JPWO2019184589A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019184589A5
JPWO2019184589A5 JP2020536632A JP2020536632A JPWO2019184589A5 JP WO2019184589 A5 JPWO2019184589 A5 JP WO2019184589A5 JP 2020536632 A JP2020536632 A JP 2020536632A JP 2020536632 A JP2020536632 A JP 2020536632A JP WO2019184589 A5 JPWO2019184589 A5 JP WO2019184589A5
Authority
JP
Japan
Prior art keywords
plate
pneumatic muscle
shoulder
lumbar
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020536632A
Other languages
Japanese (ja)
Other versions
JP2021516558A (en
JP7340522B2 (en
Publication date
Priority claimed from CN201810272761.0A external-priority patent/CN110314065A/en
Application filed filed Critical
Publication of JP2021516558A publication Critical patent/JP2021516558A/en
Publication of JPWO2019184589A5 publication Critical patent/JPWO2019184589A5/ja
Application granted granted Critical
Publication of JP7340522B2 publication Critical patent/JP7340522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示の実施例は、生体模倣機械の技術分野に関し、特に空気圧筋肉駆動による外骨格リハビリ支援装置に関する。 The embodiments of the present disclosure relate to the technical field of biomimetic machines, particularly to exoskeleton rehabilitation support devices driven by pneumatic muscles.

現在、介護者による高齢者や患者の搬送時に、彼らに肢体支援を提供し、双方の安全を確保した上で、介護者の肉体労働強度を大きく軽減し、介護者がより手軽に、効率よく働くことができるような、外骨格支援装置の開発が社会的に求められている。また、筋肉機能が退化した高齢者にとって、外骨格支援装置は、日常的生活のセルフサービスの遂行に寄与することができる。さらに、腕の損傷を抱える患者の場合、日常のリハビリトレーニングを自分で完成し、身体機能を速やかに回復させるためにも、外骨格支援装置が不可欠である。 Currently, when the caregiver transports the elderly and patients, we provide physical support to them, ensure the safety of both sides, greatly reduce the physical labor intensity of the caregiver, and make it easier and more efficient for the caregiver. There is a social demand for the development of exoskeleton support devices that can work. In addition, for elderly people with degenerated muscle function, exoskeleton support devices can contribute to the performance of self-service in daily life. In addition, for patients with arm injuries, exoskeleton support devices are essential to complete routine rehabilitation training on their own and to quickly restore physical function.

外骨格リハビリ支援装置とは、センシング、制御、情報取得、モバイルコンピューティングなどの技術を統合し、装着者の制御下で一定の機能やタスクを遂行させることができる典型的なマンマシン一体化システムである。従来の外骨格の多くは、従来のモータ、油圧シリンダ、空気圧シリンダなどを採用して駆動されるが、このような従来の駆動方式は、高コスト、低電力対質量比、油漏れし易く、低順応性などの不具合を有して、外骨格製品全体の重量が大きく、軽便性、柔軟性の要件を満たさないほか、高価で、幅広い使用に適合しない。 An exoskeleton rehabilitation support device is a typical man-machine integrated system that integrates technologies such as sensing, control, information acquisition, and mobile computing, and can perform certain functions and tasks under the control of the wearer. Is. Most of the conventional exoskeletons are driven by adopting conventional motors, hydraulic cylinders, pneumatic cylinders, etc., but such conventional drive methods have high cost, low power to mass ratio, and easy oil leakage. Due to defects such as poor adaptability , the weight of the entire exoskeleton product is heavy, it does not meet the requirements for convenience and flexibility, and it is expensive and not suitable for a wide range of uses.

本開示は、上記の問題点に鑑みてなされたものであり、構造が簡単、高安全性、及び高順応性などの利点を有する外骨格リハビリ支援装置を提供することを目的とする。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an exoskeleton rehabilitation support device having advantages such as a simple structure, high safety, and high adaptability .

上述した目的を達成するため、本開示に係る外骨格リハビリ支援装置は、背部横梁、長さ調節可能な背部支持板、及び背部支持板に取り付けられた肩部空気圧筋肉部材を含む背部構造と、腕部構造と、前記腕部構造を前記背部構造の上端に接続する肩関節組立体と、腰部構造とを備え、前記背部支持板は、上端が前記背部横梁に固定接続され、下端が前記腰部構造に固定接続され、前記肩関節組立体は、弧状の肩関節接続板、肩部牽引輪、肩部牽引ワイヤ、第1のヒンジ機構、及び第2のヒンジ機構を含み、前記肩関節接続板の一端は、前記第1のヒンジ機構によって前記腕部構造の上端に接続されて、肩関節の屈曲-伸展回転対を形成し、前記肩関節接続板の他端は、当該第2のヒンジ機構によって前記背部横梁に接続されて、肩関節の外転-内転回転対と内旋-外旋回転対を形成し、さらに前記肩部牽引輪は、前記腕部構造の上端に固定されており、前記肩部牽引ワイヤは、一端が前記肩部牽引輪に接続され、他端が前記肩部空気圧筋肉部材に接続される。 In order to achieve the above-mentioned object, the outer skeleton rehabilitation support device according to the present disclosure includes a back structure including a back cross beam, a length-adjustable back support plate, and a shoulder pneumatic muscle member attached to the back support plate. The back support plate comprises an arm structure, a shoulder assembly that connects the arm structure to the upper end of the back structure, and a waist structure, the upper end of which is fixedly connected to the back cross beam and the lower end of the waist. Fixedly connected to the structure, the shoulder assembly comprises an arcuate shoulder connection plate, a shoulder traction ring, a shoulder traction wire, a first hinge mechanism, and a second hinge mechanism, said shoulder connection plate. One end of the shoulder joint is connected to the upper end of the arm structure by the first hinge mechanism to form a flexion-extension rotation pair of the shoulder joint, and the other end of the shoulder joint connection plate is the second hinge mechanism. Connected to the dorsal cross beam to form an abduction-adduction rotation pair and an internal rotation-external rotation rotation pair of the shoulder joint, and the shoulder traction ring is fixed to the upper end of the arm structure. One end of the shoulder traction wire is connected to the shoulder traction ring, and the other end is connected to the shoulder pneumatic muscle member.

本開示の一実施例において、さらに、2つの大腿部構造及び股関節組立体を備え、前記2つの大腿部構造は、それぞれ前記股関節組立体によって前記腰部構造に接続され、前記腰部構造は、前記背部支持板の下端に固定接続された腰部横板、及び前記大腿部構造に取り付けられた腰部空気圧筋肉部材を含み、前記股関節組立体は、前記腰部横板に固定接続された腰部接続板、ヒンジ軸、及び前記腰部接続板に固定された第1の案内輪、大腿部構造に固定された第2の案内輪、及び腰部牽引ワイヤを含み、前記ヒンジ軸は、前記腰部接続板を前記大腿部構造に接続して股関節の屈曲-伸展回転対を形成し、前記腰部牽引ワイヤは、一端が第2の案内輪と第1の案内輪を通って延在して前記腰部接続板に固定され、他端が前記腰部空気圧筋肉部材に接続される。 In one embodiment of the present disclosure, further comprising two thigh structures and a hip assembly, the two thigh structures are each connected to the lumbar structure by the hip assembly, and the lumbar structure is: The hip joint assembly includes a lumbar lateral plate fixedly connected to the lower end of the back support plate and a lumbar pneumatic muscle member attached to the thigh structure, and the hip joint assembly is a lumbar connection plate fixedly connected to the lumbar lateral plate. , A hinge shaft, and a first guide ring fixed to the waist connection plate, a second guide ring fixed to the thigh structure, and a waist traction wire, wherein the hinge shaft attaches the waist connection plate. Connected to the thigh structure to form a hip flexion-extension rotation pair, the lumbar traction wire has one end extending through a second guide ring and a first guide ring to extend the lumbar connection plate. The other end is connected to the waist pneumatic muscle member.

本開示の一実施例において、前記大腿部構造は、前記腰部空気圧筋肉部材を取り付けるための腰部空気圧筋肉支持枠が設けられた大腿板と、大腿部ベルトを接続するためのベルト接続溝が設けられた大腿補強枠とを含む。 In one embodiment of the present disclosure, the thigh structure has a thigh plate provided with a lumbar pneumatic muscle support frame for attaching the lumbar pneumatic muscle member and a belt connecting groove for connecting the thigh belt. Includes a thigh reinforcement frame provided.

本開示の一実施例において、前記腕部構造は、2つであり、各々の前記腕部構造は、上腕組立体、肘関節部材、前腕組立体、手首関節部材、及び手部組立体を含み、前記上腕組立体の上端は前記第1のヒンジ機構によって前記肩関節接続板に接続され、前記上腕組立体の下端は前記肘関節部材によって前記前腕組立体に接続されて、肘関節の屈曲-伸展回転対を形成し、前記前腕組立体は前記手首関節部材によって前記手部組立体に接続されて、手首関節の屈曲-伸展回転対を形成する。 In one embodiment of the present disclosure , there are two arm structures, each of which includes an upper arm assembly, an elbow joint member, a forearm assembly, a wrist joint member, and a wrist assembly. The upper end of the upper arm assembly is connected to the shoulder joint connection plate by the first hinge mechanism, and the lower end of the upper arm assembly is connected to the forearm assembly by the elbow joint member to flex the elbow joint. The extension rotation pair is formed, and the forearm assembly is connected to the wrist assembly by the wrist joint member to form a flexion-extension rotation pair of the wrist joint.

本開示の一実施例において、各々の前記上腕組立体は、外側上腕板、内側上腕板、及びそれらを互いに固定接続する上腕補強枠を含み、各々の前記前腕組立体は、外側前腕板、内側前腕板、及びそれらを互いに固定接続する前腕補強枠を含み、前記手部組立体は、内側支持板、外側支持板、及びそれらを互いに固定接続する手部補強枠を含み、前記外側上腕板と前記内側上腕板には、いずれも第1の肘部空気圧筋肉支持枠が設けられ、前記外側前腕板と前記内側前腕板には、いずれも第2の肘部空気圧筋肉支持枠及び第1の手首部空気圧筋肉支持枠が設けられ、前記内側支持板と前記外側支持板には、いずれも第2の手首部空気圧筋肉支持枠が設けられ、前記第1の肘部空気圧筋肉支持枠と前記第2の肘部空気圧筋肉支持枠には、前記肘関節を枢動させるように連動するための肘部空気圧筋肉部材が取り付けられ、前記第1の手首部空気圧筋肉支持枠と前記第2の手首部空気圧筋肉支持枠には、前記手首関節を枢動させるように連動するための手首部空気圧筋肉部材が取り付けられる。 In one embodiment of the present disclosure, each said brachial assembly comprises an outer brachial plate, a medial brachial plate, and a brachial reinforcing frame that securely connects them to each other. The elbow assembly comprises a forearm plate and a forearm reinforcement frame for fixing them to each other, the hand assembly includes an inner support plate, an outer support plate, and a hand reinforcement frame for fixing them to each other, with the outer brachial plate. The medial brachial plate is provided with a first elbow pneumatic muscle support frame, and the lateral forearm plate and the medial forearm plate are both a second elbow pneumatic muscle support frame and a first wrist. A second wrist pneumatic muscle support frame is provided on both the inner support plate and the outer support plate, and the first elbow pneumatic muscle support frame and the second elbow support frame are provided. An elbow pneumatic muscle member for interlocking to pivot the elbow joint is attached to the elbow pneumatic muscle support frame, and the first wrist pneumatic muscle support frame and the second wrist pneumatic muscle pressure are attached. A wrist pneumatic muscle member for interlocking so as to pivot the wrist joint is attached to the muscle support frame.

本開示の一実施例において、さらに、上腕ベルト、前腕ベルト、及び手部ベルトを備え、前記外側上腕板と前記内側上腕板には、それぞれ前記上腕ベルトを接続するための上腕ベルト接続溝が設けられ、前記外側前腕板と前記内側前腕板には、それぞれ前記前腕ベルトを接続するための前腕ベルト接続溝が設けられ、前記内側支持板と前記外側支持板には、それぞれ前記手部ベルトを接続するための手部ベルト接続溝が設けられ、前記内側支持板と前記外側支持板には、さらに、それぞれ重量物の吊り下げに適した溝が設けられている。 In one embodiment of the present disclosure, the brachial belt, the forearm belt, and the hand belt are further provided, and the brachial plate and the brachial brachii plate are each provided with a brachial belt connecting groove for connecting the brachial belt. The outer forearm plate and the inner forearm plate are each provided with a forearm belt connecting groove for connecting the forearm belt, and the inner support plate and the outer support plate are connected to the hand belt, respectively. A hand belt connecting groove is provided for this purpose, and the inner support plate and the outer support plate are further provided with grooves suitable for suspending heavy objects.

本開示の一実施例において、前記背部横梁の両端には、それぞれ接続シュートが設けられており、前記第2のヒンジ機構は、ヒンジ軸とヒンジベースとを含み、前記ヒンジベースは、一端が円筒状であり、他端が前記肩関節接続板を受け入れるのに適した溝部を有するように構成され、前記溝部の両側壁には開孔が設けられており、前記肩関節接続板は、前記ヒンジ軸と前記開孔との嵌合によって前記ヒンジベースに接続されて、肩関節の外転-内転回転対を形成し、前記ヒンジベースの円筒状端部は、前記接続シュート内に回転可能に収納され、且つ位置決めボルトによって、前記ヒンジベースが前記接続シュート内で直線的に移動することを阻止するように位置決めされて、肩関節の内旋-外旋回転対を形成する。 In one embodiment of the present disclosure, connecting chute is provided at both ends of the back cross beam, the second hinge mechanism includes a hinge shaft and a hinge base, and the hinge base has a cylindrical end at one end. The other end is shaped so as to have a groove suitable for receiving the shoulder joint connection plate, and holes are provided on both side walls of the groove portion, and the shoulder joint connection plate is the hinge. The mating of the shaft and the perforation connects to the hinge base to form an abduction-adduction rotation pair of shoulder joints, the cylindrical end of the hinge base being rotatable into the connecting chute. It is retracted and positioned by a positioning bolt to prevent the hinge base from moving linearly within the connecting chute to form an internal-external rotation pair of shoulder joints.

本開示の一実施例において、前記外骨格リハビリ支援装置は、さらに、前記肩部牽引ワイヤを案内するための肩部牽引ワイヤ案内管をさらに備える。
本開示の一実施例において、前記背部横梁の両端には、それぞれ接続シュートが設けられており、前記第2のヒンジ機構は、ヒンジ軸とヒンジベースとを含み、前記ヒンジベースは、一端が円筒状であり、他端が前記肩関節接続板を受け入れるのに適した溝部を有するように構成され、前記溝部の両側壁には開孔が設けられており、前記肩関節接続板は、前記ヒンジ軸と前記開孔との嵌合によって前記ヒンジベースに接続されて、肩関節の外転-内転回転対を形成し;前記ヒンジベースの円筒状端部は、前記接続シュート内に回転可能に収納され、且つ位置決めボルトによって、前記ヒンジベースが前記接続シュート内で直線的に移動することを阻止するように位置決めされて、肩関節の内旋-外旋回転対を形成し、前記腰部接続板には、前記腰部牽引ワイヤを固定するための腰部牽引ワイヤ固定部材が設けられている。
In one embodiment of the present disclosure, the exoskeleton rehabilitation support device further comprises a shoulder traction wire guide tube for guiding the shoulder traction wire .
In one embodiment of the present disclosure, connecting chute is provided at both ends of the back cross beam, the second hinge mechanism includes a hinge shaft and a hinge base, and the hinge base has a cylindrical end at one end. The other end is shaped so as to have a groove suitable for receiving the shoulder joint connection plate, and holes are provided on both side walls of the groove portion, and the shoulder joint connection plate is the hinge. The fitting of the shaft and the perforation is connected to the hinge base to form an abduction-adduction rotation pair of the shoulder joint; the cylindrical end of the hinge base is rotatable into the connecting chute. It is retracted and positioned by a positioning bolt to prevent the hinge base from moving linearly within the connecting chute to form an internal-external rotation pair of shoulder joints and the lumbar connection plate. Is provided with a waist traction wire fixing member for fixing the waist traction wire.

好ましくは、前記背部構造は、2つの背部支持板を含み、各々の前記背部支持板は、相対的にスライド可能な第1のセクションと第2のセクションとを有し、前記背部支持板の長さ、ひいては腰部の位置が調節可能とし、また、前記第1のセクションと前記第2のセクションには、それぞれ位置決めスライド溝が設けられ、前記第1のセクションと前記第2のセクションは、前記位置決めスライド溝とロックボルトとの嵌合によって固定可能である。 Preferably, the back structure comprises two back support plates, each of which has a relatively slidable first section and a second section, the length of the back support plate. The position of the lumbar region can be adjusted, and the first section and the second section are provided with positioning slide grooves, respectively, and the first section and the second section are positioned. It can be fixed by fitting the slide groove and the lock bolt.

本開示は、さらに、制御システム及び上述した外骨格リハビリ支援装置を具備する外骨格リハビリ支援システムを提供する。前記制御システムは、ガスジェネレータと、コントローラと、空気圧減圧弁と、肩部空気圧筋肉部材、腰部空気圧筋肉部材、肘部空気圧筋肉部材および手首部空気圧筋肉部材にそれぞれ接続された電磁弁群と、前記コントローラと前記電磁弁群との間に配置された駆動回路基板とを含み、前記コントローラは、前記ガスジェネレータからのガスを減圧するように前記空気圧減圧弁を制御し、前記電磁弁群の信号入力端は、前記コントローラからの予め設定された制御指令を受信するための前記駆動回路基板に接続される。 The present disclosure further provides an exoskeleton rehabilitation support system including a control system and the above-mentioned exoskeleton rehabilitation support device. The control system includes a gas generator, a controller, a pneumatic pressure reducing valve, a solenoid valve group connected to a shoulder pneumatic muscle member, a waist pneumatic muscle member, an elbow pneumatic muscle member, and a wrist pneumatic muscle member, respectively, and the above-mentioned solenoid valve group. A drive circuit board arranged between the controller and the solenoid valve group is included, and the controller controls the pneumatic pressure reducing valve so as to reduce the gas from the gas generator, and a signal input of the solenoid valve group. The ends are connected to the drive circuit board for receiving preset control commands from the controller.

本開示は、さらに、上述した外骨格リハビリ支援装置に用いる制御方法を提供する。前記制御方法は、コントローラにより、ガスジェネレータからのガスを減圧するように空気圧減圧弁を制御するステップと、コントローラからの制御指令に基づいて、肩部空気圧筋肉部材、腰部空気圧筋肉部材、肘部空気圧筋肉部材及び手首部空気圧筋肉部材にそれぞれ接続された電磁弁群を制御して、前記肩部空気圧筋肉部材、前記腰部空気圧筋肉部材、前記肘部空気圧筋肉部材及び前記手首部空気圧筋肉部材に対する充気及び放気を制御するステップと、を有する。 The present disclosure further provides a control method used for the above-mentioned exoskeleton rehabilitation support device. The control method includes a step of controlling the pneumatic pressure reducing valve so as to depressurize the gas from the gas generator by the controller, and a shoulder pneumatic muscle member, a waist pneumatic muscle member, and an elbow pneumatic pressure based on a control command from the controller. By controlling the solenoid valve group connected to the muscle member and the wrist pneumatic muscle member, respectively, the air pressure to the shoulder pneumatic muscle member, the lumbar pneumatic muscle member, the elbow pneumatic muscle member and the wrist pneumatic muscle member is filled. And with a step to control the air release.

本開示に係る外骨格リハビリ支援装置は、合計12の自由度を有し、その内、肩関節の両方は、それぞれ屈曲-伸展、外転-内転、内旋-外旋との3つ自由度を有し、肘関節と手首関節は、それぞれ1つの屈曲-伸展自由度を有し、背部構造は、腰部位置を調節するように上下にスライド可能であり、腰部構造は、2つの同じ構造の股関節を含み、いずれも1つの回転自由度を有するため、着用者の前屈み及び直立動作に追従する外骨格リハビリ支援スーツを実現することができる。本開示は、構造が簡単で、電力密度比が高く、安全性に優れ、順応性が高いなどの利点を有し、着用者が重量物を持ち上げる際の身体機能の力を大幅に向上させることができ、リハビリ医療、ホームサービス、災害救援、及び資材運搬などの分野に広く適用することができる。 The external skeletal rehabilitation support device according to the present disclosure has a total of 12 degrees of freedom, and both of the shoulder joints have three degrees of freedom: flexion-extension, abduction-adduction, and internal rotation-external rotation, respectively. The elbow and wrist joints each have one degree of freedom of flexion-extension, the dorsal structure can slide up and down to adjust the lumbar position, and the lumbar structure has two identical structures. Since each of the hip joints has one degree of freedom of rotation, it is possible to realize an ectoskeletal rehabilitation support suit that follows the wearer's forward bending and upright movements. The present disclosure has advantages such as simple structure, high power density ratio, excellent safety, and high adaptability , and greatly improves the power of physical function when the wearer lifts a heavy object. It can be widely applied to fields such as rehabilitation medicine, home service, disaster relief, and material transportation.

以下、図面を参照しながら、本開示の実施例を説明する。 Hereinafter, examples of the present disclosure will be described with reference to the drawings.

本開示の一実施例に係る外骨格リハビリ支援装置の全体構造を示す図である。It is a figure which shows the whole structure of the exoskeleton rehabilitation support apparatus which concerns on one Example of this disclosure. 図1の外骨格リハビリ支援装置の上部構造を示す図である。It is a figure which shows the superstructure of the exoskeleton rehabilitation support device of FIG. 図1の外骨格リハビリ支援装置の背部構造を示す図である。It is a figure which shows the back structure of the exoskeleton rehabilitation support device of FIG. 図1の外骨格リハビリ支援装置の腰部構造及び大腿部構造を示す図である。It is a figure which shows the waist structure and the thigh structure of the exoskeleton rehabilitation support device of FIG. 図1の外骨格リハビリ支援装置の大腿部構造を示す図である。It is a figure which shows the thigh structure of the exoskeleton rehabilitation support device of FIG. 図1の外骨格リハビリ支援装置の外側上腕の部分構造を示す図である。It is a figure which shows the partial structure of the outer upper arm of the exoskeleton rehabilitation support device of FIG. 図1の外骨格リハビリ支援装置の背部横梁の構造を示す図である。It is a figure which shows the structure of the back cross beam of the exoskeleton rehabilitation support device of FIG. 図1の外骨格リハビリ支援装置の背部横梁の構造を示す図である。It is a figure which shows the structure of the back cross beam of the exoskeleton rehabilitation support device of FIG. 本開示の肩関節組立体のヒンジベースの構造を示す図である。It is a figure which shows the structure of the hinge base of the shoulder joint assembly of this disclosure. 本開示の肩関節組立体の肩部牽引輪の構造を示す図である。It is a figure which shows the structure of the shoulder traction ring of the shoulder joint assembly of this disclosure. 空気圧筋肉部材の構造を示す図である。It is a figure which shows the structure of a pneumatic muscle member. 本開示の空気圧筋肉制御システムの原理図である。It is a principle diagram of the pneumatic muscle control system of this disclosure.

以下、本開示の例示的な実施例を詳細に説明する。以下に記載され、図面に示される例示的な実施例は、本開示の原理を教示して、当業者が若干の異なる環境、及び若干の異なる用途において、本開示を実施及び適用可能にすることを意図している。 Hereinafter, exemplary embodiments of the present disclosure will be described in detail. The exemplary embodiments described below and shown in the drawings teach the principles of the present disclosure to allow one of ordinary skill in the art to implement and apply the present disclosure in slightly different environments and in slightly different applications. Is intended.

本開示を説明する前に、空気圧筋肉部材の技術的原理を説明する。図10は、本開示に用いる空気圧筋肉部材の概略構造図を示している。空気圧筋肉部材とは、ゴム管Dを主体とする新型アクチュエータであり、ゴム管の外側にはPET製の編組メッシュCが被せられている。ゴム管Dの両端は、それぞれ、その両端に位置する塞栓に套設され、一端の塞栓Fには通気孔が設けられておらず、ゴム管を完全に塞いでガスの漏れを防止し、他端の塞栓E内部には、空気圧筋肉部材の内部を充気又は放気するための通気孔が設けられている。また、接着テープを両端の塞栓E、Fの内凹部に2~3ターン巻き付けて、ゴム管と編組メッシュとを塞栓の内凹部で緊密に接着させることを主として意図する。編組メッシュCの高圧下での外れを防止するように、両端の塞栓の内凹部の縁辺に銅線Aを1ターン巻き付け、そして編組メッシュCを折り返し、銅線を編組メッシュCの端部の折り返しに配置させ、折り返した編組メッシュが塞栓の尾部の位置まで延伸し、フープBで塞栓E、Fの内凹部をしっかりと締め付け、空気圧筋肉部材のガス漏れを防止する一方、内部の高圧状態で、空気圧筋肉部材の崩壊を防止する。塞栓EとFの設計は非常に柔軟であり、接続方法の必要に応じて、異なる接続形式を適宜採用可能である。 Before explaining the present disclosure, the technical principle of the pneumatic muscle member will be described. FIG. 10 shows a schematic structural diagram of the pneumatic muscle member used in the present disclosure. The pneumatic muscle member is a new type actuator mainly composed of a rubber tube D, and a braided mesh C made of PET is covered on the outside of the rubber tube. Both ends of the rubber tube D are sewn into the embolisms located at both ends thereof, and the embolus F at one end is not provided with a ventilation hole, and the rubber tube is completely closed to prevent gas leakage. Inside the embolus E at the end, a ventilation hole H for inflating or releasing the inside of the pneumatic muscle member is provided. Further, it is mainly intended that the adhesive tape is wrapped around the inner recesses of the embolus E and F at both ends for 2 to 3 turns, and the rubber tube and the braided mesh are tightly adhered to each other in the inner recess of the embolus. To prevent the braided mesh C from coming off under high pressure, wrap the copper wire A around the edges of the inner recesses of the embolus at both ends for one turn, then fold the braided mesh C and fold the copper wire around the ends of the braided mesh C. The folded braided mesh extends to the position of the tail of the embolus, and the hoop B firmly tightens the inner recesses of the embolisms E and F to prevent gas leakage from the pneumatic muscle members, while under high pressure inside. Prevents the collapse of pneumatic muscle members. The design of the embolus E and F is very flexible, and different connection types can be appropriately adopted depending on the need of the connection method.

ゴム管Dは、一定の靱性と弾性を有し、充気・放気状態で膨張・収縮可能程度の靱性と弾性を有し、耐疲労性に優れることが要求され、編組メッシュCは、非常に高い非延性を有し、強度と靭性に優れるが、引張変形がないことが要求される。塞栓EとFの材質は、緻密性が非常に高い硬性非金属材料であってもよいし、高強度で低密度の金属材料であってもよく、フープBは、通常に使用されるステンレス製のフープ材であってもよいし、自力設計の強度の高いアルミニウム合金部材であってもよい。 The rubber tube D is required to have a certain degree of toughness and elasticity, toughness and elasticity to the extent that it can expand and contract in an air-filled / degassed state, and is required to have excellent fatigue resistance. It has high non-ductility and is excellent in strength and toughness, but it is required that there is no tensile deformation. The material of the embeddings E and F may be a hard non-metal material having a very high density, or a high-strength and low-density metal material, and the hoop B is made of a commonly used stainless steel. It may be a hoop material of the above, or it may be a high-strength aluminum alloy member designed by itself.

空気圧筋肉部材は、生体筋肉の収縮を模倣できる新型アクチュエータであり、柔軟性が高く、軽量で、使いやすく、応答速度が速く、低コストなどの利点があるため、種々の生体模倣機械などの駆動分野に幅広く適用されている。 The pneumatic muscle member is a new type actuator that can imitate the contraction of biomimetics, and has advantages such as high flexibility, light weight, ease of use, fast response speed, and low cost, so it can drive various biomimetic machines. Widely applied in the field.

従来のモータ、油圧シリンダ、空気圧シリンダ等の剛性アクチュエータに比べて、空気圧筋肉部材は、高電力対質量比、優れた順応性と安全性、軽量化、柔軟性などの利点を有するほか、材料が入手し易く、製造し易く、低コストである。従って、空気圧筋肉部材で外骨格リハビリ支援装置を駆動すると、比較的大きな駆動力を保証した上で、軽便性、順応性、安全性が良好で、さらにコストも大幅に削減でき、幅広い使用に適する。 Compared to rigid actuators such as conventional motors, hydraulic cylinders, and pneumatic cylinders, pneumatic muscle members have advantages such as high power to mass ratio, excellent adaptability and safety, weight reduction, flexibility, and materials. It is easy to obtain, easy to manufacture, and low cost. Therefore, when the exoskeleton rehabilitation support device is driven by a pneumatic muscle member, it is suitable for a wide range of uses because it guarantees a relatively large driving force, has good convenience, adaptability , and safety, and can significantly reduce costs. ..

空気圧筋肉部材は、内部を充気する過程において、径方向に膨張すると共に、軸方向に収縮するので、その軸方向収縮で生じる軸方向の駆動力によって外部負荷を駆動し得る。また、空気圧筋肉部材は、内部圧力の増大に伴い剛性が大きくなり、内部圧力の低下に伴い剛性が小さくなる。このような空気圧筋肉部材の特性から、新型のリニアアクチュエータとして利用可能である。従来の油圧シリンダ、空気圧シリンダ、モータ等のアクチュエータに比べて、非常に軽量化され、駆動ストロークの必要に応じて、空気圧筋肉部材自体の収縮率に合わせて空気圧筋肉部材の長さを設計することができ、その結果、オーバーストロークによる危険を回避することができ、コストが大分安くなり、そして最も重要なのは、空気圧筋肉部材が優れた順応性と安全性を有し、リハビリ医療分野で広く適用することができる。 Since the pneumatic muscle member expands in the radial direction and contracts in the axial direction in the process of filling the inside, the external load can be driven by the axial driving force generated by the axial contraction. Further, the rigidity of the pneumatic muscle member increases as the internal pressure increases, and decreases as the internal pressure decreases. Due to the characteristics of such pneumatic muscle members, it can be used as a new type of linear actuator. It is much lighter than conventional actuators such as hydraulic cylinders, pneumatic cylinders, and motors, and the length of the pneumatic muscle member should be designed according to the contraction rate of the pneumatic muscle member itself according to the need for the drive stroke. As a result, the danger of overstroke can be avoided, the cost is much cheaper, and most importantly, the pneumatic muscle member has excellent adaptability and safety, and is widely applied in the rehabilitation medical field. be able to.

以下、本開示の一実施例に係る外骨格リハビリ支援装置に合わせて、本開示を重点的に説明する。 Hereinafter, the present disclosure will be mainly described in accordance with the exoskeleton rehabilitation support device according to the embodiment of the present disclosure.

図1に示すように、一実施例において、外骨格リハビリ支援装置は、例えば、2つの腕部構造1、背部構造2、腰部構造3、及び2つの同じ大腿部構造4を備える。各々の腕部構造1は肩関節組立体によって背部構造2に接続され、且つ肘関節と手首関節を有する。各々の腕部構造1は5つの自由度を有する。各々の肩関節組立体は屈曲-伸展、外転-内転、内旋-外旋との3つの自由度を有する。肘関節と手首関節は、それぞれ屈曲-伸展との1つの自由度を有する。そして、各々の大腿部構造4は、股関節組立体によって腰部構造3に接続され、屈曲-伸展との1つの自由度を有する。従って、外骨格リハビリ支援装置は全体として、12の自由度を有する。 As shown in FIG. 1, in one embodiment, the exoskeleton rehabilitation support device comprises, for example, two arm structures 1, a back structure 2, a lumbar structure 3, and two same thigh structures 4. Each arm structure 1 is connected to the back structure 2 by a shoulder joint assembly and has an elbow joint and a wrist joint. Each arm structure 1 has five degrees of freedom. Each shoulder assembly has three degrees of freedom: flexion-extension, abduction-adduction, and internal rotation-external rotation. The elbow and wrist joints each have one degree of freedom in flexion-extension. Each thigh structure 4 is then connected to the lumbar structure 3 by a hip assembly and has one degree of freedom from flexion-extension. Therefore, the exoskeleton rehabilitation support device has 12 degrees of freedom as a whole.

図2及び図3は、それぞれ上述した実施例の外骨格リハビリ支援装置の上部構造及び背部構造を示す図である。図から分かるように、各々の腕部構造1は、上腕組立体11、肘関節部材12、前腕組立体13、手首関節部材14及び手部組立体15を含む。背部構造2は、背部横梁21及び2つの背部支持板22を含む。背部横梁21には、2つの第1の肩部空気圧筋肉支持枠211が設けられている。各々の背部支持板22は、一端が背部横梁21に固定接続され、他端には1つの第2の肩部空気圧筋肉支持枠220が設けられている。各々の背部支持板22には、一端が第1の肩部空気圧筋肉支持枠211に固定接続され、他端が第2の肩部空気圧筋肉支持枠220に固定接続され、肩関節を枢動させるように連動するための1つの肩部空気圧筋肉部材5が取り付けられている。当業者であれば、ここでの背部支持板及び肩部空気圧筋肉部材の数は、単なる例示であると理解されるだろう。必要に応じて、他の適切な数は、設定可能である。 2 and 3 are diagrams showing the superstructure and the back structure of the exoskeleton rehabilitation support device of the above-described embodiment, respectively. As can be seen from FIG. 2 , each arm structure 1 includes an upper arm assembly 11, an elbow joint member 12, a forearm assembly 13, a wrist joint member 14, and a hand assembly 15. The back structure 2 includes a back cross beam 21 and two back support plates 22. The back cross beam 21 is provided with two first shoulder pneumatic muscle support frames 211. One end of each back support plate 22 is fixedly connected to the back cross beam 21, and one second shoulder pneumatic muscle support frame 220 is provided at the other end. One end of each back support plate 22 is fixedly connected to the first shoulder pneumatic muscle support frame 211, and the other end is fixedly connected to the second shoulder pneumatic muscle support frame 220 to pivot the shoulder joint. One shoulder pneumatic muscle member 5 for interlocking is attached. Those skilled in the art will appreciate that the number of back support plates and shoulder pneumatic muscle members here is merely exemplary. Other suitable numbers can be set as needed.

好ましくは、背部支持板22の長さは、腰部構造の位置を調節するように調節可能である。より具体的には、図3に示すように、各々の背部支持板22は、相対的にスライド可能な第1のセクション221と第2のセクション222とを有する。例えば、第1のセクションは第2のセクション内にスライド可能に収容され、且つ、第1のセクション221と第2のセクション222には、いずれも位置決めスライド溝が設けられる。第1のセクションと第2のセクションとは、相対的なスライドを防止するため、位置決めスライド溝とロックボルトとの嵌合によってロックされ得る。腰部構造の位置を調節する必要がある時、ロックボルトを解除し、第1のセクションと第2のセクションとを相対的に所望の位置にスライドさせて背部支持板の長さを調節することができる。 Preferably, the length of the back support plate 22 is adjustable to adjust the position of the lumbar structure. More specifically, as shown in FIG. 3, each back support plate 22 has a relatively slidable first section 221 and a second section 222. For example, the first section is slidably housed within the second section, and both the first section 221 and the second section 222 are provided with positioning slide grooves. The first section and the second section may be locked by fitting the positioning slide groove and the lock bolt to prevent relative sliding. When it is necessary to adjust the position of the lumbar structure, the lock bolt can be released and the first section and the second section can be slid relatively to the desired positions to adjust the length of the back support plate. can.

図7aおよび図7bは、それぞれ、異なる角度から見た背部横梁の構造を示す図である。図から分かるように、背部横梁21には、背部ベルト接続溝212、背部支持板位置決め孔213、接続シュート214及び位置決め溝215がさらに設けられている。前記背部ベルト接続溝212は、着用者の背中と接続するための背部ベルト(図示せず)との接続に用いられる。 7a and 7b are views showing the structure of the back cross beam as viewed from different angles, respectively. As can be seen from the figure, the back cross beam 21 is further provided with a back belt connecting groove 212, a back support plate positioning hole 213, a connecting chute 214, and a positioning groove 215. The back belt connecting groove 212 is used for connecting to a back belt (not shown) for connecting to the wearer's back.

さらに、より具体的に、図6に示すように、右腕を例に挙げると、各々の上腕組立体11は、外側上腕板111、内側上腕板112、及びそれらを互いに固定接続するための上腕補強枠113を含み、且つ、外側上腕板111及び内側上腕板112には、上腕ベルト(図示せず)を接続して着用者の人体の上腕に接続するための上腕ベルト接続溝114が設けられている。さらに、外側上腕板111と内側上腕板112には、いずれも第1の肘部空気圧筋肉支持枠115が設けられている。 Further, more specifically, as shown in FIG. 6, taking the right arm as an example, each brachial assembly 11 has a lateral brachial plate 111, a medial brachial plate 112, and an upper arm reinforcement for fixing them to each other. The outer brachial plate 111 and the inner brachial plate 112 are provided with a brachial belt connecting groove 114 for connecting the brachial belt (not shown) and connecting to the upper arm of the wearer's body, including the frame 113. There is. Further, both the lateral brachial plate 111 and the medial brachial plate 112 are provided with a first elbow pneumatic muscle support frame 115.

さらに、各々の前腕組立体13は、外側前腕板131、内側前腕板132、及びそれらを互いに固定接続するための前腕補強枠133を含み、且つ外側前腕板131及び内側前腕板132には、前腕ベルト(図示せず)と接続して着用者の人体の前腕と接続するための前腕ベルト接続溝134が設けられている。さらに、外側前腕板131と内側前腕板132には、いずれも第2の肘部空気圧筋肉支持枠135及び第1の手首部空気圧筋肉支持枠136が設けられている。 Further, each forearm assembly 13 includes a lateral forearm plate 131, a medial forearm plate 132, and a forearm reinforcing frame 133 for fixing them to each other, and the lateral forearm plate 131 and the medial forearm plate 132 include a forearm. A forearm belt connecting groove 134 is provided for connecting to a belt (not shown) and connecting to the forearm of the wearer's human body. Further, the outer forearm plate 131 and the inner forearm plate 132 are both provided with a second elbow pneumatic muscle support frame 135 and a first wrist pneumatic muscle support frame 136.

さらに、各々の手部組立体15は、外側支持板151、内側支持板152、及びそれらを互いに固定接続する手首部補強枠153を含み、且つ外側支持板151及び内側支持板152には、手首部ベルト(図示せず)と接続して着用者の人体の手首部と接続するための手首部ベルト接続溝154が設けられている。また、内側支持板と外側支持板には、いずれも第2の手首部空気圧筋肉支持枠155と、重量物の吊り下げに適した溝156とが設けられている。 Further, each hand assembly 15 includes an outer support plate 151, an inner support plate 152, and a wrist reinforcement frame 153 for fixing them to each other, and the outer support plate 151 and the inner support plate 152 include a wrist. A wrist belt connecting groove 154 is provided for connecting to a portion belt (not shown) and connecting to the wrist portion of the wearer's human body. Further, both the inner support plate and the outer support plate are provided with a second wrist pneumatic muscle support frame 155 and a groove 156 suitable for suspending a heavy object.

ここで、肘部空気圧筋肉部材6は、肘関節を枢動させるように連動するためのものであり、一端が第1の肘部空気圧筋肉支持枠115に固定接続され、他端が第2の肘部空気圧筋肉支持枠135に固定接続されている。手首部空気圧筋肉部材7は、手首関節を枢動させるように連動するためのものであり、一端が第1の手首部空気圧筋肉支持枠136に固定接続され、他端が第2の手首部空気圧筋肉支持枠155に固定接続されている。 Here, the elbow pneumatic muscle member 6 is for interlocking so as to pivot the elbow joint, one end is fixedly connected to the first elbow pneumatic muscle support frame 115, and the other end is the second. It is fixedly connected to the elbow pneumatic muscle support frame 135. The wrist pneumatic muscle member 7 is for interlocking so as to pivot the wrist joint, one end is fixedly connected to the first wrist pneumatic muscle support frame 136, and the other end is the second wrist pneumatic pressure. It is fixedly connected to the muscle support frame 155.

本実施例において、肩関節組立体は、弧状の肩関節接続板8、肩部牽引輪9、肩部牽引ワイヤ10、第1のヒンジ機構及び第2のヒンジ機構を含む。ここで、第1のヒンジ機構は、ヒンジ軸81であり、第2のヒンジ機構は、ヒンジ軸82と、背部横梁21の接続シュート214に回動可能に収容されるヒンジベース83(図8参照)とを含み、前記ヒンジベースは、一端が円筒状であり、他端が前記肩関節接続板8を受け入れるのに適した溝部84を有するように構成され、前記溝部の両側壁には、開孔85が設けられている。前記肩関節接続板8の一端は、ヒンジ軸82と開孔85との嵌合によって前記ヒンジベース83に枢動接続されて、肩関節の外転-内転回転対を形成し、前記肩関節接続板8の他端は、ヒンジ軸81によって上腕組立体11の外側上腕板111に枢動接続されて、肩関節の屈曲-伸展回転対を形成する。 In this embodiment, the shoulder joint assembly includes an arcuate shoulder joint connection plate 8, a shoulder traction ring 9, a shoulder traction wire 10, a first hinge mechanism and a second hinge mechanism. Here, the first hinge mechanism is the hinge shaft 81, and the second hinge mechanism is the hinge base 83 rotatably housed in the hinge shaft 82 and the connecting chute 214 of the back cross beam 21 (see FIG. 8). The hinge base is configured to have a cylindrical end at one end and a groove 84 suitable for receiving the shoulder joint connection plate 8 at the other end, and open on both side walls of the groove. A hole 85 is provided. One end of the shoulder joint connecting plate 8 is pivotally connected to the hinge base 83 by fitting the hinge shaft 82 and the opening 85 to form an abduction-adduction rotation pair of the shoulder joint, and the shoulder joint is formed. The other end of the connecting plate 8 is pivotally connected to the outer humer plate 111 of the humer assembly 11 by a hinge shaft 81 to form a flexion-extension rotation pair of the shoulder joint.

好ましくは、背部横梁21に接続シュート214を設け、必要に応じて、接続シュート内でヒンジベース83の位置を左右移動させることにより肩部の幅を調節することができる。ヒンジベースの位置を固定する必要がある場合、位置決めボルトと位置決め溝215との嵌合により、ヒンジベース83を接続シュート214内で回転可能だが直線移動不能に位置決めさせて、肩部の幅を固定する。さらに、ヒンジベース83は接続シュート214内で回転可能だが前記接続シュート214に沿って直線移動不能であるため、肩関節の内旋-外旋回転対を形成するようになる。 Preferably, the connecting chute 214 is provided on the back cross beam 21, and the width of the shoulder portion can be adjusted by moving the position of the hinge base 83 left and right in the connecting chute, if necessary. When it is necessary to fix the position of the hinge base, the hinge base 83 is positioned in the connecting chute 214 so that it can rotate but cannot move linearly by fitting the positioning bolt and the positioning groove 215, and the width of the shoulder is fixed. do. Further, since the hinge base 83 can rotate in the connection chute 214 but cannot move linearly along the connection chute 214, it forms an internal rotation-external rotation rotation pair of the shoulder joint.

図9に示すように、肩部牽引輪9は、中心に接続軸90を一体に有し、さらに肩部牽引輪9の外周面には、固定孔91が設けられている。肩部牽引輪9は、接続軸90と外側上腕板111の接続孔との嵌合によって、前記外側上腕板に固定されており、肩部牽引ワイヤ10は、一端が固定孔91によって前記肩部牽引輪9に接続され、他端が肩部空気圧筋肉部材5に接続されている。図3に示すように、肩部牽引ワイヤ10を案内するための肩部牽引ワイヤ案内管101がさらに設けられることが好ましく、肩部牽引ワイヤ10は一部が肩部牽引輪に巻き付けられても良い。本実施例において、肩部牽引ワイヤ案内管101は、自転車のブレーキワイヤのスリーブと同様であり、一定の剛性と一定の可撓性とを有し、良好に案内できるだけでなく、肩関節の動きを阻害することがない。人体の腕が自然に垂れ下がる時、肩部空気圧筋肉部材5は張力のない状態に保たれ、肩部空気圧筋肉部材5が充気されて収縮すると、肩部牽引ワイヤ10が肩部牽引輪9を連動回転させ、上腕11を枢動させるように連動する。 As shown in FIG. 9, the shoulder traction ring 9 has a connection shaft 90 integrally at the center, and a fixing hole 91 is provided on the outer peripheral surface of the shoulder traction ring 9. The shoulder traction ring 9 is fixed to the outer brachii plate by fitting the connection shaft 90 and the connection hole of the outer brachii plate 111, and the shoulder traction wire 10 has one end of the shoulder portion by the fixing hole 91. It is connected to the traction wheel 9 and the other end is connected to the shoulder pneumatic muscle member 5. As shown in FIG. 3, it is preferable that a shoulder traction wire guide tube 101 for guiding the shoulder traction wire 10 is further provided, and even if a part of the shoulder traction wire 10 is wound around the shoulder traction ring. good. In this embodiment, the shoulder tow wire guide tube 101 is similar to the sleeve of a bicycle brake wire, has a certain rigidity and a certain flexibility, and can not only guide well but also move the shoulder joint. Does not interfere with. When the human arm naturally hangs down, the shoulder pneumatic muscle member 5 is kept in a tension-free state, and when the shoulder pneumatic muscle member 5 is filled and contracted, the shoulder traction wire 10 causes the shoulder traction ring 9 to hang. It is interlocked and rotated so as to pivot the upper arm 11.

図4及び図5に示すように、腰部構造3は、背部支持板22の下端に固定接続された腰部横板31と、腰部空気圧筋肉部材32とを含む。大腿部構造4は、腰部空気圧筋肉部材32を取り付けるための腰部空気圧筋肉支持枠43が設けられた大腿板41と、大腿部ベルト(図示せず)と接続して着用者の大腿と接続するためのベルト接続溝44が設けられた大腿補強枠42とを含む。股関節組立体は、腰部横板31に固定接続された腰部接続板38、ヒンジ軸34、腰部接続板38に固定された第1の案内輪35、大腿部構造4に固定された第2の案内輪36、及び腰部牽引ワイヤ37を含み、前記ヒンジ軸34は、前記腰部接続板38を大腿板41に枢動接続させて股関節の屈曲-伸展回転対を形成する。腰部接続板38には、さらに腰部牽引ワイヤ固定部材39が設けられており、腰部牽引ワイヤ37は、一端が第2の案内輪36及び第1の案内輪35に亘るように延在して、腰部接続板38の腰部牽引ワイヤ固定部材39に固定され、他端が腰部空気圧筋肉部材32に接続されている。 As shown in FIGS. 4 and 5, the lumbar structure 3 includes a lumbar lateral plate 31 fixedly connected to the lower end of the back support plate 22 and a lumbar pneumatic muscle member 32. The thigh structure 4 is connected to a thigh plate 41 provided with a lumbar pneumatic muscle support frame 43 for attaching a lumbar pneumatic muscle member 32, and a thigh belt (not shown) to be connected to the wearer's thigh. Includes a thigh reinforcement frame 42 provided with a belt connecting groove 44 for the purpose. The hip joint assembly includes a lumbar connection plate 38 fixedly connected to the lumbar lateral plate 31, a hinge shaft 34, a first guide ring 35 fixed to the lumbar connection plate 38 , and a second thigh structure 4. The hinge shaft 34 includes a guide ring 36 and a lumbar traction wire 37, and the lumbar connecting plate 38 is pivotally connected to the thigh plate 41 to form a flexion-extension rotation pair of the hip joint. The lumbar connection plate 38 is further provided with a lumbar traction wire fixing member 39, and the lumbar traction wire 37 extends so that one end extends over the second guide ring 36 and the first guide ring 35. It is fixed to the lumbar traction wire fixing member 39 of the lumbar connection plate 38, and the other end is connected to the lumbar pneumatic muscle member 32.

2つの同じ構造の股関節は、いずれも1つの回転自由度を有し、外骨格リハビリ補助スーツが着用者の前屈み及び直立運動に追従することを可能にする。着用者の腰部が直立する時、腰部空気圧筋肉部材32が最短位置まで収縮し、腰部牽引ワイヤ37をプリテンションを持たせて取り付ける。着用者の腰部が屈む過程中に、腰部空気圧筋肉部材32を放気して、股関節を人体の腰部と共に回転させて屈み動作を実現し、人体が直立する過程中に、腰部空気圧筋肉部材32を充気して股関節を回転連動させ、人体の腰部に対する支援を完成させる。 The two hip joints of the same structure each have one degree of freedom of rotation, allowing the exoskeleton rehabilitation aid suit to follow the wearer's forward bending and upright movements. When the wearer's waist is upright, the waist pneumatic muscle member 32 contracts to the shortest position, and the waist traction wire 37 is attached with pretension. During the process of bending the lumbar region of the wearer, the lumbar pneumatic muscle member 32 is released, and the hip joint is rotated together with the lumbar region of the human body to realize the bending motion. It is filled with air and the hip joints are rotated and interlocked to complete the support for the lumbar region of the human body.

図1に示すように、本開示の外骨格リハビリ支援装置は、バイオニクスの原理に基づいて設計された左右対称の構造であり、便宜上、現在は、右半部を例に外骨格リハビリ支援装置に適用する空気圧筋肉部材制御システムを説明する。 As shown in FIG. 1, the exoskeleton rehabilitation support device of the present disclosure has a symmetrical structure designed based on the principle of bionics, and for convenience, the exoskeleton rehabilitation support device is currently used by taking the right half as an example. The pneumatic muscle member control system applied to the above will be described.

図11に示すように、空気圧筋肉制御システムは、ガスジェネレータ1a、コントローラ1b、空気圧減圧弁1c、左半部分岐路L、右半部分岐路R、及び駆動回路基板1eを有する。ガスジェネレータ1aは、空気圧減圧弁1cを介して左半部分岐路Lと右半部分岐路Rにそれぞれ接続され、コントローラ1bは、空気圧減圧弁1cと駆動回路基板1eにそれぞれ接続され、駆動回路基板1eも、左半部分岐路Lと右半部分岐路Rにそれぞれ接続されている。ここで、左半部分岐路と右半部分岐路は同じ構造であるため、右半部分岐路のみについて説明する。右半部分岐路は、電磁弁群1d、及びそれぞれ前記電磁弁群に接続された肩部空気圧筋肉部材5、腰部空気圧筋肉部材32、肘部空気圧筋肉部材6、手首部空気圧筋肉部材7を含む。駆動回路基板1eは、コントローラと電磁弁群との間に配置され、前記コントローラは、前記ガスジェネレータからのガスを減圧するように前記空気圧減圧弁を制御し、前記電磁弁群の信号入力端は、前記コントローラからの予め設定された制御指令を受信するための前記駆動回路基板に接続される。 As shown in FIG. 11, the pneumatic muscle control system includes a gas generator 1a, a controller 1b, a pneumatic pressure reducing valve 1c, a left half branch path L, a right half branch path R, and a drive circuit board 1e. The gas generator 1a is connected to the left half branch path L and the right half branch path R, respectively, via the pneumatic pressure reducing valve 1c, and the controller 1b is connected to the pneumatic pressure reducing valve 1c and the drive circuit board 1e, respectively, and the drive circuit board 1e. Is also connected to the left half branch road L and the right half branch road R, respectively. Here, since the left half branch road and the right half branch road have the same structure, only the right half branch road will be described. The right half branch path includes a solenoid valve group 1d, a shoulder pneumatic muscle member 5, a lumbar pneumatic muscle member 32, an elbow pneumatic muscle member 6, and a wrist pneumatic muscle member 7, respectively, which are connected to the solenoid valve group. The drive circuit board 1e is arranged between the controller and the solenoid valve group, the controller controls the pneumatic pressure reducing valve so as to reduce the gas from the gas generator, and the signal input end of the solenoid valve group is , Connected to the drive circuit board for receiving preset control commands from the controller.

ガスジェネレータ1aは、ガスボンベに貯蔵されるような十分な量のガスを発生することができる。ガスジェネレータは、ガスの最高圧力値を設定し、自動的に始動・停止して、ガスを補充することができる。ガスはガスジェネレータから供給され、空気圧減圧弁1cによって空気圧筋肉部材に入る最高空気圧を制御する。通常の場合、ガスジェネレータからのガスの圧力値は、作動圧力値よりも高いため、空気圧減圧弁によって減圧処理を行う必要がある。減圧されたガスは、空気圧減圧弁1cから流出して電磁弁群1dに流入し、電磁弁群からのガスは、ガス配管を介して対応する空気圧筋肉部材におけるエアジョイントに接続される。電磁弁群の内部において、対応する各々の空気圧筋肉部材は、2つの二位置二方弁であるサブ電磁弁の協働により、空気圧筋肉部材の充気、放気及び保持の3状態を制御させてもよいし、1つの三位置三方弁であるサブ電磁弁により、空気圧筋肉部材の充気、放気及び保持の3状態を単独で制御させてもよい。右半部分岐路には、手首部空気圧筋肉部材7、肘部空気圧筋肉部材6、肩部空気圧筋肉部材5、腰部空気圧筋肉部材32がある。手首部空気圧筋肉部材にとっては、コントローラが充気指令を発信した後、電磁弁群の手首部空気圧筋肉部材に対応する分岐路の給気口が開放され、ガスがガス配管を介して手首部空気圧筋肉部材の内部に流入する。そして、手首が所定の屈曲角度値に達した後、コントローラが電源の遮断指令を発信する。この時、電磁弁群の手首部空気圧筋肉部材に対応する分岐路が全て閉塞され、手首部空気圧筋肉部材の内部のガスは、手首部空気圧筋肉部材の内部に閉じ込められて原位置のままとなり、コントローラが放気指令を発信する時、電磁弁群の手首部空気圧筋肉部材7に対応する排気口が開放され、手首部空気圧筋肉部材7の内部の気体が放出され、空気圧筋肉部材が初期状態に戻る。肘部空気圧筋肉部材、肩部空気圧筋肉部材及び腰部空気圧筋肉部材の動作原理は同じであり、また、左半部の原理は右半部と同じであるため、ここではその説明を省略する。 The gas generator 1a can generate a sufficient amount of gas to be stored in a gas cylinder. The gas generator can set the maximum pressure value of gas and automatically start / stop to replenish the gas. The gas is supplied from the gas generator, and the maximum air pressure entering the pneumatic muscle member is controlled by the pneumatic pressure reducing valve 1c. Normally, the pressure value of the gas from the gas generator is higher than the operating pressure value, so it is necessary to perform decompression processing by a pneumatic pressure reducing valve. The depressurized gas flows out of the pneumatic pressure reducing valve 1c and flows into the solenoid valve group 1d, and the gas from the solenoid valve group is connected to the air joint in the corresponding pneumatic muscle member via the gas pipe. Inside the solenoid valve group, each corresponding pneumatic muscle member controls the three states of filling, releasing and holding of the pneumatic muscle member by the cooperation of the sub-solenoid valve which is two two-position two-way valves. Alternatively, a sub-solenoid valve, which is one three-position three-way valve, may independently control the three states of air pressure, air release, and retention of the pneumatic muscle member. In the right half branch road, there are a wrist pneumatic muscle member 7, an elbow pneumatic muscle member 6, a shoulder pneumatic muscle member 5, and a lumbar pneumatic muscle member 32. For the wrist pneumatic muscle member 7 , after the controller sends an air filling command, the air supply port of the branch path corresponding to the wrist pneumatic muscle member of the solenoid valve group is opened, and the gas is supplied to the wrist via the gas pipe. It flows into the inside of the pneumatic muscle member. Then, after the wrist reaches a predetermined bending angle value, the controller issues a power cutoff command. At this time, all the branch paths corresponding to the wrist pneumatic muscle members of the solenoid valve group are blocked, and the gas inside the wrist pneumatic muscle members is trapped inside the wrist pneumatic muscle members and remains in the original position. When the controller sends an air release command, the exhaust port corresponding to the wrist pneumatic muscle member 7 of the solenoid valve group is opened, the gas inside the wrist pneumatic muscle member 7 is released, and the pneumatic muscle member is in the initial state. return. Since the operating principles of the elbow pneumatic muscle member, the shoulder pneumatic muscle member, and the lumbar pneumatic muscle member are the same, and the principle of the left half is the same as that of the right half, the description thereof is omitted here.

着用者が本開示に係る外骨格リハビリ支援装置を着用する時、人体の肩部には可撓性の背部ベルトが装着され、背部構造と着用者の背部とが柔軟に接続され、上腕組立体11、前腕組立体13、及び手部組立体15が、それぞれの対応するベルトによって着用者の腕と柔軟に接続され、人体の腕が外骨格リハビリ支援装置内に置かれ、大腿部構造4は、大腿補強枠42及び大腿部ベルトによって着用者の両脚に柔軟に接続される。着用者が重量物を持ち上げる時、手首部空気圧筋肉部材7、肘部空気圧筋肉部材6、肩部空気圧筋肉部材5を充気し、各々の空気圧筋肉部材が充気されて収縮する。その結果、手首部空気圧筋肉部材7は手首関節を連動回転させ、肘部空気圧筋肉部材6は肘関節を連動回転させ、肩部空気圧筋肉部材5は、肩部牽引輪に巻き付けられる肩部牽引ワイヤを介して、上腕組立体11を連動回転させる。この時、前腕補強枠が着用者の前腕に密着し、上腕補強枠が着用者の上腕に密着して、腕を上方に連動移動させ、重量物を持ち上げる過程を完成させる。着用者が重量物を持ち降ろす必要がある時、各々の空気圧筋肉部材が放気され、外骨格リハビリ支援装置によって補助される両腕は、重量物の重力の作用下で下方へ移動し、重量物を降ろす過程を完成させる。このように、動作過程では、充気及び放気の速度を調節することによって腕の移動速度が変化される。着用者が重量物を持ち上げる過程に腰部が屈む時、腰部空気圧筋肉部材32が放気され、外骨格リハビリ支援スーツの股関節を人体腰部の屈みに追従して回転させる。そして、着用者の腰部が直立する時、腰部空気圧筋肉部材32が充気され、外骨格リハビリ支援スーツの股関節を連動回転させて、人体の背部を動かすように連動し、着用者の腰部に対する支援を実現する。動作過程中に、外骨格リハビリ支援装置の力点は、着用者の両肩部と脚部に集中するため、人体の腕の筋肉と腰の筋肉が負担する力を、人体の骨格が負担するように変換する。 When the wearer wears the ectoskeletal rehabilitation support device according to the present disclosure, a flexible back belt is attached to the shoulder of the human body to flexibly connect the back structure and the wearer's back, and the upper arm assembly. 11, the forearm assembly 13, and the hand assembly 15 are flexibly connected to the wearer's arm by their respective corresponding belts, the human arm is placed in the ectoskeletal rehabilitation support device, and the thigh structure 4 Is flexibly connected to both legs of the wearer by the thigh reinforcement frame 42 and the thigh belt. When the wearer lifts a heavy object, the wrist pneumatic muscle member 7, the elbow pneumatic muscle member 6, and the shoulder pneumatic muscle member 5 are filled, and each pneumatic muscle member is filled and contracted. As a result, the wrist pneumatic muscle member 7 interlocks and rotates the wrist joint, the elbow pneumatic muscle member 6 interlocks and rotates the elbow joint, and the shoulder pneumatic muscle member 5 is the shoulder traction wire wound around the shoulder traction ring. The upper arm assembly 11 is interlocked and rotated via the above. At this time, the forearm reinforcing frame is in close contact with the wearer's forearm, and the upper arm reinforcement frame is in close contact with the wearer's upper arm, and the arm is moved upward in an interlocking manner to complete the process of lifting a heavy object. When the wearer needs to unload a heavy object, each pneumatic muscle member is degassed and the arms assisted by the exoskeleton rehabilitation support device move downward under the action of the heavy object's gravity, and the weight. Complete the process of unloading things. In this way, in the movement process, the moving speed of the arm is changed by adjusting the speed of filling and releasing. When the lumbar region bends during the process of lifting a heavy object by the wearer, the lumbar pneumatic muscle member 32 is released, and the hip joint of the exoskeleton rehabilitation support suit is rotated following the bending of the human body lumbar region. Then, when the waist of the wearer stands upright, the lumbar pneumatic muscle member 32 is filled with air, and the hip joint of the exoskeleton rehabilitation support suit is interlocked to rotate to move the back of the human body to support the wearer's lumbar region. To realize. During the movement process, the emphasis of the exoskeleton rehabilitation support device is concentrated on both shoulders and legs of the wearer, so that the human skeleton bears the force that the arm muscles and waist muscles of the human body bear. Convert to.

本開示は、筋肉損傷のある人、又は筋肉能力が衰弱している高齢者を支援するだけでなく、腕の損傷や腰の損傷を抱える患者の日常的なリハビリ訓練の遂行に寄与し、身体機能を迅速に回復させ得る。 The present disclosure not only assists people with muscle injuries or elderly people with weakened muscle capacity, but also contributes to the performance of routine rehabilitation training for patients with arm or lower back injuries. Function can be restored quickly.

なお、上記の説明は、単なる例示的なものであり、当業者は、上記の説明に基づいて本開示の実施例に対して様々な変更及び変形を行うことができるが、これらの変更及び変形は、本開示の保護範囲内のものである。 It should be noted that the above description is merely exemplary, and those skilled in the art can make various changes and modifications to the embodiments of the present disclosure based on the above description, but these changes and modifications can be made. Is within the scope of protection of this disclosure.

この出願は、2018年3月29日に出願された出願番号が201810272761.0である中国特許出願を基礎出願とする優先権を主張し、その内容の全てが参照によって本出願に組み込まれる。 This application claims priority based on the Chinese patent application filed on March 29, 2018 with an application number of 201810272761.0, the entire contents of which are incorporated herein by reference.

Claims (12)

背部横梁、長さ調節可能な背部支持板、及び背部支持板に取り付けられた肩部空気圧筋肉部材を含む背部構造と、
腕部構造と、
前記腕部構造を前記背部構造の上端に接続する肩関節組立体と、
腰部構造と、を備える外骨格リハビリ支援装置であって、
前記背部支持板は、上端が前記背部横梁に固定接続され、下端が前記腰部構造に固定接続され、前記肩関節組立体は、弧状の肩関節接続板、肩部牽引輪、肩部牽引ワイヤ、第1のヒンジ機構、及び第2のヒンジ機構を含み、前記肩関節接続板の一端は、前記第1のヒンジ機構によって前記腕部構造の上端に接続されて、肩関節の屈曲-伸展回転対を形成し、前記肩関節接続板の他端は、前記第2のヒンジ機構によって前記背部横梁に接続されて、肩関節の外転-内転回転対と内旋-外旋回転対を形成し、さらに前記肩部牽引輪は、前記腕部構造の上端に固定されており、前記肩部牽引ワイヤは、一端が前記肩部牽引輪に接続され、他端が前記肩部空気圧筋肉部材に接続される、外骨格リハビリ支援装置。
A back structure that includes a back cross beam, an adjustable back support plate, and a shoulder pneumatic muscle member attached to the back support plate.
Arm structure and
A shoulder joint assembly that connects the arm structure to the upper end of the back structure,
An exoskeleton rehabilitation support device with a lumbar structure,
The back support plate has an upper end fixedly connected to the back cross beam and a lower end fixedly connected to the lumbar structure, and the shoulder joint assembly has an arcuate shoulder joint connection plate, a shoulder traction ring, and a shoulder traction wire. A first hinge mechanism and a second hinge mechanism are included, one end of the shoulder joint connecting plate is connected to the upper end of the arm structure by the first hinge mechanism, and a flexion-extension rotation pair of the shoulder joint is provided. The other end of the shoulder joint connecting plate is connected to the back transverse beam by the second hinge mechanism to form an abduction-adduction rotation pair and an internal rotation-external rotation rotation pair of the shoulder joint. Further, the shoulder traction ring is fixed to the upper end of the arm structure, and one end of the shoulder traction wire is connected to the shoulder traction ring and the other end is connected to the shoulder pneumatic muscle member. External skeletal rehabilitation support device.
さらに、2つの大腿部構造及び股関節組立体を備え、2つの前記大腿部構造はそれぞれ、前記股関節組立体によって前記腰部構造に接続されており、
前記腰部構造は、前記背部支持板の下端に固定接続された腰部横板、及び前記大腿部構造に取り付けられた腰部空気圧筋肉部材を含み、
前記股関節組立体は、前記腰部横板に固定接続された腰部接続板、ヒンジ軸、前記腰部接続板に固定された第1の案内輪、前記大腿部構造に固定された第2の案内輪、及び腰部牽引ワイヤを含み、前記ヒンジ軸は、前記腰部接続板を前記大腿部構造に接続して股関節の屈曲-伸展回転対を形成し、前記腰部牽引ワイヤは、一端が第2の案内輪と第1の案内輪に亘るように延在して前記腰部接続板に固定され、他端が前記腰部空気圧筋肉部材に接続されている、請求項1に記載の外骨格リハビリ支援装置。
Further, it comprises two thigh structures and a hip assembly, each of which is connected to the lumbar structure by the hip assembly.
The lumbar structure includes a lumbar lateral plate fixedly connected to the lower end of the back support plate, and a lumbar pneumatic muscle member attached to the thigh structure.
The hip joint assembly includes a waist connection plate fixedly connected to the waist lateral plate, a hinge shaft, a first guide ring fixed to the waist connection plate, and a second guide ring fixed to the thigh structure. , And the lumbar traction wire, the hinge shaft connecting the lumbar connecting plate to the thigh structure to form a flexion-extension rotation pair of the hip joint, the lumbar traction wire having a second guide at one end. The external skeleton rehabilitation support device according to claim 1, wherein the outer skeleton rehabilitation support device extends so as to extend over a ring and a first guide ring, is fixed to the waist connecting plate, and the other end is connected to the waist pneumatic muscle member.
前記大腿部構造は、前記腰部空気圧筋肉部材を取り付けるための腰部空気圧筋肉支持枠が設けられた大腿板と、大腿部ベルトを接続するためのベルト接続溝が設けられた大腿補強枠とを含む、請求項2に記載の外骨格リハビリ支援装置。 The thigh structure includes a thigh plate provided with a lumbar pneumatic muscle support frame for attaching the lumbar pneumatic muscle member and a thigh reinforcing frame provided with a belt connecting groove for connecting the thigh belt. The external skeleton rehabilitation support device according to claim 2, which includes. 前記腕部構造は、2つであり、各々の前記腕部構造は、上腕組立体、肘関節部材、前腕組立体、手首関節部材、及び手部組立体を含み、前記上腕組立体の上端は前記第1のヒンジ機構によって前記肩関節接続板に接続され、前記上腕組立体の下端は前記肘関節部材によって前記前腕組立体に接続されて、肘関節の屈曲-伸展回転対を形成し、前記前腕組立体は前記手首関節部材によって前記手部組立体に接続されて、手首関節の屈曲-伸展回転対を形成する、請求項1に記載の外骨格リハビリ支援装置。 There are two arm structures, each of which includes an upper arm assembly, an elbow joint member, a forearm assembly, a wrist joint member, and a hand assembly, the upper end of the upper arm assembly. The first hinge mechanism is connected to the shoulder joint connection plate, and the lower end of the upper arm assembly is connected to the forearm assembly by the elbow joint member to form a flexion-extension rotation pair of the elbow joint. The external skeleton rehabilitation support device according to claim 1, wherein the forearm assembly is connected to the wrist assembly by the wrist joint member to form a flexion-extension rotation pair of the wrist joint. 各々の前記上腕組立体は、外側上腕板、内側上腕板、及びそれらを互いに固定接続する上腕補強枠を含み、各々の前記前腕組立体は、外側前腕板、内側前腕板、及びそれらを互いに固定接続する前腕補強枠を含み、前記手部組立体は、内側支持板、外側支持板、及びそれらを互いに固定接続する手部補強枠を含み、前記外側上腕板と前記内側上腕板には、いずれも第1の肘部空気圧筋肉支持枠が設けられ、前記外側前腕板と前記内側前腕板には、いずれも第2の肘部空気圧筋肉支持枠及び第1の手首部空気圧筋肉支持枠が設けられ、前記内側支持板と外側支持板には、いずれも第2の手首部空気圧筋肉支持枠が設けられ、前記第1の肘部空気圧筋肉支持枠と前記第2の肘部空気圧筋肉支持枠には、前記肘関節を枢動させるように連動するための肘部空気圧筋肉部材が取り付けられ、前記第1の手首部空気圧筋肉支持枠と前記第2の手首部空気圧筋肉支持枠には、前記手首関節を枢動させるように連動するための手首部空気圧筋肉部材が取り付けられる、請求項4に記載の外骨格リハビリ支援装置。 Each said humerus assembly includes a lateral humerus plate, a medial humerus plate, and a humerus reinforcement frame that securely connects them to each other, and each said limb assembly comprises a lateral limb plate, a medial limb plate, and fixing them to each other. The arm assembly includes an inner support plate, an outer support plate, and a hand reinforcement frame for fixing them to each other, and the outer upper arm plate and the inner upper arm plate are to be included. Also, a first elbow pneumatic muscle support frame is provided, and the outer forearm plate and the inner forearm plate are both provided with a second elbow pneumatic muscle support frame and a first wrist pneumatic muscle support frame. The inner support plate and the outer support plate are both provided with a second wrist pneumatic muscle support frame, and the first elbow pneumatic muscle support frame and the second elbow pneumatic muscle support frame are provided with the second elbow pneumatic muscle support frame. An elbow pneumatic muscle member for interlocking to pivot the elbow joint is attached, and the wrist joint is attached to the first wrist pneumatic muscle support frame and the second wrist pneumatic muscle support frame. The ectoskeletal rehabilitation support device according to claim 4, to which a wrist pneumatic muscle member for interlocking so as to pivot is attached. さらに、上腕ベルト、前腕ベルト、及び手部ベルトを備え、
前記外側上腕板と前記内側上腕板には、それぞれ前記上腕ベルトを接続するための上腕ベルト接続溝が設けられ、前記外側前腕板と前記内側前腕板には、それぞれ前記前腕ベルトを接続するための前腕ベルト接続溝が設けられ、前記内側支持板と前記外側支持板には、それぞれ前記手部ベルトを接続するための手部ベルト接続溝が設けられ、前記内側支持板と前記外側支持板には、それぞれ重量物の吊り下げに適した溝が設けられている、請求項5に記載の外骨格リハビリ支援装置。
In addition, it is equipped with an upper arm belt, a forearm belt, and a hand belt.
The lateral brachial plate and the medial brachial plate are each provided with a brachial belt connecting groove for connecting the brachial belt, and the lateral forearm plate and the medial forearm plate are respectively for connecting the forearm belt. A forearm belt connecting groove is provided, the inner support plate and the outer support plate are each provided with a hand belt connecting groove for connecting the hand belt, and the inner support plate and the outer support plate are provided with a hand belt connecting groove. The outer skeleton rehabilitation support device according to claim 5, each of which is provided with a groove suitable for suspending a heavy object.
前記背部横梁の両端には、それぞれ接続シュートが設けられており、
前記第2のヒンジ機構は、ヒンジ軸とヒンジベースを含み、前記ヒンジベースは、一端が円筒状であり、他端が前記肩関節接続板を受け入れるのに適した溝部を有するように構成され、前記溝部の両側壁には、開孔が設けられており、前記肩関節接続板は、前記ヒンジ軸と前記開孔との嵌合によって前記ヒンジベースに接続されて、肩関節の外転-内転回転対を形成し、前記ヒンジベースの円筒状端部は、前記接続シュートに回転可能に収納され、位置決めボルトによって、前記ヒンジベースが前記接続シュート内で直線的に移動することを阻止するように位置決めされて、肩関節の内旋-外旋回転対を形成する、請求項1-6のいずれか1項に記載の外骨格リハビリ支援装置。
Connection chutes are provided at both ends of the back cross beam.
The second hinge mechanism includes a hinge shaft and a hinge base, the hinge base being configured such that one end is cylindrical and the other end has a groove suitable for receiving the shoulder joint connection plate. Opening is provided on both side walls of the groove, and the shoulder joint connecting plate is connected to the hinge base by fitting the hinge shaft and the opening, and the abduction-inside of the shoulder joint. A rolling pair is formed, the cylindrical end of the hinge base is rotatably housed in the connecting chute, and a positioning bolt prevents the hinge base from moving linearly within the connecting chute . The external skeletal rehabilitation support device according to any one of claims 1 to 6, which is positioned in the above to form an internal rotation-external rotation rotation pair of a shoulder joint.
さらに、前記肩部牽引ワイヤを案内するための肩部牽引ワイヤ案内管を備える、請求項7に記載の外骨格リハビリ支援装置。 The exoskeleton rehabilitation support device according to claim 7, further comprising a shoulder traction wire guide tube for guiding the shoulder traction wire. 前記背部横梁の両端には、それぞれ接続シュートが設けられており、 Connection chutes are provided at both ends of the back cross beam.
前記第2のヒンジ機構は、ヒンジ軸とヒンジベースを含み、前記ヒンジベースは、一端が円筒状であり、他端が前記肩関節接続板を受け入れるのに適した溝部を有するように構成され、前記溝部の両側壁には、開孔が設けられており、前記肩関節接続板は、前記ヒンジ軸と前記開孔との嵌合によって前記ヒンジベースに接続されて、肩関節の外転-内転回転対を形成し、前記ヒンジベースの円筒状端部は、前記接続シュートに回転可能に収納され、位置決めボルトによって、前記ヒンジベースが前記接続シュート内で直線的に移動することを阻止するように位置決めされて、肩関節の内旋-外旋回転対を形成し、 The second hinge mechanism includes a hinge shaft and a hinge base, the hinge base being configured such that one end is cylindrical and the other end has a groove suitable for receiving the shoulder joint connection plate. Opening is provided on both side walls of the groove, and the shoulder joint connecting plate is connected to the hinge base by fitting the hinge shaft and the opening, and the abduction-inside of the shoulder joint. A rolling pair is formed, the cylindrical end of the hinge base is rotatably housed in the connecting chute, and a positioning bolt prevents the hinge base from moving linearly within the connecting chute. Positioned to form an internal-external rotation pair of shoulder joints,
前記腰部接続板には、前記腰部牽引ワイヤを固定するための腰部牽引ワイヤ固定部材が設けられている、請求項2または3に記載の外骨格リハビリ支援装置。 The exoskeleton rehabilitation support device according to claim 2 or 3, wherein the waist connection plate is provided with a waist traction wire fixing member for fixing the waist traction wire.
前記背部構造は、2つの背部支持板を含み、各々の前記背部支持板は、相対的にスライド可能な第1のセクションと第2のセクションとを有し、前記背部支持板の長さ、ひいては腰部の位置が調節可能となり、また、前記第1のセクションと前記第2のセクションには、それぞれ位置決めスライド溝が設けられ、前記第1のセクションと前記第2のセクションは、前記位置決めスライド溝とロックボルトとの嵌合によって固定可能である、請求項1に記載の外骨格リハビリ支援装置。 The back structure includes two back support plates, each of which has a relatively slidable first section and a second section, the length of the back support plate, and thus the back support plate. The position of the waist can be adjusted, and the first section and the second section are each provided with a positioning slide groove, and the first section and the second section are the positioning slide groove. The exoskeleton rehabilitation support device according to claim 1, which can be fixed by fitting with a lock bolt. 制御システム及び請求項1-10のいずれか1項に記載の外骨格リハビリ支援装置を具備する外骨格リハビリ支援システムであって、
前記制御システムは、ガスジェネレータと、コントローラと、空気圧減圧弁と、肩部空気圧筋肉部材、腰部空気圧筋肉部材、肘部空気圧筋肉部材および手首部空気圧筋肉部材にそれぞれ接続された電磁弁群と、前記コントローラと前記電磁弁群との間に配置された駆動回路基板とを含み、前記コントローラは、前記ガスジェネレータからのガスを減圧するように前記空気圧減圧弁を制御し、前記電磁弁群の信号入力端は、前記コントローラからの予め設定された制御指令を受信するための前記駆動回路基板に接続される、外骨格リハビリ支援システム。
An exoskeleton rehabilitation support system including the control system and the exoskeleton rehabilitation support device according to any one of claims 1-10 .
The control system includes a gas generator, a controller, a pneumatic pressure reducing valve, a solenoid valve group connected to a shoulder pneumatic muscle member, a waist pneumatic muscle member, an elbow pneumatic muscle member, and a wrist pneumatic muscle member, respectively, and the above-mentioned solenoid valve group. A drive circuit board arranged between the controller and the solenoid valve group is included, and the controller controls the pneumatic pressure reducing valve so as to reduce the gas from the gas generator, and a signal input of the solenoid valve group. The end is an outer skeleton rehabilitation support system connected to the drive circuit board for receiving a preset control command from the controller.
請求項1-10のいずれか1項に記載の外骨格リハビリ支援装置に用いる制御方法であって、
コントローラにより、ガスジェネレータからのガスを減圧するように空気圧減圧弁を制御するステップと、
コントローラからの制御指令に基づいて、肩部空気圧筋肉部材、腰部空気圧筋肉部材、肘部空気圧筋肉部材及び手首部空気圧筋肉部材にそれぞれ接続された電磁弁群を制御して、前記肩部空気圧筋肉部材、前記腰部空気圧筋肉部材、前記肘部空気圧筋肉部材及び前記手首部空気圧筋肉部材の充気及び放気を制御するステップと、有する、制御方法。
The control method used for the exoskeleton rehabilitation support device according to any one of claims 1 to 10 .
The step of controlling the pneumatic pressure reducing valve to depressurize the gas from the gas generator by the controller,
Based on the control command from the controller, the solenoid valve group connected to the shoulder pneumatic muscle member, the lumbar pneumatic muscle member, the elbow pneumatic muscle member and the wrist pneumatic muscle member is controlled to control the shoulder pneumatic muscle member. , A step of controlling the filling and degassing of the lumbar pneumatic muscle member, the elbow pneumatic muscle member, and the wrist pneumatic muscle member, and a control method.
JP2020536632A 2018-03-29 2019-01-29 Exoskeleton rehabilitation support device Active JP7340522B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810272761.0 2018-03-29
CN201810272761.0A CN110314065A (en) 2018-03-29 2018-03-29 Exoskeleton rehabilitation power assisting device
PCT/CN2019/073702 WO2019184589A1 (en) 2018-03-29 2019-01-29 Exoskeleton recovery power assisting device

Publications (3)

Publication Number Publication Date
JP2021516558A JP2021516558A (en) 2021-07-08
JPWO2019184589A5 true JPWO2019184589A5 (en) 2022-02-04
JP7340522B2 JP7340522B2 (en) 2023-09-07

Family

ID=68062169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020536632A Active JP7340522B2 (en) 2018-03-29 2019-01-29 Exoskeleton rehabilitation support device

Country Status (5)

Country Link
US (1) US11571352B2 (en)
EP (1) EP3778138A4 (en)
JP (1) JP7340522B2 (en)
CN (1) CN110314065A (en)
WO (1) WO2019184589A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114800436A (en) * 2017-09-07 2022-07-29 重庆市牛迪科技发展有限公司 Exoskeleton
CN110815186B (en) * 2019-11-16 2021-10-19 西安交通大学 Upper limb structure of rescue exoskeleton robot of active power-assisted armored car
CN110946739B (en) * 2019-12-13 2021-10-29 寿光市人民医院 Neural hemiplegia rehabilitation daily exercise auxiliary device
CN113043241B (en) * 2019-12-26 2024-03-08 中国科学院沈阳自动化研究所 Light wearable local force feedback bionic double-arm exoskeleton main hand
CN111135020B (en) * 2020-01-09 2022-04-29 郭继相 Exoskeleton auxiliary treatment rehabilitation device
CN111631851A (en) * 2020-06-08 2020-09-08 陈明忠 Wearable auxiliary arm fracture fixing clamp
CN111775177B (en) * 2020-06-30 2022-07-08 大连海事大学 Integrated valve-controlled modular double-acting hydraulic artificial muscle joint
CN111820904B (en) * 2020-08-05 2023-07-04 南昌大学第二附属医院 Diabetes cardiomyopathy patient's motion control reminding device
CN112428252B (en) * 2020-08-07 2023-03-17 天津大学 Exoskeleton and design method thereof
CN112336584A (en) * 2020-10-05 2021-02-09 德清创赢机械科技有限公司 Be used for recovered device of taking exercise of scapulohumeral periarthritis
CN112263435B (en) * 2020-10-13 2023-03-31 河南理工大学 Recovered robot device to shoulder joint carries out rotary motion
CN113084800B (en) * 2021-03-29 2022-11-25 航天时代电子技术股份有限公司 Wearable all-joint follow-up remote control device
CN113172656B (en) * 2021-04-26 2022-07-22 南京理工大学 Upper limb carrying power assisting device based on pneumatic muscles
DE102021208905A1 (en) 2021-08-13 2023-02-16 Festool Gmbh Exoskeleton and Procedure
CN115410739B (en) * 2022-09-01 2023-05-12 浙江大学 Lead garment supporting device for interventional operation and use method

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087033A1 (en) * 2003-03-28 2004-10-14 Hitachi Medical Corporation Wear-type joint drive device
FR2917323B1 (en) 2007-06-12 2009-10-02 Commissariat Energie Atomique FRONT ROTATION MECHANISM AND ORTHESIS COMPRISING SUCH A MECHANISM
CN101181177B (en) * 2007-11-28 2010-08-25 华中科技大学 Device for healing and training shoulder joint
WO2010025409A1 (en) 2008-08-28 2010-03-04 Raytheon Sarcos, Llc A biomimetic mechanical joint
JP5804310B2 (en) 2011-05-24 2015-11-04 学校法人東京理科大学 Upper arm holding device and upper arm assist device
KR101295004B1 (en) * 2011-10-05 2013-08-08 한국과학기술연구원 Exoskeleton mechanism for limb power assistance
CN102793595A (en) * 2012-09-03 2012-11-28 浙江大学 Wearable heavy material handling power-assisting bionic exoskeleton
CN103393524B (en) * 2013-08-12 2015-08-12 王子豪 Lower back and two-arm traction recovering machine
CN103465253B (en) * 2013-09-10 2015-10-07 浙江大学 The upper limbs ectoskeleton servomechanism that pneumatic muscles drives
NL2011907C2 (en) * 2013-12-06 2015-06-09 Univ Delft Tech Upper limb exoskeleton.
WO2015120186A1 (en) 2014-02-05 2015-08-13 President And Fellows Of Harvard College Systems, methods, and devices for assisting walking for developmentally-delayed toddlers
US10231851B2 (en) * 2014-08-29 2019-03-19 Conor J. MADDRY Pneumatic electromyographic exoskeleton
CA2884905A1 (en) 2014-09-10 2016-03-10 Norberto Velazquez Nino Adjustable mechanical exoskeleton, for a biped animal with impaired bone and muscle
CN104552276B (en) * 2014-12-31 2016-02-24 浙江大学 The ectoskeleton servomechanism that pneumatic muscles drives
CN204450526U (en) 2014-12-31 2015-07-08 浙江大学 The ectoskeleton servomechanism that a kind of pneumatic muscles drives
CN204562790U (en) * 2015-01-29 2015-08-19 哈尔滨理工大学 The upper limb rehabilitation robot that pneumatic muscles drives
MX2015005567A (en) * 2015-04-15 2016-10-31 Inst Tecnologico Estudios Superiores Monterrey Non-invasive mechatronic device providing joint mobility using eeg and emg signals.
KR101694369B1 (en) 2015-08-28 2017-01-09 경상대학교산학협력단 Upper limb rehabilitation robot
KR102423702B1 (en) * 2015-09-04 2022-07-21 삼성전자주식회사 Motion assist apparatus and Method for controlling thereof
DE102015224156A1 (en) * 2015-12-03 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for supporting the movement of a human shoulder joint
US10058994B2 (en) * 2015-12-22 2018-08-28 Ekso Bionics, Inc. Exoskeleton and method of providing an assistive torque to an arm of a wearer
DE102016104880A1 (en) 2016-03-16 2017-09-21 Otto Bock Healthcare Gmbh Orthopedic device
CN105597280B (en) * 2016-03-21 2018-03-13 哈尔滨工业大学 The main passive mixing rehabilitation training of upper limbs ectoskeleton of one kind
TWI584801B (en) 2016-04-15 2017-06-01 龍華科技大學 Exoskeleton apparatus of pneumatic muscle with functions of upper limb power assist and rehabilitation training
CN206643909U (en) 2017-03-31 2017-11-17 彭爽 A kind of pneumatic muscles upper limbs assistance exoskeleton system
CN107671848A (en) 2017-11-23 2018-02-09 电子科技大学 A kind of upper limbs assistance exoskeleton train of mechanism
CN209332629U (en) * 2018-03-29 2019-09-03 京东方科技集团股份有限公司 Exoskeleton rehabilitation power assisting device and exoskeleton rehabilitation force aid system

Similar Documents

Publication Publication Date Title
JP7340522B2 (en) Exoskeleton rehabilitation support device
JPWO2019184589A5 (en)
EP2923804B1 (en) Joint assembly and walking assistance robot
US20210275383A1 (en) Wearable exoskeleton system and method
JP6688562B2 (en) Walking robot system that regenerates energy
JP4635135B2 (en) Walking device
US8801641B2 (en) Exoskeleton and method for controlling a swing leg of the exoskeleton
US5282460A (en) Three axis mechanical joint for a power assist device
Kobayashi et al. Development of muscle suit for upper limb
JP6105091B2 (en) Joint motion assist device
WO2004087033A1 (en) Wear-type joint drive device
WO2014045433A1 (en) Joint movement device
KR20120064410A (en) Exoskeleton apparatus for assistant physical strength
US20190118372A1 (en) Muscular strength assisting apparatus
WO2017214259A1 (en) Biologically-inspired joints and systems and methods of use thereof
JP6086603B2 (en) Joint motion assist device
US20190118371A1 (en) Muscular strength assisting apparatus
WO2018105470A1 (en) Actuator device and joint movement assisting device
CN115300864A (en) Hip joint exoskeleton for transverse walking rehabilitation
JP6759356B2 (en) Muscle strength assist device
KR20130018422A (en) Skeletal structure of human power amplification device
CN109937122A (en) Muscular strength auxiliary device
JP6761107B2 (en) Operation assist device
KR101324504B1 (en) Wearing device and human power amplification device comprising the same
JP6698835B2 (en) Motion assist device