JPWO2019183201A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019183201A5
JPWO2019183201A5 JP2020550177A JP2020550177A JPWO2019183201A5 JP WO2019183201 A5 JPWO2019183201 A5 JP WO2019183201A5 JP 2020550177 A JP2020550177 A JP 2020550177A JP 2020550177 A JP2020550177 A JP 2020550177A JP WO2019183201 A5 JPWO2019183201 A5 JP WO2019183201A5
Authority
JP
Japan
Prior art keywords
scaffold
hydrogel scaffold
hydrogel
root canal
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020550177A
Other languages
Japanese (ja)
Other versions
JP7406809B2 (en
JP2021518203A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/023132 external-priority patent/WO2019183201A1/en
Publication of JP2021518203A publication Critical patent/JP2021518203A/en
Publication of JPWO2019183201A5 publication Critical patent/JPWO2019183201A5/ja
Priority to JP2023196673A priority Critical patent/JP2024009130A/en
Application granted granted Critical
Publication of JP7406809B2 publication Critical patent/JP7406809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

開示される技法の原理が適用され得る多くの可能な実施形態に鑑みれば、例証される実施形態が例示に過ぎず、本開示の範囲を限定すると解釈されるべきでないことは、理解されるべきである。むしろ、本開示の範囲は、少なくとも以下の請求項と同程度に広い。従って、本発明者らは、以下の請求項の範囲内に入る全てのものを特許請求する。
本発明は、例えば、以下の項目を提供する。
(項目1)
歯内療法後に活力のある歯組織をインサイチュで再生する方法であって、前記方法は、生来の歯髄が根管から除去された後に、患者における歯の根管にヒドロゲル足場を導入する工程であって、ここで前記ヒドロゲル足場は無細胞である工程を包含する方法。
(項目2)
前記ヒドロゲル足場は、前記患者の内在する細胞の根管への浸潤を引き起こす、化学走性、血管形成性、神経原性、および免疫調節性の生体因子を含む、項目1に記載の方法。
(項目3)
前記ヒドロゲル足場は、薬物および生体因子を含まず、前記方法は、
前記ヒドロゲル足場とは別個に、炎症を阻害するかまたは前記患者の内在する細胞の前記根管への浸潤を促進する、化学走性、血管形成性、神経原性、および免疫調節性の生体因子を投与する工程
を包含する、項目1に記載の方法。
(項目4)
前記ヒドロゲル足場は、スポンジ足場内に保持され、前記スポンジ足場は、前記根管へと前記ヒドロゲル足場とともに導入される、項目1~3のいずれか1項に記載の方法。
(項目5)
抗炎症薬レジメンで前記患者を処置する工程をさらに包含する、項目1~4のいずれか1項に記載の方法。
(項目6)
前記患者を前記抗炎症レジメンで処置する工程は、コルチコステロイドまたは非ステロイド系抗炎症薬での処置を含む、項目5に記載の方法。
(項目7)
前記ヒドロゲル足場および前記スポンジ足場を導入した後に、歯の修復手順を行う工程をさらに包含する、項目1~6のいずれか1項に記載の方法。
(項目8)
前記ヒドロゲル足場は、前記根管へと注入され、前記根管内の空間全体を実質的に充填する、項目1~7のいずれか1項に記載の方法。
(項目9)
前記歯の根尖を開けて、細胞浸潤が起こる管を提供する工程をさらに包含する、項目1~8のいずれか1項に記載の方法。
(項目10)
前記ヒドロゲル足場は、膿瘍のある歯根の根尖周囲腔を充填する、項目1~9のいずれか1項に記載の方法。
(項目11)
移植可能な材料であって、前記材料は、
ヒドロゲル足場;ならびに
歯内療法後に活力のある歯組織をインサイチュで再生するために、患者の内在する細胞の根管への浸潤を引き起こし得る、化学走性、血管形成性、神経原性、および免疫調節性の生体因子、
を含む移植可能な材料。
(項目12)
前記ヒドロゲル足場に加えてスポンジ足場をさらに含み、ここで前記ヒドロゲル足場は、前記スポンジ足場によって保持される、項目11に記載の移植可能な材料。
(項目13)
前記ヒドロゲル足場は、メタクリル化ゼラチンおよびヘパリンのインサイチュ架橋を含む、項目11または項目12に記載の移植可能な材料。
(項目14)
前記ヒドロゲル足場は、薬物結合部分を含む、項目11~13のいずれか1項に記載の移植可能な材料。
(項目15)
前記スポンジ足場は、熱架橋ゼラチンを含む、項目12~14のいずれか1項に記載の移植可能な材料。
(項目16)
前記生体因子は、ケモカイン、サイトカイン、リンホカイン、増殖因子、神経調節因子、免疫調節性因子、および化学アゴニストを含む、項目11~15のいずれか1項に記載の移植可能な材料。
(項目17)
前記生体因子は、コルチコステロイド、パルモルファミン、フィルグラスチムおよび/またはエポエチンアルファを含む、項目11~16のいずれか1項に記載の移植可能な材料。
(項目18)
前記生体因子は、前記根尖周囲腔における歯内療法によって引き起こされる急性炎症反応を抑制する、項目11~17のいずれか1項に記載の移植可能な材料。
(項目19)
前記移植可能な材料は、無細胞である、項目11~18のいずれか1項に記載の移植可能な材料。
It should be understood that in view of the many possible embodiments to which the principles of the disclosed technique may apply, the illustrated embodiments are merely exemplary and should not be construed as limiting the scope of the present disclosure. Is. Rather, the scope of the disclosure is at least as broad as the following claims. Therefore, the present inventors claim all that fall within the scope of the following claims.
The present invention provides, for example, the following items.
(Item 1)
A method of in-situ regeneration of vibrant tooth tissue after endodontic treatment, which is the step of introducing a hydrogel scaffold into the root canal of the tooth in the patient after the innate pulp has been removed from the root canal. Here, the hydrogel scaffold is a method including a step of being cell-free.
(Item 2)
The method of item 1, wherein the hydrogel scaffold comprises chemotactic, angiogenic, neurogenic, and immunomodulatory biofactors that cause the infiltration of the patient's endogenous cells into the root canal.
(Item 3)
The hydrogel scaffold does not contain drugs and biofactors and the method is:
Chemotactic, angiogenic, neurogenic, and immunomodulatory biofactors that inhibit inflammation or promote the infiltration of the patient's endogenous cells into the root canal, separate from the hydrogel scaffold. Step to administer
1. The method according to item 1.
(Item 4)
The method according to any one of items 1 to 3, wherein the hydrogel scaffold is held in a sponge scaffold, and the sponge scaffold is introduced into the root canal together with the hydrogel scaffold.
(Item 5)
The method according to any one of items 1 to 4, further comprising treating the patient with an anti-inflammatory agent regimen.
(Item 6)
5. The method of item 5, wherein the step of treating the patient with the anti-inflammatory regimen comprises treatment with a corticosteroid or a non-steroidal anti-inflammatory drug.
(Item 7)
The method according to any one of items 1 to 6, further comprising a step of performing a tooth restoration procedure after introducing the hydrogel scaffold and the sponge scaffold.
(Item 8)
The method according to any one of items 1 to 7, wherein the hydrogel scaffold is injected into the root canal and substantially fills the entire space in the root canal.
(Item 9)
The method according to any one of items 1 to 8, further comprising the step of opening the apex of the tooth to provide a tube through which cell infiltration occurs.
(Item 10)
The method according to any one of items 1 to 9, wherein the hydrogel scaffold fills the periapical space of the abscessed tooth root.
(Item 11)
A transplantable material, said material
Hydrogel scaffolding; as well
Chemotactic, angiogenic, neurogenic, and immunomodulatory organisms that can cause infiltration of the patient's intrinsic cells into the root canal to in situ regenerate vibrant tooth tissue after endodontic treatment factor,
Transplantable material including.
(Item 12)
The implantable material of item 11, further comprising a sponge scaffold in addition to the hydrogel scaffold, wherein the hydrogel scaffold is held by the sponge scaffold.
(Item 13)
The transplantable material according to item 11 or item 12, wherein the hydrogel scaffold comprises an in situ crosslink of methylated gelatin and heparin.
(Item 14)
The transplantable material according to any one of items 11 to 13, wherein the hydrogel scaffold contains a drug binding moiety.
(Item 15)
The transplantable material according to any one of items 12 to 14, wherein the sponge scaffold contains heat-crosslinked gelatin.
(Item 16)
The implantable material according to any one of items 11 to 15, wherein the biofactor comprises a chemokine, a cytokine, a lymphokine, a growth factor, a neuromodulator, an immunomodulatory factor, and a chemical agonist.
(Item 17)
The transplantable material according to any one of items 11 to 16, wherein the biofactor comprises a corticosteroid, palmorfamine, filgrastim and / or epoetin alfa.
(Item 18)
The implantable material according to any one of items 11 to 17, wherein the biological factor suppresses an acute inflammatory reaction caused by endodontic treatment in the periapical space.
(Item 19)
The transplantable material according to any one of items 11 to 18, wherein the transplantable material is cell-free.

Claims (19)

歯内療法後に活力のある歯組織をインサイチュで再生する方法において使用するための、ヒドロゲル足場を含む組成物であって、前記方法は、生来の歯髄が根管から除去された後に、患者における歯の根管にヒドロゲル足場を導入する工程であって、ここで前記ヒドロゲル足場は無細胞である工程を包含する、組成物。 A composition comprising a hydrogel scaffold for use in a method of instituting vibrant tooth tissue after endodontic treatment, the method of which is a tooth in a patient after the innate pulp has been removed from the root canal. A composition comprising the step of introducing a hydrogel scaffold into a root canal, wherein the hydrogel scaffold is cell-free. 前記ヒドロゲル足場は、前記患者の内在する細胞の根管への浸潤を引き起こす、化学走性、血管形成性、神経原性、および免疫調節性の生体因子を含む、請求項1に記載の組成物The composition according to claim 1, wherein the hydrogel scaffold comprises a chemotactic, angiogenic, neurogenic, and immunomodulatory biofactor that causes the infiltration of the patient's endogenous cells into the root canal. .. 前記ヒドロゲル足場は、薬物および生体因子を含まず、前記方法は、
前記ヒドロゲル足場とは別個に、炎症を阻害するかまたは前記患者の内在する細胞の前記根管への浸潤を促進する、化学走性、血管形成性、神経原性、および免疫調節性の生体因子を投与する工程
さらに包含する、請求項1に記載の組成物
The hydrogel scaffold does not contain drugs and biofactors and the method is:
Chemotactic, angiogenic, neurogenic, and immunomodulatory biofactors that inhibit inflammation or promote the infiltration of the patient's endogenous cells into the root canal, separate from the hydrogel scaffold. The composition according to claim 1, further comprising the step of administering.
前記ヒドロゲル足場は、スポンジ足場内に保持され、前記スポンジ足場は、前記根管へと前記ヒドロゲル足場とともに導入される、請求項1~3のいずれか1項に記載の組成物The composition according to any one of claims 1 to 3, wherein the hydrogel scaffold is held in a sponge scaffold, and the sponge scaffold is introduced into the root canal together with the hydrogel scaffold. 前記方法は、抗炎症薬レジメンで前記患者を処置する工程をさらに包含する、請求項1~4のいずれか1項に記載の組成物The composition according to any one of claims 1 to 4, wherein the method further comprises treating the patient with an anti-inflammatory drug regimen. 前記患者を前記抗炎症レジメンで処置する工程は、コルチコステロイドまたは非ステロイド系抗炎症薬での処置を含む、請求項5に記載の組成物The composition of claim 5, wherein the step of treating the patient with the anti-inflammatory regimen comprises treatment with a corticosteroid or a non-steroidal anti-inflammatory drug. 前記方法は、前記ヒドロゲル足場および前記スポンジ足場を導入した後に、歯の修復手順を行う工程をさらに包含する、請求項1~6のいずれか1項に記載の組成物The composition according to any one of claims 1 to 6, further comprising a step of performing a tooth restoration procedure after introducing the hydrogel scaffold and the sponge scaffold. 前記ヒドロゲル足場は、前記根管へと注入され、前記根管内の空間全体を実質的に充填する、請求項1~7のいずれか1項に記載の組成物The composition according to any one of claims 1 to 7, wherein the hydrogel scaffold is injected into the root canal and substantially fills the entire space in the root canal. 前記方法は、前記歯の根尖を開けて、細胞浸潤が起こる管を提供する工程をさらに包含する、請求項1~8のいずれか1項に記載の組成物The composition according to any one of claims 1 to 8, further comprising the step of opening the apex of the tooth to provide a tube through which cell infiltration occurs. 前記ヒドロゲル足場は、膿瘍のある歯根の根尖周囲腔を充填する、請求項1~9のいずれか1項に記載の組成物The composition according to any one of claims 1 to 9, wherein the hydrogel scaffold fills the periapical space of an abscessed tooth root. 移植可能な材料であって、前記材料は、
ヒドロゲル足場;ならびに
歯内療法後に活力のある歯組織をインサイチュで再生するために、患者の内在する細胞の根管への浸潤を引き起こし得る、化学走性、血管形成性、神経原性、および免疫調節性の生体因子、
を含む移植可能な材料。
A transplantable material, said material
Hydrogel scaffolding; as well as chemotaxis, angiogenic, neurogenic, and immune that can cause infiltration of the patient's underlying cells into the root canal to in situ regenerate vibrant tooth tissue after endodontic treatment. Modulatory biofactor,
Transplantable material including.
前記ヒドロゲル足場に加えてスポンジ足場をさらに含み、ここで前記ヒドロゲル足場は、前記スポンジ足場によって保持される、請求項11に記載の移植可能な材料。 11. The implantable material of claim 11, further comprising a sponge scaffold in addition to the hydrogel scaffold, wherein the hydrogel scaffold is held by the sponge scaffold. 前記ヒドロゲル足場は、メタクリル化ゼラチンおよびヘパリンのインサイチュ架橋を含む、請求項11または請求項12に記載の移植可能な材料。 The transplantable material of claim 11 or 12, wherein the hydrogel scaffold comprises an insitucrosslink of gelatinized gelatin and heparin. 前記ヒドロゲル足場は、薬物結合部分を含む、請求項11~13のいずれか1項に記載の移植可能な材料。 The transplantable material according to any one of claims 11 to 13, wherein the hydrogel scaffold contains a drug binding moiety. 前記スポンジ足場は、熱架橋ゼラチンを含む、請求項12~14のいずれか1項に記載の移植可能な材料。 The transplantable material according to any one of claims 12 to 14, wherein the sponge scaffold contains heat-crosslinked gelatin. 前記生体因子は、ケモカイン、サイトカイン、リンホカイン、増殖因子、神経調節因子、免疫調節性因子、および化学アゴニストを含む、請求項11~15のいずれか1項に記載の移植可能な材料。 The transplantable material according to any one of claims 11 to 15, wherein the biofactor comprises a chemokine, a cytokine, a lymphokine, a growth factor, a neuromodulator, an immunomodulatory factor, and a chemical agonist. 前記生体因子は、コルチコステロイド、パルモルファミン、フィルグラスチムおよび/またはエポエチンアルファを含む、請求項11~16のいずれか1項に記載の移植可能な材料。 The transplantable material according to any one of claims 11 to 16, wherein the biofactor comprises a corticosteroid, palmorfamine, filgrastim and / or epoetin alfa. 前記生体因子は、前記根尖周囲腔における歯内療法によって引き起こされる急性炎症反応を抑制する、請求項11~17のいずれか1項に記載の移植可能な材料。 The implantable material according to any one of claims 11 to 17, wherein the biological factor suppresses an acute inflammatory reaction caused by endodontic treatment in the periapical space. 前記移植可能な材料は、無細胞である、請求項11~18のいずれか1項に記載の移植可能な材料。
The transplantable material according to any one of claims 11 to 18, wherein the transplantable material is cell-free.
JP2020550177A 2018-03-20 2019-03-20 Vibrant pulp regeneration Active JP7406809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023196673A JP2024009130A (en) 2018-03-20 2023-11-20 Regeneration of vital tooth pulp

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862645364P 2018-03-20 2018-03-20
US62/645,364 2018-03-20
PCT/US2019/023132 WO2019183201A1 (en) 2018-03-20 2019-03-20 Regeneration of vital tooth pulp

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023196673A Division JP2024009130A (en) 2018-03-20 2023-11-20 Regeneration of vital tooth pulp

Publications (3)

Publication Number Publication Date
JP2021518203A JP2021518203A (en) 2021-08-02
JPWO2019183201A5 true JPWO2019183201A5 (en) 2022-03-09
JP7406809B2 JP7406809B2 (en) 2023-12-28

Family

ID=67988017

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020550177A Active JP7406809B2 (en) 2018-03-20 2019-03-20 Vibrant pulp regeneration
JP2023196673A Pending JP2024009130A (en) 2018-03-20 2023-11-20 Regeneration of vital tooth pulp

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023196673A Pending JP2024009130A (en) 2018-03-20 2023-11-20 Regeneration of vital tooth pulp

Country Status (4)

Country Link
US (1) US20200405916A1 (en)
EP (1) EP3768222A4 (en)
JP (2) JP7406809B2 (en)
WO (1) WO2019183201A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220347347A1 (en) * 2021-04-28 2022-11-03 Worcester Polytechnic Institute Ligament Repair Scaffold
US11890154B2 (en) * 2021-06-30 2024-02-06 Khalid AL HEZAIMI Pulp capping methods

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025605A1 (en) * 2003-09-09 2005-03-24 Two Cells Co. Ltd. Remedy and therapeutic method for periodontal diseases and pulpal diseases
RU2542391C2 (en) * 2003-12-30 2015-02-20 Аугустинус БАДЕР Method for neogenesis
JP2005211477A (en) 2004-01-30 2005-08-11 Gunze Ltd Support for regenerative medicine
JP2005213449A (en) 2004-01-30 2005-08-11 Gunze Ltd Gelatin sponge
US20140302111A1 (en) * 2007-10-25 2014-10-09 The Trustees Of Columbia University In The City Of New York Compositions and methods for dental tissue regeneration
KR20100103821A (en) * 2007-12-14 2010-09-28 노바 사우쓰이스턴 유니버시티 Method and kit for delivering regenerative endodontic treatment
EP3184552B1 (en) * 2008-09-02 2020-08-12 Tautona Group LP Threads of hyaluronic acid, methods of making thereof and uses thereof
WO2010148229A1 (en) * 2009-06-17 2010-12-23 The Trustees Of Columbia University In The City Of New York Tooth scaffolds
EP2476442B1 (en) * 2009-09-11 2019-04-17 National Center for Geriatrics and Gerontology Root canal filler for non-extracted tooth and non-extraction method for regenerating dental tissue
EP2491958A4 (en) 2009-10-20 2014-07-16 Nitto Denko Corp Material for induction of hard tissue regeneration
US9051549B2 (en) * 2011-02-22 2015-06-09 Scripps Health In situ tissue engineering using magnetically guided three dimensional cell patterning
EP2983643A4 (en) * 2013-04-12 2016-12-28 Univ Columbia Methods for host cell homing and dental pulp regeneration
EP3137011A4 (en) * 2014-04-29 2018-01-03 Dentsply International Inc. Endodontic treatment with long term drug delivery system
US20170203009A1 (en) * 2014-07-14 2017-07-20 Temple University-Of The Commonwealth System Of Higher Education Biomimetic Scaffold for Regenerative Dentistry
CN104548212B (en) * 2014-12-31 2018-05-11 新科沃再生医学(苏州)有限公司 One kind promotes dental pulp and the regenerated composition of dentine
WO2018102750A1 (en) * 2016-12-01 2018-06-07 Trustees Of Tufts College Pulp regeneration compositions and methods of forming and using the same
US11701453B2 (en) * 2017-05-30 2023-07-18 Oregon Health & Science University Dental pulp construct

Similar Documents

Publication Publication Date Title
Theiss et al. Dual stem cell therapy after myocardial infarction acts specifically by enhanced homing via the SDF-1/CXCR4 axis
Xu et al. Rosuvastatin treatment activates JAK-STAT pathway and increases efficacy of allogeneic mesenchymal stem cell transplantation in infarcted hearts
RU2005141226A (en) SPECIFIC GLUCOCORTICOSTEROID COMPOUND WITH ANTI-INFLAMMATORY ACTIVITY
Sae‐Lim et al. Local dexamethasone improves periodontal healing of replanted dogs' teeth
JP2012526850A5 (en)
Nguyen et al. GLP-1 improves diastolic function and survival in heart failure with preserved ejection fraction
Hüttmann et al. Granulocyte colony–stimulating factor–induced blood stem cell mobilisation in patients with chronic heart failure: Feasibility, safety and effects on exercise tolerance and cardiac function
Nivethithan et al. Endodontic pain-cause and management: A review
CN105658217B (en) Wound healing via autologous stem cell mobilization
MX2020001342A (en) Use of gaboxadol in the treatment of diabetes and related conditions.
Nakashima et al. Establishment of an X-ray irradiation-induced glossitis model in rats: biphasic elevation of proinflammatory cytokines and chemokines
WO2022026606A3 (en) Genetically modified cell lines expressing an exogenous substance and uses thereof
JPWO2019183201A5 (en)
JP2024009130A5 (en)
EP1609476A4 (en) Composition for treating hepatitis c
Mierke et al. Reverse takotsubo cardiomyopathy–life-threatening symptom of an incidental pheochromocytoma: a case report
Shah A regeneration-based, nonobturation root-canal treatment for fully-mature teeth: six years’ experience with “SealBio”
US11147747B2 (en) Composition and method for endodontic debridement
JP2021518203A (en) Regeneration of vibrant pulp
Swan et al. Repair of coarctation: a higher goal?
Patil et al. Effect of salivary contamination on shear bond strength of two adhesives: An: in vitro: study
Hagiwara et al. Hyperglycemia contributes to cardiac dysfunction in a lipopolysaccharide-induced systemic inflammation model
Elzanaty et al. Retreatability of NeoSEALER Flo obturated with warm vertical compaction versus single-cone technique using two different retreatment systems
Sridhara et al. Scanning electron microscopic study of teeth restored with fiber posts and composite resin: An: in vitro: study
CN113041239A (en) Application of biochanin A in preventing and treating acute pancreatitis