JPWO2019183201A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2019183201A5 JPWO2019183201A5 JP2020550177A JP2020550177A JPWO2019183201A5 JP WO2019183201 A5 JPWO2019183201 A5 JP WO2019183201A5 JP 2020550177 A JP2020550177 A JP 2020550177A JP 2020550177 A JP2020550177 A JP 2020550177A JP WO2019183201 A5 JPWO2019183201 A5 JP WO2019183201A5
- Authority
- JP
- Japan
- Prior art keywords
- scaffold
- hydrogel scaffold
- hydrogel
- root canal
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000017 hydrogel Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 19
- 210000004262 dental pulp cavity Anatomy 0.000 claims description 16
- 230000008595 infiltration Effects 0.000 claims description 8
- 238000001764 infiltration Methods 0.000 claims description 8
- 230000002519 immonomodulatory effect Effects 0.000 claims description 7
- 230000002491 angiogenic effect Effects 0.000 claims description 6
- 230000001272 neurogenic effect Effects 0.000 claims description 6
- 230000003399 chemotactic effect Effects 0.000 claims description 5
- 108010010803 Gelatin Proteins 0.000 claims description 4
- 206010061218 Inflammation Diseases 0.000 claims description 4
- 239000003246 corticosteroid Substances 0.000 claims description 4
- 229940079593 drug Drugs 0.000 claims description 4
- 239000003814 drug Substances 0.000 claims description 4
- 239000008273 gelatin Substances 0.000 claims description 4
- 229920000159 gelatin Polymers 0.000 claims description 4
- 235000019322 gelatine Nutrition 0.000 claims description 4
- 235000011852 gelatine desserts Nutrition 0.000 claims description 4
- 238000011065 in-situ storage Methods 0.000 claims description 4
- 230000004054 inflammatory process Effects 0.000 claims description 4
- 102000019034 Chemokines Human genes 0.000 claims description 2
- 108010012236 Chemokines Proteins 0.000 claims description 2
- 108090000695 Cytokines Proteins 0.000 claims description 2
- 102000004127 Cytokines Human genes 0.000 claims description 2
- 108010074604 Epoetin Alfa Proteins 0.000 claims description 2
- 108010029961 Filgrastim Proteins 0.000 claims description 2
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 claims description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 2
- 230000001154 acute effect Effects 0.000 claims description 2
- 239000000556 agonist Substances 0.000 claims description 2
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 2
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 2
- 239000003181 biological factor Substances 0.000 claims description 2
- 229960003388 epoetin alfa Drugs 0.000 claims description 2
- 229960004177 filgrastim Drugs 0.000 claims description 2
- 239000003102 growth factor Substances 0.000 claims description 2
- 229960002897 heparin Drugs 0.000 claims description 2
- 229920000669 heparin Polymers 0.000 claims description 2
- 239000002858 neurotransmitter agent Substances 0.000 claims description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 claims description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 11
- 229940124599 anti-inflammatory drug Drugs 0.000 claims 1
- 230000035605 chemotaxis Effects 0.000 claims 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
Description
開示される技法の原理が適用され得る多くの可能な実施形態に鑑みれば、例証される実施形態が例示に過ぎず、本開示の範囲を限定すると解釈されるべきでないことは、理解されるべきである。むしろ、本開示の範囲は、少なくとも以下の請求項と同程度に広い。従って、本発明者らは、以下の請求項の範囲内に入る全てのものを特許請求する。
本発明は、例えば、以下の項目を提供する。
(項目1)
歯内療法後に活力のある歯組織をインサイチュで再生する方法であって、前記方法は、生来の歯髄が根管から除去された後に、患者における歯の根管にヒドロゲル足場を導入する工程であって、ここで前記ヒドロゲル足場は無細胞である工程を包含する方法。
(項目2)
前記ヒドロゲル足場は、前記患者の内在する細胞の根管への浸潤を引き起こす、化学走性、血管形成性、神経原性、および免疫調節性の生体因子を含む、項目1に記載の方法。
(項目3)
前記ヒドロゲル足場は、薬物および生体因子を含まず、前記方法は、
前記ヒドロゲル足場とは別個に、炎症を阻害するかまたは前記患者の内在する細胞の前記根管への浸潤を促進する、化学走性、血管形成性、神経原性、および免疫調節性の生体因子を投与する工程
を包含する、項目1に記載の方法。
(項目4)
前記ヒドロゲル足場は、スポンジ足場内に保持され、前記スポンジ足場は、前記根管へと前記ヒドロゲル足場とともに導入される、項目1~3のいずれか1項に記載の方法。
(項目5)
抗炎症薬レジメンで前記患者を処置する工程をさらに包含する、項目1~4のいずれか1項に記載の方法。
(項目6)
前記患者を前記抗炎症レジメンで処置する工程は、コルチコステロイドまたは非ステロイド系抗炎症薬での処置を含む、項目5に記載の方法。
(項目7)
前記ヒドロゲル足場および前記スポンジ足場を導入した後に、歯の修復手順を行う工程をさらに包含する、項目1~6のいずれか1項に記載の方法。
(項目8)
前記ヒドロゲル足場は、前記根管へと注入され、前記根管内の空間全体を実質的に充填する、項目1~7のいずれか1項に記載の方法。
(項目9)
前記歯の根尖を開けて、細胞浸潤が起こる管を提供する工程をさらに包含する、項目1~8のいずれか1項に記載の方法。
(項目10)
前記ヒドロゲル足場は、膿瘍のある歯根の根尖周囲腔を充填する、項目1~9のいずれか1項に記載の方法。
(項目11)
移植可能な材料であって、前記材料は、
ヒドロゲル足場;ならびに
歯内療法後に活力のある歯組織をインサイチュで再生するために、患者の内在する細胞の根管への浸潤を引き起こし得る、化学走性、血管形成性、神経原性、および免疫調節性の生体因子、
を含む移植可能な材料。
(項目12)
前記ヒドロゲル足場に加えてスポンジ足場をさらに含み、ここで前記ヒドロゲル足場は、前記スポンジ足場によって保持される、項目11に記載の移植可能な材料。
(項目13)
前記ヒドロゲル足場は、メタクリル化ゼラチンおよびヘパリンのインサイチュ架橋を含む、項目11または項目12に記載の移植可能な材料。
(項目14)
前記ヒドロゲル足場は、薬物結合部分を含む、項目11~13のいずれか1項に記載の移植可能な材料。
(項目15)
前記スポンジ足場は、熱架橋ゼラチンを含む、項目12~14のいずれか1項に記載の移植可能な材料。
(項目16)
前記生体因子は、ケモカイン、サイトカイン、リンホカイン、増殖因子、神経調節因子、免疫調節性因子、および化学アゴニストを含む、項目11~15のいずれか1項に記載の移植可能な材料。
(項目17)
前記生体因子は、コルチコステロイド、パルモルファミン、フィルグラスチムおよび/またはエポエチンアルファを含む、項目11~16のいずれか1項に記載の移植可能な材料。
(項目18)
前記生体因子は、前記根尖周囲腔における歯内療法によって引き起こされる急性炎症反応を抑制する、項目11~17のいずれか1項に記載の移植可能な材料。
(項目19)
前記移植可能な材料は、無細胞である、項目11~18のいずれか1項に記載の移植可能な材料。
It should be understood that in view of the many possible embodiments to which the principles of the disclosed technique may apply, the illustrated embodiments are merely exemplary and should not be construed as limiting the scope of the present disclosure. Is. Rather, the scope of the disclosure is at least as broad as the following claims. Therefore, the present inventors claim all that fall within the scope of the following claims.
The present invention provides, for example, the following items.
(Item 1)
A method of in-situ regeneration of vibrant tooth tissue after endodontic treatment, which is the step of introducing a hydrogel scaffold into the root canal of the tooth in the patient after the innate pulp has been removed from the root canal. Here, the hydrogel scaffold is a method including a step of being cell-free.
(Item 2)
The method of item 1, wherein the hydrogel scaffold comprises chemotactic, angiogenic, neurogenic, and immunomodulatory biofactors that cause the infiltration of the patient's endogenous cells into the root canal.
(Item 3)
The hydrogel scaffold does not contain drugs and biofactors and the method is:
Chemotactic, angiogenic, neurogenic, and immunomodulatory biofactors that inhibit inflammation or promote the infiltration of the patient's endogenous cells into the root canal, separate from the hydrogel scaffold. Step to administer
1. The method according to item 1.
(Item 4)
The method according to any one of items 1 to 3, wherein the hydrogel scaffold is held in a sponge scaffold, and the sponge scaffold is introduced into the root canal together with the hydrogel scaffold.
(Item 5)
The method according to any one of items 1 to 4, further comprising treating the patient with an anti-inflammatory agent regimen.
(Item 6)
5. The method of item 5, wherein the step of treating the patient with the anti-inflammatory regimen comprises treatment with a corticosteroid or a non-steroidal anti-inflammatory drug.
(Item 7)
The method according to any one of items 1 to 6, further comprising a step of performing a tooth restoration procedure after introducing the hydrogel scaffold and the sponge scaffold.
(Item 8)
The method according to any one of items 1 to 7, wherein the hydrogel scaffold is injected into the root canal and substantially fills the entire space in the root canal.
(Item 9)
The method according to any one of items 1 to 8, further comprising the step of opening the apex of the tooth to provide a tube through which cell infiltration occurs.
(Item 10)
The method according to any one of items 1 to 9, wherein the hydrogel scaffold fills the periapical space of the abscessed tooth root.
(Item 11)
A transplantable material, said material
Hydrogel scaffolding; as well
Chemotactic, angiogenic, neurogenic, and immunomodulatory organisms that can cause infiltration of the patient's intrinsic cells into the root canal to in situ regenerate vibrant tooth tissue after endodontic treatment factor,
Transplantable material including.
(Item 12)
The implantable material of item 11, further comprising a sponge scaffold in addition to the hydrogel scaffold, wherein the hydrogel scaffold is held by the sponge scaffold.
(Item 13)
The transplantable material according to item 11 or item 12, wherein the hydrogel scaffold comprises an in situ crosslink of methylated gelatin and heparin.
(Item 14)
The transplantable material according to any one of items 11 to 13, wherein the hydrogel scaffold contains a drug binding moiety.
(Item 15)
The transplantable material according to any one of items 12 to 14, wherein the sponge scaffold contains heat-crosslinked gelatin.
(Item 16)
The implantable material according to any one of items 11 to 15, wherein the biofactor comprises a chemokine, a cytokine, a lymphokine, a growth factor, a neuromodulator, an immunomodulatory factor, and a chemical agonist.
(Item 17)
The transplantable material according to any one of items 11 to 16, wherein the biofactor comprises a corticosteroid, palmorfamine, filgrastim and / or epoetin alfa.
(Item 18)
The implantable material according to any one of items 11 to 17, wherein the biological factor suppresses an acute inflammatory reaction caused by endodontic treatment in the periapical space.
(Item 19)
The transplantable material according to any one of items 11 to 18, wherein the transplantable material is cell-free.
Claims (19)
前記ヒドロゲル足場とは別個に、炎症を阻害するかまたは前記患者の内在する細胞の前記根管への浸潤を促進する、化学走性、血管形成性、神経原性、および免疫調節性の生体因子を投与する工程
をさらに包含する、請求項1に記載の組成物。 The hydrogel scaffold does not contain drugs and biofactors and the method is:
Chemotactic, angiogenic, neurogenic, and immunomodulatory biofactors that inhibit inflammation or promote the infiltration of the patient's endogenous cells into the root canal, separate from the hydrogel scaffold. The composition according to claim 1, further comprising the step of administering.
ヒドロゲル足場;ならびに
歯内療法後に活力のある歯組織をインサイチュで再生するために、患者の内在する細胞の根管への浸潤を引き起こし得る、化学走性、血管形成性、神経原性、および免疫調節性の生体因子、
を含む移植可能な材料。 A transplantable material, said material
Hydrogel scaffolding; as well as chemotaxis, angiogenic, neurogenic, and immune that can cause infiltration of the patient's underlying cells into the root canal to in situ regenerate vibrant tooth tissue after endodontic treatment. Modulatory biofactor,
Transplantable material including.
The transplantable material according to any one of claims 11 to 18, wherein the transplantable material is cell-free.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023196673A JP2024009130A (en) | 2018-03-20 | 2023-11-20 | Regeneration of vital tooth pulp |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862645364P | 2018-03-20 | 2018-03-20 | |
US62/645,364 | 2018-03-20 | ||
PCT/US2019/023132 WO2019183201A1 (en) | 2018-03-20 | 2019-03-20 | Regeneration of vital tooth pulp |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023196673A Division JP2024009130A (en) | 2018-03-20 | 2023-11-20 | Regeneration of vital tooth pulp |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2021518203A JP2021518203A (en) | 2021-08-02 |
JPWO2019183201A5 true JPWO2019183201A5 (en) | 2022-03-09 |
JP7406809B2 JP7406809B2 (en) | 2023-12-28 |
Family
ID=67988017
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020550177A Active JP7406809B2 (en) | 2018-03-20 | 2019-03-20 | Vibrant pulp regeneration |
JP2023196673A Pending JP2024009130A (en) | 2018-03-20 | 2023-11-20 | Regeneration of vital tooth pulp |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023196673A Pending JP2024009130A (en) | 2018-03-20 | 2023-11-20 | Regeneration of vital tooth pulp |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200405916A1 (en) |
EP (1) | EP3768222A4 (en) |
JP (2) | JP7406809B2 (en) |
WO (1) | WO2019183201A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220347347A1 (en) * | 2021-04-28 | 2022-11-03 | Worcester Polytechnic Institute | Ligament Repair Scaffold |
US11890154B2 (en) * | 2021-06-30 | 2024-02-06 | Khalid AL HEZAIMI | Pulp capping methods |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005025605A1 (en) * | 2003-09-09 | 2005-03-24 | Two Cells Co. Ltd. | Remedy and therapeutic method for periodontal diseases and pulpal diseases |
RU2542391C2 (en) * | 2003-12-30 | 2015-02-20 | Аугустинус БАДЕР | Method for neogenesis |
JP2005211477A (en) | 2004-01-30 | 2005-08-11 | Gunze Ltd | Support for regenerative medicine |
JP2005213449A (en) | 2004-01-30 | 2005-08-11 | Gunze Ltd | Gelatin sponge |
US20140302111A1 (en) * | 2007-10-25 | 2014-10-09 | The Trustees Of Columbia University In The City Of New York | Compositions and methods for dental tissue regeneration |
KR20100103821A (en) * | 2007-12-14 | 2010-09-28 | 노바 사우쓰이스턴 유니버시티 | Method and kit for delivering regenerative endodontic treatment |
EP3184552B1 (en) * | 2008-09-02 | 2020-08-12 | Tautona Group LP | Threads of hyaluronic acid, methods of making thereof and uses thereof |
WO2010148229A1 (en) * | 2009-06-17 | 2010-12-23 | The Trustees Of Columbia University In The City Of New York | Tooth scaffolds |
EP2476442B1 (en) * | 2009-09-11 | 2019-04-17 | National Center for Geriatrics and Gerontology | Root canal filler for non-extracted tooth and non-extraction method for regenerating dental tissue |
EP2491958A4 (en) | 2009-10-20 | 2014-07-16 | Nitto Denko Corp | Material for induction of hard tissue regeneration |
US9051549B2 (en) * | 2011-02-22 | 2015-06-09 | Scripps Health | In situ tissue engineering using magnetically guided three dimensional cell patterning |
EP2983643A4 (en) * | 2013-04-12 | 2016-12-28 | Univ Columbia | Methods for host cell homing and dental pulp regeneration |
EP3137011A4 (en) * | 2014-04-29 | 2018-01-03 | Dentsply International Inc. | Endodontic treatment with long term drug delivery system |
US20170203009A1 (en) * | 2014-07-14 | 2017-07-20 | Temple University-Of The Commonwealth System Of Higher Education | Biomimetic Scaffold for Regenerative Dentistry |
CN104548212B (en) * | 2014-12-31 | 2018-05-11 | 新科沃再生医学(苏州)有限公司 | One kind promotes dental pulp and the regenerated composition of dentine |
WO2018102750A1 (en) * | 2016-12-01 | 2018-06-07 | Trustees Of Tufts College | Pulp regeneration compositions and methods of forming and using the same |
US11701453B2 (en) * | 2017-05-30 | 2023-07-18 | Oregon Health & Science University | Dental pulp construct |
-
2019
- 2019-03-20 US US16/979,038 patent/US20200405916A1/en active Pending
- 2019-03-20 JP JP2020550177A patent/JP7406809B2/en active Active
- 2019-03-20 EP EP19771745.7A patent/EP3768222A4/en active Pending
- 2019-03-20 WO PCT/US2019/023132 patent/WO2019183201A1/en unknown
-
2023
- 2023-11-20 JP JP2023196673A patent/JP2024009130A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Theiss et al. | Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis | |
Xu et al. | Rosuvastatin treatment activates JAK-STAT pathway and increases efficacy of allogeneic mesenchymal stem cell transplantation in infarcted hearts | |
RU2005141226A (en) | SPECIFIC GLUCOCORTICOSTEROID COMPOUND WITH ANTI-INFLAMMATORY ACTIVITY | |
Sae‐Lim et al. | Local dexamethasone improves periodontal healing of replanted dogs' teeth | |
JP2012526850A5 (en) | ||
Nguyen et al. | GLP-1 improves diastolic function and survival in heart failure with preserved ejection fraction | |
Hüttmann et al. | Granulocyte colony–stimulating factor–induced blood stem cell mobilisation in patients with chronic heart failure: Feasibility, safety and effects on exercise tolerance and cardiac function | |
Nivethithan et al. | Endodontic pain-cause and management: A review | |
CN105658217B (en) | Wound healing via autologous stem cell mobilization | |
MX2020001342A (en) | Use of gaboxadol in the treatment of diabetes and related conditions. | |
Nakashima et al. | Establishment of an X-ray irradiation-induced glossitis model in rats: biphasic elevation of proinflammatory cytokines and chemokines | |
WO2022026606A3 (en) | Genetically modified cell lines expressing an exogenous substance and uses thereof | |
JPWO2019183201A5 (en) | ||
JP2024009130A5 (en) | ||
EP1609476A4 (en) | Composition for treating hepatitis c | |
Mierke et al. | Reverse takotsubo cardiomyopathy–life-threatening symptom of an incidental pheochromocytoma: a case report | |
Shah | A regeneration-based, nonobturation root-canal treatment for fully-mature teeth: six years’ experience with “SealBio” | |
US11147747B2 (en) | Composition and method for endodontic debridement | |
JP2021518203A (en) | Regeneration of vibrant pulp | |
Swan et al. | Repair of coarctation: a higher goal? | |
Patil et al. | Effect of salivary contamination on shear bond strength of two adhesives: An: in vitro: study | |
Hagiwara et al. | Hyperglycemia contributes to cardiac dysfunction in a lipopolysaccharide-induced systemic inflammation model | |
Elzanaty et al. | Retreatability of NeoSEALER Flo obturated with warm vertical compaction versus single-cone technique using two different retreatment systems | |
Sridhara et al. | Scanning electron microscopic study of teeth restored with fiber posts and composite resin: An: in vitro: study | |
CN113041239A (en) | Application of biochanin A in preventing and treating acute pancreatitis |