the above [12], wherein the α-olefin is propylene.

[14]
前記工程[P]の重合温度が80℃以上である前記[8]〜[13]のオレフィン重合体の製造方法。
[14]
The method for producing an olefin polymer according to the above [8] to [13], wherein the polymerization temperature in the step [P] is 80 ° C. or higher.

[15]
前記工程[P]が炭素数3〜20のα−オレフィンを重合する工程である前記[7]のオレフィン重合体の製造方法。
[15]
The method for producing an olefin polymer according to the above [7], wherein the step [P] is a step of polymerizing an α-olefin having 3 to 20 carbon atoms.

[16]
前記工程[P]がエチレンと炭素数3〜20のα−オレフィンとを共重合する工程である前記[15]のオレフィン重合体の製造方法。
[16]
The method for producing an olefin polymer according to the above [15], wherein the step [P] is a step of copolymerizing ethylene with an α-olefin having 3 to 20 carbon atoms.

[17]
前記α−オレフィンがプロピレンである前記[15]または[16]のオレフィン重合体の製造方法。
[17]
The method for producing an olefin polymer according to the above [15] or [16], wherein the α-olefin is propylene.

本発明によれば、高い重合活性で、分子量の高いオレフィン重合体、とりわけエチレン/α−オレフィン/非共役ポリエン共重合体を製造することができる。 According to the present invention, it is possible to produce an olefin polymer having a high molecular weight with high polymerization activity, particularly an ethylene / α-olefin / non-conjugated polyene copolymer.

本発明についてさらに詳細に説明する。 The present invention will be described in more detail.

〔遷移金属化合物[A]〕
本発明に係る遷移金属化合物[A](以下「架橋メタロセン化合物[A]」または「成分(A)」と記載することもある。)は、下記一般式[I]または[II]で表される。
[Transition metal compound [A]]
The transition metal compound [A] according to the present invention (hereinafter, may be referred to as “crosslinked metallocene compound [A]” or “component (A)”) is represented by the following general formula [I] or [II]. To.

Figure 2019188644
《R 1 〜R 14 、Y、A》
前記一般式[I]および[II]において、
1、R2、R3、R4、R13およびR14は、それぞれ独立に、水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群から選ばれる原子または置換基であり、R1からR4までの隣接した置換基は互いに結合して環を形成していてもよく(ただし、シクロペンタジエニル基およびR1〜R4によって形成される構造から、フルオレニル基および置換フルオレニル基は除く。)、互いに結合していなくてもよく、好ましくは互いに結合しておらず、R13およびR14は互いに結合して環を形成していてもよく、互いに結合していなくてもよく、
5、R6、R7、R8、R9、R10、R11およびR12は、それぞれ独立に、水素原子、ZRで表される置換基(ただし、Zは酸素原子または硫黄原子であり、Rは炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基およびハロゲン含有基からなる群から選ばれる置換基であり、Zを介してフルオレニル配位子と結合している。)、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基(ただし、ZRで表される置換基を除く。)、ハロゲン原子およびハロゲン含有基からなる群から選ばれる原子または置換基であり、R5からR12までの隣接した置換基は互いに結合して環を形成していてもよく、互いに結合していなくてもよく、R5からR12のうち、少なくとも1つ以上はZRで表される置換基である。
Figure 2019188644
<< R 1 to R 14 , Y, A >>
In the general formulas [I] and [II],
R 1 , R 2 , R 3 , R 4 , R 13 and R 14 are independently hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, aryl groups, substituted aryl groups, silicon-containing groups, and nitrogen-containing groups, respectively. , An atom or substituent selected from the group consisting of an oxygen-containing group, a halogen atom and a halogen-containing group, and adjacent substituents R 1 to R 4 may be bonded to each other to form a ring (provided that they form a ring). , Fluoropenyl group and substituted fluorenyl group are excluded from the structure formed by the cyclopentadienyl group and R 1 to R 4 ), which may not be attached to each other, preferably not to each other, R 13 And R 14 may or may not be coupled to each other to form a ring.
R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are independently represented by a hydrogen atom and a ZR (where Z is an oxygen atom or a sulfur atom). Yes, R is a substituent selected from the group consisting of a hydrocarbon group having 1 to 20 carbon atoms, an aryl group, a substituted aryl group, a silicon-containing group, a nitrogen-containing group, an oxygen-containing group and a halogen-containing group, via Z. (It is bonded to a fluorenyl ligand), a hydrocarbon group having 1 to 20 carbon atoms, an aryl group, a substituted aryl group, a silicon-containing group, a nitrogen-containing group, an oxygen-containing group (however, the substitution represented by ZR). (Excluding groups.), An atom or substituent selected from the group consisting of halogen atoms and halogen-containing groups, and adjacent substituents R 5 to R 12 may be bonded to each other to form a ring. It does not have to be bonded to each other, and at least one or more of R 5 to R 12 are substituents represented by ZR.

炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキル基、炭素数3〜20の環状飽和炭化水素基、炭素数2〜20の鎖状不飽和炭化水素基、炭素数3〜20の環状不飽和炭化水素基が例示される。また、R1からR12までの隣接した置換基が互いに結合して環を形成する場合であれば、互いに結合して環を形成する炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキレン基、炭素数6〜20のアリーレン基等が例示される。The hydrocarbon group having 1 to 20 carbon atoms includes an alkyl group having 1 to 20 carbon atoms, a cyclic saturated hydrocarbon group having 3 to 20 carbon atoms, a chain unsaturated hydrocarbon group having 2 to 20 carbon atoms, and 3 carbon atoms. 20 to 20 cyclic unsaturated hydrocarbon groups are exemplified. Further, when adjacent substituents R 1 to R 12 are bonded to each other to form a ring, the hydrocarbon group having 1 to 20 carbon atoms to be bonded to each other to form a ring has 1 carbon number. Examples thereof include an alkylene group of ~ 20 and an arylene group having 6 to 20 carbon atoms.

炭素数1〜20のアルキル基としては、直鎖状飽和炭化水素基であるメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基など、分岐状飽和炭化水素基であるイソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、t-アミル基、ネオペンチル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-ジプロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基、シクロプロピルメチル基などが例示される。アルキル基の炭素数は好ましくは1〜6である。 The alkyl groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group and n-heptyl group, which are linear saturated hydrocarbon groups. , N-octyl group, n-nonyl group, n-decanyl group, etc., which are branched saturated hydrocarbon groups such as isopropyl group, isobutyl group, s-butyl group, t-butyl group, t-amyl group, neopentyl group, 3 -Methylpentyl group, 1,1-diethylpropyl group, 1,1-dimethylbutyl group, 1-methyl-1-propylbutyl group, 1,1-dipropylbutyl group, 1,1-dimethyl-2-methylpropyl Examples include a group, a 1-methyl-1-isopropyl-2-methylpropyl group, and a cyclopropylmethyl group. The alkyl group preferably has 1 to 6 carbon atoms.

炭素数3〜20の環状飽和炭化水素基としては、環状飽和炭化水素基であるシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルネニル基、1-アダマンチル基、2-アダマンチル基など、環状飽和炭化水素基の水素原子が炭素数1から17の炭化水素基で置き換えられた基である3-メチルシクロペンチル基、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基、4-シクロヘキシルシクロヘキシル基、4-フェニルシクロヘキシル基などが例示される。環状飽和炭化水素基の炭素数は好ましくは5〜11である。 Examples of the cyclic saturated hydrocarbon group having 3 to 20 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, norbornenyl group, 1-adamantyl group, which are cyclic saturated hydrocarbon groups. 3-Methylcyclopentyl group, 3-methylcyclohexyl group, 4-methylcyclohexyl group, 4 which is a group in which the hydrogen atom of the cyclic saturated hydrocarbon group such as 2-adamantyl group is replaced with a hydrocarbon group having 1 to 17 carbon atoms. -Cyclohexylcyclohexyl group, 4-phenylcyclohexyl group and the like are exemplified. The cyclic saturated hydrocarbon group preferably has 5 to 11 carbon atoms.

炭素数2〜20の鎖状不飽和炭化水素基としては、アルケニル基であるエテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、1-メチルエテニル基(イソプロペニル基)など、アルキニル基であるエチニル基、1-プロピニル基、2-プロピニル基(プロパルギル基)などが例示される。鎖状不飽和炭化水素基の炭素数は好ましくは2〜4である。 Examples of the chain unsaturated hydrocarbon group having 2 to 20 carbon atoms include an alkenyl group, an ethenyl group (vinyl group), a 1-propenyl group, a 2-propenyl group (allyl group), and a 1-methylethenyl group (isopropenyl group). Examples thereof include an ethynyl group, which is an alkynyl group, a 1-propynyl group, and a 2-propynyl group (propargyl group). The chain unsaturated hydrocarbon group preferably has 2 to 4 carbon atoms.

炭素数3〜20の環状不飽和炭化水素基としては、環状不飽和炭化水素基であるシクロペンタジエニル基、ノルボルニル基、フェニル基、ナフチル基、インデニル基、アズレニル基、フェナントリル基、アントラセニル基など、環状不飽和炭化水素基の水素原子が炭素数1から15の炭化水素基で置き換えられた基である3-メチルフェニル基(m-トリル基)、4-メチルフェニル基(p-トリル基)、4-エチルフェニル基、4-t-ブチルフェニル基、4-シクロヘキシルフェニル基、ビフェニリル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4,6-トリメチルフェニル基(メシチル基)など、直鎖状炭化水素基または分岐状飽和炭化水素基の水素原子が炭素数3から19の環状飽和炭化水素基または環状不飽和炭化水素基で置き換えられた基であるベンジル基、クミル基などが例示される。環状不飽和炭化水素基の炭素数は好ましくは6〜10である。 Examples of the cyclic unsaturated hydrocarbon group having 3 to 20 carbon atoms include a cyclopentadienyl group, a norbornyl group, a phenyl group, a naphthyl group, an indenyl group, an azulenyl group, a phenanthryl group and an anthrasenyl group, which are cyclic unsaturated hydrocarbon groups. , 3-Methylphenyl group (m-tolyl group), 4-methylphenyl group (p-tolyl group), which is a group in which the hydrogen atom of the cyclic unsaturated hydrocarbon group is replaced with a hydrocarbon group having 1 to 15 carbon atoms. , 4-Ethylphenyl group, 4-t-butylphenyl group, 4-cyclohexylphenyl group, biphenylyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,4,6-trimethylphenyl group ( A benzyl group, which is a group in which the hydrogen atom of a linear hydrocarbon group or a branched saturated hydrocarbon group is replaced with a cyclic saturated hydrocarbon group having 3 to 19 carbon atoms or a cyclic unsaturated hydrocarbon group, such as a mesityl group. Examples include a Kumil group. The cyclic unsaturated hydrocarbon group preferably has 6 to 10 carbon atoms.

炭素数1〜20のアルキレン基としては、メチレン基、エチレン基、ジメチルメチレン基(イソプロピリデン基)、エチルメチレン基、1-メチルエチレン基、2-メチルエチレン基、1,1-ジメチルエチレン基、1,2-ジメチルエチレン基、n-プロピレン基などが例示される。アルキレン基の炭素数は好ましくは1〜6である。 Examples of the alkylene group having 1 to 20 carbon atoms include a methylene group, an ethylene group, a dimethylmethylene group (isopropyridene group), an ethylmethylene group, a 1-methylethylene group, a 2-methylethylene group, and a 1,1-dimethylethylene group. Examples thereof include a 1,2-dimethylethylene group and an n-propylene group. The alkylene group preferably has 1 to 6 carbon atoms.

炭素数6〜20のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、4,4'-ビフェニリレン基などが例示される。アリーレン基の炭素数は好ましくは6から12である。 Examples of the arylene group having 6 to 20 carbon atoms include an o-phenylene group, an m-phenylene group, a p-phenylene group, and a 4,4'-biphenylylene group. The arylene group preferably has 6 to 12 carbon atoms.

アリール基としては、前述した炭素数3〜20の環状不飽和炭化水素基の例と一部重複するが、芳香族化合物から誘導された置換基であるフェニル基、1-ナフチル基、2-ナフチル基、アントラセニル基、フェナントレニル基、テトラセニル基、クリセニル基、ピレニル基、インデニル基、アズレニル基、ピロリル基、ピリジル基、フラニル基、チオフェニル基などが例示される。アリール基としては、フェニル基または2-ナフチル基が好ましい。 As the aryl group, although it partially overlaps with the above-mentioned example of the cyclic unsaturated hydrocarbon group having 3 to 20 carbon atoms, it is a substituent derived from an aromatic compound, such as a phenyl group, a 1-naphthyl group and a 2-naphthyl group. Examples thereof include a group, anthrasenyl group, phenanthrenyl group, tetrasenyl group, chrysenyl group, pyrenyl group, indenyl group, azulenyl group, pyrrolyl group, pyridyl group, furanyl group, thiophenyl group and the like. As the aryl group, a phenyl group or a 2-naphthyl group is preferable.

前記芳香族化合物としては、芳香族炭化水素および複素環式芳香族化合物であるベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、ピレン、インデン、アズレン、ピロール、ピリジン、フラン、チオフェンなどが例示される。 Examples of the aromatic compound include aromatic hydrocarbons and heterocyclic aromatic compounds such as benzene, naphthalene, anthracene, phenanthrene, tetracene, chrysen, pyrene, pyrene, inden, azulene, pyrrole, pyridine, furan, and thiophene. Will be done.

置換アリール基としては、前述した炭素数3〜20の環状不飽和炭化水素基の例と一部重複するが、前記アリール基が有する1以上の水素原子が炭素数1〜20の炭化水素基、アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基により置換されてなる基が挙げられ、具体的には3-メチルフェニル基(m-トリル基)、4-メチルフェニル基(p-トリル基)、3-エチルフェニル基、4-エチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、ビフェニリル基、4-(トリメチルシリル)フェニル基、4-アミノフェニル基、4-(ジメチルアミノ)フェニル基、4-(ジエチルアミノ)フェニル基、4-モルフォリニルフェニル基、4-メトキシフェニル基、4-エトキシフェニル基、4-フェノキシフェニル基、3,4-ジメトキシフェニル基、3,5-ジメトキシフェニル基、3-メチル-4-メトキシフェニル基、3,5-ジメチル-4-メトキシフェニル基、3-(トリフルオロメチル)フェニル基、4-(トリフルオロメチル)フェニル基、3-クロロフェニル基、4-クロロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、5-メチルナフチル基、2-(6-メチル)ピリジル基などが例示される。 The substituted aryl group partially overlaps with the above-mentioned example of the cyclic unsaturated hydrocarbon group having 3 to 20 carbon atoms, but one or more hydrogen atoms of the aryl group are hydrocarbon groups having 1 to 20 carbon atoms. Examples thereof include a group substituted with a substituent selected from an aryl group, a silicon-containing group, a nitrogen-containing group, an oxygen-containing group, a halogen atom and a halogen-containing group, and specifically, a 3-methylphenyl group (m-tolyl group). ), 4-Methylphenyl group (p-tolyl group), 3-ethylphenyl group, 4-ethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, biphenylyl group, 4- (trimethylsilyl) Phenyl group, 4-aminophenyl group, 4- (dimethylamino) phenyl group, 4- (diethylamino) phenyl group, 4-morpholinylphenyl group, 4-methoxyphenyl group, 4-ethoxyphenyl group, 4-phenoxyphenyl Group, 3,4-dimethoxyphenyl group, 3,5-dimethoxyphenyl group, 3-methyl-4-methoxyphenyl group, 3,5-dimethyl-4-methoxyphenyl group, 3- (trifluoromethyl) phenyl group, Examples include 4- (trifluoromethyl) phenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 5-methylnaphthyl group, 2- (6-methyl) pyridyl group and the like. Will be done.

ケイ素含有基としては、炭素数1〜20の炭化水素基において、炭素原子がケイ素原子で置き換えられた基であるトリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基等のアルキルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、t-ブチルジフェニルシリル基等のアリールシリル基、ペンタメチルジシラニル基、トリメチルシリルメチル基などが例示される。アルキルシリル基の炭素数は1〜10が好ましく、アリールシリル基の炭素数は6〜18が好ましい。 Examples of the silicon-containing group include alkyl groups such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, and triisopropylsilyl group, which are groups in which carbon atoms are replaced with silicon atoms in hydrocarbon groups having 1 to 20 carbon atoms. Examples thereof include an arylsilyl group such as a silyl group, a dimethylphenylsilyl group, a methyldiphenylsilyl group and a t-butyldiphenylsilyl group, a pentamethyldisilanyl group and a trimethylsilylmethyl group. The alkylsilyl group preferably has 1 to 10 carbon atoms, and the arylsilyl group preferably has 6 to 18 carbon atoms.

窒素含有基としては、アミノ基、ニトロ基、およびN-モルフォリニル基、ならびに上述した炭素数1〜20の炭化水素基またはケイ素含有基において、=CH-構造単位が窒素原子で置き換えられた基、-CH2-構造単位が炭素数1〜20の炭化水素基が結合した窒素原子で置き換えられた基、または-CH3構造単位が炭素数1〜20の炭化水素基が結合した窒素原子またはニトリル基で置き換えられた基であるジメチルアミノ基、ジエチルアミノ基、ジメチルアミノメチル基、シアノ基、ピロリジニル基、ピペリジニル基、ピリジニル基などが例示される。窒素含有基としては、ジメチルアミノ基、N-モルフォリニル基が好ましい。As the nitrogen-containing group, an amino group, a nitro group, and an N-morpholinyl group, and a group in which the CH-structural unit is replaced with a nitrogen atom in the above-mentioned hydrocarbon group having 1 to 20 carbon atoms or a silicon-containing group, -CH 2 -A group in which the structural unit is replaced with a nitrogen atom bonded to a hydrocarbon group having 1 to 20 carbon atoms, or -CH 3 A nitrogen atom or nitrile to which a hydrocarbon group having 1 to 20 carbon atoms is bonded. Examples thereof include a dimethylamino group, a diethylamino group, a dimethylaminomethyl group, a cyano group, a pyrrolidinyl group, a piperidinyl group, a pyridinyl group and the like which are groups replaced with a group. As the nitrogen-containing group, a dimethylamino group and an N-morpholinyl group are preferable.

酸素含有基としては、水酸基、ならびに上述した炭素数1〜20の炭化水素基、ケイ素含有基または窒素含有基において、-CH2-構造単位が酸素原子またはカルボニル基で置き換えられた基、または-CH3構造単位が炭素数1〜20の炭化水素基が結合した酸素原子で置き換えられた基であるメトキシ基、エトキシ基、t-ブトキシ基、フェノキシ基、トリメチルシロキシ基、メトキシエトキシ基、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、t-ブトキシメチル基、1-ヒドロキシエチル基、1-メトキシエチル基、1-エトキシエチル基、2-ヒドロキシエチル基、2-メトキシエチル基、2-エトキシエチル基、n-2-オキサブチレン基、n-2-オキサペンチレン基、n-3-オキサペンチレン基、アルデヒド基、アセチル基、プロピオニル基、ベンゾイル基、トリメチルシリルカルボニル基、カルバモイル基、メチルアミノカルボニル基、カルボキシ基、メトキシカルボニル基、カルボキシメチル基、エトカルボキシメチル基、カルバモイルメチル基、フラニル基、ピラニル基などが例示される。酸素含有基としては、メトキシ基が好ましい。Oxygen-containing groups include hydroxyl groups, and the above-mentioned hydrocarbon groups having 1 to 20 carbon atoms, silicon-containing groups, or nitrogen-containing groups in which -CH 2 -structural units are replaced with oxygen atoms or carbonyl groups, or-. A methoxy group, an ethoxy group, a t-butoxy group, a phenoxy group, a trimethylsiloxy group, a methoxyethoxy group, and a hydroxymethyl group in which the CH 3 structural unit is replaced with an oxygen atom to which a hydrocarbon group having 1 to 20 carbon atoms is bonded. Group, methoxymethyl group, ethoxymethyl group, t-butoxymethyl group, 1-hydroxyethyl group, 1-methoxyethyl group, 1-ethoxyethyl group, 2-hydroxyethyl group, 2-methoxyethyl group, 2-ethoxyethyl Group, n-2-oxabutylene group, n-2-oxapentylene group, n-3-oxapentylene group, aldehyde group, acetyl group, propionyl group, benzoyl group, trimethylsilylcarbonyl group, carbamoyl group, methylaminocarbonyl Examples thereof include a group, a carboxy group, a methoxycarbonyl group, a carboxymethyl group, an etocarboxymethyl group, a carbamoylmethyl group, a furanyl group and a pyranyl group. As the oxygen-containing group, a methoxy group is preferable.

ハロゲン原子としては、第17族元素であるフッ素、塩素、臭素、ヨウ素などが例示される。 Examples of the halogen atom include fluorine, chlorine, bromine, and iodine, which are Group 17 elements.

ハロゲン含有基としては、上述した炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基または酸素含有基において、水素原子がハロゲン原子によって置換された基であるトリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基などが例示される。 Examples of the halogen-containing group include a trifluoromethyl group and a tribromo, which are groups in which a hydrogen atom is substituted with a halogen atom in the above-mentioned hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a nitrogen-containing group or an oxygen-containing group. Examples thereof include a methyl group, a pentafluoroethyl group and a pentafluorophenyl group.

ZRで表される置換基は、一部が上述した酸素含有基と重複している。 The substituent represented by ZR partially overlaps with the oxygen-containing group described above.

ZRで表される置換基において、Zは酸素原子または硫黄原子であり、好ましくは酸素原子である。 In the substituent represented by ZR, Z is an oxygen atom or a sulfur atom, preferably an oxygen atom.

Rは炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基およびハロゲン含有基からなる群から選ばれる置換基であり、Rの中のZと結合する原子は炭素原子またはケイ素原子である。これらの例としては、R1〜R4、R13、R14として例示したものが挙げられ、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、シクロヘキシル基、シクロへプチル基等の炭素数1〜20のアルキル基、またはフェニル基や2-ナフチル基等のアリール基、m-トリル基、p-トリル基等の置換アリール基、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基等のアルキルシリル基であり、より好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、等の炭素数1〜20のアルキル基であり、さらに好ましくはメチル基である。R is a substituent selected from the group consisting of a hydrocarbon group having 1 to 20 carbon atoms, an aryl group, a substituted aryl group, a silicon-containing group, a nitrogen-containing group, an oxygen-containing group and a halogen-containing group, and Z in R. The atom bonded to is a carbon atom or a silicon atom. Examples of these include those exemplified as R 1 ~R 4, R 13, R 14, preferably a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, isobutyl group, tert -Alkyl groups having 1 to 20 carbon atoms such as butyl group, cyclohexyl group and cycloheptyl group, aryl groups such as phenyl group and 2-naphthyl group, substituted aryl groups such as m-tolyl group and p-tolyl group, Alkylsilyl groups such as trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, triisopropylsilyl group, more preferably methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group. , A tert-butyl group, etc., an alkyl group having 1 to 20 carbon atoms, more preferably a methyl group.

ZRで表される置換基は、Zを介してフルオレニル配位子と結合している。 The substituent represented by ZR is bound to the fluorenyl ligand via Z.

一般式[I]および[II]において、Yは炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子から選ばれ、好ましくは炭素原子またはケイ素原子であり、より好ましくはケイ素原子である。 In the general formulas [I] and [II], Y is selected from a carbon atom, a silicon atom, a germanium atom and a tin atom, preferably a carbon atom or a silicon atom, and more preferably a silicon atom.

一般式[II]において、Aは芳香環を含んでいてもよい炭素原子数2〜20の二価の飽和もしくは不飽和の炭化水素基であり、AはYと共に形成する環を含めて二つ以上の環構造を含んでいてもよい。炭素原子数2〜20の二価の飽和もしくは不飽和の炭化水素基としては、R1〜R14として例示したものが挙げられる。In the general formula [II], A is a divalent saturated or unsaturated hydrocarbon group having 2 to 20 carbon atoms which may contain an aromatic ring, and A is two including a ring formed with Y. The above ring structure may be included. Examples of the divalent saturated or unsaturated hydrocarbon group having 2 to 20 carbon atoms include those exemplified as R 1 to R 14 .

シクロペンタジエニル基:
上記一般式[I]、[II]における置換基R1からR4を有するシクロペンタジエニル基としては、R1からR4が水素原子である無置換シクロペンタジエニル基、3−t−ブチルシクロペンタジエニル基、3−メチルシクロペンタジエニル基、3−トリメチルシリルシクロペンタジエニル基、3−フェニルシクロペンタジエニル基、3−アダマンチルシクロペンタジエニル基、3−アミルシクロペンタジエニル基、3−シクロヘキシルシクロペンタジエニル基などの3位1置換シクロペンタジエニル基、3−t−ブチル−5−メチルシクロペンタジエニル基、3−t−ブチル−5−エチルシクロペンタジエニル基、3−フェニル−5−メチルシクロペンタジエニル基、3,5−ジ−t−ブチルシクロペンタジエニル基、3,5−ジメチルシクロペンタジエニル基、3−フェニル−5−メチルシクロペンタジエニル基、3−トリメチルシリル−5−メチルシクロペンタジエニル基などの3,5位2置換シクロペンタジエニル基などが挙げることができるがこの限りではない。架橋メタロセン化合物の合成のし易さ、製造コスト及び非共役ポリエンの共重合能の観点から、無置換(R1〜R4が水素原子)であるシクロペンタジエニル基が好ましい。
Cyclopentadienyl group:
Examples of the cyclopentadienyl group having substituents R 1 to R 4 in the above general formulas [I] and [II] include an unsubstituted cyclopentadienyl group in which R 1 to R 4 are hydrogen atoms, 3-t-. Butylcyclopentadienyl group, 3-methylcyclopentadienyl group, 3-trimethylsilylcyclopentadienyl group, 3-phenylcyclopentadienyl group, 3-adamantylcyclopentadienyl group, 3-amylcyclopentadienyl group Group, 3-position 1-substituted cyclopentadienyl group such as 3-cyclohexylcyclopentadienyl group, 3-t-butyl-5-methylcyclopentadienyl group, 3-t-butyl-5-ethylcyclopentadienyl Group, 3-phenyl-5-methylcyclopentadienyl group, 3,5-di-t-butylcyclopentadienyl group, 3,5-dimethylcyclopentadienyl group, 3-phenyl-5-methylcyclopenta Examples thereof include, but are not limited to, a 3,5-position 2-substituted cyclopentadienyl group such as a dienyl group and a 3-trimethylsilyl-5-methylcyclopentadienyl group. From the viewpoint of ease of synthesis of the crosslinked metallocene compound, production cost, and copolymerization ability of non-conjugated polyene, a cyclopentadienyl group which is unsubstituted (R 1 to R 4 are hydrogen atoms) is preferable.

置換フルオレニル基:
上記一般式[I]、[II]において、R5からR12のうち、少なくとも1つ以上はZRで表される置換基である。
Substituted fluorenyl group:
In the above general formulas [I] and [II], at least one or more of R 5 to R 12 is a substituent represented by ZR.

5からR12のうち、好ましくはR6およびR11の少なくとも一方がZRであり、より好ましくはR6およびR11の両方がZRである。Of R 5 to R 12 , preferably at least one of R 6 and R 11 is ZR, and more preferably both R 6 and R 11 are ZR.

5、R8、R9およびR12は、架橋メタロセン化合物の合成のし易さの観点からは、好ましくは水素原子である。R 5 , R 8 , R 9 and R 12 are preferably hydrogen atoms from the viewpoint of easiness of synthesizing the crosslinked metallocene compound.

7およびR10としては、ZRではない場合には、合成のし易さの観点からは、水素原子または炭素数1〜20の炭化水素基が好ましく、より高い重合活性を実現する観点からは、水素原子が特に好ましい。この炭素数1〜20の炭化水素基としては、R1〜R14の炭素数1〜20の炭化水素基として例示したものが挙げられ、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基等のアルキル基が好ましく、tert-ブチル基がより好ましい。When R 7 and R 10 are not ZR, hydrogen atoms or hydrocarbon groups having 1 to 20 carbon atoms are preferable from the viewpoint of ease of synthesis, and from the viewpoint of achieving higher polymerization activity. , Hydrogen atom is particularly preferable. Examples of the hydrocarbon group having 1 to 20 carbon atoms include those exemplified as the hydrocarbon group having 1 to 20 carbon atoms of R 1 to R 14 , and a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and the like. An alkyl group such as an n-butyl group or a tert-butyl group is preferable, and a tert-butyl group is more preferable.

架橋部:
上記一般式[I]においてR13およびR14は互いに同一であっても異なってもよい。R13およびR14としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、フェニル基、m−トリル基、p−トリル基、4−t−ブチルフェニル基、p−クロロフェニル基、4−ビフェニル基、2−ナフチル基、キシリル基、ベンジル基、m−トリフルオロメチルフェニル基が、高分子量のエチレン/α−オレフィン/非共役ポリエン共重合体を生成させることから、好ましい。
Cross-linking part:
In the above general formula [I], R 13 and R 14 may be the same or different from each other. Examples of R 13 and R 14 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, phenyl group and m-. Tolyl group, p-tolyl group, 4-t-butylphenyl group, p-chlorophenyl group, 4-biphenyl group, 2-naphthyl group, xsilyl group, benzyl group, m-trifluoromethylphenyl group are high molecular weight ethylene. It is preferable because it produces a / α-olefin / non-conjugated polyene copolymer.

上記一般式[II]において、Aは芳香環を含んでいてもよい炭素原子数2〜20の二価の飽和もしくは不飽和の炭化水素基であり、YはこのAと結合し、例えば、下記式[IIa]で表されるシクロヘキシリデン基などのシクロアルキリデン基、下記式[IIb]で表されるシクロテトラメチレンシリレン基(1−シラシクロペンチリデン基)などのシクロメチレンシリレン基を構成する。 In the above general formula [II], A is a divalent saturated or unsaturated hydrocarbon group having 2 to 20 carbon atoms which may contain an aromatic ring, and Y is bonded to this A, for example, the following. It constitutes a cycloalkylidene group such as a cyclohexylidene group represented by the formula [IIa] and a cyclomethylenecilylene group such as a cyclotetramethylenesilylene group (1-silacyclopentylidene group) represented by the following formula [IIb]. ..

Figure 2019188644
(式[IIa]及び[IIb]において、●は、上記一般式[II]における(置換)シクロペンタジエニル基および置換フルオレニル基との結合点を表す。)
また、AはYとともに形成する環を含めて二つ以上の環構造を含んでいてもよい。
Figure 2019188644
(In the formulas [IIa] and [IIb], ● represents the bonding point with the (substituted) cyclopentadienyl group and the substituted fluorenyl group in the above general formula [II].)
Further, A may include two or more ring structures including a ring formed together with Y.

上記[IIa]で表されるシクロヘキシリデン基以外に具体的には、シクロプロピリデン基、シクロブチリデン基、シクロペンチリデン基、シクロヘプチリデン基、シクロオクチリデン基、ビシクロ[3.3.1]ノニリデン基、ノルボルニリデン基、アダマンチリデン基、テトラヒドロナフチリデン基、ジヒドロインダニリデン基などを挙げることができる。 In addition to the cyclohexylidene group represented by [IIa] above, specifically, a cyclopropylidene group, a cyclobutylidene group, a cyclopentylidene group, a cycloheptylidene group, a cyclooctylidene group, and a bicyclo [3.3]. .1] Nonylidene group, norbornylidene group, adamantylidene group, tetrahydronaphthylidene group, dihydroindanilidene group and the like can be mentioned.

上記[IIb]で表されるシクロテトラメチレンシリレン基(1−シラシクロペンチリデン基)以外に具体的には、シクロジメチレンシリレン基、シクロトリメチレンシリレン基、シクロペンタメチレンシリレン基、シクロヘキサメチレンシリレン基、シクロヘプタメチレンシリレン基などを挙げることができる。 In addition to the cyclotetramethylene silylene group (1-silacyclopentylidene group) represented by [IIb] above, specifically, a cyclodimethylene silylene group, a cyclotrimethylene silylene group, a cyclopentamethylene silylene group, and a cyclohexamethylene group. Examples thereof include a silylene group and a cycloheptamethylene silylene group.

《M、j、Q》
一般式[I]および[II]において、Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、好ましくはジルコニウム原子またはハフニウム原子であり、より好ましくはジルコニウム原子である。
<< M, j, Q >>
In the general formulas [I] and [II], M is a titanium atom, a zirconium atom or a hafnium atom, preferably a zirconium atom or a hafnium atom, and more preferably a zirconium atom.

jは1〜4の整数であり、好ましくは2である。 j is an integer of 1 to 4, preferably 2.

Qは、ハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から選ばれ、jが2以上の場合は、複数個あるQは互いに同一であっても異なっていてもよい。 Q is selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair. When j is 2 or more, there are a plurality of Qs. May be the same as or different from each other.

ハロゲン原子および炭素数1〜20の炭化水素基の詳細は、上述のとおりである。Qがハロゲン原子である場合は、塩素原子が好ましい。Qが炭素数1〜20の炭化水素基である場合は、該炭化水素基の炭素数は1から7であることが好ましい。 Details of the halogen atom and the hydrocarbon group having 1 to 20 carbon atoms are as described above. When Q is a halogen atom, a chlorine atom is preferable. When Q is a hydrocarbon group having 1 to 20 carbon atoms, the hydrocarbon group preferably has 1 to 7 carbon atoms.

アニオン配位子としては、メトキシ基、t-ブトキシ基、フェノキシ基などのアルコキシ基、アセテート、ベンゾエートなどのカルボキシレート基、メシレート、トシレートなどのスルホネート基などを例示することができる。 Examples of the anion ligand include an alkoxy group such as a methoxy group, a t-butoxy group and a phenoxy group, a carboxylate group such as acetate and benzoate, and a sulfonate group such as mesylate and tosylate.

孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタンなどのエーテル化合物などを例示することができる。 Neutral ligands that can be coordinated with a lone electron pair include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, and diphenylmethylphosphine, and tetrahydrofuran, diethyl ether, dioxane, 1,2-dimethoxyethane, and the like. An ether compound and the like can be exemplified.

(前記遷移金属化合物[A]の好ましい態様)
前記遷移金属化合物[A]の好ましい態様としては、たとえば、ジメチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジメチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジエチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジエチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ-n−プロピルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジ-n-プロピルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジイソプロピルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジイソプロピルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ-n−ブチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジ-n−ブチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジイソブチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジイソブチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ-tert−ブチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジ-tert−ブチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジシクロペンチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジシクロペンチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジシクロヘキシルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジシクロヘキシルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジシクロへプチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジシクロへプチルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジフェニルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ-m-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジ-m-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、1-シラシクロペンチリデンシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド、1-シラシクロペンチリデンシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリドが挙げられる。さらに、ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジクロリド、ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジメチル、ジフェニルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジクロリド、ジフェニルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジメチル、ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジ-t-ブチル-4-メトキシフルオレニル)]ジルコニウムジクロリド、およびジp-トリルシリレン(η5-シクロペンタジエニル)(η5-4,4,7,7-テトラメチル-3,4,7,8,9,12-ヘキサヒドロ-2H-シクロペンタ-[2,1-g:3,4-g']ジクロメニル)ジルコニウムジクロリドも挙げられる。
(Preferable embodiment of the transition metal compound [A])
A preferred embodiment of the transition metal compound [A], for example, dimethylsilylene (eta 5 - cyclopentadienyl) [η 5 - (2,7- dimethoxy-fluorenyl)] zirconium dichloride, dimethylsilylene (eta 5 - Cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] Zirconium dichloride, diethylsilylene (η 5 -cyclopentadienyl) [η 5- (2) , 7-Dimethoxyfluorenyl)] zirconium dichloride, diethylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] zirconium dichloride , Di-n-propylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride, di-n-propylsilylene (η 5 -cyclopentadienyl) [ η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] zirconium dichloride, diisopropylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluolel) Nyl)] Zirconium dichloride, diisopropylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] Zirconium dichloride, di-n-butyl Silyrene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] Zirconium dichloride, di-n-butylsilylene (η 5 -cyclopentadienyl) [η 5- (2,, 7-Dimethoxy-3,6-di-tert-butylfluorenyl)] zirconium dichloride, diisobutylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride, Diisobutylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] zirconium dichloride, di-tert-butylsilylene (η 5 -cyclo) Pentazienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride, di-tert-butylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,) 6-di-tert -Butylfluorenyl)] zirconium dichloride, dicyclopentylcilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride, dicyclopentylcilylene (η 5- cyclopentadienyl) Enyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] zirconium dichloride, dicyclohexylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-) Dimethoxyfluorenyl)] zirconium dichloride, dicyclohexylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] zirconium dichloride, to dicyclo Puchilcilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride, dicycloheptylcilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy) -3,6-di-tert-butylfluorenyl)] zirconium dichloride, diphenylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride, diphenylsilylene (η 5 -cyclopentadienyl) η 5- (cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] zirconium dichloride, di-m-tolylcyrylene (η 5 -cyclopentadienyl) ) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride, di-m-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di) -tert-butylfluorenyl)] zirconium dichloride, di-p-trilcilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride, di-p-tolyl Sirilen (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] zirconium dichloride, 1-silacyclopentylidene silylene (η 5 -cyclo) Pentazienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride, 1-silacyclopentylidene silylene (η 5 -cyclopentadienyl) [η 5- (2,7-di) Methoxy-3,6-di-tert-butylfluorenyl)] zirconium dichloride. In addition, di-p-tolylcilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] zirconium dichloride, di-p-tolylcyrylene (η 5) -Cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] Zyrosine dimethyl, diphenylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-) Dimethoxy-3,6-dimethylfluorenyl)] zirconium dichloride, diphenylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] zirconium dimethyl, Di-p-tolylcilylene (η 5 -cyclopentadienyl) [η 5- (2,7-di-t-butyl-4-methoxyfluorenyl)] zirconium dichloride, and di-p-tolylcyrylene (η 5) -Cyclopentadienyl) (η 5 -4,4,7,7-Tetramethyl-3,4,7,8,9,12-Hexahydro-2H-Cyclopenta- [2,1-g: 3,4- g'] dichromenyl) zirconium dichloride is also mentioned.

《遷移金属化合物[A]の製造方法》
本発明に係る遷移金属化合物[A]は、たとえば国際公開第01/27124号の第84〜92頁に記載された製造方法を、式(12)で表される化合物として、式(12)の中のR5〜R12が本発明における上述した式[I]または[II]で定義されるR5〜R12とそれぞれ一致する化合物を用いて実施することにより、製造することができる。
<< Production method of transition metal compound [A] >>
The transition metal compound [A] according to the present invention is prepared by using the production method described in, for example, International Publication No. 01/27124, pages 84 to 92, as a compound represented by the formula (12), of the formula (12). R 5 to R 12 in is by carried out using compounds conforming respectively R 5 to R 12 as defined in formula [I] or [II] described above in the present invention, can be produced.

〔オレフィン重合用触媒〕
本発明に係るオレフィン重合用触媒は、本発明の遷移金属化合物[A]を含んでいる。
[Catalyst for olefin polymerization]
The catalyst for olefin polymerization according to the present invention contains the transition metal compound [A] of the present invention.

本発明のオレフィン重合用触媒は、好ましくは、
[B][B-1]有機金属化合物、[B-2]有機アルミニウムオキシ化合物、および[B-3]遷移金属化合物[A]と反応してイオン対を形成する化合物からなる群から選ばれる少なくとも1種の化合物(以下「化合物[B]」ともいう。)
をさらに含有する。
The catalyst for olefin polymerization of the present invention is preferably
It is selected from the group consisting of [B] [B-1] organometallic compounds, [B-2] organoaluminum oxy compounds, and compounds that react with [B-3] transition metal compounds [A] to form ion pairs. At least one compound (hereinafter, also referred to as "compound [B]")
Is further contained.

本発明のオレフィン重合用触媒は、必要に応じて、好ましくは、
(C)担体
をさらに含有する。
The catalyst for olefin polymerization of the present invention is preferably, if necessary.
(C) Further contains a carrier.

本発明のオレフィン重合用触媒は、必要に応じて、
(D)有機化合物成分
をさらに含有してもよい。
The catalyst for olefin polymerization of the present invention can be used as needed.
(D) The organic compound component may be further contained.

なお、本発明に係るオレフィン重合用触媒は、後述するオレフィン(エチレン、炭素数3〜20のα−オレフィンなど)の重合に使用することができる。 The catalyst for olefin polymerization according to the present invention can be used for polymerization of olefins (ethylene, α-olefin having 3 to 20 carbon atoms, etc.) described later.

以下、遷移金属化合物[A]以外の各成分について具体的に説明する。 Hereinafter, each component other than the transition metal compound [A] will be specifically described.

(化合物[B])
化合物[B](以下「成分(B)」と記載することもある。)は、
[B-1]有機金属化合物(以下「成分(B-1)」ともいう。)、好ましくは下記一般式(B-1a)で表される有機アルミニウム化合物[B-1a]、下記一般式(B-1b)で表される第1族金属とアルミニウムとの錯アルキル化物[B-1b]、または下記一般式(B-1c)で表される第2族または第12族金属のジアルキル化合物[B-1c]、
a mAl(ORb)n p q … (B-1a)
〔一般式(B-1a)中、Ra およびRb は、炭素原子数が1〜15の炭化水素基を示し、互いに同一でも異なっていてもよく、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。〕
a AlRa 4 … (B-1b)
〔一般式(B-1b)中、Ma はLi、NaまたはKを示し、Ra は炭素原子数が1〜15(好ましくは1〜4)の炭化水素基を示す。〕
a rbb s t … (B-1c)
〔一般式(B-1c)中、Ra およびRb は、炭素原子数が1〜15の炭化水素基を示し、互いに同一でも異なっていてもよく、Mb は、Mg、ZnおよびCdから選ばれ、Xはハロゲン原子を示し、rは0<r≦2、sは0≦s≦1、tは0≦t≦1であり、かつr+s+t=2である。〕、
[B-2]有機アルミニウムオキシ化合物(以下「成分(B-2)」ともいう。)、および
[B-3]遷移金属化合物[A]と反応してイオン対を形成する化合物(以下「成分(B-3)」ともいう。)
からなる群から選ばれる少なくとも1種の化合物である。
(Compound [B])
Compound [B] (hereinafter, may be referred to as “component (B)”) is
[B-1] Organometallic compound (hereinafter also referred to as "component (B-1)"), preferably an organoaluminum compound represented by the following general formula (B-1a) [B-1a], the following general formula ( A complex alkylated product of a Group 1 metal represented by B-1b) and aluminum [B-1b], or a dialkyl compound of a Group 2 or Group 12 metal represented by the following general formula (B-1c) [ B-1c],
R a m Al (OR b ) n H p X q … (B-1a)
[In the general formula (B-1a), R a and R b represent hydrocarbon groups having 1 to 15 carbon atoms, which may be the same or different from each other, where X represents a halogen atom and m is 0. <m ≦ 3, n is 0 ≦ n <3, p is 0 ≦ p <3, q is a number of 0 ≦ q <3, and m + n + p + q = 3. ]
M a AlR a 4 ... (B -1b)
[In the general formula (B-1b), M a represents a Li, Na or K, R a represents a hydrocarbon group having carbon atoms 1 to 15 (preferably 1 to 4). ]
R a r M b R b s X t … (B-1c)
[In the general formula (B-1c), R a and R b represent hydrocarbon groups having 1 to 15 carbon atoms and may be the same or different from each other, and M b is derived from Mg, Zn and Cd. Selected, X represents a halogen atom, r is 0 <r ≦ 2, s is 0 ≦ s ≦ 1, t is 0 ≦ t ≦ 1, and r + s + t = 2. ],
[B-2] Organoaluminium oxy compound (hereinafter, also referred to as "component (B-2)"), and [B-3] a compound that reacts with the transition metal compound [A] to form an ion pair (hereinafter, "component"). (B-3) "
It is at least one compound selected from the group consisting of.

《有機金属化合物[B-1]》
有機アルミニウム化合物[B-1a]としては、
トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-ブチルアルミニウム、トリ-n-ヘキシルアルミニウム、トリ-n-オクチルアルミニウムなどのトリ-n-アルキルアルミニウム、
トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリ-t-ブチルアルミニウム、トリ-2-メチルブチルアルミニウム、トリ-3-メチルヘキシルアルミニウム、トリ-2-エチルヘキシルアルミニウムなどのトリ分岐状アルキルアルミニウム、
トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム、
トリフェニルアルミニウム、トリ(4-メチルフェニル)アルミニウムなどのトリアリールアルミニウム、
ジエチルアルミニウムハイドライド、ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド、
一般式(i-C4H9)xAly(C5H10)z(式中、x、y、zは正の数であり、z≦2xである。)で表されるイソプレニルアルミニウムなどのアルケニルアルミニウム、
イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシドなどのアルキルアルミニウムアルコキシド、
ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド、
エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド、
一般式Ra 2.5Al(ORb)0.5などで表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム、
ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)などのアルキルアルミニウムアリーロキシド、
ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド、
エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド、
エチルアルミニウムジクロリドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム、
エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドおよびその他の部分的に水素化されたアルキルアルミニウム、
エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウム
などを例示することができる。また、上記一般式Ra mAl(ORb)npqで表される化合物に類似する化合物も使用することができ、例えば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を挙げることができる。このような化合物として具体的には、(C2H5)2AlN(C2H5)Al(C2H5)2などを挙げることができる。
<< Organometallic compound [B-1] >>
As an organoaluminum compound [B-1a],
Tri-n-alkylaluminum such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum,
Tri-branched alkylaluminum such as triisopropylaluminum, triisobutylaluminum, trisec-butylaluminum, tri-t-butylaluminum, tri-2-methylbutylaluminum, tri-3-methylhexylaluminum, tri-2-ethylhexylaluminum ,
Tricycloalkylaluminum, such as tricyclohexylaluminum, tricyclooctylaluminum,
Triarylaluminum, such as triphenylaluminum, tri (4-methylphenyl) aluminum,
Dialkylaluminum hydrides such as diethylaluminum hydride, diisopropylaluminum hydride, diisobutylaluminum hydride,
For example, isoprenyl aluminum represented by the general formula (iC 4 H 9 ) x Al y (C 5 H 10 ) z (in the formula, x, y, z are positive numbers and z ≤ 2x). Alkenyl aluminum,
Alkoxides such as isobutylaluminum methoxydo and isobutylaluminum ethoxyoxide,
Dialkylaluminum alkoxides such as dimethylaluminum methoxydo, diethylaluminum ethoxide, dibutylaluminum butoxide,
Alkyl aluminum sesquialkoxides such as ethyl aluminum sesquiethoxydo, butyl aluminum sesquibutoxide,
Partially alkoxylated alkylaluminum with an average composition represented by the general formula R a 2.5 Al (OR b ) 0.5 etc.
Alkylaluminum aryloxide, such as diethylaluminum phenoxide, diethylaluminum (2,6-di-t-butyl-4-methylphenoxide),
Dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, dibutylaluminum chloride, diethylaluminum bromide, diisobutylaluminum chloride,
Alkylaluminum sesquihalides such as ethylaluminum sesquichloride, butylaluminum sesquichloride, ethylaluminum sesquibromide,
Partially halogenated alkylaluminum, such as alkylaluminum dihalide, such as ethylaluminum dichloride,
Alkylaluminum dihydrides such as ethylaluminum dihydrides, propylaluminum dihydrides and other partially hydrogenated alkylaluminum,
Examples thereof include partially alkoxylated and halogenated alkylaluminum such as ethylaluminum ethoxychloride, butylaluminum butokicyclolide, ethylaluminum ethoxybromid and the like. Similarly, the general formula R a m Al (OR b) n H p X compounds similar to the compounds represented by q can also be used, for example, organic aluminum in which two or more aluminum compounds via a nitrogen atom is bonded Compounds can be mentioned. Specific examples of such a compound include (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 .

第1族金属とアルミニウムとの錯アルキル化物[B-1b]としては、例えば、LiAl(C254、LiAl(C7154が挙げられる。Examples of the complex alkylated product [B-1b] of a Group 1 metal and aluminum include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .

第2族または第12族金属のジアルキル化合物[B-1c]としては、例えば、ジメチルマグネシウム、ジエチルマグネシウム、ジn−ブチルマグネシウム、エチルn−ブチルマグネシウム、ジフェニルマグネシウム、ジメチル亜鉛、ジエチル亜鉛、ジn−ブチル亜鉛、ジフェニル亜鉛が挙げられる。 Examples of the group 2 or group 12 metal dialkyl compound [B-1c] include dimethylmagnesium, diethylmagnesium, din-butylmagnesium, ethyl n-butylmagnesium, diphenylmagnesium, dimethylzinc, diethylzinc, and din. -Butyl zinc, diphenyl zinc and the like.

これらの中では、前記有機アルミニウム化合物[B-1a]が好ましい。 Among these, the organoaluminum compound [B-1a] is preferable.

有機金属化合物[B-1]は1種単独で用いてもよく、2種以上を併用してもよい。 The organometallic compound [B-1] may be used alone or in combination of two or more.

《有機アルミニウムオキシ化合物[B-2]》
有機アルミニウムオキシ化合物[B-2]としては、例えば、従来公知のアルミノキサンであってもよく、特開平2−78687号公報に例示されているようなベンゼンに対して不溶性または難溶性の有機アルミニウムオキシ化合物であってもよい。従来公知のアルミノキサンは、例えば、下記(1)〜(4)の方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。
<< Organoaluminium oxy compound [B-2] >>
The organoaluminum oxy compound [B-2] may be, for example, a conventionally known aluminoxane, and is insoluble or sparingly soluble in benzene as exemplified in JP-A-2-78687. It may be a compound. Conventionally known aluminoxane can be produced, for example, by the methods (1) to (4) below, and is usually obtained as a solution of a hydrocarbon solvent.

(1)吸着水を含有する化合物または結晶水を含有する塩類、例えば、塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物等の炭化水素媒体懸濁液に、トリアルキルアルミニウム等の有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。 (1) Compounds containing adsorbed water or salts containing water of crystallization, such as magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate, and first cerium chloride hydrate. A method in which an organic aluminum compound such as trialkylaluminum is added to a hydrocarbon medium suspension such as, and adsorbed water or water of crystallization is reacted with the organic aluminum compound.

(2)ベンゼン、トルエン、ジエチルエーテル、テトラヒドロフラン等の媒体中で、トリアルキルアルミニウム等の有機アルミニウム化合物に、直接水、氷または水蒸気を作用させる方法。 (2) A method in which water, ice or water vapor is directly allowed to act on an organoaluminum compound such as trialkylaluminum in a medium such as benzene, toluene, diethyl ether or tetrahydrofuran.

(3)デカン、ベンゼン、トルエン等の媒体中で、トリアルキルアルミニウム等の有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシド等の有機スズ酸化物を反応させる方法。 (3) A method of reacting an organoaluminum compound such as trialkylaluminum with an organotin oxide such as dimethyltin oxide or dibutyltin oxide in a medium such as decane, benzene or toluene.

(4)トリアルキルアルミニウム等の有機アルミニウムと、3級アルコール、ケトン、およびカルボン酸等の炭素−酸素結合を持つ有機化合物とを反応させて生成する化合物を、熱分解反応等の非加水分解的転化をする方法。 (4) A compound produced by reacting an organic aluminum such as trialkylaluminum with an organic compound having a carbon-oxygen bond such as a tertiary alcohol, a ketone, and a carboxylic acid is non-hydrolyzable such as a thermal decomposition reaction. How to convert.

なお、上記アルミノキサンは、少量の有機金属成分を含有してもよい。また、回収された上記アルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。 The aluminoxane may contain a small amount of an organometallic component. Alternatively, the solvent or unreacted organoaluminum compound may be distilled and removed from the recovered solution of aluminoxane, and then redissolved in the solvent or suspended in a poor solvent of aluminoxane.

アルミノキサンを調製する際に用いられる有機アルミニウム化合物としては、具体的には、有機アルミニウム化合物[B-1a]として例示したものと同一の有機アルミニウム化合物が挙げられる。これらの中でも、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。 Specific examples of the organoaluminum compound used in preparing the aluminoxane include the same organoaluminum compounds as those exemplified as the organoaluminum compound [B-1a]. Among these, trialkylaluminum and tricycloalkylaluminum are preferable, and trimethylaluminum is particularly preferable.

その他、有機アルミニウムオキシ化合物[B-2]としては、例えば、修飾メチルアルミノキサンが挙げられる。修飾メチルアルミノキサンとは、トリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムとを用いて調製されるアルミノキサンである。このような化合物は、一般にMMAOと呼ばれている。MMAOは、米国特許第4960878号明細書および米国特許第5041584号明細書で挙げられている方法で調製することができる。また、東ソー・ファインケム(株)社等からもトリメチルアルミニウムとトリイソブチルアルミニウムとを用いて調製された、Rがイソブチル基であるアルミノキサンが、MMAOやTMAOといった名称で商業生産されている。 In addition, examples of the organoaluminum oxy compound [B-2] include modified methylaluminoxane. The modified methylaluminoxane is an aluminoxane prepared by using trimethylaluminum and alkylaluminum other than trimethylaluminum. Such compounds are commonly referred to as MMAO. MMAOs can be prepared by the methods set forth in US Pat. No. 4,960,878 and US Pat. No. 5,041,584. In addition, aluminoxane having an isobutyl group of R, which is prepared by using trimethylaluminum and triisobutylaluminum, is commercially produced by Tosoh Finechem Co., Ltd. and the like under the names of MMAO and TMAO.

このようなMMAOは、各種溶媒への溶解性および保存安定性を改良したアルミノキサンであり、具体的には上記のようなベンゼンに対して不溶性または難溶性のものとは違い、脂肪族炭化水素や脂環族炭化水素に溶解するという特徴を持つ。 Such MMAO is an aluminoxane having improved solubility in various solvents and storage stability. Specifically, unlike the above-mentioned ones insoluble or sparingly soluble in benzene, aliphatic hydrocarbons and the like are used. It has the characteristic of being soluble in alicyclic hydrocarbons.

さらに、有機アルミニウムオキシ化合物[B-2]としては、例えば、ホウ素原子を含む有機アルミニウムオキシ化合物や、国際公開第2005/066191号、国際公開第2007/131010号に例示されているようなハロゲンを含むアルミノキサン、国際公開第2003/082879号に例示されているようなイオン性アルミノキサンを挙げることもできる。 Further, as the organoaluminum oxy compound [B-2], for example, an organoaluminum oxy compound containing a boron atom and a halogen as exemplified in International Publication No. 2005/066191 and International Publication No. 2007/131010 are used. Included aluminoxane, ionic aluminoxane as exemplified in WO 2003/082879 can also be mentioned.

有機アルミニウムオキシ化合物[B-2]は1種単独で用いてもよく、2種以上を併用してもよい。 The organoaluminum oxy compound [B-2] may be used alone or in combination of two or more.

《遷移金属化合物[A]と反応してイオン対を形成する化合物[B-3]》
遷移金属化合物[A]と反応してイオン対を形成する化合物[B-3](以下「イオン性化合物[B-3]」ともいう。)としては、例えば、特表平1−501950号公報、特表平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、米国特許第5321106号明細書等に記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物が挙げられる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
<< Compound [B-3] that forms an ion pair by reacting with transition metal compound [A] >>
Examples of the compound [B-3] (hereinafter, also referred to as “ionic compound [B-3]”) that reacts with the transition metal compound [A] to form an ion pair include JP-A No. 1-501950. , Japanese Patent Application Laid-Open No. 1-502036, Japanese Patent Application Laid-Open No. 3-179005, Japanese Patent Application Laid-Open No. 3-179006, Japanese Patent Application Laid-Open No. 3-207703, Japanese Patent Application Laid-Open No. 3-207704, US Pat. No. 5,321106, etc. Examples thereof include Lewis acids, ionic compounds, borane compounds and carborane compounds described in. In addition, heteropoly compounds and isopoly compounds can also be mentioned.

イオン性化合物[B-3]としては、一般式(B-3a)で表される化合物が好ましい。 As the ionic compound [B-3], a compound represented by the general formula (B-3a) is preferable.

Figure 2019188644
式(B-3a)中、Re+としては、例えば、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンが挙げられる。Rf〜Riはそれぞれ独立に有機基、好ましくはアリール基である。
Figure 2019188644
Wherein (B-3a), as R e + is, for example, H +, carbenium cation, oxonium cation, ammonium cation, phosphonium cation, cycloheptyltrienyl cation, and a ferrocenium cation having a transition metal. R f to R i are independently organic groups, preferably aryl groups.

カルベニウムカチオンとしては、例えば、トリフェニルカルベニウムカチオン、トリス(メチルフェニル)カルベニウムカチオン、トリス(ジメチルフェニル)カルベニウムカチオン等の三置換カルベニウムカチオンが挙げられる。 Examples of the carbocation cation include a trisubstituted carbocation cation such as a triphenyl carbocation cation, a tris (methylphenyl) carbocation cation, and a tris (dimethylphenyl) carbocation cation.

アンモニウムカチオンとしては、例えば、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n−プロピル)アンモニウムカチオン、トリイソプロピルアンモニウムカチオン、トリ(n−ブチル)アンモニウムカチオン、トリイソブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオンが挙げられる。 Examples of the ammonium cation include trialkylammonary cations such as trimethylammonium cation, triethylammonary cation, tri (n-propyl) ammonium cation, triisopropylammonium cation, tri (n-butyl) ammonium cation, and triisobutylammonium cation; , N-dimethylanilinium cations, N, N-diethylanilinium cations, N, N-2,4,6-pentamethylanilinium cations and other N, N-dialkylanilinium cations; diisopropylammonium cations, dicyclohexylammonium cations And the like dialkylammonium cations.

ホスホニウムカチオンとしては、例えば、トリフェニルホスホニウムカチオン、トリス(メチルフェニル)ホスホニウムカチオン、トリス(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオンが挙げられる。 Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tris (methylphenyl) phosphonium cation, and tris (dimethylphenyl) phosphonium cation.

e+としては、例えば、カルベニウムカチオン、アンモニウムカチオンが好ましく、特にトリフェニルカルベニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオンが好ましい。As R e + , for example, a carbenium cation and an ammonium cation are preferable, and a triphenylcarbenium cation, an N, N-dimethylanilinium cation, and an N, N-diethylanilinium cation are particularly preferable.

カルベニウム塩としては、例えば、トリフェニルカルベニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(3,5−ジトリフルオロメチルフェニル)ボレート、トリス(4−メチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(3,5−ジメチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレートが挙げられる。 Examples of the carbenium salt include triphenylcarbenium tetraphenylborate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (3,5-ditrifluoromethylphenyl) borate, and tris (4-methylphenyl). ) Carbenium tetrakis (pentafluorophenyl) borate, tris (3,5-dimethylphenyl) carbenium tetrakis (pentafluorophenyl) borate can be mentioned.

アンモニウム塩としては、例えば、トリアルキル置換アンモニウム塩、N,N−ジアルキルアニリニウム塩、ジアルキルアンモニウム塩が挙げられる。 Examples of the ammonium salt include a trialkyl-substituted ammonium salt, an N, N-dialkylanilinium salt, and a dialkylammonium salt.

トリアルキル置換アンモニウム塩としては、例えば、トリエチルアンモニウムテトラフェニルボレート、トリプロピルアンモニウムテトラフェニルボレート、トリ(n−ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラキス(p−トリル)ボレート、トリメチルアンモニウムテトラキス(o−トリル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,4−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(3,5−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(4−トリフルオロメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(3,5−ジトリフルオロメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(o−トリル)ボレート、ジオクタデシルメチルアンモニウムテトラフェニルボレート、ジオクタデシルメチルアンモニウムテトラキス(p−トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(o−トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(2,4−ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5−ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(4−トリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5−ジトリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムが挙げられる。 Examples of the trialkyl-substituted ammonium salt include triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate, trimethylammonium tetrakis (p-tolyl) borate, and trimethylammonium tetrakis (o-). Trill) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (2,4-dimethyl) Phenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-dimethylphenyl) borate, tri (n-butyl) ammonium tetrakis (4-trifluoromethylphenyl) borate, tri (n-butyl) ammonium tetrakis (3) , 5-Ditrifluoromethylphenyl) borate, tri (n-butyl) ammonium tetrakis (o-tolyl) borate, dioctadecylmethylammonium tetraphenylborate, dioctadecylmethylammonium tetrakis (p-tolyl) borate, dioctadecylmethylammonium tetrakis (O-trill) borate, dioctadecylmethylammonium tetrakis (pentafluorophenyl) borate, dioctadecylmethylammonium tetrakis (2,4-dimethylphenyl) borate, dioctadecylmethylammonium tetrakis (3,5-dimethylphenyl) borate, di Examples thereof include octadecylmethylammonium tetrakis (4-trifluoromethylphenyl) borate, dioctadecylmethylammonium tetrakis (3,5-ditrifluoromethylphenyl) borate, and dioctadecylmethylammonium.

N,N−ジアルキルアニリニウム塩としては、例えば、N,N−ジメチルアニリニウムテトラフェニルボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(3,5−ジトリフルオロメチルフェニル)ボレート、N,N−ジエチルアニリニウムテトラフェニルボレート、N,N−ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジエチルアニリニウムテトラキス(3,5−ジトリフルオロメチルフェニル)ボレート、N,N−2,4,6−ペンタメチルアニリニウムテトラフェニルボレート、N,N−2,4,6−ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが挙げられる。 Examples of the N, N-dialkylanilinium salt include N, N-dimethylanilinium tetraphenylborate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, and N, N-dimethylanilinium tetrakis (3,). 5-Ditrifluoromethylphenyl) borate, N, N-diethylanilinium tetraphenylborate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (3,5-ditrifluoro) Methylphenyl) borate, N, N-2,4,6-pentamethylanilinium tetraphenylborate, N, N-2,4,6-pentamethylanilinium tetrakis (pentafluorophenyl) borate.

ジアルキルアンモニウム塩としては、例えば、ジ(1−プロピル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートが挙げられる。 Examples of the dialkylammonium salt include di (1-propyl) ammonium tetrakis (pentafluorophenyl) borate and dicyclohexylammonium tetraphenylborate.

イオン性化合物[B-3]としては、その他、特開2004−51676号公報に開示されているイオン性化合物も制限無く使用が可能である。 As the ionic compound [B-3], other ionic compounds disclosed in JP-A-2004-51676 can also be used without limitation.

イオン性化合物[B-3]は1種単独で用いてもよく、2種以上を併用してもよい。 The ionic compound [B-3] may be used alone or in combination of two or more.

〈担体[C]〉
担体[C]としては、例えば、無機または有機の化合物であって、顆粒状ないしは微粒子状の固体が挙げられる。後述する本発明のオレフィン重合体の製造方法において、遷移金属化合物[A]は、好ましくは担体[C]に担持された形態で用いられる。
<Carrier [C]>
Examples of the carrier [C] include inorganic or organic compounds, which are granular or fine particle solids. In the method for producing an olefin polymer of the present invention described later, the transition metal compound [A] is preferably used in the form of being supported on the carrier [C].

《無機化合物》
担体[C]における無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
<< Inorganic compounds >>
As the inorganic compound in the carrier [C], a porous oxide, an inorganic chloride, clay, a clay mineral or an ion-exchange layered compound is preferable.

多孔質酸化物としては、例えば、SiO2、Al2O3、MgO、ZrO2、TiO2、B2O3、CaO、ZnO、BaO、ThO2等の酸化物、またはこれらを含む複合物もしくは混合物を使用することができる。例えば、天然または合成ゼオライト、SiO2−MgO、SiO2−Al2O3、SiO2−TiO2、SiO2−V2O5、SiO2−Cr2O3、SiO2−TiO2−MgOを使用することができる。これらの中でも、SiO2および/またはAl2O3を主成分として含有する多孔質酸化物が好ましい。Examples of the porous oxide include oxides of SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2, etc., or a composite containing these. A mixture can be used. For example, natural or synthetic zeolite, SiO 2 −MgO, SiO 2 −Al 2 O 3 , SiO 2 −TiO 2 , SiO 2 −V 2 O 5 , SiO 2 −Cr 2 O 3 , SiO 2 −TiO 2 −MgO Can be used. Among these, a porous oxide containing SiO 2 and / or Al 2 O 3 as a main component is preferable.

多孔質酸化物は、種類および製法によりその性状は異なる。本発明に好ましく用いられる担体は、粒径が好ましくは1〜300μm、より好ましくは3〜100μmであり;比表面積が好ましくは50〜1300m2/g、より好ましくは200〜1200m2/gであり;細孔容積が好ましくは0.3〜3.0cm3/g、より好ましくは0.5〜2.0cm3/gである。このような担体は、必要に応じて100〜1000℃、好ましくは150〜700℃で乾燥および/または焼成して使用される。粒子形状については特に制限はないが、特に好ましくは球状である。The properties of porous oxides differ depending on the type and manufacturing method. The carrier preferably used in the present invention has a particle size of preferably 1 to 300 μm, more preferably 3 to 100 μm; and a specific surface area of preferably 50 to 1300 m 2 / g, more preferably 200 to 1200 m 2 / g. The pore volume is preferably 0.3 to 3.0 cm 3 / g, more preferably 0.5 to 2.0 cm 3 / g. Such a carrier is used by drying and / or calcining at 100 to 1000 ° C., preferably 150 to 700 ° C., if necessary. The particle shape is not particularly limited, but is particularly preferably spherical.

無機塩化物としては、例えば、MgCl2、MgBr2、MnCl2、MnBr2が用いられる。無機塩化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコール等の溶媒に無機塩化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。As the inorganic chloride, for example, MgCl 2 , MgBr 2 , MnCl 2 , and MnBr 2 are used. The inorganic chloride may be used as it is, or may be used after being pulverized by a ball mill or a vibration mill. Further, it is also possible to use a solvent in which an inorganic chloride is dissolved in a solvent such as alcohol and then precipitated in the form of fine particles with a precipitant.

粘土は、通常粘土鉱物を主成分として構成される。イオン交換性層状化合物は、イオン結合等によって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有されるイオンが交換可能である。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。また、粘土、粘土鉱物またはイオン交換性層状化合物としては、粘土、粘土鉱物、または六方最密パッキング型、アンチモン型、CdCl2型、CdI2型等の層状の結晶構造を有するイオン結晶性化合物を例示することができる。Clay is usually composed mainly of clay minerals. The ion-exchangeable layered compound is a compound having a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other with a weak bonding force, and the contained ions can be exchanged. Most clay minerals are ion-exchange layered compounds. Further, as these clays, clay minerals, and ion-exchange layered compounds, not only naturally produced ones but also artificial synthetic compounds can be used. Further, as the clay, clay mineral or ion-exchangeable layered compound, clay, clay mineral, or an ionic crystalline compound having a layered crystal structure such as hexagonal closest packing type, antimony type, CdCl 2 type and CdI 2 type can be used. It can be exemplified.

粘土、粘土鉱物としては、例えば、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイト、ペクトライト、テニオライトが挙げられる。 Clays and clay minerals include, for example, kaolin, bentonite, knot clay, gailome clay, allophane, hisingel stone, pyrophyllite, ummo group, montmorillonite group, vermiculite, ryokudei stone group, parigolskite, kaolinite, nacrite, dikite, etc. Examples include halloysite, pectrite, and teniolite.

イオン交換性層状化合物としては、例えば、α−Zr(HAsO42・H2O、α−Zr(HPO42、α−Zr(KPO42・3H2O、α−Ti(HPO42、α−Ti(HAsO42・H2O、α−Sn(HPO42・H2O、γ−Zr(HPO42、γ−Ti(HPO42、γ−Ti(NH4PO42・H2O等の多価金属の結晶性酸性塩が挙げられる。The ion-exchange layered compounds, for example, α-Zr (HAsO 4) 2 · H 2 O, α-Zr (HPO 4) 2, α-Zr (KPO 4) 2 · 3H 2 O, α-Ti (HPO 4 ) 2 , α-Ti (HAsO 4 ) 2 · H 2 O, α-Sn (HPO 4 ) 2 · H 2 O, γ-Zr (HPO 4 ) 2 , γ-Ti (HPO 4 ) 2 , γ- Crystalline acidic salts of polyvalent metals such as Ti (NH 4 PO 4 ) 2 and H 2 O can be mentioned.

粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理等、何れも使用できる。化学処理としては、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理等が挙げられる。 It is also preferable to chemically treat clay and clay minerals. As the chemical treatment, any of a surface treatment for removing impurities adhering to the surface, a treatment for affecting the crystal structure of clay, and the like can be used. Specific examples of the chemical treatment include acid treatment, alkali treatment, salt treatment, organic substance treatment and the like.

イオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。 The ion-exchangeable layered compound may be a layered compound in a state in which the layers are expanded by utilizing the ion-exchange property and exchanging the exchangeable ions between the layers with another large bulky ion. Such bulky ions play a supporting role in supporting the layered structure, and are usually called pillars. Further, the introduction of another substance between the layers of the layered compound in this way is called intercalation.

インターカレーションするゲスト化合物としては、例えば、TiCl4、ZrCl4等の陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3等の金属アルコキシド(Rは炭化水素基等)、[Al13O4(OH)24]7+、[Zr4(OH)14]2+、[Fe3O(OCOCH36]+等の金属水酸化物イオンが挙げられる。これらの化合物は1種単独で用いてもよく、2種以上を併用してもよい。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4等の金属アルコキシド(Rは炭化水素基等)などを加水分解して得た重合物、SiO2等のコロイド状無機化合物などを共存させることもできる。Examples of the guest compounds to be intercalated include, for example, TiCl 4, ZrCl 4 cationic inorganic compounds such as, Ti (OR) 4, Zr (OR) 4, PO (OR) 3, B (OR) 3 or the like of metal Metal hydroxides such as alkoxides (R is a hydrocarbon group, etc.), [Al 13 O 4 (OH) 24 ] 7+ , [Zr 4 (OH) 14 ] 2+ , [Fe 3 O (OCOCH 3 ) 6 ] +, etc. Material ions can be mentioned. These compounds may be used alone or in combination of two or more. In addition, when these compounds were intercalated, metal alkoxides such as Si (OR) 4 , Al (OR) 3 , and Ge (OR) 4 (R is a hydrocarbon group, etc.) were hydrolyzed. A polymer, a colloidal inorganic compound such as SiO 2, etc. can coexist.

ピラーとしては、例えば、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物が挙げられる。 Examples of the pillars include oxides produced by intercalating the above metal hydroxide ions between layers and then heating and dehydrating them.

担体[C]の中でも、SiO2および/またはAl2O3を主成分として含有する多孔質酸化物が好ましい。また、粘土または粘土鉱物も好ましく、特に好ましいものはモンモリロナイト、バーミキュライト、ペクトライト、テニオライトおよび合成雲母である。Among the carriers [C], a porous oxide containing SiO 2 and / or Al 2 O 3 as a main component is preferable. Clays or clay minerals are also preferred, with particular preference being montmorillonite, vermiculite, pectolite, teniolite and synthetic mica.

《有機化合物》
担体[C]における有機化合物としては、例えば、粒径が5〜300μmの範囲にある顆粒状ないしは微粒子状固体が挙げられる。具体的には、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等の炭素数2〜14のα−オレフィンを主成分として生成される(共)重合体、ビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。
《Organic compounds》
Examples of the organic compound in the carrier [C] include granular or fine particle solids having a particle size in the range of 5 to 300 μm. Specifically, the main components are (co) polymers, vinylcyclohexane, and styrene produced mainly of α-olefins having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene, and 4-methyl-1-pentene. Examples thereof include (co) polymers produced as components and variants thereof.

〈有機化合物成分[D]〉
本発明において、有機化合物成分[D]は、必要に応じて、重合性能および生成ポリマーの物性を向上させる目的で使用される。有機化合物[D]としては、例えば、アルコール類、フェノール性化合物、カルボン酸、リン化合物、アミド、ポリエーテルおよびスルホン酸塩等が挙げられる。
<Organic compound component [D]>
In the present invention, the organic compound component [D] is used for the purpose of improving the polymerization performance and the physical properties of the produced polymer, if necessary. Examples of the organic compound [D] include alcohols, phenolic compounds, carboxylic acids, phosphorus compounds, amides, polyethers and sulfonates.

〈各成分の使用法および添加順序〉
オレフィン重合の際には、各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。以下では、遷移金属化合物[A]、化合物[B]、担体[C]および有機化合物成分[D]を、それぞれ「成分(A)〜(D)」ともいう。
(1)成分(A)を単独で重合器に添加する方法。
(2)成分(A)および成分(B)を任意の順序で重合器に添加する方法。
(3)成分(A)を成分(C)に担持した触媒成分と、
成分(B)とを任意の順序で重合器に添加する方法。
(4)成分(B)を成分(C)に担持した触媒成分と、
成分(A)とを任意の順序で重合器に添加する方法。
(5)成分(A)と成分(B)とを成分(C)に担持した触媒成分を
重合器に添加する方法。
<Usage and order of addition of each component>
In the case of olefin polymerization, the usage and addition order of each component are arbitrarily selected, and the following methods are exemplified. Hereinafter, the transition metal compound [A], the compound [B], the carrier [C], and the organic compound component [D] are also referred to as “components (A) to (D)”, respectively.
(1) A method of adding the component (A) alone to a polymerizer.
(2) A method of adding the component (A) and the component (B) to the polymerizer in an arbitrary order.
(3) A catalyst component in which the component (A) is supported on the component (C), and
A method of adding the component (B) to the polymerizer in an arbitrary order.
(4) A catalyst component in which the component (B) is supported on the component (C), and
A method of adding the component (A) to a polymerizer in an arbitrary order.
(5) A method of adding a catalyst component in which a component (A) and a component (B) are supported on the component (C) to a polymerizer.

上記(2)〜(5)の各方法においては、各触媒成分の少なくとも2種は予め接触されていてもよい。成分(B)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない成分(B)を、任意の順序で添加してもよい。この場合、成分(B)は、同一でも異なっていてもよい。また、成分(C)に成分(A)が担持された固体触媒成分、成分(C)に成分(A)および成分(B)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに触媒成分が担持されていてもよい。 In each of the above methods (2) to (5), at least two kinds of each catalyst component may be contacted in advance. In each of the above methods (4) and (5) in which the component (B) is supported, the component (B) in which the component (B) is not supported may be added in any order, if necessary. In this case, the component (B) may be the same or different. Further, the solid catalyst component in which the component (A) is supported on the component (C) and the solid catalyst component in which the component (A) and the component (B) are supported on the component (C) are obtained even if the olefin is prepolymerized. Often, the catalyst component may be further supported on the prepolymerized solid catalyst component.

〔オレフィン重合体の製造方法〕
本発明のオレフィン重合体の製造方法は、上述のオレフィン重合用触媒の存在下でオレフィン(エチレン、炭素数3以上20以下のα−オレフィンなど)を重合する工程[P]を有することを特徴としている。ここで「重合」とは、単独重合および共重合の総称である。また「オレフィン重合用触媒の存在下でオレフィンを重合する」とは、上記(1)〜(5)の各方法のように任意の方法でオレフィン重合用触媒の各成分を重合器に添加して前記オレフィンを重合する態様を包含する。
[Method for producing olefin polymer]
The method for producing an olefin polymer of the present invention is characterized by having a step [P] of polymerizing an olefin (ethylene, α-olefin having 3 or more and 20 or less carbon atoms, etc.) in the presence of the above-mentioned catalyst for olefin polymerization. There is. Here, "polymerization" is a general term for homopolymerization and copolymerization. Further, "polymerizing an olefin in the presence of an olefin polymerization catalyst" means that each component of the olefin polymerization catalyst is added to a polymerizer by an arbitrary method as in the methods (1) to (5) above. The aspect of polymerizing the olefin is included.

本発明では、重合は、溶液重合、懸濁重合等の液相重合法または気相重合法のいずれにおいても実施できる。液相重合法において用いられる不活性炭化水素媒体としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタン等のハロゲン化炭化水素が挙げられる。不活性炭化水素媒体は1種単独で用いてもよく、2種以上を混合して用いてもよい。また、重合に供給されうる液化オレフィン自身を溶媒として用いる、いわゆるバルク重合法を用いることもできる。 In the present invention, the polymerization can be carried out by any of a liquid phase polymerization method such as solution polymerization and suspension polymerization or a gas phase polymerization method. Examples of the inert hydrocarbon medium used in the liquid phase polymerization method include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane and kerosene; cyclopentane, cyclohexane, methylcyclopentane and the like. Aliphatic hydrocarbons; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethylene chloride, chlorobenzene and dichloromethane. The inert hydrocarbon medium may be used alone or in combination of two or more. Further, a so-called bulk polymerization method in which the liquefied olefin itself that can be supplied for polymerization is used as a solvent can also be used.

オレフィン重合用触媒を用いてオレフィンの重合を行うに際して、オレフィン重合用触媒を構成し得る各成分の使用量は以下のとおりである。また、オレフィン重合用触媒において、各成分の含有量を以下のとおりに調節することができる。 When polymerizing an olefin using a catalyst for olefin polymerization, the amount of each component that can constitute the catalyst for olefin polymerization is as follows. Further, in the catalyst for olefin polymerization, the content of each component can be adjusted as follows.

成分(A)は、反応容積1リットル当り、通常1×10-10〜1×10-2モル、好ましくは1×10-8〜1×10-3モルとなるような量で用いられる。The component (A) is used in an amount usually 1 × 10 -10 to 1 × 10 −2 mol, preferably 1 × 10 -8 to 1 × 10 -3 mol, per liter of the reaction volume.

成分(B-1)は、成分(B-1)と成分(A)中の全遷移金属原子(M)とのモル比〔(B-1)/M〕が通常1〜50,000、好ましくは10〜20,000、特に好ましくは50〜10,000となるような量で用いることができる。 The molar ratio [(B-1) / M] of the component (B-1) to all the transition metal atoms (M) in the component (A) is usually 1 to 50,000, preferably 1 to 50,000. Can be used in an amount such that is 10 to 20,000, particularly preferably 50 to 10,000.

成分(B-2)は、成分(B-2)中のアルミニウム原子と成分(A)中の全遷移金属原子(M)とのモル比〔Al/M〕が通常10〜5,000、好ましくは20〜2,000となるような量で用いることができる。 The molar ratio [Al / M] of the aluminum atom in the component (B-2) to the total transition metal atom (M) in the component (A) of the component (B-2) is usually 10 to 5,000, preferably 10 to 5,000. Can be used in an amount such that is 20 to 2,000.

成分(B-3)は、成分(B-3)と成分(A)中の全遷移金属原子(M)とのモル比〔(B-3)/M〕が通常1〜1000、好ましくは1〜200となるような量で用いることができる。 The molar ratio [(B-3) / M] of the component (B-3) to all the transition metal atoms (M) in the component (A) is usually 1 to 1000, preferably 1. It can be used in an amount of up to 200.

成分(C)を用いる場合は、成分(A)と成分(C)との重量比〔(A)/(C)〕が好ましくは0.0001〜1、より好ましくは0.0005〜0.5、さらに好ましくは0.001〜0.1となるような量で用いることができる。 When the component (C) is used, the weight ratio of the component (A) to the component (C) [(A) / (C)] is preferably 0.0001 to 1, more preferably 0.0005 to 0.5. , More preferably, it can be used in an amount such that it is 0.001 to 0.1.

成分(D)を用いる場合は、
成分(B)が成分(B-1)の場合には、モル比〔(D)/(B-1)〕が通常0.01〜10、好ましくは0.1〜5となるような量で、
成分(B)が成分(B-2)の場合には、モル比〔(D)/(B-2)〕が通常0.005〜2、好ましくは0.01〜1となるような量で、
成分(B)が成分(B-3)の場合は、モル比〔(D)/(B-3)〕が通常0.01〜10、好ましくは0.1〜5となるような量で用いることができる。
When using component (D)
When the component (B) is the component (B-1), the molar ratio [(D) / (B-1)] is usually 0.01 to 10, preferably 0.1 to 5. ,
When the component (B) is the component (B-2), the molar ratio [(D) / (B-2)] is usually 0.005 to 2, preferably 0.01 to 1. ,
When the component (B) is the component (B-3), it is used in an amount such that the molar ratio [(D) / (B-3)] is usually 0.01 to 10, preferably 0.1 to 5. be able to.

本発明の製造方法において、重合温度は、通常−50〜+200℃、好ましくは0〜200℃、より好ましくは80〜200℃であり、重合圧力は、通常常圧〜10MPaゲージ圧、好ましくは常圧〜5MPaゲージ圧である。重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる二段以上に分けて行うこともできる。得られるオレフィン重合体の分子量は、重合系に水素等を存在させるか、重合温度を変化させるか、または成分(B)の使用量により調節することができる。 In the production method of the present invention, the polymerization temperature is usually −50 to + 200 ° C., preferably 0 to 200 ° C., more preferably 80 to 200 ° C., and the polymerization pressure is usually normal pressure to 10 MPa gauge pressure, preferably normal. Pressure to 5 MPa gauge pressure. The polymerization reaction can be carried out by any of a batch type, a semi-continuous type and a continuous type. Further, the polymerization can be carried out in two or more stages having different reaction conditions. The molecular weight of the obtained olefin polymer can be adjusted by allowing hydrogen or the like to be present in the polymerization system, changing the polymerization temperature, or adjusting the amount of the component (B) used.

特に水素は、触媒の重合活性を向上させる効果や、重合体の分子量を増加または低下させる効果が得られることがあり、好ましい添加物であるといえる。系内に水素を添加する場合、その量はオレフィン1モルあたり0.00001〜100NL程度が適当である。系内の水素濃度は、水素の供給量を調整する以外にも、水素を生成または消費する反応を系内で行う方法や、膜を利用して水素を分離する方法、水素を含む一部のガスを系外に放出することによっても調整することができる。 In particular, hydrogen can be said to be a preferable additive because it may have an effect of improving the polymerization activity of the catalyst and an effect of increasing or decreasing the molecular weight of the polymer. When hydrogen is added into the system, the amount thereof is appropriately about 0.00001 to 100 NL per mole of olefin. In addition to adjusting the amount of hydrogen supplied, the hydrogen concentration in the system includes a method of performing a reaction that produces or consumes hydrogen in the system, a method of separating hydrogen using a membrane, and some hydrogen-containing methods. It can also be adjusted by releasing the gas out of the system.

本発明の製造方法で得られたオレフィン重合体(たとえば、エチレン/α−オレフィン/非共役ポリエン共重合体)に対しては、オレフィン重合体を上記方法で合成した後に、必要に応じて公知の触媒失活処理工程、触媒残渣除去工程、乾燥工程等の後処理工程を行ってよい。 For the olefin polymer (for example, ethylene / α-olefin / non-conjugated polyene copolymer) obtained by the production method of the present invention, after synthesizing the olefin polymer by the above method, it is known as necessary. Post-treatment steps such as a catalyst deactivation treatment step, a catalyst residue removal step, and a drying step may be performed.

〈オレフィン〉
本発明の製造方法の一つの態様において、重合反応に供給されるオレフィンは、炭素数3〜20のα−オレフィンである。
<Olefin>
In one embodiment of the production method of the present invention, the olefin supplied to the polymerization reaction is an α-olefin having 3 to 20 carbon atoms.

この態様においては、エチレンを単独重合してもよく、エチレンと非共役ジエンとを共重合してもよく、エチレンと炭素数3以上20以下のα−オレフィンと非共役ジエンとを共重合してもよい。 In this embodiment, ethylene may be homopolymerized, ethylene may be copolymerized with a non-conjugated diene, or ethylene may be copolymerized with an α-olefin having 3 or more and 20 or less carbon atoms and a non-conjugated diene. May be good.

また、本発明の製造方法の他の態様において、重合反応に供給されるオレフィンは、炭素数3〜20のα−オレフィンである。 Further, in another aspect of the production method of the present invention, the olefin supplied to the polymerization reaction is an α-olefin having 3 to 20 carbon atoms.

この態様においては、エチレンと炭素数3以上20以下のα−オレフィンとを共重合してもよく、炭素数3以上20以下のα−オレフィンと非共役ジエンとを共重合してもよく、エチレンと炭素数3以上20以下のα−オレフィンと非共役ジエンとを共重合してもよい。 In this embodiment, ethylene may be copolymerized with an α-olefin having 3 or more and 20 or less carbon atoms, or an α-olefin having 3 or more and 20 or less carbon atoms and an unconjugated diene may be copolymerized with ethylene. And an α-olefin having 3 or more and 20 or less carbon atoms and a non-conjugated diene may be copolymerized with each other.

本発明の製造方法によれば、高い重合活性で、分子量の高いオレフィン重合体、とりわけエチレン/α−オレフィン/非共役ポリエン共重合体を製造することができる。 According to the production method of the present invention, it is possible to produce an olefin polymer having a high molecular weight with high polymerization activity, particularly an ethylene / α-olefin / non-conjugated polyene copolymer.

前記α−オレフィンとしては、炭素数3〜10のα−オレフィンが特に好ましい。 As the α-olefin, an α-olefin having 3 to 10 carbon atoms is particularly preferable.

本発明で用いられる炭素数3以上のα−オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、ビニルシクロヘキサンなどの炭素数3から20の直鎖状または分岐状のα−オレフィンを例示することができる。α−オレフィンとしては、炭素数3〜10のα−オレフィン、例えば炭素数3から10の直鎖状または分岐状のα−オレフィンが好ましく、プロピレン、1-ブテン、1-ヘキセンおよび1-オクテンがより好ましく、プロピレンがさらに好ましい。これらのα−オレフィンは1種単独で、または2種以上組み合わせて用いることができる。またその選択については、生成する共重合体の特性上最も望ましいものとなるように選ぶことが可能である。例えば、本発明で得られるエチレン系重合体または当共重合体を含む混合物を加硫処理した際の物性が望ましいものとなるようにα−オレフィンの種類を選択することができる。 Examples of the α-olefin having 3 or more carbon atoms used in the present invention include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene and 3-methyl-. Linear or branched α with 3 to 20 carbon atoms such as 1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, vinylcyclohexane -Olefin can be exemplified. As the α-olefin, α-olefins having 3 to 10 carbon atoms, for example, linear or branched α-olefins having 3 to 10 carbon atoms are preferable, and propylene, 1-butene, 1-hexene and 1-octene are preferable. More preferred, propylene is even more preferred. These α-olefins can be used alone or in combination of two or more. Further, the selection can be made so as to be the most desirable in terms of the characteristics of the produced copolymer. For example, the type of α-olefin can be selected so that the physical properties of the ethylene-based polymer obtained in the present invention or the mixture containing the copolymer are desired when vulcanized.

前記非共役ポリエンとしては、非共役不飽和結合を2個以上有する化合物が制限なく使用できるが、例えば後述の非共役環状ポリエン、非共役鎖状ポリエンなどが挙げられ、1種単独で、あるいは2種以上を組み合わせて用いることが可能である。 As the non-conjugated polyene, a compound having two or more non-conjugated unsaturated bonds can be used without limitation. Examples thereof include non-conjugated cyclic polyenes and non-conjugated chain polyenes described later, and one type alone or 2 It is possible to use a combination of seeds or more.

[非共役環状ポリエン]
非共役環状ポリエンとして具体的には、例えば下記一般式[III]で表される化合物が挙げられる。
[Non-conjugated cyclic polyene]
Specific examples of the non-conjugated cyclic polyene include a compound represented by the following general formula [III].

Figure 2019188644
式[III]において、mは0から2の整数であり、
15、R16、R17およびR18は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
15からR18までの任意の二つの置換基は互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R15とR16とで、またはR17とR18とでアルキリデン基を形成していてもよく、R15とR17とが、またはR16とR18とが互いに結合して二重結合を形成していてもよく、
以下の(i)から(iv)の要件の少なくとも一つが満たされる。
(i)R15からR18の少なくとも一つは、二重結合を一つ以上有する炭化水素基である。
(ii)R18からR18までの任意の二つの置換基が互いに結合して環を形成し、該環が二重結合を含んでいる。
(iii)R15とR16とで、またはR17とR18とでアルキリデン基を形成している。
(iv)R15とR17とが、またはR16とR18とが互いに結合して二重結合を形成している。
Figure 2019188644
In equation [III], m is an integer from 0 to 2.
R 15 , R 16 , R 17 and R 18 are hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, silicon-containing groups, nitrogen-containing groups, oxygen-containing groups, halogen atoms and halogen-containing groups. The hydrocarbon groups may be the same or different, and the hydrocarbon groups may have a double bond.
Any two substituents from R 15 to R 18 may be bonded to each other to form a ring, which ring may contain a double bond, with R 15 and R 16 or with R. 17 and R 18 may form an alkylidene group, R 15 and R 17 may be bonded to each other, or R 16 and R 18 may be bonded to each other to form a double bond.
At least one of the following requirements (i) to (iv) is met.
(I) At least one of R 15 to R 18 is a hydrocarbon group having one or more double bonds.
(Ii) Any two substituents from R 18 to R 18 are bonded to each other to form a ring, and the ring contains a double bond.
(Iii) An alkylidene group is formed between R 15 and R 16 or between R 17 and R 18 .
(Iv) R 15 and R 17 or R 16 and R 18 are bonded to each other to form a double bond.

上記一般式[III]において、R15、R16、R17およびR18として挙げた、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基の具体例としては、上記一般式[I]および[II]の説明の中で挙げられたこれらの原子および置換基の具体例が挙げられる。In the above general formula [III], hydrocarbon groups having 1 to 20 carbon atoms, silicon-containing groups, nitrogen-containing groups, oxygen-containing groups, halogen atoms and halogens, which are listed as R 15 , R 16 , R 17 and R 18, are contained. Specific examples of the groups include specific examples of these atoms and substituents mentioned in the description of the above general formulas [I] and [II].

上記一般式[III]において、R15、R16、R17およびR18のいずれか一つ以上が、二重結合を一つ以上有する炭化水素基である場合、該炭化水素基としてはエテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、1-メチルエテニル基(イソプロペニル基)、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,4-ヘキサジエニル基などが例示される。例えばR15がエテニル基(ビニル基)の場合、上記一般式[III]の化合物は下記一般式[III-I]で表すことができる。In the above general formula [III], when any one or more of R 15 , R 16 , R 17 and R 18 is a hydrocarbon group having one or more double bonds, the hydrocarbon group is an ethenyl group. (Vinyl group), 1-propenyl group, 2-propenyl group (allyl group), 1-methylethenyl group (isopropenyl group), 1-butenyl group, 2-butenyl group, 3-butenyl group, 1,4-hexadienyl group Etc. are exemplified. For example, when R 15 is an ethenyl group (vinyl group), the compound of the above general formula [III] can be represented by the following general formula [III-I].

Figure 2019188644
式[III-I]において、mは0から2の整数であり、
16、R17およびR18は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
16からR18の任意の二つの置換基は互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R17とR18とでアルキリデン基を形成していてもよく、R16とR18とが互いに結合して二重結合を形成していてもよい。
Figure 2019188644
In equation [III-I], m is an integer from 0 to 2.
R 16 , R 17 and R 18 are atoms or substituents selected from hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, silicon-containing groups, nitrogen-containing groups, oxygen-containing groups, halogen atoms and halogen-containing groups. Each may be the same or different, and the hydrocarbon group may have a double bond.
Any two substituents R 16 to R 18 may be bonded to each other to form a ring, the ring may contain a double bond, and R 17 and R 18 form an alkylidene group. R 16 and R 18 may be bonded to each other to form a double bond.

上記一般式[III]において、R15からR18までの任意の二つの置換基が互いに結合して環を形成し、該環が二重結合を含んでいる場合、上記一般式[III]の化合物は、例えば下記一般式[III-II]または[III-III]で表すことができる。In the above general formula [III], when any two substituents R 15 to R 18 are bonded to each other to form a ring and the ring contains a double bond, the above general formula [III] The compound can be represented by, for example, the following general formula [III-II] or [III-III].

Figure 2019188644
式[III-II]および[III-III]において、mは0から2の整数であり、
16、R17およびR18は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
16からR18の任意の二つの置換基は互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R17とR18とでアルキリデン基を形成していてもよく、R16とR18とが互いに結合して二重結合を形成していてもよい。
Figure 2019188644
In equations [III-II] and [III-III], m is an integer from 0 to 2.
R 16 , R 17 and R 18 are atoms or substituents selected from hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, silicon-containing groups, nitrogen-containing groups, oxygen-containing groups, halogen atoms and halogen-containing groups. Each may be the same or different, and the hydrocarbon group may have a double bond.
Any two substituents R 16 to R 18 may be bonded to each other to form a ring, the ring may contain a double bond, and R 17 and R 18 form an alkylidene group. R 16 and R 18 may be bonded to each other to form a double bond.

上記一般式[III]において、R15とR16とで、またはR17とR18とでアルキリデン基を形成している場合、該アルキリデン基は通常炭素数1から20のアルキリデン基であり、具体的な例としてはメチレン基(CH2=)、エチリデン基(CH3CH=)、プロピリデン基(CH3CH2CH=)およびイソプロピリデン基((CH3)2C=)などが挙げられる。例えば、R15とR16とでエチリデン基を形成している場合、上記一般式[III]の化合物は下記一般式[III-IV]で表すことができる。In the above general formula [III], when an alkylidene group is formed by R 15 and R 16 or R 17 and R 18 , the alkylidene group is usually an alkylidene group having 1 to 20 carbon atoms. Examples thereof include a methylene group (CH 2 =), an ethylidene group (CH 3 CH =), a propylidene group (CH 3 CH 2 CH =) and an isopropylidene group ((CH 3 ) 2 C =). For example, when an ethylidene group is formed by R 15 and R 16 , the compound of the above general formula [III] can be represented by the following general formula [III-IV].

Figure 2019188644
式[III-IV]において、mは0から2の整数であり、
17およびR18は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
17とR18とは互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R17とR18とでアルキリデン基を形成していてもよい。
Figure 2019188644
In equation [III-IV], m is an integer from 0 to 2.
R 17 and R 18 are atoms or substituents selected from hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, silicon-containing groups, nitrogen-containing groups, oxygen-containing groups, halogen atoms and halogen-containing groups, and they may be the same. They may be different and the hydrocarbon groups may have a double bond.
R 17 and R 18 may be bonded to each other to form a ring, the ring may contain a double bond, and R 17 and R 18 may form an alkylidene group.

上記一般式[III]において、R15とR17とが、またはR16とR8とが互いに結合して二重結合を形成している場合、上記一般式[III]の化合物は、例えば下記一般式[III-V]で表すことができる。In the general formula [III], when R 15 and R 17 or R 16 and R 8 are bonded to each other to form a double bond, the compound of the general formula [III] is described below, for example. It can be expressed by the general formula [III-V].

Figure 2019188644
式[III-V]において、mは0から2の整数であり、
16およびR18は水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基であり、それぞれ同一でも異なっていてもよく、該炭化水素基は二重結合を有していてもよく、
16とR18とは互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよい。
Figure 2019188644
In equation [III-V], m is an integer from 0 to 2.
R 16 and R 18 are substituents selected from hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, silicon-containing groups, nitrogen-containing groups, oxygen-containing groups, halogen atoms and halogen-containing groups, and they are the same or different. The hydrocarbon group may have a double bond.
R 16 and R 18 may be bonded to each other to form a ring, and the ring may contain a double bond.

上記一般式[III]で表される非共役環状ポリエンのうち、R15からR18の少なくとも一つが二重結合を一つ以上有する炭化水素基である化合物として、例えば5−ビニル−2−ノルボルネン(VNB)および下記の化合物などが例示される。これらのうち、5−ビニル−2−ノルボルネン(VNB)が好ましい。Among the non-conjugated cyclic polyenes represented by the general formula [III], as a compound in which at least one of R 15 to R 18 is a hydrocarbon group having one or more double bonds, for example, 5-vinyl-2-norbornene (VNB) and the following compounds are exemplified. Of these, 5-vinyl-2-norbornene (VNB) is preferred.

Figure 2019188644
上記一般式[III]で表される非共役環状ポリエンのうち、R15からR18までの任意の二つの置換基が互いに結合して環を形成し、該環が二重結合を含んでいる化合物として、例えばジシクロペンタジエン(DCPD)、ジメチルジシクロペンタジエンおよび下記の化合物などが例示される。これらのうち、ジシクロペンタジエン(DCPD)が好ましい。
Figure 2019188644
Among the non-conjugated cyclic polyenes represented by the above general formula [III], any two substituents R 15 to R 18 are bonded to each other to form a ring, and the ring contains a double bond. Examples of the compound include dicyclopentadiene (DCPD), dimethyldicyclopentadiene and the following compounds. Of these, dicyclopentadiene (DCPD) is preferred.

Figure 2019188644
上記一般式[III]で表される非共役環状ポリエンのうち、R15とR16とで、またはR17とR18とでアルキリデン基を形成している化合物として、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン(ENB)、5−イソプロピリデン−2−ノルボルネンおよび下記の化合物などが例示される。これらのうち、5−エチリデン−2−ノルボルネン(ENB)が好ましい。
Figure 2019188644
Among the non-conjugated cyclic polyenes represented by the above general formula [III], 5-methylene-2-norbornene is used as a compound forming an alkylidene group with R 15 and R 16 or with R 17 and R 18. , 5-Etylidene-2-norbornene (ENB), 5-isopropylidene-2-norbornene and the following compounds are exemplified. Of these, 5-ethylidene-2-norbornene (ENB) is preferred.

Figure 2019188644
上記一般式[III]で表される非共役環状ポリエンのうち、R15とR17とが、またはR16とR18とが互いに結合して二重結合を形成している化合物としては、下記のものが好ましい。
Figure 2019188644
Among the non-conjugated cyclic polyenes represented by the above general formula [III], the compounds in which R 15 and R 17 or R 16 and R 18 are bonded to each other to form a double bond are as follows. Is preferable.

Figure 2019188644
上記一般式[III]で表される非共役環状ポリエンとしては、mが0の非共役環状ポリエンが好ましく、特に上記一般式[III]においてmが0のアルキリデン基置換非共役環状ポリエン、上記一般式[III]においてmが0の二重結合含有環置換非共役環状ポリエン、mが0の二重結合含有炭化水素基置換非共役環状ポリエンが好ましい。具体的には、5−エチリデン−2−ノルボルネン(ENB)、ジシクロペンタジエン(DCPD)、5−ビニル−2−ノルボルネン(VNB)がより好ましい。このうち5−エチリデン−2−ノルボルネン(ENB)または5−ビニル−2−ノルボルネン(VNB)が特に好ましい。
Figure 2019188644
As the non-conjugated cyclic polyene represented by the general formula [III], a non-conjugated cyclic polyene having m of 0 is preferable, and in particular, an alkylidene group-substituted non-conjugated cyclic polyene having m of 0 in the general formula [III] is used. In the formula [III], a double bond-containing ring-substituted non-conjugated cyclic polyene having m of 0 and a double bond-containing hydrocarbon group-substituted non-conjugated cyclic polyene having m of 0 are preferable. Specifically, 5-ethylidene-2-norbornene (ENB), dicyclopentadiene (DCPD), and 5-vinyl-2-norbornene (VNB) are more preferable. Of these, 5-ethylidene-2-norbornene (ENB) or 5-vinyl-2-norbornene (VNB) is particularly preferable.

[非共役鎖状ポリエン]
非共役鎖状ポリエンとして具体的には、例えば、1,4−ヘキサジエン、1,5−ヘプタジエン、1,6−オクタジエン、1,7−ノナジエン、1,8−デカジエン、1,12−テトラデカジエン、3−メチル−1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、4−エチル−1,4−ヘキサジエン、3,3−ジメチル−1,4−ヘキサジエン、5−メチル−1,4−ヘプタジエン、5−エチル−1,4−ヘプタジエン、5−メチル−1,5−ヘプタジエン、6−メチル−1,5−ヘプタジエン、5−エチル−1,5−ヘプタジエン、4−メチル−1,4−オクタジエン、5−メチル−1,4−オクタジエン、4−エチル−1,4−オクタジエン、5−エチル−1,4−オクタジエン、5−メチル−1,5−オクタジエン、6−メチル−1,5−オクタジエン、5−エチル−1,5−オクタジエン、6−エチル−1,5−オクタジエン、6−メチル−1,6−オクタジエン、7−メチル−1,6−オクタジエン、6−エチル−1,6−オクタジエン、6−プロピル−1,6−オクタジエン、6−ブチル−1,6−オクタジエン、7−メチル−1,6−オクタジエン、6,7−ジメチル−1,6−オクタジエン、4−メチル−1,4−ノナジエン、5−メチル−1,4−ノナジエン、4−エチル−1,4−ノナジエン、5−エチル−1,4−ノナジエン、5−メチル−1,5−ノナジエン、6−メチル−1,5−ノナジエン、5−エチル−1,5−ノナジエン、6−エチル−1,5−ノナジエン、6−メチル−1,6−ノナジエン、7−メチル−1,6−ノナジエン、6−エチル−1,6−ノナジエン、7−エチル−1,6−ノナジエン、7−メチル−1,7−ノナジエン、8−メチル−1,7−ノナジエン、7−エチル−1,7−ノナジエン、6,7−ジメチル−1,6−ノナジエン、5−メチル−1,4−デカジエン、5−エチル−1,4−デカジエン、5−メチル−1,5−デカジエン、6−メチル−1,5−デカジエン、5−エチル−1,5−デカジエン、6−エチル−1,5−デカジエン、6−メチル−1,6−デカジエン、6−エチル−1,6−デカジエン、7−メチル−1,6−デカジエン、7−エチル−1,6−デカジエン、7−メチル−1,7−デカジエン、8−メチル−1,7−デカジエン、7−エチル−1,7−デカジエン、8−エチル−1,7−デカジエン、8−メチル−1,8−デカジエン、9−メチル−1,8−デカジエン、8−エチル−1,8−デカジエン、6−メチル−1,6−ウンデカジエン、9−メチル−1,8−ウンデカジエンなどが挙げられる。
[Non-conjugated chain polyene]
Specifically, as the non-conjugated chain polyene, for example, 1,4-hexadiene, 1,5-heptadiene, 1,6-octadien, 1,7-nonadien, 1,8-decadien, 1,12-tetradecadien. , 3-Methyl-1,4-Hexadien, 4-Methyl-1,4-Hexadien, 5-Methyl-1,4-Hexadien, 4-Ethyl-1,4-Hexadien, 3,3-Dimethyl-1,4 -Hexadiene, 5-methyl-1,4-heptadiene, 5-ethyl-1,4-heptadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene, 5-ethyl-1,5 -Heptadien, 4-methyl-1,4-octadien, 5-methyl-1,4-octadien, 4-ethyl-1,4-octadien, 5-ethyl-1,4-octadien, 5-methyl-1,5 -Octadiene, 6-methyl-1,5-octadien, 5-ethyl-1,5-octadien, 6-ethyl-1,5-octadien, 6-methyl-1,6-octadien, 7-methyl-1,6 -Octadiene, 6-ethyl-1,6-octadien, 6-propyl-1,6-octadien, 6-butyl-1,6-octadien, 7-methyl-1,6-octadien, 6,7-dimethyl-1 , 6-Octaziene, 4-Methyl-1,4-Nonadiene, 5-Methyl-1,4-Nonadiene, 4-Ethyl-1,4-Nonadiene, 5-Ethyl-1,4-Nonadiene, 5-Methyl-1 , 5-Nonadiene, 6-Methyl-1,5-Nonadiene, 5-Ethyl-1,5-Nonadiene, 6-Ethyl-1,5-Nonadiene, 6-Methyl-1,6-Nonadiene, 7-Methyl-1 , 6-Nonadiene, 6-Ethyl-1,6-Nonadiene, 7-Ethyl-1,6-Nonadiene, 7-Methyl-1,7-Nonadiene, 8-Methyl-1,7-Nonadiene, 7-Ethyl-1 , 7-Nonadiene, 6,7-Dimethyl-1,6-Nonadiene, 5-Methyl-1,4-Decadien, 5-Ethyl-1,4-Decadien, 5-Methyl-1,5-Decadien, 6-Methyl -1,5-decadien, 5-ethyl-1,5-decadien, 6-ethyl-1,5-decadien, 6-methyl-1,6-decadien, 6-ethyl-1,6-decadien, 7-methyl -1,6-decadien, 7-ethyl-1,6-decadien, 7-methyl-1,7-decadien, 8-methyl-1,7-decadien, 7-ethyl-1,7-decadien, 8-ethyl -1,7-deca Diene, 8-Methyl-1,8-Decadien, 9-Methyl-1,8-Decadien, 8-Ethyl-1,8-Decadien, 6-Methyl-1,6-undecadien, 9-Methyl-1,8- Undekajien and the like.

他の非共役鎖状ポリエンとしては、例えば1,7−オクタジエン、1,9−デカジエン等のα,ω−ジエン等が挙げられる
また、他の非共役鎖状ポリエンとしては、例えば下記一般式[IV-I]で表される非共役トリエンまたはテトラエンが挙げられる。
Examples of other non-conjugated chain polyenes include α, ω-diene such as 1,7-octadiene and 1,9-decadien. Other non-conjugated chain polyenes include, for example, the following general formula [ IV-I] may be mentioned as a non-conjugated triene or a tetraene.

Figure 2019188644
式[IV-I]において、pおよびrは、0または1(ただしpとrとは同時に0ではない)、
qは0〜5の整数(ただしpとrの両方が1の場合qは0ではない)、
sは1〜6の整数、
19、R20、R21、R22、R23、R24およびR25はそれぞれ独立して水素原子または炭素数1〜3のアルキル基、
26は炭素数1〜3のアルキル基、
27は水素原子、炭素数1〜3のアルキル基または−(CH2)n−CR28=C(R29)R30で表される基(ここでnは1〜5の整数、R28およびR29はそれぞれ独立して水素原子または炭素数1〜3のアルキル基、R30は炭素数1〜3のアルキル基である)
である。ただしpとrの両方が1の場合、R27は水素原子または炭素数1〜3のアルキル基である。
Figure 2019188644
In formula [IV-I], p and r are 0 or 1 (but p and r are not 0 at the same time),
q is an integer from 0 to 5 (where q is not 0 if both p and r are 1),
s is an integer from 1 to 6,
R 19 , R 20 , R 21 , R 22 , R 23 , R 24 and R 25 are independent hydrogen atoms or alkyl groups having 1 to 3 carbon atoms, respectively.
R 26 is an alkyl group having 1 to 3 carbon atoms,
R 27 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a group represented by − (CH 2 ) n −CR 28 = C (R 29 ) R 30 (where n is an integer of 1 to 5, R 28). And R 29 are independent hydrogen atoms or alkyl groups with 1 to 3 carbon atoms, and R 30 is an alkyl group with 1 to 3 carbon atoms.
Is. However, when both p and r are 1, R 27 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.

上記一般式[IV-I]で示される非共役トリエンまたはテトラエンの中でも下記一般式[IV-II]で示される非共役トリエンが好ましい。 Among the non-conjugated trienes or tetraenes represented by the above general formula [IV-I], the non-conjugated triene represented by the following general formula [IV-II] is preferable.

Figure 2019188644
式[IV-II]において、R21、R22、R25、R26およびR27はそれぞれ独立して水素原子、メチル基またはエチル基である。ただし、R26とR27とが同時に水素原子になることはない。
Figure 2019188644
In formula [IV-II], R 21 , R 22 , R 25 , R 26 and R 27 are independently hydrogen atoms, methyl groups or ethyl groups, respectively. However, R 26 and R 27 do not become hydrogen atoms at the same time.

なお、上記一般式[IV-II]で示される非共役トリエンは、上記一般式[IV-I]で示される非共役トリエンまたはテトラエンにおいてpが0、qが0、rが1、sが2、R23およびR24が水素原子である非共役トリエンである。さらに上記一般式[IV-II]で示される非共役トリエンの中でも、R25およびR27がどちらもメチル基である化合物が好ましい。The non-conjugated triene represented by the general formula [IV-II] is a non-conjugated triene or tetraene represented by the above general formula [IV-I], where p is 0, q is 0, r is 1, and s is 2. , R 23 and R 24 are unconjugated trienes that are hydrogen atoms. Further, among the non-conjugated trienes represented by the above general formula [IV-II], compounds in which both R 25 and R 27 are methyl groups are preferable.

上記一般式[IV-I]で表される非共役トリエンまたはテトラエンとしては、具体的には下記化合物などが挙げられる(ただし、上記一般式[IV-II]に含まれる化合物は除く)。 Specific examples of the non-conjugated triene or tetraene represented by the general formula [IV-I] include the following compounds (however, the compounds contained in the general formula [IV-II] are excluded).

Figure 2019188644
Figure 2019188644

Figure 2019188644
Figure 2019188644

Figure 2019188644
上記一般式[IV-II]で表される非共役トリエンとしては、具体的には下記化合物などが挙げられる。
Figure 2019188644
Specific examples of the non-conjugated triene represented by the above general formula [IV-II] include the following compounds.

Figure 2019188644
上記一般式[IV-I]で表される非共役トリエンまたはテトラエンは公知の方法で製造することができ、その方法は例えば本出願人による特開平9−235327号公報、特開2001−114837号公報などに詳細に記載されている。
Figure 2019188644
The non-conjugated triene or tetraene represented by the above general formula [IV-I] can be produced by a known method, and the method is, for example, JP-A-9-235327 and JP-A-2001-114837 by the present applicant. It is described in detail in publications and the like.

工程[P]において共重合を行う場合、各モノマーの供給量は、製造しようとするオレフィン重合体の組成に応じて適宜設定される。 When copolymerization is carried out in step [P], the supply amount of each monomer is appropriately set according to the composition of the olefin polymer to be produced.

以下、本発明の製造方法により製造されるオレフィン重合体がエチレン/α−オレフィン/非共役ポリエン共重合体である場合について説明する。 Hereinafter, the case where the olefin polymer produced by the production method of the present invention is an ethylene / α-olefin / non-conjugated polyene copolymer will be described.

本発明の製造方法により製造されるエチレン/α−オレフィン/非共役ポリエン共重合体は、(i)エチレンから誘導される構造単位(エチレン単位)と、(ii)炭素数3以上のα−オレフィンから誘導される構造単位(α−オレフィン単位)とを、モル比[(i)/(ii)]で表して通常99/1〜1/99の範囲で含有するが、特に制限はない。 The ethylene / α-olefin / non-conjugated polyene copolymer produced by the production method of the present invention has (i) a structural unit (ethylene unit) derived from ethylene and (ii) an α-olefin having 3 or more carbon atoms. The structural unit (α-olefin unit) derived from is expressed in a molar ratio [(i) / (ii)] and is usually contained in the range of 99/1 to 1/99, but is not particularly limited.

本発明の製造方法により製造されるエチレン/α−オレフィン/非共役ポリエン共重合体のエチレンに由来する構造単位の含有量は、通常50 mol%以上である。 The content of the structural unit derived from ethylene of the ethylene / α-olefin / non-conjugated polyene copolymer produced by the production method of the present invention is usually 50 mol% or more.

また本発明の製造方法により製造されるエチレン/α−オレフィン/非共役ポリエン共重合体の非共役ポリエン化合物に由来する構造単位は、特に制限はないが、全構造単位中、通常0.1〜49 mol%、好ましくは0.2〜8 mol%、さらに好ましくは0.3〜5 mol%の割合の範囲にある。 The structural unit derived from the non-conjugated polyene compound of the ethylene / α-olefin / non-conjugated polyene copolymer produced by the production method of the present invention is not particularly limited, but is usually 0.1 to 49 mol in all structural units. %, preferably 0.2 to 8 mol%, more preferably 0.3 to 5 mol%.

本発明の製造方法により製造される、エチレン/α−オレフィン/非共役ポリエン共重合体の135℃デカリン中で測定した極限粘度[η]は、好ましくは2 dl/g以上、より好ましくは4 dl/g以上であり、その上限はたとえば20 dl/gであってもよい。 The intrinsic viscosity [η] of the ethylene / α-olefin / non-conjugated polyene copolymer produced by the production method of the present invention measured in 135 ° C. decalin is preferably 2 dl / g or more, more preferably 4 dl. It is greater than or equal to / g, and its upper limit may be, for example, 20 dl / g.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.

架橋メタロセン化合物およびその前駆体の構造は、1H NMRスペクトル(270 MHz、日本電子GSH-270)、FD-質量(以下FD-MS)スペクトル(日本電子SX-102A)等を測定し、決定した。The structure of the crosslinked metallocene compound and its precursor was determined by measuring 1 H NMR spectrum (270 MHz, JEOL GSH-270), FD-mass (hereinafter FD-MS) spectrum (JEOL SX-102A), etc. ..

エチレン/α−オレフィン/非共役ポリエン共重合体の物性/性状は以下の方法で測定した。 The physical properties / properties of the ethylene / α-olefin / non-conjugated polyene copolymer were measured by the following methods.

[エチレン含有量、プロピレン含有量、5-エチリデン-2-ノルボルネン(ENB)含有量]
o-ジクロロベンゼン/ベンゼン-d6(4/1[vol/vol%])を測定溶媒とし、測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、パルス幅4.7μ秒(45°パルス)測定条件下(100 MHz、日本電子ECX400P)、または測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、パルス幅5.0μ秒(45°パルス)測定条件下(125 MHz、ブルカー・バイオスピンAVANCEIIIcryo-500)にて13C NMRスペクトルを測定し、算出した。
[Ethylene content, propylene content, 5-ethylidene-2-norbornene (ENB) content]
Using o-dichlorobenzene / benzene-d 6 (4/1 [vol / vol%]) as the measurement solvent, the measurement temperature was 120 ° C, the spectrum width was 250 ppm, the pulse repetition time was 5.5 seconds, and the pulse width was 4.7 μsec (45 ° pulse). Measurement conditions (100 MHz, JEOL ECX400P) or measurement temperature 120 ° C, spectrum width 250 ppm, pulse repetition time 5.5 seconds, pulse width 5.0 μsec (45 ° pulse) Measurement conditions (125 MHz, Bruker Biospin AVANCE IIIcryo) The 13 C NMR spectrum was measured and calculated at -500).

[極限粘度([η])]
デカリン溶媒を用いて、135℃で測定した。重合体約20 mgをデカリン15 mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5 ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として採用した。
[η]=lim(ηsp/C) (C→0)
[Ultimate viscosity ([η])]
It was measured at 135 ° C. using a decalin solvent. About 20 mg of the polymer was dissolved in 15 ml of decalin, and the specific viscosity η sp was measured in an oil bath at 135 ° C. After diluting with 5 ml of decalin solvent added to this decalin solution, the specific viscosity η sp was measured in the same manner. This dilution operation was repeated twice more, and the value of η sp / C when the concentration (C) was extrapolated to 0 was adopted as the ultimate viscosity.
[Η] = lim (η sp / C) (C → 0)

<遷移金属化合物の製造>
[実施例A1]
(i)ジ-p-トリルシクロペンタジエニル(2,7-ジメトキシフルオレニル)シランの合成
三方コックおよび磁気攪拌子を備えた100 mL三口フラスコを充分に窒素置換した後、2,7-ジメトキシフルオレン1.13 g(5.0 mmol)を入れ、ジエチルエーテル80 mLを加えた。ドライアイス/メタノール浴で冷却しながら1.55 Mのn-ブチルリチウム(5.3 mmol)/ヘキサン溶液3.4 mLを徐々に加えた後、窒素雰囲気下室温で6時間攪拌してスラリーを得た。このスラリーに対してドライアイス/メタノール浴で冷却しながらジ-p-トリルジクロロシラン1.3 mL(5.5 mmol)を徐々に添加した。室温まで徐々に昇温した後、窒素雰囲気下室温で20時間攪拌し、スラリーを得た。このスラリーをヘキサンで洗浄することにより黄土色固体1.41gを得た。続いて、三方コックおよび磁気攪拌子を備えた200 mL二口フラスコを充分に窒素置換した後、得られた黄土色固体1.41 g(3.0 mmol)を入れ、テトラヒドロフラン40 mLを加えた。1,3-ジメチル-2-イミダゾリジノン(DMI)0.36 mLを加えた後、ドライアイス/メタノール浴で冷却しながら2.0 Mのシクロペンタジエニルナトリウム(3.3 mmol)/テトラヒドロフラン溶液1.65 mLを徐々に添加した。室温まで徐々に昇温した後、窒素雰囲気下室温で24時間攪拌し、スラリーを得た。これに塩化アンモニウム水溶液50 mLと酢酸エチル30 mLを加え、200 mL分液漏斗を用いて水層を除き、有機層を得た。この有機層を飽和食塩水50 mLで洗い、無水硫酸マグネシウムで乾燥した後、濾過して硫酸マグネシウムを除き、濾液の溶媒を留去して淡橙色固体を得た。この淡橙色固体をメタノールで洗い、淡黄色固体としてジ-p-トリルシクロペンタジエニル(2,7-ジメトキシフルオレニル)シランを得た(387 mg(0.773 mmol, 15%))。ジ-p-トリルシクロペンタジエニル(2,7-ジメトキシフルオレニル)シランのFD-MSスペクトルの測定値を下に示す。
FD-MS: m/z = 500.2 (M+)
<Manufacturing of transition metal compounds>
[Example A1]
(I) Synthesis of di-p-tolylcyclopentadienyl (2,7-dimethoxyfluorenyl) silane After sufficient nitrogen replacement of a 100 mL three-necked flask equipped with a three-way cock and a magnetic stir bar, 2,7- 1.13 g (5.0 mmol) of dimethoxyfluorene was added, and 80 mL of diethyl ether was added. After gradually adding 3.4 mL of a 1.55 M n-butyllithium (5.3 mmol) / hexane solution while cooling in a dry ice / methanol bath, the slurry was obtained by stirring at room temperature for 6 hours under a nitrogen atmosphere. To this slurry, 1.3 mL (5.5 mmol) of di-p-tolyldichlorosilane was gradually added while cooling with a dry ice / methanol bath. After gradually raising the temperature to room temperature, the mixture was stirred at room temperature for 20 hours under a nitrogen atmosphere to obtain a slurry. The slurry was washed with hexane to obtain 1.41 g of an ocher solid. Subsequently, a 200 mL two-necked flask equipped with a three-way cock and a magnetic stir bar was sufficiently replaced with nitrogen, 1.41 g (3.0 mmol) of the obtained ocher solid was added, and 40 mL of tetrahydrofuran was added. After adding 0.36 mL of 1,3-dimethyl-2-imidazolidinone (DMI), gradually add 1.65 mL of 2.0 M cyclopentadienyl sodium (3.3 mmol) / tetrahydrofuran solution while cooling in a dry ice / methanol bath. Added. After gradually raising the temperature to room temperature, the mixture was stirred at room temperature for 24 hours under a nitrogen atmosphere to obtain a slurry. To this, 50 mL of an aqueous ammonium chloride solution and 30 mL of ethyl acetate were added, and the aqueous layer was removed using a 200 mL separatory funnel to obtain an organic layer. The organic layer was washed with 50 mL of saturated brine, dried over anhydrous magnesium sulfate, filtered to remove magnesium sulfate, and the solvent of the filtrate was distilled off to obtain a pale orange solid. The pale orange solid was washed with methanol to give di-p-tolylcyclopentadienyl (2,7-dimethoxyfluorenyl) silane as a pale yellow solid (387 mg (0.773 mmol, 15%)). The measured values of the FD-MS spectrum of di-p-tolylcyclopentadienyl (2,7-dimethoxyfluorenyl) silane are shown below.
FD-MS: m / z = 500.2 (M + )

(ii)ジ-p-トリルシリレン(η 5 -シクロペンタジエニル)[η 5 -(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドの合成
磁気攪拌子を備えた100 mLシュレンクを充分に窒素置換した後、ジ-p-トリルシクロペンタジエニル(2,7-ジメトキシフルオレニル)シラン351 mg(0.70 mmol)を入れ、トルエン20 mLとテトラヒドロフラン 0.114 mL(1.4 mmol)を加えた。氷/食塩浴で冷やしながら、1.55 Mのn-ブチルリチウム(1.4 mmol)/ヘキサン溶液0.91 mLを徐々に加えた後、窒素雰囲気下室温で1時間攪拌した。その後オイルバスを用いて40度で4時間加熱撹拌してスラリーを得た。減圧下で溶媒を留去して得られた固体をヘキサンで洗浄し、黄色固体を得た。磁気攪拌子を備えた100 mLシュレンクに得られた黄色固体を入れ、ジエチルエーテル20 mLを加えた。メタノール/ドライアイス浴で冷やしながら四塩化ジルコニウム163 mg(0.70 mmol)を加えた後、室温まで徐々に昇温し、窒素雰囲気下室温で20時間攪拌してスラリーを得た。減圧下で溶媒を留去して得られた固体をトルエンで抽出し、このトルエン溶液から約-20度で再結晶することにより、黄色固体としてジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドを得た。収量は30 mg(0.65 mmol)、収率は6.5%であった。ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドの同定は、1H NMRスペクトルおよびFD-MSスペクトルで行った。以下にその測定結果を示す。
(Ii) Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] Synthetic zirconid dichloride 100 mL Schlenk with magnetic stir bar is sufficiently nitrogen After substitution, 351 mg (0.70 mmol) of di-p-tolylcyclopentadienyl (2,7-dimethoxyfluorenyl) silane was added, and 20 mL of toluene and 0.114 mL (1.4 mmol) of tetrahydrofuran were added. While cooling in an ice / salt bath, 0.91 mL of a 1.55 M n-butyllithium (1.4 mmol) / hexane solution was gradually added, and then the mixture was stirred at room temperature for 1 hour under a nitrogen atmosphere. Then, the slurry was obtained by heating and stirring at 40 ° C. for 4 hours using an oil bath. The solvent was distilled off under reduced pressure, and the obtained solid was washed with hexane to obtain a yellow solid. The obtained yellow solid was placed in a 100 mL Schlenk equipped with a magnetic stir bar, and 20 mL of diethyl ether was added. After adding 163 mg (0.70 mmol) of zirconium tetrachloride while cooling in a methanol / dry ice bath, the temperature was gradually raised to room temperature, and the mixture was stirred at room temperature for 20 hours under a nitrogen atmosphere to obtain a slurry. The solid obtained by distilling off the solvent under reduced pressure is extracted with toluene and recrystallized from this toluene solution at about -20 ° C. as a yellow solid, di-p-tolylcyrylene (η 5 -cyclopentadienyl). Enyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride was obtained. The yield was 30 mg (0.65 mmol) and the yield was 6.5%. Di-p-tolylcilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] Zirconium dichloride was identified by 1 H NMR and FD-MS spectra. The measurement results are shown below.

1H NMR (270 MHz, CDCl3)
2.42 (s, 6H), 3.30 (s, 6H), 5.98 (t, 2H, J = 2 Hz), 6.08 (d, 2H, J = 2 Hz), 6.75 (t, 2H, J = 2 Hz), 7.21 (dd, 2H, J = 8, 1 Hz), 7.38 (d, 4H, J = 7 Hz), 7.85 (d, 2H, J = 9 Hz ), 8.05 (d, 4H, J = 8 Hz)
FD-MS: m/z = 658.0 (M+)
1 1 H NMR (270 MHz, CDCl 3 )
2.42 (s, 6H), 3.30 (s, 6H), 5.98 (t, 2H, J = 2 Hz), 6.08 (d, 2H, J = 2 Hz), 6.75 (t, 2H, J = 2 Hz), 7.21 (dd, 2H, J = 8, 1 Hz), 7.38 (d, 4H, J = 7 Hz), 7.85 (d, 2H, J = 9 Hz), 8.05 (d, 4H, J = 8 Hz)
FD-MS: m / z = 658.0 (M + )

[実施例A2]
(i)ジ-p-トリルシクロペンタジエニル(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)シランの合成
三方コックおよび磁気攪拌子を備えた100 mL三口フラスコを充分に窒素置換した後、2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレン711 mg(2.1 mmol)を入れ、ジエチルエーテル30 mLを加えた。氷浴で冷却しながら1.55 Mのn-ブチルリチウム(2.2 mmol)/ヘキサン溶液1.4 mLを徐々に加えた後、窒素雰囲気下室温で23時間攪拌してスラリーを得た。このスラリーに対してドライアイス/メタノール浴で冷却しながらジ-p-トリルジクロロシラン0.55 mL(2.3 mmol)を徐々に添加した。室温まで徐々に昇温した後、窒素雰囲気下室温で17時間攪拌し、スラリーを得た。このスラリーをヘキサンで洗浄することにより白色固体550 mgを得た。続いて、三方コックおよび磁気攪拌子を備えた200 mL二口フラスコを充分に窒素置換した後、得られた白色固体550 mg(0.94 mmol)を入れ、テトラヒドロフラン30 mLを加えた。1,3-ジメチル-2-イミダゾリジノン(DMI)0.20 mLを加えた後、ドライアイス/メタノール浴で冷却しながら2.0 Mのシクロペンタジエニルナトリウム(1.89 mmol)/テトラヒドロフラン溶液0.94 mLを徐々に添加した。室温まで徐々に昇温した後、窒素雰囲気下室温で20時間攪拌し、スラリーを得た。これに塩化アンモニウム水溶液50 mLと酢酸エチル20 mLを加え、200 mL分液漏斗を用いて水層を除き、有機層を得た。この有機層を飽和食塩水50 mLで洗い、無水硫酸マグネシウムで乾燥した後、濾過して硫酸マグネシウムを除き、濾液の溶媒を留去して黄色固体を得た。この黄色固体をシリカゲルカラムクロマトグラフィーにより精製し(ヘキサン:酢酸エチル=50:1)、減圧下溶媒を留去することで淡橙色固体としてジ-p-トリルシクロペンタジエニル(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)シランを得た(306 mg(0.50 mmol, 24%))。ジ-p-トリルシクロペンタジエニル(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)シランのFD-MSスペクトルの測定値を下に示す。
FD-MS: m/z = 612.4 (M+)
[Example A2]
(I) Synthesis of di-p-tolylcyclopentadienyl (2,7-dimethoxy-3,6-di-tert-butylfluorenyl) silane A 100 mL three-necked flask equipped with a three-way cock and a magnetic stir bar is sufficient. After substitution with nitrogen, 711 mg (2.1 mmol) of 2,7-dimethoxy-3,6-di-tert-butylfluorene was added, and 30 mL of diethyl ether was added. After gradually adding 1.4 mL of 1.55 M n-butyllithium (2.2 mmol) / hexane solution while cooling in an ice bath, the slurry was obtained by stirring at room temperature for 23 hours under a nitrogen atmosphere. 0.55 mL (2.3 mmol) of di-p-tolyldichlorosilane was gradually added to this slurry while cooling in a dry ice / methanol bath. After gradually raising the temperature to room temperature, the mixture was stirred at room temperature for 17 hours under a nitrogen atmosphere to obtain a slurry. The slurry was washed with hexane to give 550 mg of white solid. Subsequently, a 200 mL two-necked flask equipped with a three-way cock and a magnetic stir bar was sufficiently replaced with nitrogen, and then 550 mg (0.94 mmol) of the obtained white solid was added, and 30 mL of tetrahydrofuran was added. After adding 0.20 mL of 1,3-dimethyl-2-imidazolidinone (DMI), gradually add 0.94 mL of 2.0 M cyclopentadienyl sodium (1.89 mmol) / tetrahydrofuran solution while cooling in a dry ice / methanol bath. Added. After gradually raising the temperature to room temperature, the mixture was stirred at room temperature for 20 hours under a nitrogen atmosphere to obtain a slurry. To this, 50 mL of an aqueous ammonium chloride solution and 20 mL of ethyl acetate were added, and the aqueous layer was removed using a 200 mL separatory funnel to obtain an organic layer. The organic layer was washed with 50 mL of saturated brine, dried over anhydrous magnesium sulfate, filtered to remove magnesium sulfate, and the solvent of the filtrate was distilled off to obtain a yellow solid. This yellow solid is purified by silica gel column chromatography (hexane: ethyl acetate = 50: 1), and the solvent is distilled off under reduced pressure to make a pale orange solid di-p-tolylcyclopentadienyl (2,7-dimethoxy). A -3,6-di-tert-butylfluorenyl) silane was obtained (306 mg (0.50 mmol, 24%)). The measured values of the FD-MS spectrum of di-p-tolylcyclopentadienyl (2,7-dimethoxy-3,6-di-tert-butylfluorenyl) silane are shown below.
FD-MS: m / z = 612.4 (M + )

(ii)ジ-p-トリルシリレン(η 5 -シクロペンタジエニル)[η 5 -(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリドの合成
磁気攪拌子を備えた100 mLシュレンクを充分に窒素置換した後、ジ-p-トリルシクロペンタジエニル(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)シラン306 mg(0.50 mmol)を入れ、ジエチルエーテル40 mlを加えた。ドライアイス/メタノール浴で冷やしながら、1.55 Mのn-ブチルリチウム(1.02 mmol)/ヘキサン溶液0.66 mLを徐々に加えた後、窒素雰囲気下室温で23時間攪拌してスラリーを得た。メタノール/ドライアイス浴で冷やしながら四塩化ジルコニウム116 mg(0.50 mmol)を加えた後、室温まで徐々に昇温し、窒素雰囲気下室温で20時間攪拌してスラリーを得た。減圧下で溶媒を留去して得られた固体をヘキサンで洗浄し、残渣をトルエンで抽出した。トルエン溶液のトルエンを減圧下留去することにより、淡橙色固体としてジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリドを得た。収量は151 mg(0.30 mmol)、収率は39%であった。ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリドの同定は、1H NMRスペクトルおよびFD-MSスペクトルで行った。以下にその測定結果を示す。
(Ii) Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] Synthetic magnetic stirrer for zirconium dichloride Di-p-tolylcyclopentadienyl (2,7-dimethoxy-3,6-di-tert-butylfluorenyl) silane 306 mg (0.50 mmol) after sufficient nitrogen substitution of 100 mL Schlenk with. Was added, and 40 ml of diethyl ether was added. While cooling in a dry ice / methanol bath, 0.66 mL of a 1.55 M n-butyllithium (1.02 mmol) / hexane solution was gradually added, and then the mixture was stirred at room temperature for 23 hours under a nitrogen atmosphere to obtain a slurry. After adding 116 mg (0.50 mmol) of zirconium tetrachloride while cooling in a methanol / dry ice bath, the temperature was gradually raised to room temperature, and the mixture was stirred at room temperature for 20 hours under a nitrogen atmosphere to obtain a slurry. The solvent was distilled off under reduced pressure, the obtained solid was washed with hexane, and the residue was extracted with toluene. Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert) as a pale orange solid by distilling off toluene in the toluene solution under reduced pressure. -Butylfluorenyl)] Zirconium dichloride was obtained. The yield was 151 mg (0.30 mmol) and the yield was 39%. Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] Zirconium dichloride identification is based on the 1 H NMR spectrum. And the FD-MS spectrum. The measurement results are shown below.

1H NMR (270 MHz, CDCl3)
1.44 (s, 18H), 2.41 (s, 6H), 3.24 (s, 6H), 5.83 (t, 2H, J = 2 Hz), 6.02 (s, 2H), 6.70 (t, 2H, J = 2 Hz), 7.38 (d, 4H, J = 8 Hz), 7.83 (s, 2H), 8.06 (d, 4H, J = 8 Hz)
FD-MS: m/z = 770.1 (M+)
1 1 H NMR (270 MHz, CDCl 3 )
1.44 (s, 18H), 2.41 (s, 6H), 3.24 (s, 6H), 5.83 (t, 2H, J = 2 Hz), 6.02 (s, 2H), 6.70 (t, 2H, J = 2 Hz) ), 7.38 (d, 4H, J = 8 Hz), 7.83 (s, 2H), 8.06 (d, 4H, J = 8 Hz)
FD-MS: m / z = 770.1 (M + )

[実施例A3]
(i)ジ-p-トリルシクロペンタジエニル(2,7-ジメトキシ-3,6-ジメチルフルオレニル)シランの合成
窒素雰囲気下、100 ml二口フラスコに2,7-ジメトキシ-3,6-ジメチルフルオレン 756 mg (2.97 mmol)および脱水シクロペンチルメチルエーテル 50 mlを添加した。-78℃に冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.55 M) 2.01 ml (3.12 mmol)を徐々に添加し、室温で18時間攪拌した。ジ-p-トリルジクロロシラン802 mg (3.27 mmol)を添加した後、22時間半撹拌した。窒素ボックス内に持ち込み溶媒を減圧留去した後、ヘキサンで洗浄した。得られた固体を減圧下で乾燥し白色固体957 mgを得た。
[Example A3]
(I) Synthesis of di-p- tolylcyclopentadienyl (2,7-dimethoxy-3,6-dimethylfluorenyl) silane Under a nitrogen atmosphere, 2,7-dimethoxy-3,6 in a 100 ml two-necked flask -756 mg (2.97 mmol) of dimethylfluorene and 50 ml of dehydrated cyclopentyl methyl ether were added. 2.01 ml (3.12 mmol) of n-butyllithium / hexane solution (1.55 M) was gradually added while cooling to -78 ° C, and the mixture was stirred at room temperature for 18 hours. After adding 802 mg (3.27 mmol) of di-p-tolyldichlorosilane, the mixture was stirred for 22 hours and a half. The solvent was brought into a nitrogen box and distilled off under reduced pressure, and then washed with hexane. The obtained solid was dried under reduced pressure to obtain 957 mg of a white solid.

続いて窒素雰囲気下、100 ml三口フラスコに先の反応で得られた白色固体 957 mg 、THF 50mlを添加した。-78℃に冷却し、1,3-ジメチル-2-イミダゾリジノン(DMI)0.415 ml (3.85 mmol)、2.0 Mのシクロペンタジエニルナトリウム(3.84 mmol)テトラヒドロフラン溶液1.92 mlを添加し、徐々に室温に戻しながらで23時間攪拌した。氷浴下、塩化アンモニウム水溶液を加えて反応を停止させた後、酢酸エチルで抽出し、有機相を水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥し濃縮乾固した。得られた固体をメタノールで洗浄し、減圧下で乾燥して粗生成物(淡橙色粉末)を得た。シリカゲルクロマトグラフィー(展開溶媒ヘキサン→ヘキサン:酢酸エチル=50:1)により精製し、目的物(白色粉末)を得た(収量449 mg、2段階収率 29%)。ジ-p-トリルシクロペンタジエニル(2,7-ジメトキシ-3,6-ジメチルフルオレニル)シランのFD-MSスペクトルの測定値を下に示す。
FD-MS: m/z =528.3(M+)
Subsequently, under a nitrogen atmosphere, 957 mg of the white solid obtained in the previous reaction and 50 ml of THF were added to a 100 ml three-necked flask. Cool to -78 ° C, add 0.415 ml (3.85 mmol) of 1,3-dimethyl-2-imidazolidinone (DMI) and 1.92 ml of 2.0 M sodium cyclopentadienyl sodium (3.84 mmol) tetrahydrofuran solution, gradually. The mixture was stirred for 23 hours while returning to room temperature. After stopping the reaction by adding an aqueous ammonium chloride solution under an ice bath, the mixture was extracted with ethyl acetate, the organic phase was washed with water and saturated brine, dried over magnesium sulfate, and concentrated to dryness. The obtained solid was washed with methanol and dried under reduced pressure to obtain a crude product (pale orange powder). Purification was performed by silica gel chromatography (developing solvent hexane → hexane: ethyl acetate = 50: 1) to obtain the desired product (white powder) (yield 449 mg, 2-step yield 29%). The measured values of the FD-MS spectrum of di-p-tolylcyclopentadienyl (2,7-dimethoxy-3,6-dimethylfluorenyl) silane are shown below.
FD-MS: m / z = 528.3 (M + )

(ii)ジ-p-トリルシリレン(η 5 -シクロペンタジエニル)[η 5 -(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にジ-p-トリルシクロペンタジエニル(2,7-ジメトキシ-3,6-ジメチルフルオレニル)シラン449 mg (0.850 mmol)、ジエチルエーテル40 mlを添加した。-78℃に冷却し、n-ブチルリチウム/ヘキサン溶液 (1.55 M) 1.12 ml (1.74 mmol)を添加した後、徐々に室温に戻しながら23時間撹拌した。-78℃に冷却し四塩化ジルコニウム198 mg (0.850 mmol)を添加し、室温まで徐々に昇温しながら23時間攪拌した。減圧下で溶媒を留去し、ヘキサンで洗浄後、セライトを使用してトルエン、ジクロロメタンで抽出した。減圧下で溶媒を留去して目的物を得た(収量471 mg、収率80%)。ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジクロリドの同定は、1H NMRスペクトルおよびFD-MSスペクトルで行った。以下にその測定結果を示す。
(Ii) Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] Synthetic zirconium dichloride Under a nitrogen atmosphere, 100 ml Schlenk Di-p-tolylcyclopentadienyl (2,7-dimethoxy-3,6-dimethylfluorenyl) silane 449 mg (0.850 mmol) and diethyl ether 40 ml were added to the tubes. The mixture was cooled to -78 ° C., 1.12 ml (1.74 mmol) of n-butyllithium / hexane solution (1.55 M) was added, and the mixture was stirred for 23 hours while gradually returning to room temperature. The mixture was cooled to -78 ° C., 198 mg (0.850 mmol) of zirconium tetrachloride was added, and the mixture was stirred for 23 hours while gradually raising the temperature to room temperature. The solvent was distilled off under reduced pressure, the mixture was washed with hexane, and then extracted with toluene and dichloromethane using Celite. The solvent was distilled off under reduced pressure to obtain the desired product (yield 471 mg, yield 80%). Di-p-tolylcilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] Zirconium dichloride identification is based on 1 H NMR spectra and FD-MS. Performed on the spectrum. The measurement results are shown below.

1H NMR (270 MHz, CDCl3)
2.38(s, 6H), 2.41(s, 6H), 3.25(s, 6H), 5.84 (t, 2H, J = 2 Hz), 5.99 (s, 2H), 6.69 (t, 2H, J = 2 Hz), 7.37 (d, 4H, J = 8 Hz, 4H), 7.73 (s, 2H), 8.06 (d, 4H, J = 8 Hz)
FD-MS: m/z =686.1(M+)
1 1 H NMR (270 MHz, CDCl 3 )
2.38 (s, 6H), 2.41 (s, 6H), 3.25 (s, 6H), 5.84 (t, 2H, J = 2 Hz), 5.99 (s, 2H), 6.69 (t, 2H, J = 2 Hz) ), 7.37 (d, 4H, J = 8 Hz, 4H), 7.73 (s, 2H), 8.06 (d, 4H, J = 8 Hz)
FD-MS: m / z = 686.1 (M + )

[実施例A4]
(iii)ジ-p-トリルシリレン(η 5 -シクロペンタジエニル)[η 5 -(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジメチルの合成
窒素雰囲気下、100 mlシュレンクフラスコに、実施例A3で製造されたジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジクロリド 147 mg (0.21 mmol)、t-ブチルメチルエーテル50 ml、トルエン25 mlを添加した。氷浴で冷却し、メチルマグネシウムブロマイド/ジエチルエーテル溶液 (3 M) 0.42 ml (1.26 mmol)を添加し、22時間60℃のオイルバスで加熱した。減圧下で溶媒を留去し、セライトを用いてトルエンで抽出した。減圧下で溶媒を留去した後、セライトを用いてメチルシクロヘキサンで抽出した。減圧下で溶媒を留去して得られた固体をヘキサンで洗浄した。減圧下で乾燥して目的物を得た。(収量53 mg、収率39%)。目的物の同定は、1H NMRスペクトルおよびFD-MSスペクトルで行った。以下にその測定結果を示す。
[Example A4]
(Iii) Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] Synthetic zirconium dimethyl under a nitrogen atmosphere, 100 ml Schlenk In a flask, di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] zirconide dichloride prepared in Example A3 147 mg. (0.21 mmol), 50 ml of t-butyl methyl ether and 25 ml of toluene were added. The mixture was cooled in an ice bath, 0.42 ml (1.26 mmol) of methyl magnesium bromide / diethyl ether solution (3 M) was added, and the mixture was heated in an oil bath at 60 ° C. for 22 hours. The solvent was distilled off under reduced pressure, and the mixture was extracted with toluene using Celite. After distilling off the solvent under reduced pressure, the mixture was extracted with methylcyclohexane using Celite. The solvent was distilled off under reduced pressure, and the obtained solid was washed with hexane. The desired product was obtained by drying under reduced pressure. (Yield 53 mg, yield 39%). The target product was identified by 1 H NMR spectrum and FD-MS spectrum. The measurement results are shown below.

1H NMR (270 MHz, CDCl3)
-1.57(s, 6H), 2.36(s, 6H), 2.37(s, 6H), 3.21(s, 6H), 5.69 (t, 2H, J = 2 Hz), 5.90 (s, 2H), 6.62 (t, 2H, J = 2 Hz),7.30 (d, 4H, J = 8 Hz), 7.77 (s, 2H), 8.02 (d, 2H, J = 8 Hz)
FD-MS: m/z = 646.2 (M+)
1 1 H NMR (270 MHz, CDCl 3 )
-1.57 (s, 6H), 2.36 (s, 6H), 2.37 (s, 6H), 3.21 (s, 6H), 5.69 (t, 2H, J = 2 Hz), 5.90 (s, 2H), 6.62 ( t, 2H, J = 2 Hz), 7.30 (d, 4H, J = 8 Hz), 7.77 (s, 2H), 8.02 (d, 2H, J = 8 Hz)
FD-MS: m / z = 646.2 (M + )

[実施例A5]
(i)ジフェニルシクロペンタジエニル(2,7-ジメトキシ-3,6-ジメチルフルオレニル)シランの合成
窒素雰囲気下、100 mlシュレンクフラスコに2,7-ジメトキシ-3,6-ジメチルフルオレン 1037 mg (4.08 mmol)および脱水シクロペンチルメチルエーテル 60 mlを添加した。-78℃に冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.55 M) 2.80 ml (4.34 mmol)を徐々に添加し、室温で17時間攪拌した。ジフェニルジクロロシラン0.94 ml (4.47 mmol)を添加した後、23時間撹拌した。窒素ボックス内に持ち込み溶媒を減圧留去した後、ペンタンで洗浄した。得られた固体を減圧下で乾燥しオレンジ固体990 mgを得た。
続いて、窒素雰囲気下、100 mlシュレンクフラスコに先の反応で得られたオレンジ色固体 990 mg 、THF 50mlを添加した。-78℃に冷却し、1,3-ジメチル-2-イミダゾリジノン(DMI)0.46 ml (4.26 mmol)、2.0 Mのシクロペンタジエニルナトリウムテトラヒドロフラン溶液 2.10 ml (4.20 mmol)を添加し、徐々に室温に戻しながら21時間攪拌した。氷浴下、飽和塩化アンモニウム水溶液を加えて反応を停止し、ジエチルエーテルで抽出した。有機相を水、飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、濃縮乾固した。得られた固体をシリカゲルクロマトグラフィー(展開溶媒ヘキサン→ヘキサン:酢酸エチル=20:1)により精製し、目的物を得た(収量709 mg、2段階収率 35%)。ジフェニルシクロペンタジエニル(2,7-ジメトキシ-3,6-ジメチルフルオレニル)シランの同定は、FD-MSスペクトルで行った。以下にその測定結果を示す。
FD-MS: m/z = 500.2 (M+)
[Example A5]
(I) Synthesis of diphenylcyclopentadienyl (2,7-dimethoxy-3,6-dimethylfluorenyl) silane Under a nitrogen atmosphere, 2,7-dimethoxy-3,6-dimethylfluorene 1037 mg in a 100 ml Schlenk flask. (4.08 mmol) and 60 ml of dehydrated cyclopentyl methyl ether were added. 2.80 ml (4.34 mmol) of n-butyllithium / hexane solution (1.55 M) was gradually added while cooling to -78 ° C, and the mixture was stirred at room temperature for 17 hours. After adding 0.94 ml (4.47 mmol) of diphenyldichlorosilane, the mixture was stirred for 23 hours. After bringing it into a nitrogen box and distilling off the solvent under reduced pressure, it was washed with pentane. The obtained solid was dried under reduced pressure to obtain 990 mg of an orange solid.
Subsequently, under a nitrogen atmosphere, 990 mg of the orange solid obtained in the previous reaction and 50 ml of THF were added to a 100 ml Schlenk flask. After cooling to -78 ° C, add 0.46 ml (4.26 mmol) of 1,3-dimethyl-2-imidazolidinone (DMI) and 2.10 ml (4.20 mmol) of 2.0 M solution of cyclopentadienyl sodium tetrahydrofuran, gradually. The mixture was stirred for 21 hours while returning to room temperature. Under an ice bath, saturated aqueous ammonium chloride solution was added to stop the reaction, and the mixture was extracted with diethyl ether. The organic phase was washed with water and saturated brine. After drying over magnesium sulfate, it was concentrated to dryness. The obtained solid was purified by silica gel chromatography (developing solvent hexane → hexane: ethyl acetate = 20: 1) to obtain the desired product (yield 709 mg, 2-step yield 35%). Identification of the diphenylcyclopentadienyl (2,7-dimethoxy-3,6-dimethylfluorenyl) silane was performed on the FD-MS spectrum. The measurement results are shown below.
FD-MS: m / z = 500.2 (M + )

(ii)ジフェニルシリレン(η 5 -シクロペンタジエニル)[η 5 -(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンクフラスコにジフェニルシクロペンタジエニル(2,7-ジメトキシ-3,6-ジメチルフルオレニル)シラン702 mg (1.40 mmol)、ジエチルエーテル55 mlを添加した。-78℃に冷却し、n-ブチルリチウム/ヘキサン溶液 (1.55 M) 1.85 ml (2.87 mmol)を徐々に添加し後、徐々に室温に戻しながら23時間撹拌した。-78℃に冷却し四塩化ジルコニウム323 mg (1.39 mmol)を添加し、室温まで徐々に昇温しながら23時間攪拌した。減圧下で溶媒を留去し、セライトを用いてジクロロメタンで抽出した。減圧下で溶媒を留去して、少量のジクロロメタンに溶解し、ヘキサン中に滴下した。得られた沈殿をろ過により回収して減圧下で乾燥した。得られた固体をペンタンで洗浄した後、減圧下で乾燥して目的物を得た(収量506 mg、収率55%)。目的物の同定は、1H NMRスペクトルおよびFD-MSスペクトルで行った。以下にその測定結果を示す。
(Ii) Diphenylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] Synthetic zirconium dichloride Diphenylcyclo in a 100 ml Schlenk flask under a nitrogen atmosphere. 702 mg (1.40 mmol) of pentadienyl (2,7-dimethoxy-3,6-dimethylfluorenyl) silane and 55 ml of diethyl ether were added. The mixture was cooled to -78 ° C., 1.85 ml (2.87 mmol) of n-butyllithium / hexane solution (1.55 M) was gradually added, and the mixture was stirred for 23 hours while gradually returning to room temperature. The mixture was cooled to -78 ° C., 323 mg (1.39 mmol) of zirconium tetrachloride was added, and the mixture was stirred for 23 hours while gradually raising the temperature to room temperature. The solvent was distilled off under reduced pressure, and the mixture was extracted with dichloromethane using Celite. The solvent was evaporated under reduced pressure, dissolved in a small amount of dichloromethane, and added dropwise to hexane. The obtained precipitate was collected by filtration and dried under reduced pressure. The obtained solid was washed with pentane and then dried under reduced pressure to obtain the desired product (yield 506 mg, 55% yield). The target product was identified by 1 H NMR spectrum and FD-MS spectrum. The measurement results are shown below.

1H NMR (270 MHz, CDCl3)
2.38(s, 6H), 3.23(s, 6H), 5.86 (t, 2H, J = 2 Hz), 5.96 (s, 2H), 6.71 (t, 2H, J = 2 Hz), 7.55-7.57 (m, 6H), 7.73 (s, 2H), 8.18-8.22 (m, 4H)
FD-MS: m/z = 658.0 (M+)
1 1 H NMR (270 MHz, CDCl 3 )
2.38 (s, 6H), 3.23 (s, 6H), 5.86 (t, 2H, J = 2 Hz), 5.96 (s, 2H), 6.71 (t, 2H, J = 2 Hz), 7.55-7.57 (m) , 6H), 7.73 (s, 2H), 8.18-8.22 (m, 4H)
FD-MS: m / z = 658.0 (M + )

[実施例A6]
(iii)ジフェニルシリレン(η 5 -シクロペンタジエニル)[η 5 -(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジメチルの合成
窒素雰囲気下、100 mlシュレンクフラスコに、実施例A5で製造されたジフェニルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジクロリド 264 mg (0.40 mmol)、t-ブチルメチルエーテル30 mlを添加した。氷浴で冷却し、メチルマグネシウムブロマイド/ジエチルエーテル溶液 (3 M) 0.80 ml (2.40 mmol)を添加し、22時間加熱還流した。減圧下で溶媒を留去し、セライトを用いてトルエンで抽出した。減圧下で溶媒を留去した後、セライトを用いてメチルシクロヘキサンで抽出した。減圧下で溶媒を留去して得られた固体を少量のジククロメタンに溶解させヘキサン中に滴下した。溶媒を一部減圧留去して生じた沈殿をろ過によって回収した。減圧下で乾燥して目的物を得た。(収量113 mg、収率45%)。目的物の同定は、1H NMRスペクトルおよびFD-MSスペクトルで行った。以下にその測定結果を示す。
[Example A6]
(Iii) Diphenylcilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] Synthetic zirconium Dimethyl Performed in a 100 ml Schlenk flask under a nitrogen atmosphere. Diphenylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] zirconium dichloride 264 mg (0.40 mmol), t-butyl produced in Example A5. 30 ml of methyl ether was added. The mixture was cooled in an ice bath, 0.80 ml (2.40 mmol) of methyl magnesium bromide / diethyl ether solution (3 M) was added, and the mixture was heated under reflux for 22 hours. The solvent was distilled off under reduced pressure, and the mixture was extracted with toluene using Celite. After distilling off the solvent under reduced pressure, the mixture was extracted with methylcyclohexane using Celite. The solvent was distilled off under reduced pressure, and the obtained solid was dissolved in a small amount of dichclomethane and added dropwise to hexane. A part of the solvent was distilled off under reduced pressure, and the precipitate formed was recovered by filtration. The desired product was obtained by drying under reduced pressure. (Yield 113 mg, yield 45%). The target product was identified by 1 H NMR spectrum and FD-MS spectrum. The measurement results are shown below.

1H NMR (270 MHz, CDCl3)
-1.56(s, 6H), 2.35(s, 6H), 3.20(s, 6H), 5.71 (t, 2H, J = 2 Hz), 5.87 (s, 2H), 6.64 (t, 2H, J = 2 Hz), 7.47-7.51 (m, 6H), 7.78 (s, 2H), 8.13-8.17 (m, 4H)
FD-MS: m/z = 618.1 (M+)
1 1 H NMR (270 MHz, CDCl 3 )
-1.56 (s, 6H), 2.35 (s, 6H), 3.20 (s, 6H), 5.71 (t, 2H, J = 2 Hz), 5.87 (s, 2H), 6.64 (t, 2H, J = 2) Hz), 7.47-7.51 (m, 6H), 7.78 (s, 2H), 8.13-8.17 (m, 4H)
FD-MS: m / z = 618.1 (M + )

[実施例A7]
(i)ジ-p-トリルシクロペンタジエニル(2,7-ジ-t-ブチル-4-メトキシフルオレニル)シランの合成
窒素雰囲気下、100 ml二口フラスコに2,7-ジ-t-ブチル-4-メトキシフルオレン 771 mg (2.50 mmol)および脱水シクロペンチルメチルエーテル 50 mlを添加した。-78℃に冷却しながらn-ブチルリチウム/ヘキサン溶液 (1.55 M) 1.69 ml (2.63 mmol)を徐々に添加し、室温で18時間攪拌した。ジ-p-トリルジクロロシラン0.655 ml (2.75 mmol)を添加した後、22時間半撹拌した。窒素ボックス内に持ち込み溶媒を減圧留去した後、ヘキサンで洗浄した。得られた固体を減圧下で乾燥し白色固体1.20 gを得た。
[Example A7]
(I) Synthesis of di-p-tolylcyclopentadienyl (2,7-di-t-butyl-4-methoxyfluorenyl) silane Under a nitrogen atmosphere, 2,7-di-t in a 100 ml two-mouthed flask. -Butyl-4-methoxyfluorene 771 mg (2.50 mmol) and 50 ml of dehydrated cyclopentyl methyl ether were added. While cooling to -78 ° C, 1.69 ml (2.63 mmol) of n-butyllithium / hexane solution (1.55 M) was gradually added, and the mixture was stirred at room temperature for 18 hours. After adding 0.655 ml (2.75 mmol) of di-p-tolyldichlorosilane, the mixture was stirred for 22 hours and a half. The solvent was brought into a nitrogen box and distilled off under reduced pressure, and then washed with hexane. The obtained solid was dried under reduced pressure to obtain 1.20 g of a white solid.

続いて窒素雰囲気下、100 ml三口フラスコに先の反応で得られた白色固体 1.20 g 、THF 50mlを添加した。-78℃に冷却し、1,3-ジメチル-2-イミダゾリジノン(DMI)0.467 ml (4.34 mmol)、2.0 Mのシクロペンタジエニルナトリウム(4.34 mmol)テトラヒドロフラン溶液2.17 mlを添加し、徐々に室温に戻しながらで23時間攪拌した。氷浴下、塩化アンモニウム水溶液を加えて反応を停止させた後、酢酸エチルで抽出し、有機相を水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥し濃縮乾固した。得られた固体ヘキサンで洗浄し、目的物(白色粉末)を得た(収量625 mg、2段階収率 43%)。ジ-p-トリルシクロペンタジエニル(2,7-ジ-t-ブチル-4-メトキシフルオレニル)シランのFD-MSスペクトルの測定値を下に示す。
FD-MS: m/z =582.3(M+)
Subsequently, under a nitrogen atmosphere, 1.20 g of the white solid obtained in the previous reaction and 50 ml of THF were added to a 100 ml three-necked flask. Cool to -78 ° C, add 0.467 ml (4.34 mmol) of 1,3-dimethyl-2-imidazolidinone (DMI) and 2.17 ml of 2.0 M sodium cyclopentadienyl (4.34 mmol) tetrahydrofuran solution, gradually. The mixture was stirred for 23 hours while returning to room temperature. After stopping the reaction by adding an aqueous ammonium chloride solution under an ice bath, the mixture was extracted with ethyl acetate, the organic phase was washed with water and saturated brine, dried over magnesium sulfate, and concentrated to dryness. The product (white powder) was obtained by washing with the obtained solid hexane (yield 625 mg, 2-step yield 43%). The measured values of the FD-MS spectrum of di-p-tolylcyclopentadienyl (2,7-di-t-butyl-4-methoxyfluorenyl) silane are shown below.
FD-MS: m / z = 582.3 (M + )

(ii)ジ-p-トリルシリレン(η 5 -シクロペンタジエニル)[η 5 -(2,7-ジ-t-ブチル-4-メトキシフルオレニル)]ジルコニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンク管にジ-p-トリルシクロペンタジエニル(2,7-ジ-t-ブチル-4-メトキシフルオレニル)シラン350 mg (0.60 mmol)、ジエチルエーテル40 mlを添加した。-78℃に冷却し、n-ブチルリチウム/ヘキサン溶液 (1.55 M) 1.12 ml (1.74 mmol)を添加した後、徐々に室温に戻しながら20時間撹拌した。-78℃に冷却し四塩化ジルコニウム140 mg (0.60 mmol)を添加し、室温まで徐々に昇温しながら23時間攪拌した。減圧下で溶媒を留去し、ヘキサンで洗浄後、セライトを使用してトルエン、ジクロロメタンで抽出した。減圧下で溶媒を留去して目的物を得た(収量321 mg、収率72%)。ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジ-t-ブチル-4-メトキシフルオレニル)]ジルコニウムジクロリドの同定は、1H NMRスペクトルおよびFD-MSスペクトルで行った。以下にその測定結果を示す。
(Ii) Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-di-t-butyl-4-methoxyfluorenyl)] Synthetic of zirconium dichloride Under a nitrogen atmosphere, 100 To a ml Schlenk tube was added di-p-tolylcyclopentadienyl (2,7-di-t-butyl-4-methoxyfluorenyl) silane 350 mg (0.60 mmol) and diethyl ether 40 ml. The mixture was cooled to -78 ° C., 1.12 ml (1.74 mmol) of n-butyllithium / hexane solution (1.55 M) was added, and the mixture was stirred for 20 hours while gradually returning to room temperature. The mixture was cooled to -78 ° C, 140 mg (0.60 mmol) of zirconium tetrachloride was added, and the mixture was stirred for 23 hours while gradually raising the temperature to room temperature. The solvent was distilled off under reduced pressure, the mixture was washed with hexane, and then extracted with toluene and dichloromethane using Celite. The solvent was distilled off under reduced pressure to obtain the desired product (yield 321 mg, yield 72%). Di-p-tolylcilylene (η 5 -cyclopentadienyl) [η 5- (2,7-di-t-butyl-4-methoxyfluorenyl)] Zirconium dichloride identification is based on 1 H NMR spectra and FD. -The MS spectrum was used. The measurement results are shown below.

FD-MS: m/z =740.2(M+)
1H NMR (270 MHz, CDCl3)
1.01(s, 18H), 2.42(s, 6H), 4.01(s, 3H), 5.79-5.84(m, 2H), 6.30(d, 1H, J=1 Hz), 6.65-6.71(m, 3H), 6.89(d, 1H, J=1 Hz), 7.37(d, 4H, J=7 Hz), 7.61(dd, 1H, J=9, 2 Hz), 8.02-8.07(m, 4H), 8.27(d, J=9 Hz, 1H)
FD-MS: m / z = 740.2 (M + )
1 1 H NMR (270 MHz, CDCl 3 )
1.01 (s, 18H), 2.42 (s, 6H), 4.01 (s, 3H), 5.79-5.84 (m, 2H), 6.30 (d, 1H, J = 1 Hz), 6.65-6.71 (m, 3H) , 6.89 (d, 1H, J = 1 Hz), 7.37 (d, 4H, J = 7 Hz), 7.61 (dd, 1H, J = 9, 2 Hz), 8.02-8.07 (m, 4H), 8.27 ( d, J = 9 Hz, 1H)

[実施例A8]
(i)ジp-トリルシクロペンタジエニル(4,4,7,7-テトラメチル-3,4,7,8,9,12-ヘキサヒドロ-2H-シクロペンタ-[2,1-g:3,4-g']ジクロメニル)シランの合成
窒素雰囲気下、100 mlシュレンクフラスコに4,4,7,7-テトラメチル-3,4,7,8,9,12-ヘキサヒドロ-2H-シクロペンタ-[2,1-g:3,4-g']ジクロメン503 mg (1.42 mmol)および脱水tert-ブチルメチルエーテル 20 mlを添加した。0℃に氷浴下でn-ブチルリチウム/ヘキサン溶液 (1.57 M) 1.00 ml (1.57 mmol)を徐々に添加し、70℃オイルバスで5.5時間加熱攪拌した。-78℃でジp-トリルジクロロシラン480 mg (1.71 mmol)を添加した後、徐々に室温に戻しながら17時間撹拌した。窒素ボックス内に持ち込み溶媒を減圧留去した後、ペンタンで洗浄した。得られた固体を減圧下で乾燥しオフホワイト色固体688 mgを得た。
[Example A8]
(I) Dip-tolylcyclopentadienyl (4,4,7,7-tetramethyl-3,4,7,8,9,12-hexahydro-2H-cyclopenta- [2,1-g: 3,, Synthesis of 4-g'] dichromenyl) silane Under a nitrogen atmosphere, in a 100 ml Schlenk flask, 4,4,7,7-tetramethyl-3,4,7,8,9,12-hexahydro-2H-cyclopenta- [2 , 1-g: 3,4-g'] Dichromen 503 mg (1.42 mmol) and dehydrated tert-butyl methyl ether 20 ml were added. A n-butyllithium / hexane solution (1.57 M) of 1.00 ml (1.57 mmol) was gradually added to 0 ° C. under an ice bath, and the mixture was heated and stirred in a 70 ° C. oil bath for 5.5 hours. After adding 480 mg (1.71 mmol) of dip-tolyldichlorosilane at -78 ° C, the mixture was stirred for 17 hours while gradually returning to room temperature. After bringing it into a nitrogen box and distilling off the solvent under reduced pressure, it was washed with pentane. The obtained solid was dried under reduced pressure to obtain 688 mg of an off-white solid.

続いて、窒素雰囲気下、先の反応で得られたオフホワイト色固体を100 mlシュレンクフラスコ中でテトラヒドロフラン20mlに溶かし、1,3-ジメチル-2-イミダゾリジノン(DMI)0.15 ml (1.39 mmol)を添加した。-78℃に冷却して2.0 Mのシクロペンタジエニルナトリウムテトラヒドロフラン溶液 0.66 ml (1.32 mmol)を添加し、徐々に室温に戻しながら17時間攪拌した。80℃オイルバスで6時間加熱した後、-30℃で1,3-ジメチル-2-イミダゾリジノン(DMI)0.15 ml (1.39 mmol)および2.0 Mのシクロペンタジエニルナトリウムテトラヒドロフラン溶液 0.66 ml (1.32 mmol)を追加し、徐々に室温に戻しながら16時間攪拌した。飽和塩化アンモニウム水溶液に注いで反応を停止し、ヘキサンで抽出した。有機相を水、飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、濃縮乾固した。得られた固体をメタノールで洗浄し、目的物を得た(収量425 mg、2段階収率 49%)。ジp-トリルシクロペンタジエニル(4,4,7,7-テトラメチル-3,4,7,8,9,12-ヘキサヒドロ-2H-シクロペンタ-[2,1-g:3,4-g']ジクロメニル)シランの同定は、FD-MSスペクトルで行った。以下にその測定結果を示す。
FD-MS: m/z = 608.4 (M+)
Subsequently, in a nitrogen atmosphere, the off-white solid obtained in the previous reaction was dissolved in 20 ml of tetrahydrofuran in a 100 ml Schlenk flask, and 1,3-dimethyl-2-imidazolidinone (DMI) 0.15 ml (1.39 mmol) was dissolved. Was added. After cooling to -78 ° C., 0.66 ml (1.32 mmol) of a 2.0 M solution of cyclopentadienyl sodium tetrahydrofuran was added, and the mixture was stirred for 17 hours while gradually returning to room temperature. After heating in an 80 ° C oil bath for 6 hours, at -30 ° C, 0.15 ml (1.39 mmol) of 1,3-dimethyl-2-imidazolidinone (DMI) and 2.0 M solution of cyclopentadienyl sodium in tetrahydrofuran 0.66 ml (1.32) mmol) was added, and the mixture was stirred for 16 hours while gradually returning to room temperature. The reaction was stopped by pouring into saturated aqueous ammonium chloride solution, and the mixture was extracted with hexane. The organic phase was washed with water and saturated brine. After drying over magnesium sulfate, it was concentrated to dryness. The obtained solid was washed with methanol to obtain the desired product (yield 425 mg, 2-step yield 49%). Dip-tolylcyclopentadienyl (4,4,7,7-tetramethyl-3,4,7,8,9,12-hexahydro-2H-cyclopenta- [2,1-g: 3,4-g The identification of'] dichromenyl) silane was performed on the FD-MS spectrum. The measurement results are shown below.
FD-MS: m / z = 608.4 (M + )

(ii)ジp-トリルシリレン(η 5 -シクロペンタジエニル)(η 5 -4,4,7,7-テトラメチル-3,4,7,8,9,12-ヘキサヒドロ-2H-シクロペンタ-[2,1-g:3,4-g']ジクロメニル)ジルコニウムジクロリドの合成
窒素雰囲気下、100 mlシュレンクフラスコにジp-トリルシクロペンタジエニル(4,4,7,7-テトラメチル-3,4,7,8,9,12-ヘキサヒドロ-2H-シクロペンタ-[2,1-g:3,4-g']ジクロメニル)シラン425 mg (0.698 mmol)、ジエチルエーテル20 mlを添加した。-78℃に冷却し、n-ブチルリチウム/ヘキサン溶液 (1.57 M) 0.92 ml (1.44 mmol)を徐々に添加した後、徐々に室温に戻しながら18時間撹拌した。-78℃に冷却し四塩化ジルコニウム150 mg (0.644 mmol)を添加し、室温まで徐々に昇温しながら23時間攪拌した。減圧下で溶媒を留去し、残渣のジクロロメタン抽出液をセライトで濾過した。濾液を減圧下で濃縮し他の地、少量のヘキサンおよびペンタンで各3回洗浄し、減圧下で乾燥して目的物を得た(収量300 mg、収率51%)。
(Ii) di p- Torirushiriren (eta 5 - cyclopentadienyl) (η 5 -4,4,7,7- tetramethyl -3,4,7,8,9,12- hexahydro -2H- cyclopenta - [2,1-g: 3,4-g'] Dichromenyl) Synthesis of zirconium dichloride Under a nitrogen atmosphere, dip-tolylcyclopentadienyl (4,4,7,7-tetramethyl-3) was placed in a 100 ml Schlenk flask. , 4,7,8,9,12-Hexahydro-2H-Cyclopenta- [2,1-g: 3,4-g'] dichromenyl) Silane 425 mg (0.698 mmol) and diethyl ether 20 ml were added. The mixture was cooled to -78 ° C., 0.92 ml (1.44 mmol) of n-butyllithium / hexane solution (1.57 M) was gradually added, and the mixture was stirred for 18 hours while gradually returning to room temperature. The mixture was cooled to -78 ° C., 150 mg (0.644 mmol) of zirconium tetrachloride was added, and the mixture was stirred for 23 hours while gradually raising the temperature to room temperature. The solvent was distilled off under reduced pressure, and the residue dichloromethane extract was filtered through Celite. The filtrate was concentrated under reduced pressure, washed 3 times each with a small amount of hexane and pentane in another place, and dried under reduced pressure to obtain the desired product (yield 300 mg, yield 51%).

目的物の同定は、1H NMRスペクトルおよびFD-MSスペクトルで行った。以下にその測定結果を示す。The target product was identified by 1 H NMR spectrum and FD-MS spectrum. The measurement results are shown below.

1H NMR (270 MHz, CDCl3):
1.45 (s, 6H), 1.52 (s, 6H), 1.81-1.84 (m, 4H), 2.40 (s, 6H), 4.11-4.16 (m, 4H), 5.87 (t, 2H, J = 2.3 Hz), 6.13 (s, 2H), 6.67-6.69 (t, 2H, J = 2.3 Hz), 7.31 (d, 4H, J = 7.6 Hz), 7.91 (s, 2H), 7.93 (d, 4H, J = 7.6 Hz)
FD-MS: m/z = 766.2 (M+)
1 1 H NMR (270 MHz, CDCl 3 ):
1.45 (s, 6H), 1.52 (s, 6H), 1.81-1.84 (m, 4H), 2.40 (s, 6H), 4.11-4.16 (m, 4H), 5.87 (t, 2H, J = 2.3 Hz) , 6.13 (s, 2H), 6.67-6.69 (t, 2H, J = 2.3 Hz), 7.31 (d, 4H, J = 7.6 Hz), 7.91 (s, 2H), 7.93 (d, 4H, J = 7.6) Hz)
FD-MS: m / z = 766.2 (M + )

実施例A1〜A8で製造された遷移金属化合物の構造式を以下に示す。

Figure 2019188644
<エチレン/プロピレン/ENB共重合体の製造>
[実施例B1]
充分に窒素置換した内容積2Lのステンレス製オートクレーブにヘキサン1030mL、エチリデンノルボルネン(ENB)12mLを装入し、系内の温度を94℃に昇温した後、プロピレンを分圧で0.90MPa分装入し、エチレンを供給することにより全圧を1.6MPa−Gとした。次に、トリイソブチルアルミニウム0.3mmol、実施例A1で製造したジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリド0.00012mmolおよびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート0.00048mmolを窒素で圧入し、攪拌回転数を250rpmにすることにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を1.6MPa−Gに保ち、95℃で15分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレンをパージした。得られたポリマー溶液を、大過剰のメタノール/アセトン混合溶液中に投入することにより、ポリマーを析出させた。ポリマーをろ過により回収し、120℃の減圧下で一晩乾燥した。The structural formulas of the transition metal compounds produced in Examples A1 to A8 are shown below.
Figure 2019188644
<Manufacturing of ethylene / propylene / ENB copolymer>
[Example B1]
Hexane 1030 mL and ethylidene norbornene (ENB) 12 mL were charged into a stainless steel autoclave with an internal volume of 2 L sufficiently substituted with nitrogen, the temperature inside the system was raised to 94 ° C, and then propylene was divided into 0.90 MPa by partial pressure. The total pressure was adjusted to 1.6 MPa-G by supplying ethylene. Next, 0.3 mmol of triisobutylaluminum, di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride prepared in Example A1. Polymerization was initiated by press-fitting 00012 mmol and 0.00048 mmol of triphenylcarbenium tetrakis (pentafluorophenyl) borate with nitrogen and setting the stirring speed to 250 rpm. Then, by continuously supplying only ethylene, the total pressure was maintained at 1.6 MPa-G, and polymerization was carried out at 95 ° C. for 15 minutes. After terminating the polymerization by adding a small amount of ethanol into the system, unreacted ethylene was purged. The polymer was precipitated by putting the obtained polymer solution into a large excess of methanol / acetone mixed solution. The polymer was collected by filtration and dried under reduced pressure at 120 ° C. overnight.

その結果、エチレン含量80.7mol%、ENB含量1.5mol%、極限粘度[η]4.3dl/gのエチレン/プロピレン/ENB共重合体が11.2g得られた。重合活性は374.3kg/mmol−Zr/hであった。 As a result, 11.2 g of an ethylene / propylene / ENB copolymer having an ethylene content of 80.7 mol%, an ENB content of 1.5 mol% and an ultimate viscosity [η] of 4.3 dl / g was obtained. The polymerization activity was 374.3 kg / mmol-Zr / h.

[実施例B2]
ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドを、実施例A2で製造した0.00008mmolのジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート0.00032mmolに変更したこと以外は実施例B1と同様の操作を行った。
[Example B2]
Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride was prepared in Example A2 and 0.00008 mmol of di-p-tolylcilylene. (η 5 -Cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-di-tert-butylfluorenyl)] Zirconium dichloride, triphenylcarbenium tetrakis (pentafluorophenyl) borate 0. The same operation as in Example B1 was carried out except that the value was changed to 00032 mmol.

その結果、エチレン含量80.8mol%、ENB含量1.8mol%、極限粘度[η]4.44dl/gのエチレン/プロピレン/ENB共重合体が4.49g得られた。重合活性は224.5kg/mmol−Zr/hであった。 As a result, 4.49 g of an ethylene / propylene / ENB copolymer having an ethylene content of 80.8 mol%, an ENB content of 1.8 mol% and an ultimate viscosity [η] of 4.44 dl / g was obtained. The polymerization activity was 224.5 kg / mmol-Zr / h.

[実施例B3]
ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドを、実施例A3で製造した0.00008mmolのジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジクロリド、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートを0.00032mmolに変更したこと以外は実施例B1と同様の操作を行った。
[Example B3]
Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride was prepared in Example A3 at 0.00008 mmol of di-p-tolylcyrylene. (η 5 -Cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] Zirconium dichloride, triphenylcarbenium tetrakis (pentafluorophenyl) Borate changed to 0.00032 mmol The same operation as in Example B1 was performed except for the above.

その結果、エチレン含量82.9mol%、ENB含量1.8mol%、極限粘度[η]5.59dl/gのエチレン/プロピレン/ENB共重合体が10.1g得られた。重合活性は502.5kg/mmol−Zr/hであった。 As a result, 10.1 g of an ethylene / propylene / ENB copolymer having an ethylene content of 82.9 mol%, an ENB content of 1.8 mol% and an ultimate viscosity [η] of 5.59 dl / g was obtained. The polymerization activity was 502.5 kg / mmol-Zr / h.

[実施例B4]
ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドを、実施例A4で製造した0.0001mmolのジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジメチル、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートを0.0004mmolに変更したこと以外は実施例B1と同様の操作を行った。
[Example B4]
Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride was prepared in Example A4 and 0.0001 mmol of di-p-tolylcyrylene. (η 5 -Cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] Zirconium dimethyl, triphenylcarbenium tetrakis (pentafluorophenyl) borate changed to 0.0004 mmol The same operation as in Example B1 was performed except for the above.

その結果、エチレン含量84.3mol%、ENB含量1.9mol%、極限粘度[η]5.63dl/gのエチレン/プロピレン/ENB共重合体が2.21g得られた。重合活性は88.4kg/mmol−Zr/hであった。 As a result, 2.21 g of an ethylene / propylene / ENB copolymer having an ethylene content of 84.3 mol%, an ENB content of 1.9 mol% and an ultimate viscosity [η] of 5.63 dl / g was obtained. The polymerization activity was 88.4 kg / mmol-Zr / h.

[実施例B5]
ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドを、実施例A5で製造した0.0001mmolのジフェニルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジクロリド、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートを0.0004mmolに変更したこと以外は実施例B1と同様の操作を行った。
[Example B5]
Di -p- Torirushiriren (eta 5 - cyclopentadienyl) [η 5 - (2,7- dimethoxy-fluorenyl)] zirconium dichloride, the 0.0001mmol prepared in Example A5 diphenylsilylene (eta 5 - Cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] Zirconium dichloride, triphenylcarbenium tetrakis (pentafluorophenyl) borate changed to 0.0004 mmol The same operation as in Example B1 was performed.

その結果、エチレン含量83.4mol%、ENB含量1.9mol%、極限粘度[η]5.08dl/gのエチレン/プロピレン/ENB共重合体が8.06g得られた。重合活性は322.4kg/mmol−Zr/hであった。 As a result, 8.06 g of an ethylene / propylene / ENB copolymer having an ethylene content of 83.4 mol%, an ENB content of 1.9 mol% and an ultimate viscosity [η] of 5.08 dl / g was obtained. The polymerization activity was 322.4 kg / mmol-Zr / h.

[実施例B6]
ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドを、実施例A6で製造した0.0001mmolのジフェニルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシ-3,6-ジメチルフルオレニル)]ジルコニウムジメチル、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートを0.0004mmolに変更したこと以外は実施例B1と同様の操作を行った。
[Example B6]
Di -p- Torirushiriren (eta 5 - cyclopentadienyl) [η 5 - (2,7- dimethoxy-fluorenyl)] zirconium dichloride, the 0.0001mmol prepared in Example A6 diphenylsilylene (eta 5 - Cyclopentadienyl) [η 5- (2,7-dimethoxy-3,6-dimethylfluorenyl)] Zirconium dimethyl, triphenylcarbenium tetrakis (pentafluorophenyl) borate changed to 0.0004 mmol The same operation as in Example B1 was performed.

その結果、エチレン含量82.2mol%、ENB含量2.0mol%、極限粘度[η]5.21dl/gのエチレン/プロピレン/ENB共重合体が7.97g得られた。重合活性は318.8kg/mmol−Zr/hであった。 As a result, 7.97 g of an ethylene / propylene / ENB copolymer having an ethylene content of 82.2 mol%, an ENB content of 2.0 mol% and an ultimate viscosity [η] of 5.21 dl / g was obtained. The polymerization activity was 318.8 kg / mmol-Zr / h.

[実施例B7]
ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドを、実施例A7で製造した0.00008mmolのジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジ-t-ブチル-4-メトキシフルオレニル)]ジルコニウムジクロリド、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートを0.00032mmolに変更したこと以外は実施例B1と同様の操作を行った。
[Example B7]
Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride was prepared in Example A7 and 0.00008 mmol of di-p-tolylcilylene. (η 5 -Cyclopentadienyl) [η 5- (2,7-di-t-butyl-4-methoxyfluorenyl)] Zirconium dichloride, triphenylcarbenium tetrakis (pentafluorophenyl) borate 0.00032 mmol The same operation as in Example B1 was performed except that it was changed to.

その結果、エチレン含量73.7mol%、ENB含量1.9mol%、極限粘度[η]3.06dl/gのエチレン/プロピレン/ENB共重合体が2.84g得られた。重合活性は142.0kg/mmol−Zr/hであった。 As a result, 2.84 g of an ethylene / propylene / ENB copolymer having an ethylene content of 73.7 mol%, an ENB content of 1.9 mol% and an ultimate viscosity [η] of 3.06 dl / g was obtained. The polymerization activity was 142.0 kg / mmol-Zr / h.

[実施例B8]
ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドを、実施例A8で製造した0.0001mmolのジp-トリルシリレン(η5-シクロペンタジエニル)(η5-4,4,7,7-テトラメチル-3,4,7,8,9,12-ヘキサヒドロ-2H-シクロペンタ-[2,1-g:3,4-g']ジクロメニル)ジルコニウムジクロリド、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートを0.0004mmolに変更したこと以外は実施例B1と同様の操作を行った。
[Example B8]
Di-p-tolylcyrylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] Zirconium dichloride was prepared in Example A8 with 0.0001 mmol of di-p-tolylcyrylene (η 5 -tolylcyrylene). η 5 -cyclopentadienyl) (η 5 -4,4,7,7-tetramethyl-3,4,7,8,9,12-hexahydro-2H-cyclopenta- [2,1-g: 3,, The same operation as in Example B1 was carried out except that 4-g'] dichromenyl) zirconium dichloride and triphenylcarbenium tetrakis (pentafluorophenyl) borate were changed to 0.0004 mmol.

その結果、エチレン含量79.5mol%、ENB含量2.3mol%、極限粘度[η]6.30dl/gのエチレン/プロピレン/ENB共重合体が6.46g得られた。重合活性は129.2kg/mmol−Zr/hであった。 As a result, 6.46 g of an ethylene / propylene / ENB copolymer having an ethylene content of 79.5 mol%, an ENB content of 2.3 mol% and an ultimate viscosity [η] of 6.30 dl / g was obtained. The polymerization activity was 129.2 kg / mmol-Zr / h.

[比較例B1]
ジ-p-トリルシリレン(η5-シクロペンタジエニル)[η5-(2,7-ジメトキシフルオレニル)]ジルコニウムジクロリドを、0.0001mmolのジフェニルシリレン(η5-シクロペンタジエニル)(η5-フルオレニル)ジルコニウムジクロリド、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートを0.0004mmolに変更したこと以外は実施例B1と同様の操作を行った。
[Comparative Example B1]
Di-p-tolylsilylene (η 5 -cyclopentadienyl) [η 5- (2,7-dimethoxyfluorenyl)] zirconium dichloride, 0.0001 mmol of diphenylsilylene (η 5 -cyclopentadienyl) ( The same operation as in Example B1 was carried out except that η 5 -fluorenyl) zirconium dichloride and triphenylcarbenium tetrakis (pentafluorophenyl) borate were changed to 0.0004 mmol.

その結果、エチレン含量75.0mol%、ENB含量2.0mol%、極限粘度[η]2.63dl/gのエチレン/プロピレン/ENB共重合体が9.49g得られた。重合活性は379.6kg/mmol−Zr/hであった。 As a result, 9.49 g of an ethylene / propylene / ENB copolymer having an ethylene content of 75.0 mol%, an ENB content of 2.0 mol% and an ultimate viscosity [η] of 2.63 dl / g was obtained. The polymerization activity was 379.6 kg / mmol-Zr / h.

Claims (17)

下記一般式[I]または[II]で表される遷移金属化合物[A]。
Figure 2019188644
〔式[I]および[II]において、
1、R2、R3、R4、R13およびR14は、それぞれ独立に、水素原子、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基からなる群から選ばれる原子または置換基であり、R1からR4までの隣接した置換基は互いに結合して環を形成していてもよく、互いに結合していなくてもよく、R13およびR14は互いに結合して環を形成していてもよく、
5、R6、R7、R8、R9、R10、R11およびR12は、それぞれ独立に、水素原子、ZRで表される置換基(ただし、Zは酸素原子または硫黄原子であり、Rは炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基およびハロゲン含有基からなる群から選ばれる置換基であり、Zを介してフルオレニル配位子と結合している。)、炭素数1〜20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基(ただし、ZRで表される置換基を除く。)、ハロゲン原子およびハロゲン含有基からなる群から選ばれる原子または置換基であり、R5からR12までの隣接した置換基は互いに結合して環を形成していてもよく、R5からR12のうち、少なくとも1つはZRで表される置換基であり、
Yは炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子から選ばれ、
Aは芳香環を含んでいてもよい炭素原子数2〜20の二価の飽和もしくは不飽和の炭化水素基であり、AはYと共に形成する環を含めて2つ以上の環構造を含んでいてもよく、
Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
jは1〜4の整数であり、
Qは、ハロゲン原子、炭素数1〜20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から選ばれ、jが2以上の場合は、複数個あるQは互いに同一であっても異なっていてもよい。〕
The transition metal compound [A] represented by the following general formula [I] or [II].
Figure 2019188644
[In equations [I] and [II]
R 1 , R 2 , R 3 , R 4 , R 13 and R 14 are independently hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, aryl groups, substituted aryl groups, silicon-containing groups, and nitrogen-containing groups, respectively. , An atom or substituent selected from the group consisting of an oxygen-containing group, a halogen atom and a halogen-containing group, and adjacent substituents R 1 to R 4 may be bonded to each other to form a ring, or each other. It may not be bonded, and R 13 and R 14 may be bonded to each other to form a ring.
R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are independently represented by a hydrogen atom and a ZR (where Z is an oxygen atom or a sulfur atom). Yes, R is a substituent selected from the group consisting of a hydrocarbon group having 1 to 20 carbon atoms, an aryl group, a substituted aryl group, a silicon-containing group, a nitrogen-containing group, an oxygen-containing group and a halogen-containing group, via Z. (It is bonded to a fluorenyl ligand), a hydrocarbon group having 1 to 20 carbon atoms, an aryl group, a substituted aryl group, a silicon-containing group, a nitrogen-containing group, an oxygen-containing group (however, the substitution represented by ZR). (Excluding groups.), An atom or substituent selected from the group consisting of halogen atoms and halogen-containing groups, and adjacent substituents R 5 to R 12 may be bonded to each other to form a ring. At least one of R 5 to R 12 is a substituent represented by ZR.
Y is selected from carbon atom, silicon atom, germanium atom and tin atom,
A is a divalent saturated or unsaturated hydrocarbon group having 2 to 20 carbon atoms which may contain an aromatic ring, and A contains two or more ring structures including a ring formed with Y. May be
M is a titanium atom, a zirconium atom or a hafnium atom,
j is an integer from 1 to 4
Q is selected from a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an anionic ligand, and a neutral ligand capable of coordinating with a lone electron pair. When j is 2 or more, there are a plurality of Qs. May be the same as or different from each other. ]
前記一般式[I]または[II]においてZが酸素原子である請求項1に記載の遷移金属化合物[A]。 The transition metal compound [A] according to claim 1, wherein Z is an oxygen atom in the general formula [I] or [II]. 前記一般式[I]または[II]においてYがケイ素原子である請求項1または2に記載の遷移金属化合物[A]。 The transition metal compound [A] according to claim 1 or 2, wherein Y is a silicon atom in the general formula [I] or [II]. 前記一般式[I]または[II]においてMがジルコニウム原子である請求項1〜3のいずれか一項に記載の遷移金属化合物[A]。 The transition metal compound [A] according to any one of claims 1 to 3, wherein M is a zirconium atom in the general formula [I] or [II]. 請求項1〜4のいずれか一項に記載の遷移金属化合物[A]を含有するオレフィン重合用触媒。 A catalyst for olefin polymerization containing the transition metal compound [A] according to any one of claims 1 to 4. [B][B-1]有機金属化合物、
[B-2]有機アルミニウムオキシ化合物、および
[B-3]遷移金属化合物[A]と反応してイオン対を形成する化合物
からなる群より選ばれる少なくとも1種の化合物をさらに含有する請求項5に記載のオレフィン重合用触媒。
[B] [B-1] Organometallic compounds,
5. Claim 5 further containing at least one compound selected from the group consisting of [B-2] organoaluminum oxy compounds and [B-3] transition metal compounds [A] to form ion pairs. The catalyst for olefin polymerization according to.
請求項5または6に記載のオレフィン重合用触媒の存在下でオレフィンを重合する工程[P]を含むオレフィン重合体の製造方法。 A method for producing an olefin polymer, which comprises the step [P] of polymerizing an olefin in the presence of the catalyst for olefin polymerization according to claim 5 or 6. 前記工程[P]がエチレンを重合する工程である請求項7に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to claim 7, wherein the step [P] is a step of polymerizing ethylene. 前記工程[P]がエチレンと非共役ポリエンとを共重合する工程である請求項8に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to claim 8, wherein the step [P] is a step of copolymerizing ethylene and a non-conjugated polyene. 前記非共役ポリエンが下記一般式[III]で表される請求項9に記載のオレフィン重合体の製造方法。
Figure 2019188644
〔式中、mは0から2の整数であり、
15、R16、R17およびR18は、それぞれ独立に、水素原子、炭素数1〜20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、該炭化水素基は二重結合を有していてもよく、
15からR18までのうちの任意の二つの置換基は互いに結合して環を形成していてもよく、該環は二重結合を含んでいてもよく、R15とR16とで、またはR17とR18とでアルキリデン基を形成していてもよく、R15とR17とが、またはR16とR18とが互いに結合して二重結合を形成していてもよく、
以下の(i)から(iv)の要件の少なくとも一つが満たされる。
(i)R15からR18までの少なくとも一つは、二重結合を一つ以上有する炭化水素基である。
(ii)R15からR18までの任意の二つの置換基は互いに結合して環を形成し、該環は二重合を含んでいる。
(iii)R15とR16とで、またはR17とR18とでアルキリデン基を形成している。
(iv)R15とR17とが、またはR16とR18とが互いに結合して二重結合を形成している。〕
The method for producing an olefin polymer according to claim 9, wherein the non-conjugated polyene is represented by the following general formula [III].
Figure 2019188644
[In the formula, m is an integer from 0 to 2,
R 15 , R 16 , R 17 and R 18 are independently selected from hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, silicon-containing groups, nitrogen-containing groups, oxygen-containing groups, halogen atoms and halogen-containing groups, respectively. The hydrocarbon group may have a double bond.
Any two substituents from R 15 to R 18 may be bonded to each other to form a ring, which ring may contain a double bond, with R 15 and R 16 . Alternatively, R 17 and R 18 may form an alkylidene group, R 15 and R 17 may be bonded to each other, or R 16 and R 18 may be bonded to each other to form a double bond.
At least one of the following requirements (i) to (iv) is met.
(I) At least one of R 15 to R 18 is a hydrocarbon group having one or more double bonds.
(Ii) Any two substituents from R 15 to R 18 bond to each other to form a ring, which contains dipolymerization.
(Iii) An alkylidene group is formed between R 15 and R 16 or between R 17 and R 18 .
(Iv) R 15 and R 17 or R 16 and R 18 are bonded to each other to form a double bond. ]
前記非共役ポリエンが、5−エチリデン−2−ノルボルネン(ENB)または5−ビニル−2−ノルボルネン(VNB)であることを特徴とする、請求項10に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to claim 10, wherein the non-conjugated polyene is 5-ethylidene-2-norbornene (ENB) or 5-vinyl-2-norbornene (VNB). 前記工程[P]がエチレンと炭素数が3から20のα−オレフィンと非共役ポリエンとを共重合する工程である請求項9〜11のいずれか1項に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to any one of claims 9 to 11, wherein the step [P] is a step of copolymerizing ethylene, an α-olefin having 3 to 20 carbon atoms and a non-conjugated polyene. 前記α−オレフィンがプロピレンである請求項12に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to claim 12, wherein the α-olefin is propylene. 前記工程[P]の重合温度が80℃以上である請求項8〜13のいずれか1項に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to any one of claims 8 to 13, wherein the polymerization temperature in the step [P] is 80 ° C. or higher. 前記工程[P]が炭素数3〜20のα−オレフィンを重合する工程である請求項7に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to claim 7, wherein the step [P] is a step of polymerizing an α-olefin having 3 to 20 carbon atoms. 前記工程[P]がエチレンと炭素数3〜20のα−オレフィンとを共重合する工程である請求項15に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to claim 15, wherein the step [P] is a step of copolymerizing ethylene with an α-olefin having 3 to 20 carbon atoms. 前記α−オレフィンがプロピレンである請求項15または16に記載のオレフィン重合体の製造方法。 The method for producing an olefin polymer according to claim 15 or 16, wherein the α-olefin is propylene.
JP2020510772A 2018-03-26 2019-03-20 Methods for Producing Transition Metal Compounds, Olefin Polymerization Catalysts and Olefin Polymers Active JP6986138B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018058230 2018-03-26
JP2018058231 2018-03-26
JP2018058230 2018-03-26
JP2018058231 2018-03-26
PCT/JP2019/011656 WO2019188644A1 (en) 2018-03-26 2019-03-20 Transition metal compound, catalyst for olefin polymerization and method for producing olefin polymer

Publications (2)

Publication Number Publication Date
JPWO2019188644A1 true JPWO2019188644A1 (en) 2020-12-03
JP6986138B2 JP6986138B2 (en) 2021-12-22

Family

ID=68058152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510772A Active JP6986138B2 (en) 2018-03-26 2019-03-20 Methods for Producing Transition Metal Compounds, Olefin Polymerization Catalysts and Olefin Polymers

Country Status (2)

Country Link
JP (1) JP6986138B2 (en)
WO (1) WO2019188644A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172443A (en) * 1992-06-22 1994-06-21 Fina Technol Inc Method of adjusting melting point and molecular weight of syndiotactic polyolefin by using metallocene catalyst system
JPH08176222A (en) * 1994-10-25 1996-07-09 Tosoh Corp Catalyst for polymerization of olefin and production of olefin polymer
JP2015147862A (en) * 2014-02-06 2015-08-20 東ソー株式会社 Catalyst for polyethylene polymer production and method of producing polyethylene polymer using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009081794A1 (en) * 2007-12-21 2011-05-06 三井化学株式会社 Process for producing ethylene / α-olefin / non-conjugated polyene copolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172443A (en) * 1992-06-22 1994-06-21 Fina Technol Inc Method of adjusting melting point and molecular weight of syndiotactic polyolefin by using metallocene catalyst system
JPH08176222A (en) * 1994-10-25 1996-07-09 Tosoh Corp Catalyst for polymerization of olefin and production of olefin polymer
JP2015147862A (en) * 2014-02-06 2015-08-20 東ソー株式会社 Catalyst for polyethylene polymer production and method of producing polyethylene polymer using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HELMUT G. ALT ET AL.: "Syndiospezifische Polymerisation von Propylen: 2- und 2,7-substituierte Metallocenkomplex des typs (", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 522, JPN6021013097, 1996, pages 39 - 54, XP002247789, ISSN: 0004483899, DOI: 10.1016/0022-328X(95)06045-X *
SAIKI HASEGAWA ET AL.: "High-Temperature Ethylene/α-Olefin Copolymerization with a Zirconocene catalyst: Effects of the Zir", JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 38, JPN6021013100, 2000, pages 4641 - 4648, XP001037588, ISSN: 0004483900 *

Also Published As

Publication number Publication date
WO2019188644A1 (en) 2019-10-03
JP6986138B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
EP2275451B1 (en) Method for producing propylene-based copolymer
JP4823071B2 (en) Organometallic transition metal compound, biscyclopentadienyl ligand, catalyst composition, and method for producing polyolefin
US9969827B2 (en) Process for producing ethylene/α-olefin copolymer
JP6563884B2 (en) Propylene polymer and molded body
JP6361524B2 (en) Metallocene compound, olefin polymerization catalyst component and olefin polymerization catalyst containing the same, and method for producing olefin polymer using the olefin polymerization catalyst
WO2009081794A1 (en) Method for producing ethylene/α-olefin/nonconjugated polyene copolymer
EP1680453A1 (en) Organometallic transition metal compound, biscyclopentadienyl ligand system, catalyst system and process for preparing polyolefins
KR101139268B1 (en) Organometallic transition metal compound, biscyclopentadienyl ligand system, catalyst system and preparation of polyolefins
JP7308644B2 (en) Method for producing olefin/cyclic olefin copolymer
JP6986138B2 (en) Methods for Producing Transition Metal Compounds, Olefin Polymerization Catalysts and Olefin Polymers
JP2015137352A (en) Method of producing olefin polymer
JP2016164264A (en) Olefin polymer production method and olefin polymerization catalyst
JP7134648B2 (en) Method for producing ethylene/α-olefin/non-conjugated polyene copolymer
JP7134647B2 (en) Olefin polymerization catalyst
WO2023190212A1 (en) Method for producing olefin polymer
JP2024048362A (en) Transition metal compound, catalyst for olefin polymerization, and method for producing ethylene-α-olefin-non-conjugated polyene copolymer
JP2015137353A (en) Method of producing olefin polymer
KR102128569B1 (en) Novel transition metal compound
JP2023153037A (en) Novel catalyst for olefin polymerization
JP2019172794A (en) Method for producing olefin polymer
JP2022159082A (en) New compound
JP2019172603A (en) Transition metal compound, catalyst for olefin polymerization and method for producing olefin polymer
JP2016147965A (en) Process for producing olefin (co)polymer containing 1-butene derived constitutional unit
JP2015157924A (en) Method of producing olefin polymer and cross-linked metallocene compound
KR20170095031A (en) Method of preparing novel transition metal compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211126

R150 Certificate of patent or registration of utility model

Ref document number: 6986138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150