JPWO2019180238A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019180238A5
JPWO2019180238A5 JP2020550597A JP2020550597A JPWO2019180238A5 JP WO2019180238 A5 JPWO2019180238 A5 JP WO2019180238A5 JP 2020550597 A JP2020550597 A JP 2020550597A JP 2020550597 A JP2020550597 A JP 2020550597A JP WO2019180238 A5 JPWO2019180238 A5 JP WO2019180238A5
Authority
JP
Japan
Prior art keywords
component
successor
electric field
electric
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020550597A
Other languages
Japanese (ja)
Other versions
JP2021518731A (en
JP7466456B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2019/057306 external-priority patent/WO2019180238A1/en
Publication of JP2021518731A publication Critical patent/JP2021518731A/en
Publication of JPWO2019180238A5 publication Critical patent/JPWO2019180238A5/ja
Application granted granted Critical
Publication of JP7466456B2 publication Critical patent/JP7466456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (15)

付加製造技術によって、後で作製された部品から電気素子(100、450)を製造する方法であって、
前記電気素子の物理特性の目標空間分布を決めることを含み、前記物理特性は、電気特性および/または機械特性であり、
前記電気素子の部品(50)を形成することと、
決められた前記物理特性の前記空間分布に従って、前記電気素子の後続部品(51)の物理特性を選択することと、
前記付加製造技術を用いて、前記部品(50)と少なくとも部分的に接触するように前記後続部品(51)を形成することとを含む、方法。
It is a method of manufacturing an electric element (100, 450) from a part manufactured later by an additional manufacturing technique.
Including determining the target spatial distribution of the physical properties of the electrical element, the physical properties are electrical and / or mechanical properties.
Forming the component (50) of the electric element and
The physical characteristics of the succeeding component (51) of the electric element are selected according to the spatial distribution of the determined physical characteristics.
A method comprising using the additional manufacturing technique to form the successor part (51) in at least partial contact with the part (50).
前記空間分布は、電気特性の場合、特定の電気環境に配置された前記電気素子の目標電場パターン(E)であり、機械特性の場合、前記電気素子の目標機械強度である、請求項1に記載の方法。 The spatial distribution is the target electric field pattern (E) of the electric element arranged in a specific electric environment in the case of electrical characteristics, and is the target mechanical strength of the electric element in the case of mechanical characteristics, according to claim 1. The method described. 前記電気特性は、誘電率、導電率、またはそれらの組み合わせを含み、および/または
前記機械特性は、機械強度、弾性、可塑性、またはそれらの組み合わせを含む、請求項1または2に記載の方法。
The method of claim 1 or 2, wherein the electrical properties include dielectric constant, conductivity, or a combination thereof, and / or the mechanical properties include mechanical strength, elasticity, plasticity, or a combination thereof.
前記部品(50)および前記後続部品(51)は、絶縁部品である、請求項1から3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3 , wherein the component (50) and the subsequent component (51) are insulating components. 選択された前記後続部品(51)の前記物理特性、典型的には前記電気特性および/または前記機械特性は、実質的に材料の固有特性である、請求項1から4のいずれか一項に記載の方法。 One of claims 1 to 4 , wherein the physical properties, typically the electrical and / or the mechanical properties, of the selected successor component (51) are substantially inherent properties of the material. The method described in. 前記部品(50)は、付加製造技術を用いて形成される、請求項1から5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5 , wherein the part (50) is formed by using an additive manufacturing technique. 前記電気素子(100、450)の目標機械強度の前記空間分布を決めることは、前記電気素子(100、450)の主機械応力の経路(P)を特定することを含み、
前記後続部品(51)の前記機械特性を選択することおよび前記後続部品(51)を形成することは、特定された前記主機械応力の経路(P)上で、所定の強度閾値以上の機械強度を有する1つ以上の後続部品(51)を形成することを含む、請求項1から6のいずれか一項に記載の方法。
Determining the spatial distribution of the target mechanical strength of the electric element (100, 450) includes identifying the main mechanical stress path (P) of the electric element (100, 450).
Choosing the mechanical properties of the successor component (51) and forming the successor component (51) is a mechanical strength greater than or equal to a predetermined strength threshold on the identified principal mechanical stress path (P). The method according to any one of claims 1 to 6 , comprising forming one or more subsequent parts (51) having the above.
前記後続部品(51)の前記電気特性を選択することおよび決められた前記目標電場パターン(E)に従って前記後続部品を形成することは、前記部品(50)および前記少なくとも1つの後続部品(51)の各々を形成する少なくとも2つの異なる材料の材料比を変更することを含む、請求項1から7のいずれか一項に記載の方法。 Selecting the electrical characteristics of the successor component (51) and forming the successor component according to the determined target electric field pattern (E) is the component (50) and the at least one successor component (51). The method of any one of claims 1-7 , comprising changing the material ratio of at least two different materials forming each of the above. 前記後続部品(51)の前記機械特性を選択することおよび決められた前記目標機械強度の前記空間分布に従って前記後続部品(51)を形成することは、前記部品(50)および前記少なくとも1つの後続部品(51)の各々を形成する少なくとも2つの異なる材料の材料比を変更することを含む、請求項1~8のいずれか一項に記載の方法。 Selecting the mechanical properties of the successor part (51) and forming the successor part (51) according to the spatial distribution of the determined target mechanical strength is the part (50) and the at least one successor. The method of any one of claims 1-8 , comprising changing the material ratio of at least two different materials forming each of the parts (51). 付加製造技術を用いて、複数の後続部品(51、52、53、54)を形成することを含み、
前記複数の後続部品(51、52、53、54)は、少なくとも2つの異なる材料の材料比を変更し、特に段階的に変更することによって形成される、請求項1から9のいずれか一項に記載の方法。
Including forming multiple subsequent parts (51, 52, 53, 54) using additional manufacturing techniques.
One of claims 1 to 9 , wherein the plurality of subsequent parts (51, 52, 53, 54) are formed by changing the material ratio of at least two different materials, particularly stepwise. The method described in the section.
請求項1から10のいずれか一項に記載の方法によって得られる電気素子(100、450)、特に電気絶縁素子または電場傾斜素子。 An electric element (100, 450) obtained by the method according to any one of claims 1 to 10, particularly an electrically insulating element or an electric field tilting element. 1つ以上の後続部品(51)として形成された電場傾斜部品(51)を含み、
前記電気素子が電場、特にHVACまたはHVDC電場に配置されているときに、前記電場傾斜部品(51)は、前記電場の電場密度を緩和するように構成されている、請求項11に記載の電気素子(100、450)。
Includes an electric field tilting component (51) formed as one or more subsequent components (51).
11. The electricity according to claim 11, wherein the electric field tilting component (51) is configured to relax the electric field density of the electric field when the electric element is arranged in an electric field, particularly an HVAC or HVDC electric field. Element (100, 450).
1つ以上の後続部品(51)として形成された弾性緩和部品(51)を含み、
前記弾性緩和部品(51)は、外部から加えられた応力を前記弾性緩和部品(51)の塑性変形に変換するように構成されている、請求項11または12に記載の電気素子(100、450)。
Including elastic relaxation parts (51) formed as one or more subsequent parts (51).
The electric element (100, 450) according to claim 11 or 12, wherein the elastic relaxation component (51) is configured to convert externally applied stress into plastic deformation of the elastic relaxation component (51). ).
HVACまたはHVDC装置、特にHVACもしくはHVDC開閉装置またはHVACもしくはHVDC回路遮断器におけるACまたはDC絶縁体として、請求項11から13のいずれか一項に記載の電気素子(100、450)の使用。 Use of the electrical element (100, 450) according to any one of claims 11 to 13 as an AC or DC insulator in an HVAC or HVDC device, particularly an HVAC or HVDC switchgear or an HVAC or HVDC circuit breaker. HVACまたはHVDC構造、特にHVACまたはHVDCケーブル継手における電場傾斜素子として、請求項11から13のいずれか一項に記載の電気素子(100、450)の使用。 Use of the electrical element (100, 450) according to any one of claims 11 to 13 as an electric field tilting element in an HVAC or HVDC structure, particularly an HVAC or HVDC cable joint.
JP2020550597A 2018-03-23 2019-03-22 How to manufacture electrical components using additive manufacturing techniques Active JP7466456B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18163770 2018-03-23
EP18163770.3 2018-03-23
PCT/EP2019/057306 WO2019180238A1 (en) 2018-03-23 2019-03-22 Method for producing an electrical power device by additive manufacturing techniques

Publications (3)

Publication Number Publication Date
JP2021518731A JP2021518731A (en) 2021-08-02
JPWO2019180238A5 true JPWO2019180238A5 (en) 2022-03-03
JP7466456B2 JP7466456B2 (en) 2024-04-12

Family

ID=61768136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020550597A Active JP7466456B2 (en) 2018-03-23 2019-03-22 How to manufacture electrical components using additive manufacturing techniques

Country Status (7)

Country Link
US (1) US11984711B2 (en)
EP (1) EP3769384A1 (en)
JP (1) JP7466456B2 (en)
KR (1) KR20200135787A (en)
CN (1) CN111903024B (en)
RU (1) RU2760843C1 (en)
WO (1) WO2019180238A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4142975A4 (en) * 2020-04-30 2024-01-31 Hitachi Energy Ltd Method and system for additive manufacturing of electrical devices

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH16232A (en) 1898-01-18 1898-10-15 Josef Exner Improved Telephone
JPS6043010A (en) 1983-08-16 1985-03-07 株式会社富士電機総合研究所 Insulating spacer for gas insulated electric device
DE4007337C2 (en) 1990-03-08 1999-10-28 Asea Brown Boveri Electrical insulator
JPH0622436A (en) 1992-07-02 1994-01-28 Hitachi Ltd Insulator for glass insulated appliance
JP3138567B2 (en) 1992-09-18 2001-02-26 三菱電機株式会社 Gas insulation equipment
CN1271675C (en) * 1994-06-27 2006-08-23 佳能株式会社 Electron beam equipment and image display equipment
US6519500B1 (en) * 1999-09-16 2003-02-11 Solidica, Inc. Ultrasonic object consolidation
US7411129B2 (en) * 2004-07-13 2008-08-12 Southwire Company Electrical cable having a surface with reduced coefficient of friction
US7556490B2 (en) * 2004-07-30 2009-07-07 Board Of Regents, The University Of Texas System Multi-material stereolithography
US9101979B2 (en) 2011-10-31 2015-08-11 California Institute Of Technology Methods for fabricating gradient alloy articles with multi-functional properties
US10748867B2 (en) 2012-01-04 2020-08-18 Board Of Regents, The University Of Texas System Extrusion-based additive manufacturing system for 3D structural electronic, electromagnetic and electromechanical components/devices
US9508507B2 (en) * 2012-12-21 2016-11-29 Mitsubishi Electric Corporation Gas insulated electrical equipment
CN103327741B (en) * 2013-07-04 2016-03-02 江俊逢 A kind of base plate for packaging based on 3D printing and manufacture method thereof
KR101872628B1 (en) 2014-01-16 2018-06-28 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Generating a three-dimensional object
US9825437B2 (en) 2014-06-04 2017-11-21 Hamilton Sundstrand Corporation Three-dimensional power distribution interconnect structure
CN104600610B (en) 2014-06-24 2017-02-01 云南电网公司 Construction method for prefabricated substation
CN104103385B (en) 2014-07-21 2017-02-15 国家电网公司 Overhung composite insulator string and method for printing same by using 3D
JP6338960B2 (en) 2014-07-29 2018-06-06 株式会社東芝 Insulating spacer for gas insulated switchgear and method for manufacturing the same
JP2016033861A (en) 2014-07-31 2016-03-10 株式会社東芝 Capacitor bushing and method for producing the same
US9845556B2 (en) * 2014-09-23 2017-12-19 The Boeing Company Printing patterns onto composite laminates
US9827713B1 (en) 2014-11-11 2017-11-28 X Development Llc Wet/dry 3D printing
FR3029838A1 (en) 2014-12-11 2016-06-17 Centre Nat Rech Scient METHOD FOR ADDITIVE MANUFACTURING OF A 3D MECATRONIC OBJECT
US9757880B2 (en) * 2015-01-13 2017-09-12 Empire Technology Development Llc Spatial heat treatment of additively manufactured objects
DE102015103839B4 (en) * 2015-03-16 2017-02-16 Inceda Holding Gmbh photovoltaic system
CN104916378B (en) 2015-06-18 2017-01-04 西安交通大学 The dielectric constant gradient insulator printed based on 3D manufactures device and method
US10236123B2 (en) 2015-07-19 2019-03-19 Vq Research, Inc. Methods and systems to minimize delamination of multilayer ceramic capacitors
CN105321635B (en) 2015-09-25 2017-04-26 西安交通大学 3D printing-based manufacturing method for conductivity gradient polymer insulator
US20170239885A1 (en) * 2015-11-13 2017-08-24 Paxis Llc Additive Manufacturing Apparatus, System, and Method
US10071422B2 (en) * 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
DE102016002052A1 (en) 2015-12-18 2017-06-22 Liebherr-Components Biberach Gmbh Control cabinet and method for its production
RU2647540C1 (en) 2017-03-13 2018-03-16 Общество с ограниченной ответственностью "МИРКОН" Method for obtaining composite ceramics based on silicon nitride
CN106941244B (en) * 2017-05-17 2018-10-12 成都清威科技有限公司 A kind of switchgear insulation restorative procedure
CN107457404B (en) * 2017-08-02 2021-01-05 华中科技大学 Additive machining forming method suitable for complex parts and dies

Similar Documents

Publication Publication Date Title
Abd-Rahman et al. Stress control on polymeric outdoor insulators using zinc oxide microvaristor composites
EP0293735B1 (en) Continuous flexible electric conductor capable of functioning as an electric switch
JPWO2019180238A5 (en)
Morocutti et al. Developments of high voltage porcelain post-insulators
Slama et al. The effect of discontinuous non uniform pollution on the flashover of polluted insulators under Lightning impulse voltage
Halloum et al. Control of polymeric outdoor insulators stress by using nonlinear field grading materials
Negm et al. Investigation of partial discharge frequency dependence in distribution system cables
Kwon et al. Lightning impulse breakdown characteristic of dry-air/silicone rubber hybrid insulation in rod-plane electrode
JP7466456B2 (en) How to manufacture electrical components using additive manufacturing techniques
Hadjrioua et al. New HVDC flashover of polluted insulators-dynamic modeling
Shariff et al. Electric field analysis along pin-plane electrodes near the contaminated dielectric surface using FEM
Bose et al. Design of grading material for electric stress control in a polymeric disc insulator
Dyck et al. Investigation of conductor packages and contact geometries for stranded copper wires
Hadjrioua et al. Application of the analytical arc parameters on the dynamic modeling of HVDC flashover of polluted insulators
Wu et al. Space charge simulation of electric tree before germination in XLPE at DC voltage based on improved bipolar carrier transport model
CN109314342A (en) Electric arc with reduction plays the electric device of trace
Yuan et al. Analysis of flashover on the contaminated silicone rubber composite insulator
Poluektova et al. Effect of conductive-zone sizes and positions on the characteristics of discharge activity on a solid insulation surface
US1492496A (en) Insulator and transposition device
Rizzo et al. The effect of Transient Over Voltages on the Partial Discharges activity in HVDC joints
Degeratu et al. A performant insulation system for the stator winding of the 6 kV induction motors
Janys et al. The behaviour of insulator strings under dry and wet conditions
JP2001506423A (en) High voltage resistance and high voltage power supply having such high voltage resistance
US20210130573A1 (en) Polymer-ceramic composite and methods of making the same
Agrawal et al. Electric field computation for porcelain insulator during polluted conditions