JPWO2019163602A1 - Target region purification method, detection method, and cancer determination method - Google Patents

Target region purification method, detection method, and cancer determination method Download PDF

Info

Publication number
JPWO2019163602A1
JPWO2019163602A1 JP2020501700A JP2020501700A JPWO2019163602A1 JP WO2019163602 A1 JPWO2019163602 A1 JP WO2019163602A1 JP 2020501700 A JP2020501700 A JP 2020501700A JP 2020501700 A JP2020501700 A JP 2020501700A JP WO2019163602 A1 JPWO2019163602 A1 JP WO2019163602A1
Authority
JP
Japan
Prior art keywords
stranded dna
protruding
double
dna fragment
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2020501700A
Other languages
Japanese (ja)
Other versions
JPWO2019163602A5 (en
Inventor
幸信 林田
幸信 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Fujifilm Wako Pure Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Wako Pure Chemical Corp filed Critical Fujifilm Wako Pure Chemical Corp
Publication of JPWO2019163602A1 publication Critical patent/JPWO2019163602A1/en
Publication of JPWO2019163602A5 publication Critical patent/JPWO2019163602A5/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)

Abstract

本発明の課題は、標的領域の精製を、簡便、短時間且つ精度よく行うことができる方法の提供することにある。本発明は、「二本鎖DNA中の標的領域の精製方法及び検出方法、並びに癌の判定方法」に関する。An object of the present invention is to provide a method capable of purifying a target region easily, in a short time and with high accuracy. The present invention relates to "a method for purifying and detecting a target region in double-stranded DNA, and a method for determining cancer".

Description

本発明は、標的領域の精製方法、検出方法及び癌の判定方法に関する。 The present invention relates to a method for purifying a target region, a method for detecting a target region, and a method for determining cancer.

血液等の体液、細胞、組織等の試料に由来するDNA中の標的領域の精製は、標的領域を検出する上で重要な処理である。
これは、標的領域の精製が十分に行われないと、PCR等の核酸増幅反応により標的領域を増幅する際、プライマーが標的領域以外の領域(非標的領域)にアニーリングし、非標的領域が増幅されてしまうためである。その結果、標的領域の検出が困難となる。
Purification of a target region in DNA derived from a sample such as body fluid such as blood, cells, or tissue is an important process for detecting the target region.
This is because if the target region is not sufficiently purified, when the target region is amplified by a nucleic acid amplification reaction such as PCR, the primer is annealed to a region other than the target region (non-target region), and the non-target region is amplified. This is because it will be done. As a result, it becomes difficult to detect the target region.

また、標的領域の精製は、試料中の希少細胞[例えば、血液中に存在する血中循環腫瘍細胞(CTC:Circulating Tumor Cell)等]に由来するDNA中の標的領域を検出する場合、特に重要な処理である。
これは、試料中に存在する希少細胞に由来するDNA中の標的領域を検出する場合、試料から多量のDNA(例えば、2μg〜100μg)を抽出する必要があり、この多量のDNAの存在により、プライマーが非標的領域に多数アニーリングし、非標的領域が多数増幅されてしまうためである。その結果、標的領域の検出が極めて困難となる。
Purification of the target region is particularly important when detecting a target region in DNA derived from rare cells in a sample [for example, Circulating Tumor Cell (CTC) present in blood]. Processing.
This is because when detecting a target region in DNA derived from rare cells present in a sample, it is necessary to extract a large amount of DNA (for example, 2 μg to 100 μg) from the sample, and due to the presence of this large amount of DNA. This is because a large number of primers anneal to the non-target region and a large number of non-target regions are amplified. As a result, it becomes extremely difficult to detect the target region.

標的領域の精製方法としては、例えば、標的領域の一部又は全部に相補的な塩基配列を有するプローブ等を用いる方法が挙げられる(特許文献1)。
しかしながら、特許文献1の方法は適切なプローブを設計する必要があり、また、非標的領域を除去するために種々の工程を複数回繰り返す必要がある。そのため、特許文献1の方法は、煩雑且つ精度が低いものである。
従って、標的領域の精製を、簡便且つ高精度に行うことができる方法の開発が望まれていた。
Examples of the method for purifying the target region include a method using a probe having a base sequence complementary to a part or all of the target region (Patent Document 1).
However, the method of Patent Document 1 requires designing an appropriate probe, and also requires repeating various steps a plurality of times in order to remove the non-target region. Therefore, the method of Patent Document 1 is complicated and has low accuracy.
Therefore, it has been desired to develop a method capable of purifying the target region easily and with high accuracy.

特開2002-223761JP 2002-223761

本発明は、標的領域の精製を、簡便、短時間且つ精度よく行うことができる方法の提供を課題とする。 An object of the present invention is to provide a method capable of purifying a target region easily, in a short time and with high accuracy.

本発明は、上記課題を解決する目的でなされたものであり、以下の構成よりなる。
[1]下記工程1〜3を含む、二本鎖DNA中の標的領域の精製方法:
(1)(a)末端に3’突出を生じさせる制限酵素Aを1種以上及び(b)末端に5’突出を生じさせる制限酵素Bを1種以上用いて、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]並びに、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片]を生じさせる工程1、ここで、当該制限酵素Aは当該標的領域中の塩基配列を切断せず、当該制限酵素Bは当該3’突出標的二本鎖DNA断片中の塩基配列を切断しないものである、
(2)前記工程1で生じた、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を、エキソヌクレアーゼIIIで処理することにより、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、それぞれ(iv)標的領域を有さない一本鎖DNA断片を生じさせる工程2、
(3)前記工程2で生じた、(iv)標的領域を有さない一本鎖DNA断片及び(i)3’突出標的二本鎖DNA断片を、一本鎖特異的ヌクレアーゼで処理することにより、(i)3’突出標的二本鎖DNA断片から、(v)標的領域を有しその両端が平滑である二本鎖DNA断片[平滑標的二本鎖DNA断片]を生じさせる工程3。
[2]前記工程1において、制限酵素A及び制限酵素Bを同時に用いる、[1]に記載の精製方法。
[3]下記工程1〜5を含む、二本鎖DNA中の標的領域の検出方法:
(1)(a)末端に3’突出を生じさせる制限酵素Aを1種以上及び(b)末端に5’突出を生じさせる制限酵素Bを1種以上用いて、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]並びに、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片]を生じさせる工程1、ここで、当該制限酵素Aは当該標的領域中の塩基配列を切断せず、当該制限酵素Bは当該3’突出標的二本鎖DNA断片中の塩基配列を切断しないものである、
(2)前記工程1で生じた、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を、エキソヌクレアーゼIIIで処理することにより、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、それぞれ(iv)標的領域を有さない一本鎖DNA断片を生じさせる工程2、
(3)前記工程2で生じた、(iv)標的領域を有さない一本鎖DNA断片及び(i)3’突出標的二本鎖DNA断片を、一本鎖特異的ヌクレアーゼで処理することにより、(i)3’突出標的二本鎖DNA断片から、(v)標的領域を有しその両端が平滑である二本鎖DNA断片[平滑標的二本鎖DNA断片]を生じさせる工程3、
(4)前記工程3で生じた、(v)平滑標的二本鎖DNA断片中の標的領域を増幅処理に付す工程4、
(5)前記工程4で生じた、増幅産物の有無を確認する工程5。
[4]前記工程1において、制限酵素A及び制限酵素Bを同時に用いる、[3]に記載の検出方法。
[5]下記工程1〜7を含む、癌の判定方法:
(1)(a)末端に3’突出を生じさせる制限酵素Aを1種以上及び(b)末端に5’突出を生じさせる制限酵素Bを1種以上用いて、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]並びに、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片]を生じさせる工程1、ここで、当該制限酵素Aは当該標的領域中の塩基配列を切断せず、当該制限酵素Bは当該3’突出標的二本鎖DNA断片中の塩基配列を切断しないものである、
(2)前記工程1で生じた、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を、エキソヌクレアーゼIIIで処理することにより、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、それぞれ(iv)標的領域を有さない一本鎖DNA断片を生じさせる工程2、
(3)前記工程2で生じた、(iv)標的領域を有さない一本鎖DNA断片及び(i)3’突出標的二本鎖DNA断片を、一本鎖特異的ヌクレアーゼで処理することにより、(i)3’突出標的二本鎖DNA断片から、(v)標的領域を有しその両端が平滑である二本鎖DNA断片[平滑標的二本鎖DNA断片]を生じさせる工程3、
(4)前記工程3で生じた、(v)平滑標的二本鎖DNA断片を、メチル化感受性制限酵素で処理する工程4、
(5)前記工程4で処理された、(v)平滑標的二本鎖DNA断片中の標的領域を増幅処理に付す工程5、
(6)前記工程5で生じた、増幅産物の有無を確認する工程6、
(7)前記工程6の確認結果に基づいて、癌を判定する工程7。
[6]前記工程1において、制限酵素A及び制限酵素Bを同時に用いる、[5]に記載の判定方法。
[7]前記標的領域が配列番号1又は配列番号2で表される塩基配列を含む塩基配列である、[5]又は[6]に記載の判定方法。
[8]前記工程1の制限酵素AがPstIであって、制限酵素BがMboI、BamHI、BglII又はHindIIIである、[5]〜[7]の何れかに記載の判定方法。
[9]前記工程3の一本鎖特異的ヌクレアーゼが、S1ヌクレアーゼである、[5]〜[8]の何れかに記載の判定方法。
[10]前記工程4のメチル化感受性制限酵素が、HapII、HpaII、SacII、BstuI、AciI又はFauIである、[5]〜[9]の何れかに記載の判定方法。
The present invention has been made for the purpose of solving the above problems, and has the following configuration.
[1] A method for purifying a target region in double-stranded DNA, which comprises the following steps 1 to 3.
(1) A double-strand having a target region using one or more restriction enzymes A that cause 3'protrusion at the end and (b) one or more restriction enzymes B that cause 5'projection at the end. From DNA, (i) a double-stranded DNA fragment having a target region and 3'protruding at both ends [3'protruding target double-stranded DNA fragment], and (ii) 5 without a target region at both ends. 'Protruding double-stranded DNA fragment [5'protruding non-target double-stranded DNA fragment] or / and (iii) Double-stranded DNA that does not have a target region and has 5'protruding and 3'protruding ends, respectively. Step 1 to generate a fragment [5'/3'protruding non-target double-stranded DNA fragment], where the restriction enzyme A does not cleave the base sequence in the target region, and the restriction enzyme B is the 3'. It does not cleave the base sequence in the overhanging target double-stranded DNA fragment.
(2) (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-protruding generated in step 1. By treating the target double-stranded DNA fragment with Exonuclease III, from (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-target double-stranded DNA fragment. Step 2, each producing a single-stranded DNA fragment that does not have a target region 2.
(3) By treating the (iv) single-stranded DNA fragment having no target region and (i) the 3'protruding target double-stranded DNA fragment generated in the above step 2 with a single-stranded specific nuclease. , (I) From the 3'protruding target double-stranded DNA fragment, (v) a double-stranded DNA fragment having a target region and smooth at both ends [smooth target double-stranded DNA fragment] is generated.
[2] The purification method according to [1], wherein the restriction enzyme A and the restriction enzyme B are used at the same time in the step 1.
[3] Method for detecting target region in double-stranded DNA, including the following steps 1 to 5:
(1) A double-strand having a target region using one or more restriction enzymes A that cause 3'protrusion at the end and (b) one or more restriction enzymes B that cause 5'projection at the end. From DNA, (i) a double-stranded DNA fragment having a target region and 3'protruding at both ends [3'protruding target double-stranded DNA fragment], and (ii) 5 without a target region at both ends. 'Protruding double-stranded DNA fragment [5'protruding non-target double-stranded DNA fragment] or / and (iii) Double-stranded DNA that does not have a target region and has 5'protruding and 3'protruding ends, respectively. Step 1 to generate a fragment [5'/3'protruding non-target double-stranded DNA fragment], where the restriction enzyme A does not cleave the base sequence in the target region, and the restriction enzyme B is the 3'. It does not cleave the base sequence in the overhanging target double-stranded DNA fragment.
(2) (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/ 3'protruding non-protruding generated in step 1. By treating the target double-stranded DNA fragment with Exonuclease III, from (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-target double-stranded DNA fragment. Step 2, each producing a single-stranded DNA fragment that does not have a target region 2.
(3) By treating the (iv) single-stranded DNA fragment having no target region and (i) the 3'protruding target double-stranded DNA fragment generated in the above step 2 with a single-stranded specific nuclease. , (I) From a 3'protruding target double-stranded DNA fragment, (v) a double-stranded DNA fragment having a target region and smooth at both ends [smooth target double-stranded DNA fragment] is generated.
(4) Step 4, in which the target region in the (v) smoothing target double-stranded DNA fragment generated in step 3 is subjected to amplification treatment.
(5) Step 5 for confirming the presence or absence of the amplification product generated in the step 4.
[4] The detection method according to [3], wherein the restriction enzyme A and the restriction enzyme B are used at the same time in the step 1.
[5] Cancer determination method including the following steps 1 to 7:
(1) A double-strand having a target region using one or more restriction enzymes A that cause 3'protrusion at the end and (b) one or more restriction enzymes B that cause 5'projection at the end. From DNA, (i) a double-stranded DNA fragment having a target region and 3'protruding at both ends [3'protruding target double-stranded DNA fragment], and (ii) 5 without a target region at both ends. 'Protruding double-stranded DNA fragment [5'protruding non-target double-stranded DNA fragment] or / and (iii) Double-stranded DNA that does not have a target region and has 5'protruding and 3'protruding ends, respectively. Step 1 to generate a fragment [5'/3'protruding non-target double-stranded DNA fragment], where the restriction enzyme A does not cleave the base sequence in the target region, and the restriction enzyme B is the 3'. It does not cleave the base sequence in the overhanging target double-stranded DNA fragment.
(2) (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/ 3'protruding non-protruding generated in step 1. By treating the target double-stranded DNA fragment with Exonuclease III, from (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-target double-stranded DNA fragment. Step 2, each producing a single-stranded DNA fragment that does not have a target region 2.
(3) By treating the (iv) single-stranded DNA fragment having no target region and (i) the 3'protruding target double-stranded DNA fragment generated in the above step 2 with a single-stranded specific nuclease. , (I) From a 3'protruding target double-stranded DNA fragment, (v) a double-stranded DNA fragment having a target region and smooth at both ends [smooth target double-stranded DNA fragment] is generated.
(4) Step 4, in which the (v) smoothing target double-stranded DNA fragment generated in step 3 is treated with a methylation susceptibility restriction enzyme.
(5) Step 5, in which the target region in the (v) smoothing target double-stranded DNA fragment treated in step 4 is subjected to amplification treatment.
(6) Step 6 to confirm the presence or absence of amplification products generated in step 5 above,
(7) Step 7 of determining cancer based on the confirmation result of step 6.
[6] The determination method according to [5], wherein the restriction enzyme A and the restriction enzyme B are used at the same time in the step 1.
[7] The determination method according to [5] or [6], wherein the target region is a base sequence containing the base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2.
[8] The determination method according to any one of [5] to [7], wherein the restriction enzyme A in step 1 is PstI and the restriction enzyme B is MboI, BamHI, BglII or HindIII.
[9] The determination method according to any one of [5] to [8], wherein the single-strand-specific nuclease in step 3 is an S1 nuclease.
[10] The determination method according to any one of [5] to [9], wherein the methylation susceptibility restriction enzyme in step 4 is HapII, HpaII, SacII, BstuI, AciI or FauI.

本発明の二本鎖DNA中の標的領域の精製方法及び検出方法によれば、標的領域の精製及び検出を簡便、短時間且つ精度よく行うことができる。
また、本発明の二本鎖DNA中の標的領域の精製方法及び検出方法を利用した、本発明の癌の判定方法によれば、癌の判定を簡便、短時間且つ精度よく行うことができる。
According to the method for purifying and detecting a target region in double-stranded DNA of the present invention, purification and detection of a target region can be performed easily, in a short time, and with high accuracy.
Further, according to the method for determining cancer of the present invention, which utilizes the method for purifying and detecting the target region in the double-stranded DNA of the present invention, the determination of cancer can be performed easily, in a short time and with high accuracy.

ヒト由来のFOXB2遺伝子プロモーター領域内の配列番号1で表される塩基配列からなる領域(267塩基対)について、実験例1におけるメチル化状態の確認領域を示した図である。It is a figure which showed the confirmation region of the methylation state in Experimental Example 1 about the region (267 base pairs) consisting of the base sequence represented by SEQ ID NO: 1 in the FOXB2 gene promoter region derived from human. ヒト由来のFOXB2遺伝子プロモーター領域内の配列番号2で表される塩基配列からなる領域(149塩基対)について、実験例1におけるメチル化状態の確認領域を示した図である。It is a figure which showed the confirmation region of the methylation state in Experimental Example 1 about the region (149 base pairs) consisting of the base sequence represented by SEQ ID NO: 2 in the FOXB2 gene promoter region derived from human. 実験例1におけるヒト人工多能性幹細胞、ヒト正常全血及び大腸癌細胞の塩基配列解読結果について、メチル化状態の確認領域であるCpG配列を含む配列(CCGG及びGCGG)のシトシンがメチル化シトシン又は非メチル化シトシンの何れであるかを示した図である。Regarding the nucleotide sequence decoding results of human induced pluripotent stem cells, human normal whole blood, and colon cancer cells in Experimental Example 1, the cytosines of the sequences (CCGG and GCGG) containing the CpG sequence, which is a confirmation region of the methylated state, are methylated cytosines. It is a figure which showed whether it is unmethylated cytosine. 実施例1において、ヒト人工多能性幹細胞及び大腸癌細胞を用いてFOXB2遺伝子のPCR増幅産物を電気泳動した結果を示した図である。FIG. 5 is a diagram showing the results of electrophoresis of the PCR amplification product of the FOXB2 gene using human induced pluripotent stem cells and colon cancer cells in Example 1. 実施例2において、ヒト正常全血を用いてFOXB2遺伝子のPCR増幅産物を電気泳動した結果を示した図である。FIG. 5 is a diagram showing the results of electrophoresis of the PCR amplification product of the FOXB2 gene using normal human whole blood in Example 2. 実施例3において、膵臓癌患者由来の全血及びヒト正常全血を用いてFOXB2遺伝子及びGAPDH遺伝子の特定領域をデジタルPCR法により増幅・検出した結果を示した図である。It is a figure which showed the result of having amplified / detected the specific region of FOXB2 gene and GAPDH gene by the digital PCR method using whole blood derived from a pancreatic cancer patient and normal human whole blood in Example 3.

<本発明の二本鎖DNA中の標的領域の精製方法>
本発明の二本鎖DNA中の標的領域の精製方法(以下、本発明の精製方法と略記する場合がある。)は、
(1)(a)末端に3’突出を生じさせる制限酵素Aを1種以上及び(b)末端に5’突出を生じさせる制限酵素Bを1種以上用いて、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]並びに、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片]を生じさせる工程1、ここで、当該制限酵素Aは当該標的領域中の塩基配列を切断せず、当該制限酵素Bは当該3’突出標的二本鎖DNA断片中の塩基配列を切断しないものである、
(2)前記工程1で生じた、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を、エキソヌクレアーゼIIIで処理することにより、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、それぞれ(iv)標的領域を有さない一本鎖DNA断片を生じさせる工程2、
及び
(3)前記工程2で生じた、(iv)標的領域を有さない一本鎖DNA断片及び(i)3’突出標的二本鎖DNA断片を、一本鎖特異的ヌクレアーゼで処理することにより、(i)3’突出標的二本鎖DNA断片から、(v)標的領域を有しその両端が平滑である二本鎖DNA断片[平滑標的二本鎖DNA断片]を生じさせる工程3を含むことを特徴とするものである。
<Method for purifying target region in double-stranded DNA of the present invention>
The method for purifying a target region in double-stranded DNA of the present invention (hereinafter, may be abbreviated as the purification method of the present invention) is used.
(1) A double-strand having a target region using one or more restriction enzymes A that cause 3'protrusion at the end and (b) one or more restriction enzymes B that cause 5'projection at the end. From DNA, (i) a double-stranded DNA fragment having a target region and 3'protruding at both ends [3'protruding target double-stranded DNA fragment], and (ii) 5 without a target region at both ends. 'Protruding double-stranded DNA fragment [5'protruding non-target double-stranded DNA fragment] or / and (iii) Double-stranded DNA that does not have a target region and has 5'protruding and 3'protruding ends, respectively. Step 1 to generate a fragment [5'/3'protruding non-target double-stranded DNA fragment], where the restriction enzyme A does not cleave the base sequence in the target region, and the restriction enzyme B is the 3'. It does not cleave the base sequence in the overhanging target double-stranded DNA fragment.
(2) (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/ 3'protruding non-protruding generated in step 1. By treating the target double-stranded DNA fragment with Exonuclease III, from (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-target double-stranded DNA fragment. Step 2, each producing a single-stranded DNA fragment that does not have a target region 2.
And (3) the single-stranded DNA fragment having no target region and (i) the 3'protruding target double-stranded DNA fragment generated in the above step 2 are treated with a single-stranded specific nuclease. From (i) a 3'protruding target double-stranded DNA fragment, (v) a double-stranded DNA fragment having a target region and smooth at both ends [smooth target double-stranded DNA fragment] is generated. It is characterized by including.

[二本鎖DNA]
本発明に係る二本鎖DNAは、後述の本発明に係る工程1における制限酵素A及び制限酵素Bの作用により、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]並びに、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’ /3’突出非標的二本鎖DNA断片]を生じ得るものであればよく、(1)その両端がそれぞれ突出(3’突出又は/及び5’突出)、(2)その両端がそれぞれ平滑、(3)一方の端が突出(3’突出又は5’突出)且つもう一方の端が平滑、又は(4)環状、の何れであってもよい。
即ち、本発明に係る二本鎖DNAは、後述の標的領域、2ヶ所以上の制限酵素Aの認識配列及び制限酵素Bの認識配列を有するものである。また、本発明に係る二本鎖DNAにおける、標的領域、制限酵素Aの認識配列及び制限酵素Bの認識配列の位置関係は、下記模式図に示す通り、当該標的領域を中心とした場合、当該標的領域の外側に当該制限酵素Aの認識配列が存在し、更に当該制限酵素Aの認識配列の外側に当該制限酵素Bの認識配列が存在する(末端−制限酵素Bの認識配列−制限酵素Aの認識配列−標的領域−制限酵素Aの認識配列−制限酵素Bの認識配列−末端)ものである。
尚、制限酵素Aの認識配列及び制限酵素Bの認識配列が3ヶ所以上存在する場合には、上記位置関係は、標的領域、標的領域に最も近い制限酵素Aの認識配列及び標的領域に最も近い制限酵素Bの認識配列を示す。
また、少なくとも、標的領域に最も近い制限酵素Aの認識配列と制限酵素Bの認識配列とは重複しないものである。

Figure 2019163602
[Double-stranded DNA]
The double-stranded DNA according to the present invention is a double-stranded DNA having (i) a target region and 3'protruding at both ends due to the action of restriction enzymes A and B in step 1 of the present invention described later. Fragments [3'protruding target double-stranded DNA fragments] and (ii) double-stranded DNA fragments that do not have a target region and have 5'protruding ends [5'protruding non-target double-stranded DNA fragments] or / And (iii) if it is capable of producing a double-stranded DNA fragment [5'/ 3'protruding non-target double-stranded DNA fragment] that does not have a target region and has 5'protruding and 3'protruding ends, respectively. Well, (1) both ends project (3'projection and / and 5'projection), (2) both ends are smooth, (3) one end protrudes (3'projection or 5'projection) and more. One end may be either smooth or (4) annular.
That is, the double-stranded DNA according to the present invention has a target region described later, two or more restriction enzyme A recognition sequences and restriction enzyme B recognition sequences. In addition, the positional relationship between the target region, the recognition sequence of restriction enzyme A, and the recognition sequence of restriction enzyme B in the double-stranded DNA according to the present invention is the same when the target region is the center, as shown in the schematic diagram below. The recognition sequence of the restriction enzyme A exists outside the target region, and the recognition sequence of the restriction enzyme B exists outside the recognition sequence of the restriction enzyme A (terminal-recognition sequence of the restriction enzyme B-restriction enzyme A). Recognition sequence-target region-recognition sequence of restriction enzyme A-recognition sequence of restriction enzyme B-end).
When there are three or more restriction enzyme A recognition sequences and restriction enzyme B recognition sequences, the above positional relationship is closest to the target region and the restriction enzyme A recognition sequence closest to the target region. The recognition sequence of restriction enzyme B is shown.
In addition, at least, the recognition sequence of restriction enzyme A and the recognition sequence of restriction enzyme B closest to the target region do not overlap.
Figure 2019163602

本発明に係る二本鎖DNAは、当該DNAを含む試料から抽出すればよく、当該抽出は、自体公知のDNAの抽出方法に基づいてなされればよい。当該DNAの抽出方法としては、具体的には、例えば、試料と界面活性剤(コール酸ナトリウム、ドデシル硫酸ナトリウム等)との混合液を物理的処理(撹拌、ホモジナイズ、超音波処理等)に付し、試料に含まれるDNAを当該混合液中に遊離させることによりDNAを抽出する方法、フェノール・クロロホルムを用いて試料からDNAを抽出する方法、カラム抽出法等が挙げられる。中でも、フェノール・クロロホルムを用いて試料からDNAを抽出する方法又はカラム抽出法が好ましく、カラム抽出法がより好ましい。 The double-stranded DNA according to the present invention may be extracted from a sample containing the DNA, and the extraction may be performed based on a DNA extraction method known per se. Specifically, as a method for extracting the DNA, for example, a mixed solution of a sample and a surfactant (sodium colate, sodium dodecyl sulfate, etc.) is subjected to physical treatment (stirring, homogenization, ultrasonic treatment, etc.). Then, a method of extracting DNA by releasing the DNA contained in the sample into the mixed solution, a method of extracting DNA from the sample using phenol / chloroform, a column extraction method, and the like can be mentioned. Among them, a method of extracting DNA from a sample using phenol / chloroform or a column extraction method is preferable, and a column extraction method is more preferable.

フェノール・クロロホルムを用いて試料からDNAを抽出する方法は、試料中に含まれるタンパク質を変性させる作用を有するフェノールの性質と、当該作用を促進させるクロロホルムの性質とに基づいて、試料中に存在するタンパク質を除き、DNAを抽出することによりなされる。
具体的な方法は、自体公知の方法に基づいてなされればよく、市販のキット[例えば、Phase Lock Gel(QTB(株)製)等]を用いて行ってもよい。
The method of extracting DNA from a sample using phenol / chloroform exists in the sample based on the property of phenol having an action of denaturing the protein contained in the sample and the property of chloroform which promotes the action. It is done by removing the protein and extracting the DNA.
The specific method may be carried out based on a method known per se, and may be carried out using a commercially available kit [for example, Phase Lock Gel (manufactured by QTB Co., Ltd.)].

カラム抽出法は、メンブレン等を内部に備えたカラム等の筒状の容器に試料を添加し、物質の大きさ、吸着力、電荷、疎水性等の違いを利用して、試料からDNAを抽出することによりなされる。
具体的な方法は、自体公知の方法に基づいてなされればよく、市販のキット[例えば、QuickGene SP kit DNA tissue(倉敷紡績(株)製)、MagMAX(商標) Cell-Free DNA Isolation Kit(サーモフィッシャーサイエンティフィック(株)製)Nucleo Spin(商標) Plasma XS(マッハライ・ナーゲル(株)製)等]を用いて行ってもよい。
In the column extraction method, a sample is added to a tubular container such as a column having a membrane or the like inside, and DNA is extracted from the sample by utilizing the difference in substance size, adsorption force, charge, hydrophobicity, etc. It is done by doing.
The specific method may be based on a method known per se, and commercially available kits [for example, QuickGene SP kit DNA tissue (manufactured by Kurashiki Spinning Co., Ltd.), MagMAX ™ Cell-Free DNA Isolation Kit (Thermo) Fisher Scientific Co., Ltd.) Nucleo Spin (trademark) Plasma XS (manufactured by Machrai Nagel Co., Ltd.)] may be used.

上記試料としては、具体的には、例えば、全血、血清、血漿、尿等の体液、組織、細胞等が挙げられ、全血、血清又は血漿が好ましく、全血がより好ましい。 Specific examples of the sample include whole blood, serum, plasma, body fluids such as urine, tissues, and cells, and whole blood, serum, or plasma is preferable, and whole blood is more preferable.

尚、上記試料を用いた場合の本発明に係る二本鎖DNAとしては、具体的には、例えば、全血、血清、血漿、尿等の体液中に存在する、循環癌(腫瘍)細胞(CTC:Circulating Tumor Cell)由来の二本鎖DNA、癌(腫瘍)細胞、白血球等の血液細胞、各組織由来の細胞等の死滅に由来する二本鎖DNA(cf DNA:cell free DNA)、エクソソーム(エキソソーム)由来の二本鎖DNA、組織、細胞、全血、尿等の中に存在する細胞由来の二本鎖DNA等が挙げられ、CTC由来の二本鎖DNAが好ましい。 The double-stranded DNA according to the present invention when the above sample is used is specifically, a circulating cancer (tumor) cell (tumor) present in body fluids such as whole blood, serum, plasma, and urine. Double-stranded DNA derived from CTC: Circulating Tumor Cell), double-stranded DNA (cf DNA: cell free DNA) derived from the death of cancer (tumor) cells, blood cells such as leukocytes, cells derived from each tissue, etc., exosomes Examples thereof include double-stranded DNA derived from (exosome), double-stranded DNA derived from cells existing in tissues, cells, whole blood, urine, etc., and double-stranded DNA derived from CTC is preferable.

[標的領域]
本発明に係る標的領域は、本発明に係る二本鎖DNA中の特定の既知の二本鎖DNA部分である。
[Target area]
The target region according to the present invention is a specific known double-stranded DNA portion in the double-stranded DNA according to the present invention.

本発明に係る標的領域の大きさ(塩基対数)は、通常50〜1000塩基対であり、50〜700塩基対が好ましく、50〜500塩基対がより好ましい。
尚、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本発明に係る標的領域としては、具体的には、例えば、表1に示す(i)〜(iii)が挙げられ、(i)又は(ii)が好ましく、(ii)がより好ましい。
The size (number of base pairs) of the target region according to the present invention is usually 50 to 1000 base pairs, preferably 50 to 700 base pairs, and more preferably 50 to 500 base pairs.
The numerical range represented by using "~" in the present specification means a range including the numerical values before and after "~" as the lower limit value and the upper limit value.
Specific examples of the target region according to the present invention include (i) to (iii) shown in Table 1, preferably (i) or (ii), and more preferably (ii).

Figure 2019163602
Figure 2019163602

[工程1]
本発明に係る工程1は、(1)(a)末端に3’突出を生じさせる制限酵素Aを1種以上及び(b)末端に5’突出を生じさせる制限酵素Bを1種以上用いて、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]並びに、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片]を生じさせる工程である。
[Step 1]
In step 1 according to the present invention, (1) (a) one or more restriction enzymes A that cause 3'protrusion at the end and (b) one or more restriction enzymes B that cause 5'projection at the end are used. From the double-stranded DNA having the target region, (i) the double-stranded DNA fragment having the target region and having 3'protruding ends thereof [3'protruding target double-stranded DNA fragment], and (ii) the target region. Double-stranded DNA fragment [5'protruding non-target double-stranded DNA fragment] or / and (iii) having no target region and both ends 5'protruding and 3 This is a step of producing a'protruding double-stranded DNA fragment [5'/3'protruding non-target double-stranded DNA fragment].

本発明に係る工程1における制限酵素Aは、下記(i)及び(ii)の性質を有するものである。
(i)二本鎖DNAの末端に3’突出を生じさせる制限酵素。即ち、二本鎖DNAを、「3’突出末端を有する断片」に切断し得る制限酵素。
(ii)標的領域中の塩基配列を切断しない制限酵素。
本発明に係る工程1における制限酵素Aの具体例としては、具体的には、例えば、AatII、ApaI、BanII、BbeI、Bsp1286I、EcoT22I、HaeII、KpnI、PstI、PvuI、SacI、SacII、Sse8387I等が挙げられる。
本発明に係る工程1における制限酵素Aは、標的領域及び本発明に係る二本鎖DNAの塩基配列に応じて適宜選択されればよいが、標的領域として上記表1の(i)〜(iii)を選択する場合には、PstIが好ましい。
本発明に係る工程1における制限酵素Aのユニット数は、通常、DNA1〜100μgに対して、1〜150ユニット/μLであり、5〜100ユニット/μLが好ましい。また、複数種の制限酵素Aを用いた場合の本発明に係る工程1における制限酵素Aのユニット数についても上記と同様であり、通常、DNA1〜100μgに対して、それぞれ1〜150ユニット/μLであり、5〜100ユニット/μLが好ましい。
本発明に係る工程1における制限酵素Aによる処理は、通常、20〜50℃で、好ましくは35〜45℃で、通常40〜150分間、好ましくは60〜120分間反応を行えばよい。
また、本発明に係る工程1における制限酵素Aによる処理は、pH6〜10の下でなされることが好ましく、ここで用いられる緩衝液としては、例えば、MES、ADA、PIPES、ACES、MOPS、BES、TES、HEPES、TRINCE、BICINE等のグッド緩衝液、リン酸緩衝液、トリス緩衝液、グリシン緩衝液、ホウ酸緩衝液等を用いればよい。
The restriction enzyme A in step 1 according to the present invention has the following properties (i) and (ii).
(I) A restriction enzyme that causes a 3'protrusion at the end of double-stranded DNA. That is, a restriction enzyme capable of cleaving double-stranded DNA into "fragments having a 3'protruding end".
(Ii) A restriction enzyme that does not cleave the base sequence in the target region.
Specific examples of the restriction enzyme A in step 1 according to the present invention include, for example, AatII, ApaI, BanII, BbeI, Bsp1286I, EcoT22I, HaeII, KpnI, PstI, PvuI, SacI, SacII, Sse8387I and the like. Can be mentioned.
The restriction enzyme A in step 1 according to the present invention may be appropriately selected according to the target region and the base sequence of the double-stranded DNA according to the present invention, and the target regions are (i) to (iii) in Table 1 above. ), PstI is preferred.
The number of restriction enzyme A units in step 1 according to the present invention is usually 1 to 150 units / μL, preferably 5 to 100 units / μL, based on 1 to 100 μg of DNA. Further, the number of units of restriction enzyme A in step 1 according to the present invention when a plurality of types of restriction enzymes A are used is the same as above, and usually, 1 to 150 units / μL for each of 1 to 100 μg of DNA. It is preferably 5 to 100 units / μL.
The treatment with the restriction enzyme A in the step 1 according to the present invention may be carried out at 20 to 50 ° C., preferably 35 to 45 ° C., usually 40 to 150 minutes, preferably 60 to 120 minutes.
Further, the treatment with the limiting enzyme A in the step 1 according to the present invention is preferably performed at pH 6 to 10, and the buffer solution used here is, for example, MES, ADA, PIPES, ACES, MOPS, BES. , TES, HEPES, TRINCE, BICINE and other Good's buffers, phosphate buffers, Tris buffers, glycine buffers, borate buffers and the like may be used.

本発明に係る工程1における制限酵素Bは、下記(i)及び(ii)の性質を有するものである。
(i)二本鎖DNAの末端に5’突出を生じさせる制限酵素。即ち、二本鎖DNAを、「5’突出末端を有する断片」に切断し得る制限酵素。
(ii)本発明に係る工程1における制限酵素Aの作用により生じる、標的領域を有しその両端が3’突出である、3’突出標的二本鎖DNA断片中の塩基配列を切断しない制限酵素。
尚、制限酵素Aを用いた後に、制限酵素Bを用いる場合には、制限酵素Bによる処理の際、上記3’突出標的二本鎖DNA断片は既に生じているが、制限酵素Bを用いた後に、制限酵素Aを用いる場合、制限酵素Bによる処理の際、上記3’突出標的二本鎖DNA断片は生じていない。そのため、本発明に係る工程1における制限酵素Bは、(iii)本発明に係る工程1における制限酵素Aの作用により生じる、標的領域を有しその両端が3’突出である、3’突出標的二本鎖DNA断片に「対応する」領域中の塩基配列を切断しない、という性質も有する。ここで言う3’突出標的二本鎖DNAに「対応する」領域とは、3’突出標的二本鎖DNA断片において、3’突出の塩基の相補塩基を補った塩基配列を意味する。
本発明に係る工程1における制限酵素Bの具体例として、例えば、AccI、AccIII、AflII、Aor13HI、ApalI、AvaI、AvaII、BamHI、BcnI、BglII、BlnI、BmeT110I、BmgT120I、Bpu1102I、BspT104I、Bsp1407I、BssHII、Cfr10I、Cfr13I、ClaI、CpoI、EaeI、EcoO109I、EcoRI、EcoT14I、Eco52I、Eco81I、FbaI、HapII、HindIII、Hin1I、MboI、MflI、MluI、MunI、MvaI、NcoI、NheI、NotI、PshBI、Psp1406I、RspRSII、SalI、Sau3AI、SpeI、TaqI、XbaI、XhoI、XspI等が挙げられる。
本発明に係る工程1における制限酵素Bは、標的領域及び本発明に係る二本鎖DNAの塩基配列に応じて適宜選択されればよいが、標的領域として上記表1の(i)〜(iii)を選択する場合には、MboI、又はBamHI及びBglIIが好ましい。
本発明に係る工程1における制限酵素Bのユニット数は、通常、DNA1〜100μgに対して、1〜150ユニット/μLであり、5〜100ユニット/μLが好ましい。また、複数種の制限酵素Bを用いた場合の本発明に係る工程1における制限酵素Bのユニット数についても上記と同様であり、通常、DNA1〜100μgに対して、それぞれ1〜150ユニット/μLであり、5〜100ユニット/μLが好ましい。
本発明に係る工程1における制限酵素Bによる処理は、通常、20〜50℃で、好ましくは35〜45℃で、通常40〜150分間、好ましくは60〜120分間反応を行えばよい。
また、本発明に係る工程1における制限酵素Bによる処理は、pH6〜10の下でなされることが好ましく、ここで用いられる緩衝液としては、例えば、MES、ADA、PIPES、ACES、MOPS、BES、TES、HEPES、TRINCE、BICINE等のグッド緩衝液、リン酸緩衝液、トリス緩衝液、グリシン緩衝液、ホウ酸緩衝液等を用いればよい。
The restriction enzyme B in step 1 according to the present invention has the following properties (i) and (ii).
(I) A restriction enzyme that causes a 5'protrusion at the end of double-stranded DNA. That is, a restriction enzyme capable of cleaving double-stranded DNA into "fragments having a 5'protruding end".
(Ii) A restriction enzyme produced by the action of the restriction enzyme A in step 1 according to the present invention, which has a target region and has 3'protruding ends at both ends, and does not cleave the base sequence in the 3'protruding target double-stranded DNA fragment. ..
When restriction enzyme B is used after using restriction enzyme A, the above 3'protruding target double-stranded DNA fragment has already been generated during the treatment with restriction enzyme B, but restriction enzyme B was used. Later, when restriction enzyme A is used, the above 3'protruding target double-stranded DNA fragment is not generated during treatment with restriction enzyme B. Therefore, the restriction enzyme B in step 1 according to the present invention is (iii) a 3'protruding target having a target region and 3'protruding at both ends thereof, which is generated by the action of the restriction enzyme A in step 1 according to the present invention. It also has the property of not cleaving the base sequence in the region "corresponding" to the double-stranded DNA fragment. The region "corresponding" to the 3'protruding target double-stranded DNA as used herein means a base sequence in which the complementary base of the 3'protruding base is supplemented in the 3'protruding target double-stranded DNA fragment.
Specific examples of the restriction enzyme B in step 1 according to the present invention include, for example, AccI, AccIII, AflII, Aor13HI, ApalI, AvaI, AvaII, BamHI, BcnI, BglII, BlnI, BmeT110I, BmgT120I, Bpu1102I, BspT104I, Bsp1407I, BssH , Cfr10I, Cfr13I, ClaI, CpoI, EaeI, EcoO109I, EcoRI, EcoT14I, Eco52I, Eco81I, FbaI, HapII, HindIII, Hin1I, MboI, MflI, MluI, MunI, MvaI, NcoI, NheBI, MvaI, NcoI, NheI , SalI, Sau3AI, SpeI, TaqI, XbaI, XhoI, XspI and the like.
The restriction enzyme B in step 1 according to the present invention may be appropriately selected according to the target region and the base sequence of the double-stranded DNA according to the present invention, and the target regions are (i) to (iii) in Table 1 above. ), MboI, or BamHI and BglII are preferred.
The number of restriction enzyme B units in step 1 according to the present invention is usually 1 to 150 units / μL, preferably 5 to 100 units / μL, based on 1 to 100 μg of DNA. Further, the number of units of restriction enzyme B in step 1 according to the present invention when a plurality of types of restriction enzymes B are used is the same as described above, and usually 1 to 150 units / μL for each of 1 to 100 μg of DNA. It is preferably 5 to 100 units / μL.
The treatment with the restriction enzyme B in the step 1 according to the present invention may be carried out at 20 to 50 ° C., preferably 35 to 45 ° C., usually 40 to 150 minutes, preferably 60 to 120 minutes.
Further, the treatment with the limiting enzyme B in the step 1 according to the present invention is preferably performed at pH 6 to 10, and examples of the buffer solution used here include MES, ADA, PIPES, ACES, MOPS and BES. , TES, HEPES, TRINCE, BICINE and other Good's buffers, phosphate buffers, Tris buffers, glycine buffers, borate buffers and the like may be used.

本発明に係る工程1における制限酵素A及び制限酵素Bによる処理を行った場合に生じるDNA断片について、以下に説明する。 The DNA fragment generated when the treatment with the restriction enzyme A and the restriction enzyme B in the step 1 according to the present invention is performed will be described below.

上述の通り、本発明に係る二本鎖DNAにおける、標的領域、制限酵素Aの認識配列及び制限酵素Bの認識配列の位置関係は、[末端−制限酵素Bの認識配列−制限酵素Aの認識配列−標的領域−制限酵素Aの認識配列−制限酵素Bの認識配列−末端]である。
また、制限酵素Aの認識配列及び制限酵素Bの認識配列が3ヶ所以上存在する場合には、上記位置関係は、[末端−(標的領域に最も近い)制限酵素Bの認識配列−(標的領域に最も近い)制限酵素Aの認識配列−標的領域−(標的領域に最も近い)制限酵素Aの認識配列−(標的領域に最も近い)制限酵素Bの認識配列]である。
そのため、本発明に係る工程1における制限酵素Aの作用により、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]が生じることとなる。

Figure 2019163602
一方、本発明に係る工程1における制限酵素Bの作用により、標的領域を有する二本鎖DNAにおける(i)3’突出標的二本鎖DNA断片に対応する領域以外の部分から、少なくとも(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片]が生じることとなる。また、As described above, the positional relationship between the target region, the recognition sequence of restriction enzyme A and the recognition sequence of restriction enzyme B in the double-stranded DNA according to the present invention is [terminal-recognition sequence of restriction enzyme B-recognition of restriction enzyme A. Sequence-target region-recognition sequence of restriction enzyme A-recognition sequence of restriction enzyme B-end].
When there are three or more restriction enzyme A recognition sequences and restriction enzyme B recognition sequences, the above positional relationship is as follows: [terminal- (closest to the target region) restriction enzyme B recognition sequence- (target region). The recognition sequence of restriction enzyme A (closest to the target region) -the target region-the recognition sequence of restriction enzyme A (closest to the target region)-the recognition sequence of restriction enzyme B (closest to the target region)].
Therefore, due to the action of the restriction enzyme A in step 1 according to the present invention, from the double-stranded DNA having the target region, (i) the double-stranded DNA fragment having the target region and having 3'protrusions at both ends [3'. Overhang target double-stranded DNA fragment] will occur.
Figure 2019163602
On the other hand, due to the action of the restriction enzyme B in step 1 according to the present invention, at least (ii) from the portion of the double-stranded DNA having the target region other than the region corresponding to the (i) 3'protruding target double-stranded DNA fragment. A double-stranded DNA fragment that does not have a target region and has 5'protrusions at both ends [5'protruding non-target double-stranded DNA fragment] or / and (iii) 5'protruding at both ends without a target region. And 3'protruding double-stranded DNA fragments [5'/3'protruding non-target double-stranded DNA fragments] will occur. Also,

また、(i)3’突出標的二本鎖DNA断片に対応する領域以外の部分における制限酵素Aの認識配列の数、制限酵素Bの認識配列の数及び制限酵素Aの認識配列と制限酵素Bの認識配列の順序や、本発明に係る二本鎖DNAの両端の形状(3’突出、5’突出、平滑)等によって、更に種々の二本鎖DNA断片が生じることとなる。 In addition, (i) the number of restriction enzyme A recognition sequences, the number of restriction enzyme B recognition sequences, and the restriction enzyme A recognition sequences and restriction enzyme B in the portion other than the region corresponding to the 3'protruding target double-stranded DNA fragment. Further, various double-stranded DNA fragments are generated depending on the order of the recognition sequences of the above, the shapes of both ends of the double-stranded DNA according to the present invention (3'protruding, 5'protruding, smooth), and the like.

・制限酵素の認識配列の数及び順序の違いによる二本鎖DNA断片の種類
上述の通り、制限酵素Aの認識配列の数、制限酵素Bの認識配列の数及び制限酵素Aの認識配列と制限酵素Bの認識配列の順序によって種々の二本鎖DNA断片が生じることとなる。

Figure 2019163602

Figure 2019163602

Figure 2019163602
従って、標的領域を有する二本鎖DNAにおける(i)3’突出標的二本鎖DNA断片に対応する領域以外の部分のうち、末端を除く部分については、例えば、下記模式図(1)〜(11)に示すように、制限酵素Aの認識配列の数、制限酵素Bの認識配列の数及び制限酵素Aの認識配列と制限酵素Bの認識配列の順序の違いにより種々の二本鎖DNA断片が生じる。
尚、下記模式図には、標的領域を中心として本発明に係る二本鎖DNAの左側(上流)部分のみを示すが、右側(下流)部分も同様である。
Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602
-Types of double-stranded DNA fragments due to differences in the number and order of restriction enzyme recognition sequences As described above, the number of restriction enzyme A recognition sequences, the number of restriction enzyme B recognition sequences, and the number and restriction of restriction enzyme A recognition sequences. Various double-stranded DNA fragments will be produced depending on the order of the recognition sequences of enzyme B.
Figure 2019163602

Figure 2019163602

Figure 2019163602
Therefore, among the parts other than the region corresponding to the (i) 3'protruding target double-stranded DNA fragment in the double-stranded DNA having the target region, the portion excluding the end is, for example, the following schematic diagrams (1) to ( As shown in 11), various double-stranded DNA fragments differ depending on the number of restriction enzyme A recognition sequences, the number of restriction enzyme B recognition sequences, and the order of the restriction enzyme A recognition sequences and restriction enzyme B recognition sequences. Occurs.
In the schematic diagram below, only the left side (upstream) portion of the double-stranded DNA according to the present invention is shown centering on the target region, but the same applies to the right side (downstream) portion.
Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

・二本鎖DNA両端の形状(3’突出、5’突出、平滑)の違いによる二本鎖DNA断片の種類
標的領域を有する二本鎖DNAにおける(i)3’突出標的二本鎖DNA断片に対応する領域以外の部分のうち、末端部分については、例えば、下記模式図(12)〜(17)に示すように、両端の形状(3’突出、5’突出、平滑)と両端に近接する制限酵素A又は制限酵素Bの種類によって種々の二本鎖DNA断片が生じる。尚、下記模式図には、標的領域を中心として本発明に係る二本鎖DNAの左側(上流)部分のみを示すが、右側(下流)部分も同様である。

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602
-Types of double-stranded DNA fragments depending on the shape of both ends of the double-stranded DNA (3'protruding, 5'protruding, smooth) (i) 3'protruding target double-stranded DNA fragment in double-stranded DNA having a target region Of the parts other than the region corresponding to, for the terminal part, for example, as shown in the following schematic views (12) to (17), the shapes of both ends (3'protruding, 5'protruding, smooth) and close to both ends. Various double-stranded DNA fragments are produced depending on the type of restriction enzyme A or restriction enzyme B. In the schematic diagram below, only the left side (upstream) portion of the double-stranded DNA according to the present invention is shown centering on the target region, but the same applies to the right side (downstream) portion.
Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

Figure 2019163602

上述の通り、本発明に係る工程1においては、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片が生じ、本発明に係る工程1における制限酵素A及び制限酵素Bの認識配列の数、制限酵素Aの認識配列と制限酵素Bの認識配列の順序、並びに本発明に係る二本鎖DNAの末端の形状の違いによって、下記模式図の通り、種々の二本鎖DNA断片が生じることとなる。例えば、点線内の3’突出非標的二本鎖DNA断片、平滑/5’突出非標的二本鎖DNA断片、平滑/3’突出非標的二本鎖DNA断片等が生じる。以下、模式図では同様に記載する。

Figure 2019163602
As described above, in step 1 according to the present invention, (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3. 'The number of restriction enzyme A and restriction enzyme B recognition sequences in step 1 according to the present invention, the order of restriction enzyme A recognition sequences and restriction enzyme B recognition sequences, and the present Due to the difference in the shape of the end of the double-stranded DNA according to the present invention, various double-stranded DNA fragments are generated as shown in the schematic diagram below. For example, a 3'protruding non-target double-stranded DNA fragment in the dotted line, a smooth / 5'protruding non-target double-stranded DNA fragment, a smooth / 3'protruding non-target double-stranded DNA fragment, and the like occur. Hereinafter, the same description will be given in the schematic diagram.
Figure 2019163602

本発明に係る工程1においては、制限酵素Aと制限酵素Bは(i)同時に用いても、(ii)制限酵素Aを用いた後、制限酵素Bを用いても、又は(iii)制限酵素Bを用いた後、制限酵素Aを用いてもよい。
言い換えれば、(i)本発明に係る二本鎖DNAを制限酵素Aと制限酵素Bとで同時に処理しても、(ii)本発明に係る二本鎖DNAを制限酵素Aで処理した後、処理物を更に制限酵素Bで処理しても、又は(iii)本発明に係る二本鎖DNAを制限酵素Bで処理した後、処理物を更に制限酵素Aで処理してもよい。
尚、処理に要する時間等を考慮すると、上記(i)が好ましい。
In step 1 according to the present invention, restriction enzyme A and restriction enzyme B may be (i) used at the same time, (ii) restriction enzyme A and then restriction enzyme B may be used, or (iii) restriction enzyme. After using B, restriction enzyme A may be used.
In other words, even if (i) the double-stranded DNA according to the present invention is treated with the restriction enzyme A and the restriction enzyme B at the same time, (ii) after the double-stranded DNA according to the present invention is treated with the restriction enzyme A, The treated product may be further treated with restriction enzyme B, or (iii) the double-stranded DNA according to the present invention may be further treated with restriction enzyme B, and then the treated product may be further treated with restriction enzyme A.
The above (i) is preferable in consideration of the time required for processing and the like.

以下に、上記(i)、(ii)又は(iii)による処理を行った場合の、本発明に係る工程1の模式図を示す。 The schematic diagram of the step 1 which concerns on this invention is shown below when the process according to (i), (ii) or (iii) above is performed.

(i)制限酵素Aと制限酵素Bを同時に用いる場合
制限酵素A及び制限酵素Bによる処理を同時に行った場合、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片](ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]、(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片]等が同時にそれぞれ生じることとなる。
尚、前述の通り、制限酵素Aの認識配列の数、制限酵素Bの認識配列の数及び制限酵素Aの認識配列と制限酵素Bの認識配列の順序や、標的領域を有する二本鎖DNAの両端の形状(3’突出、5’突出、平滑)等によって、更に種々の二本鎖DNA断片が生じる場合がある。

Figure 2019163602
(I) When restriction enzyme A and restriction enzyme B are used at the same time When treatment with restriction enzyme A and restriction enzyme B is performed at the same time, from double-stranded DNA having a target region, (i) having a target region and both ends thereof Double-stranded DNA fragment with 3'protruding [3'protruding target double-stranded DNA fragment] (ii) Double-stranded DNA fragment with no target region and 5'protruding at both ends [5'protruding non-targeted two Double-stranded DNA fragment], (iii) Double-stranded DNA fragment that does not have a target region and has 5'protruding and 3'protruding ends, respectively [5'/3'protruding non-target double-stranded DNA fragment], etc. It will occur at the same time.
As described above, the number of restriction enzyme A recognition sequences, the number of restriction enzyme B recognition sequences, the order of the restriction enzyme A recognition sequences and restriction enzyme B recognition sequences, and the order of the double-stranded DNA having the target region. Further various double-stranded DNA fragments may be generated depending on the shape of both ends (3'protrusion, 5'protrusion, smoothness) and the like.
Figure 2019163602

(ii)制限酵素Aを用いた後、制限酵素Bを用いる場合
制限酵素Aによる処理の後、制限酵素Bによる処理を行った場合、まずは、制限酵素Aの作用により、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]、標的領域を有さずその両端が3’突出である二本鎖DNA[3’突出非標的二本鎖DNA断片]等がそれぞれ生じる。
次いで、制限酵素Bの作用により、制限酵素Bの認識配列を有する、3’突出非標的二本鎖DNA断片が生じ、平滑/3’突出非標的二本鎖DNA断片等から、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]、(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片]等がそれぞれ生じる。
尚、前述の通り、制限酵素Aの認識配列の数、制限酵素Bの認識配列の数及び制限酵素Aの認識配列と制限酵素Bの認識配列の順序や、標的領域を有する二本鎖DNAの両端の形状(3’突出、5’突出、平滑)等によって、更に種々の二本鎖DNA断片が生じる場合がある。

Figure 2019163602
(Ii) When using restriction enzyme B after using restriction enzyme A When treating with restriction enzyme A and then with restriction enzyme B, first, due to the action of restriction enzyme A, two having a target region. From the strand DNA, (i) a double-stranded DNA fragment having a target region and 3'protruding at both ends [3'protruding target double-stranded DNA fragment], and 3'protruding at both ends without a target region. Certain double-stranded DNA [3'protruding non-target double-stranded DNA fragment] and the like are generated respectively.
Then, the action of the restriction enzyme B produces a 3'protruding non-target double-stranded DNA fragment having a recognition sequence of the restriction enzyme B, and from the smooth / 3'protruding non-target double-stranded DNA fragment and the like, (ii) target. Double-stranded DNA fragment with no region and 5'protruding at both ends [5'protruding non-target double-stranded DNA fragment], (iii) 5'protruding and 3'at both ends without target region, respectively Overhanging double-stranded DNA fragments [5'/3'overhanging non-target double-stranded DNA fragments] and the like are generated, respectively.
As described above, the number of restriction enzyme A recognition sequences, the number of restriction enzyme B recognition sequences, the order of the restriction enzyme A recognition sequences and restriction enzyme B recognition sequences, and the order of the double-stranded DNA having the target region. Further various double-stranded DNA fragments may be generated depending on the shape of both ends (3'protrusion, 5'protrusion, smoothness) and the like.
Figure 2019163602

(iii)制限酵素Bを用いた後、制限酵素Aを用いた場合
制限酵素Bによる処理の後、制限酵素Aによる処理を行った場合、まずは、制限酵素Bの作用により、標的領域を有する二本鎖DNAから、標的領域を有しその両端が5’突出である二本鎖DNA断片[5’突出標的二本鎖DNA断片]、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA[5’突出非標的二本鎖DNA断片]等がそれぞれ生じる。
次いで、制限酵素Aの作用により、制限酵素Aの認識配列を有する、5’突出標的二本鎖DNA断片、平滑/5’突出非標的二本鎖DNA断片等が生じ、(ii)5’突出非標的二本鎖DNA断片等から、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]、(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片]等がそれぞれ生じる。
尚、前述の通り、制限酵素Aの認識配列の数、制限酵素Bの認識配列の数及び制限酵素Aの認識配列と制限酵素Bの認識配列の順序や、標的領域を有する二本鎖DNAの両端の形状(3’突出、5’突出、平滑)等によって、更に種々の二本鎖DNA断片が生じる場合がある。

Figure 2019163602
(Iii) When restriction enzyme B is used and then restriction enzyme A When restriction enzyme B is used and then treatment is performed with restriction enzyme A, the target region is first due to the action of restriction enzyme B. A double-stranded DNA fragment having a target region and 5'protruding at both ends [5'protruding target double-stranded DNA fragment], (ii) having no target region and 5'protruding at both ends. Double-stranded DNA [5'protruding non-target double-stranded DNA fragment] and the like are generated.
Then, the action of the restriction enzyme A produces a 5'protruding target double-stranded DNA fragment, a smooth / 5'protruding non-target double-stranded DNA fragment, etc. having the recognition sequence of the restriction enzyme A, and (ii) 5'protruding. From non-target double-stranded DNA fragments, etc., (i) a double-stranded DNA fragment having a target region and both ends of which are 3'protruding [3'protruding target double-stranded DNA fragment], (iii) having a target region. Double-stranded DNA fragments [5'/3'protruding non-target double-stranded DNA fragments], etc., whose ends are 5'protruding and 3'protruding, respectively, are generated.
As described above, the number of restriction enzyme A recognition sequences, the number of restriction enzyme B recognition sequences, the order of the restriction enzyme A recognition sequences and restriction enzyme B recognition sequences, and the order of the double-stranded DNA having the target region. Further various double-stranded DNA fragments may be generated depending on the shape of both ends (3'protrusion, 5'protrusion, smoothness) and the like.
Figure 2019163602

更に、本発明に係る工程1の後、本発明に係る工程1により生じた各DNA断片を精製するのが好ましい。尚、上記精製の詳細は、[精製工程]の項で詳述する。 Further, after the step 1 according to the present invention, it is preferable to purify each DNA fragment produced by the step 1 according to the present invention. The details of the above purification will be described in detail in the section of [Purification step].

このように本発明に係る工程1を行うことにより、標的領域を有する二本鎖DNAから、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を生じさせることができる。
結果として、後述する、本発明に係る工程2におけるエキソヌクレアーゼIIIによる処理を効率よく進めることができる。
By performing step 1 according to the present invention in this way, from the double-stranded DNA having the target region, (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA Fragments and / and (iii) 5'/ 3'protruding non-target double-stranded DNA fragments can be produced.
As a result, the treatment with exonuclease III in step 2 according to the present invention, which will be described later, can be efficiently advanced.

[工程2]
本発明に係る工程2は、工程1で生じた、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を、エキソヌクレアーゼIIIで処理することにより、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、(iv)標的領域を有さない一本鎖DNA断片をそれぞれ生じさせる工程である。
以下に、本発明に係る工程2の模式図を示す。

Figure 2019163602
[Step 2]
In step 2 according to the present invention, (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment or / and (iii) 5'/ generated in step 1. By treating the 3'protruding non-target double-stranded DNA fragment with exonuclease III, (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/ 3'protruding non-target two This is a step of producing (iv) a single-stranded DNA fragment having no target region from the strand DNA fragment.
A schematic diagram of step 2 according to the present invention is shown below.
Figure 2019163602

本発明に係る工程2におけるエキソヌクレアーゼIIIは、二本鎖DNA特異的ヌクレアーゼの一種であり、二本鎖DNAの3’陥没末端より作用し、二本鎖DNAから一本鎖DNAを生成する酵素である。
本発明に係る工程2におけるエキソヌクレアーゼIIIのユニット数は、通常、DNA1〜10μgに対して、1〜300ユニット/μLであり、5〜250ユニット/μLが好ましい。
本発明に係る工程2におけるエキソヌクレアーゼIIIによる処理は、通常、15〜50℃で、好ましくは20〜45℃で、通常40〜120分間、好ましくは60〜100分間反応を行えばよい。
また、本発明に係る工程2におけるエキソヌクレアーゼIIIによる処理は、pH6〜10の下でなされることが好ましく、ここで用いられる緩衝液としては、例えば、MES、ADA、PIPES、ACES、MOPS、BES、TES、HEPES、TRINCE、BICINE等のグッド緩衝液、リン酸緩衝液、トリス緩衝液、グリシン緩衝液、ホウ酸緩衝液等を用いればよい。
The exonuclease III in step 2 according to the present invention is a kind of double-stranded DNA-specific nuclease, and is an enzyme that acts from the 3'depressed end of double-stranded DNA to generate single-stranded DNA from double-stranded DNA. Is.
The number of units of exonuclease III in step 2 according to the present invention is usually 1 to 300 units / μL, preferably 5 to 250 units / μL, based on 1 to 10 μg of DNA.
The treatment with exonuclease III in step 2 according to the present invention may be carried out at 15 to 50 ° C., preferably 20 to 45 ° C., usually 40 to 120 minutes, preferably 60 to 100 minutes.
Further, the treatment with Exonuclease III in Step 2 according to the present invention is preferably performed at pH 6 to 10, and the buffer solution used here is, for example, MES, ADA, PIPES, ACES, MOPS, BES. , TES, HEPES, TRINCE, BICINE and other Good's buffers, phosphate buffers, Tris buffers, glycine buffers, borate buffers and the like may be used.

更に、本発明に係る工程2の後、本発明に係る工程2により生じたDNA断片を精製するのが好ましい。尚、上記精製の詳細は、[精製工程]の項で詳述する。 Further, after the step 2 according to the present invention, it is preferable to purify the DNA fragment produced by the step 2 according to the present invention. The details of the above purification will be described in detail in the section of [Purification step].

このように、本発明に係る工程2を行うことにより、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片のうち、3’陥没末端を有する(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、(iv)標的領域有さない一本鎖DNA断片をそれぞれ生じさせることができる。
即ち、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片の3’陥没末端からエキソヌクレアーゼIIIが作用し、二本鎖DNAの片側をそれぞれ消化し、標的領域を有さない一本鎖DNA断片をそれぞれ生じさせることができる。
結果として、後述する、本発明に係る工程3における一本鎖特異的ヌクレアーゼによる処理を効率よく進めることができる。
As described above, by performing step 2 according to the present invention, (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5' Of the / 3'protruding non-targeted double-stranded DNA fragments, (ii) 5'protruding non-targeted double-stranded DNA fragments or / and (iii) 5'/ 3'protruding non-targeted double-stranded DNA having a 3'depressed end. From the DNA fragments, (iv) single-stranded DNA fragments without a target region can each be generated.
That is, exonuclease III acts from the 3'depressed end of (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/ 3'protruding non-target double-stranded DNA fragment, and double-stranded. Each side of the DNA can be digested to give rise to single-stranded DNA fragments that do not have a target region.
As a result, the treatment with the single-strand-specific nuclease in step 3 according to the present invention, which will be described later, can be efficiently advanced.

[工程3]
本発明に係る工程3は、工程2で生じた、(iv)標的領域を有さない一本鎖DNA断片及び(i)3’突出標的二本鎖DNA断片を、一本鎖特異的ヌクレアーゼで処理することにより、(i)3’突出標的二本鎖DNA断片から、(v)標的領域を有しその両端が平滑である、平滑標的二本鎖DNA断片を生じさせる工程である。
以下に、本発明に係る工程3の模式図を示す。

Figure 2019163602
[Step 3]
In step 3 according to the present invention, (iv) a single-stranded DNA fragment having no target region and (i) a 3'protruding target double-stranded DNA fragment generated in step 2 are subjected to a single-stranded specific nuclease. This is a step of producing a smooth target double-stranded DNA fragment from (i) a 3'protruding target double-stranded DNA fragment, which (v) has a target region and is smooth at both ends.
A schematic diagram of step 3 according to the present invention is shown below.
Figure 2019163602

本発明に係る工程3における一本鎖特異的ヌクレアーゼは、一本鎖DNA及び二本鎖DNAの一本鎖の領域を分解する酵素である。
本発明に係る工程3における一本鎖特異的ヌクレアーゼとしては、具体的には、例えば、S1ヌクレアーゼ、エキソヌクレアーゼI、マングビーンヌクレアーゼ等が挙げられる。
ヒト由来のFOXB2遺伝子のプロモーター領域内の特定領域(配列番号1:267塩基対)、ヒト由来のFOXB2遺伝子のプロモーター領域内の特定領域(配列番号2:149塩基対)又はイヌ由来のFOXB2遺伝子のプロモーター領域内の特定領域(配列番号3:433塩基対)を標的領域とする場合、本発明に係る工程3における一本鎖特異的ヌクレアーゼとしては、S1ヌクレアーゼが好ましい。
本発明に係る工程3における一本鎖特異的ヌクレアーゼのユニット数は、通常、DNA1〜10μgに対して、1〜300ユニット/μLであり、5〜250ユニット/μLが好ましい。
本発明に係る工程3における一本鎖特異的ヌクレアーゼによる処理は、通常、10〜37℃で、好ましくは15〜25℃で、通常5〜30分間、好ましくは10〜25分間反応を行えばよい。
また、本発明に係る工程3における一本鎖特異的ヌクレアーゼによる処理は、pH4〜6の下でなされることが好ましく、ここで用いられる緩衝液としては、例えば、酢酸ナトリウム緩衝液等の酢酸緩衝液等を用いればよい。
The single-strand-specific nuclease in step 3 according to the present invention is an enzyme that degrades single-strand DNA and single-strand regions of double-stranded DNA.
Specific examples of the single-strand-specific nuclease in step 3 according to the present invention include S1 nuclease, exonuclease I, and mangbean nuclease.
A specific region within the promoter region of the human-derived FOXB2 gene (SEQ ID NO: 1: 267 base pairs), a specific region within the promoter region of the human-derived FOXB2 gene (SEQ ID NO: 2: 149 base pairs), or a canine-derived FOXB2 gene. When a specific region (SEQ ID NO: 3: 433 base pairs) in the promoter region is targeted as the target region, S1 nuclease is preferable as the single-strand-specific nuclease in step 3 according to the present invention.
The number of units of the single-strand-specific nuclease in step 3 according to the present invention is usually 1 to 300 units / μL, preferably 5 to 250 units / μL, based on 1 to 10 μg of DNA.
The treatment with the single-strand-specific nuclease in Step 3 according to the present invention may be carried out at 10 to 37 ° C., preferably 15 to 25 ° C., usually 5 to 30 minutes, preferably 10 to 25 minutes. ..
Further, the treatment with a single-strand-specific nuclease in step 3 according to the present invention is preferably performed at pH 4 to 6, and the buffer solution used here is, for example, an acetate buffer such as a sodium acetate buffer. A liquid or the like may be used.

更に、本発明に係る工程3の後、本発明に係る工程3により生じたDNA断片を精製するのが好ましい。尚、上記精製の詳細は、[精製工程]の項で詳述する。 Further, after step 3 according to the present invention, it is preferable to purify the DNA fragment produced by step 3 according to the present invention. The details of the above purification will be described in detail in the section of [Purification step].

このように、本発明に係る工程3を行うことにより、本発明に係る工程2で生じた(iv)標的領域を有さない一本鎖DNA断片、及び(i)3’突出標的二本鎖DNA断片から、(v)平滑標的二本鎖DNA断片を生じさせることができる。
即ち、一本鎖特異的ヌクレアーゼにより、(iv)標的領域を有さない一本鎖DNA断片、及び(i)3’突出標的二本鎖DNA断片中の一本鎖の領域がそれぞれ消化されることにより、(v)平滑標的二本鎖DNA断片を生じさせることができる。
In this way, by performing step 3 according to the present invention, (iv) a single-stranded DNA fragment having no target region and (i) 3'protruding target double strand generated in step 2 according to the present invention. From the DNA fragment, (v) a smoothing target double-stranded DNA fragment can be generated.
That is, the single-strand-specific nuclease digests (iv) a single-stranded DNA fragment that does not have a target region, and (i) a single-stranded region in a 3'protruding target double-stranded DNA fragment. Thereby, (v) a smoothing target double-stranded DNA fragment can be generated.

[精製工程]
本発明に係る精製工程は、DNAを精製する工程のことである。これにより、引き続き行われる処理や工程の前に不純物を取り除くことができるため、当該精製工程を行うことが好ましい。
本発明に係る精製工程は、本発明に係る工程1の後且つ本発明に係る工程2の前、及び本発明に係る工程2の後且つ本発明に係る工程3の前に行うことが好ましい。
また、本発明に係る工程1の後且つ本発明に係る工程2の前に精製工程を行う場合、工程1における制限酵素A、制限酵素Bの処理の順に応じて、以下のようになされる。
(i)本発明に係る工程1において制限酵素Aによる処理と制限酵素Bによる処理を同時に行う場合は、制限酵素A及び制限酵素Bによる処理の後且つ本発明に係る工程2の前に精製工程を行う。
(ii)本発明に係る工程1において制限酵素Aによる処理の後、制限酵素Bによる処理を行う場合は、制限酵素Aによる処理の後且つ制限酵素Bによる処理の前、及び制限酵素Bによる処理の後且つ本発明に係る工程2の前にそれぞれ精製工程を行う。
(iii)本発明に係る工程1において制限酵素Bによる処理の後、制限酵素Aによる処理を行う場合は、制限酵素Bによる処理の後且つ制限酵素Aによる処理の前、及び制限酵素Aによる処理の後且つ本発明に係る工程2の前にそれぞれ精製工程を行う。
[Refining process]
The purification step according to the present invention is a step of purifying DNA. As a result, impurities can be removed before the subsequent treatment or step, and therefore it is preferable to carry out the purification step.
The purification step according to the present invention is preferably performed after the step 1 according to the present invention and before the step 2 according to the present invention, after the step 2 according to the present invention and before the step 3 according to the present invention.
Further, when the purification step is performed after the step 1 according to the present invention and before the step 2 according to the present invention, it is performed as follows according to the order of the treatment of the restriction enzyme A and the restriction enzyme B in the step 1.
(I) When the treatment with the restriction enzyme A and the treatment with the restriction enzyme B are simultaneously performed in the step 1 according to the present invention, the purification step is performed after the treatment with the restriction enzyme A and the restriction enzyme B and before the step 2 according to the present invention. I do.
(Ii) When the treatment with the restriction enzyme B is performed after the treatment with the restriction enzyme A in the step 1 according to the present invention, after the treatment with the restriction enzyme A and before the treatment with the restriction enzyme B, and the treatment with the restriction enzyme B. A purification step is performed after each and before the step 2 according to the present invention.
(Iii) When the treatment with the restriction enzyme A is performed after the treatment with the restriction enzyme B in the step 1 according to the present invention, after the treatment with the restriction enzyme B and before the treatment with the restriction enzyme A, and the treatment with the restriction enzyme A. A purification step is performed after each and before the step 2 according to the present invention.

本発明に係る精製工程は、通常この分野でなされる自体公知の精製方法であれば、特に制限されない。具体的には、例えば、アルコール沈殿法、カラム精製法等が挙げられ、ハイスループットに適用できる点から、カラム精製法が好ましい。 The purification step according to the present invention is not particularly limited as long as it is a purification method known per se, which is usually performed in this field. Specific examples thereof include an alcohol precipitation method and a column purification method, and the column purification method is preferable because it can be applied to high throughput.

アルコール沈殿法は、DNA含有溶液にナトリウム塩、アンモニウム塩等の塩を添加した後、アルコールを添加し、DNAを沈殿させることでDNAを精製することによりなされる。アルコール沈殿法により精製を行う場合は、例えば、以下のように行えばよい。
即ち、DNA含有溶液 10〜200μLに、1〜5M 酢酸ナトリウム 10〜50μL、アルコール 50〜100μL及び緩衝液 30〜100μLを加え、10000〜25000×gで1〜30分間遠心分離し、沈殿物を回収することにより、精製されたDNAが得られる。
上記アルコールとしては、イソプロパノール、エタノール、ブタノール等が挙げられ、イソプロパノール又はエタノールが好ましく、イソプロパノールがより好ましい。
上記緩衝液としては、MES、ADA、PIPES、ACES、MOPS、BES、TES、HEPES、TRINCE、BICINE等のグッド緩衝液、リン酸緩衝液、トリス緩衝液、グリシン緩衝液、ホウ酸緩衝液等が挙げられ、トリス緩衝液又はリン酸緩衝液が好ましく、トリス緩衝液がより好ましい。尚、上記緩衝液の濃度、pHは通常この分野で用いられる範囲であればよい。
The alcohol precipitation method is carried out by adding a salt such as a sodium salt or an ammonium salt to a DNA-containing solution, then adding an alcohol to precipitate the DNA, thereby purifying the DNA. When purification is carried out by the alcohol precipitation method, for example, it may be carried out as follows.
That is, 1 to 5 M sodium acetate 10 to 50 μL, alcohol 50 to 100 μL and buffer 30 to 100 μL are added to 10 to 200 μL of the DNA-containing solution, and the mixture is centrifuged at 10000 to 25000 × g for 1 to 30 minutes to collect the precipitate. By doing so, purified DNA is obtained.
Examples of the alcohol include isopropanol, ethanol, butanol and the like, isopropanol or ethanol is preferable, and isopropanol is more preferable.
Examples of the above buffer include Good buffers such as MES, ADA, PIPES, ACES, MOPS, BES, TES, HEPES, TRINCE, BICINE, phosphate buffers, Tris buffers, glycine buffers, borate buffers and the like. The Tris buffer solution or the phosphate buffer solution is preferable, and the Tris buffer solution is more preferable. The concentration and pH of the buffer solution may be in the range usually used in this field.

また、上記アルコール沈殿法は、市販のキットを用いて行ってもよい。 Further, the alcohol precipitation method may be carried out using a commercially available kit.

カラム精製法は、シリカゲル、ポリアクリルアミドゲル、セファクリル等の充填剤を内部に備えたカラム等の筒状の容器[例えば、エコノスピン((株)ジーンデザイン製)、Mobi Spin s-4000(モレキュラーバイオテクノロジー(株)製)等]にDNA含有溶液を添加し、DNAと充填剤との親和性の違いを利用してDNAを精製することによりなされる。カラム精製法により精製を行う場合は、例えば、以下のように行えばよい。
即ち、DNA含有溶液 10〜200μLに、タンパク質変性剤 100〜700μL又は/及び緩衝液100〜700μLを加えて混合し、例えば、充填剤を充填したカラム[例えば、エコノスピン((株)ジーンデザイン製)]に移し、1000〜20000×g、室温で1〜5分間遠心分離し、チューブ内の溶液を除去する。次いで、緩衝液100〜700μL及びアルコール 100〜700μLを加え、1000〜20000×g、室温で1〜5分間遠心分離し、チューブ内の溶液を除去する。更に、1000〜20000×g、室温で1〜10分間遠心分離し、新しいチューブに交換し、緩衝液又は滅菌水 10〜100μLを加え、1000〜20000×g、室温で1〜5分間遠心分離し、フロースルー液を回収することにより、精製されたDNAが得られる。
上記タンパク質変性剤としては、グアニジン塩酸塩、ホルムアミド、尿素等が挙げられ、グアニジン塩酸塩が好ましい。
上記アルコールとしては、エタノール、イソプロパノール、ブタノール等が挙げられ、エタノール又はイソプロパノールが好ましく、エタノールがより好ましい。
上記緩衝液としては、MES、ADA、PIPES、ACES、MOPS、BES、TES、HEPES、TRINCE、BICINE等のグッド緩衝液、リン酸緩衝液、トリス緩衝液、グリシン緩衝液、ホウ酸緩衝液等が挙げられ、トリス緩衝液又はリン酸緩衝液が好ましく、トリス緩衝液がより好ましい。尚、上記緩衝液の濃度、pHは通常この分野で用いられる範囲であればよい。
The column purification method uses a tubular container such as a column containing a filler such as silica gel, polyacrylamide gel, or cefacryl inside [for example, Econospin (manufactured by Gene Design Co., Ltd.), Mobi Spin s-4000 (Molecular Bio). This is done by adding a DNA-containing solution to Technology Co., Ltd., etc.] and purifying the DNA by utilizing the difference in affinity between the DNA and the filler. When purification is performed by the column purification method, for example, it may be performed as follows.
That is, a column in which 100 to 700 μL of a protein denaturant and / or 100 to 700 μL of a buffer solution is added to 10 to 200 μL of a DNA-containing solution and mixed, and the column is filled with a filler [for example, manufactured by Econospin Co., Ltd. )], Centrifuge at 1000-20000 xg at room temperature for 1-5 minutes to remove the solution in the tube. Then, 100 to 700 μL of buffer solution and 100 to 700 μL of alcohol are added, and the mixture is centrifuged at 1000 to 20000 × g at room temperature for 1 to 5 minutes to remove the solution in the tube. In addition, centrifuge at 1000-20000 xg at room temperature for 1-10 minutes, replace with a new tube, add 10-100 μL of buffer or sterile water, and centrifuge at 1000-20000 xg at room temperature for 1-5 minutes. Purified DNA can be obtained by collecting the flow-through solution.
Examples of the protein denaturant include guanidine hydrochloride, formamide, urea and the like, and guanidine hydrochloride is preferable.
Examples of the alcohol include ethanol, isopropanol, butanol and the like, and ethanol or isopropanol is preferable, and ethanol is more preferable.
Examples of the above buffer include Good buffers such as MES, ADA, PIPES, ACES, MOPS, BES, TES, HEPES, TRINCE, BICINE, phosphate buffers, Tris buffers, glycine buffers, borate buffers and the like. The Tris buffer solution or the phosphate buffer solution is preferable, and the Tris buffer solution is more preferable. The concentration and pH of the buffer solution may be in the range usually used in this field.

また、上記カラム精製法は、市販のキットを用いて行ってもよい。 Further, the above column purification method may be performed using a commercially available kit.

[本発明の精製方法の具体例]
本発明の精製方法の具体例を、以下に説明する。
[Specific Example of Purification Method of the Present Invention]
Specific examples of the purification method of the present invention will be described below.

(1)DNAの抽出
例えば、核酸抽出キット[例えば、NucleoSpin(商標)Plasma XS(マッハライ・ナーゲル(株)製)、MagMAX(商標) Cell-Free DNA Isolation Kit(サーモフィッシャーサイエンティフィック(株)製)又はQuickGene SP kit DNA tissue(倉敷紡績(株)製)]により、試料(例えば、全血)から、標的領域(例えば、配列番号2で表される塩基配列)を有する二本鎖DNAを抽出する。
(2)本発明に係る工程1
上記(1)で得たDNAに、本発明に係る工程1における緩衝液(例えば、トリス緩衝液) 5〜20μL、1〜150ユニット/μLの制限酵素A(例えば、PstI) 0.5〜4μL及び1〜150ユニット/μLの制限酵素B(例えば、MboI、又はBamHI及びBglII) 0.5〜4μLを加え、滅菌水で50〜200μLに調製する。
その後、20〜50℃で60〜150分間反応させて本発明に係る工程1で処理された溶液を得る。
更に、必要に応じて、本発明に係る工程1で処理された溶液を、以下のように本発明に係る精製工程に付してもよい。
即ち、上記本発明に係る工程1で処理された溶液に、タンパク質変性剤(例えば、グアニジン塩酸塩) 100〜700μL及び緩衝液(例えば、トリス緩衝液) 100〜700μLをそれぞれ加えて混合し、充填剤を充填したカラム[例えば、エコノスピン((株)ジーンデザイン製)]に移し、1000〜20000×g、室温で1〜5分間遠心分離し、チューブ内の溶液を除去する。その後、緩衝液(例えば、トリス緩衝液) 100〜700μL及びアルコール(例えば、エタノール) 100〜700μLをそれぞれ加え、1000〜20000×g、室温で1〜5分間遠心分離し、チューブ内の溶液を除去する。更に、1000〜20000×g、室温で1〜10分間遠心分離した後、新しいチューブに交換し、緩衝液(例えば、トリス緩衝液) 10〜100μLを加え、1000〜20000×g、室温で1〜5分間遠心分離し、フロースルー液を回収する。
上記で得られた、本発明に係る工程1で処理された溶液又はフロースルー液を、本発明に係る工程2に付す。
(3)本発明に係る工程2
上記本発明に係る工程1で処理された溶液又はフロースルー液 10〜50μLに、1〜300ユニット/μLのエキソヌクレアーゼIII 1〜5μL及びエキソヌクレアーゼIII処理用緩衝液(例えば、トリス緩衝液) 1〜10μLを加え、滅菌水で50〜200μLに調製する。その後、15〜50℃で40〜120分間反応させ、反応停止液(例えば、EDTA) 0.5〜1.5μLを加えることで本発明に係る工程2で処理された溶液を得る。
更に、必要に応じて、本発明に係る工程2で処理された溶液を、以下のように本発明に係る精製工程に付してもよい。
即ち、上記本発明に係る工程2で処理された溶液に、タンパク質変性剤(例えば、グアニジン塩酸塩) 100〜700μL及び緩衝液(例えば、トリス緩衝液) 100〜700μLをそれぞれ加えて混合し、充填剤を充填したカラム[例えば、エコノスピン((株)ジーンデザイン製)]に移し、1000〜20000×g、室温で1〜5分間遠心分離し、チューブ内の溶液を除去する。その後、緩衝液(例えば、トリス緩衝液) 100〜700μL及びアルコール(例えば、エタノール) 100〜700μLをそれぞれ加え、1000〜20000×g、室温で1〜5分間遠心分離し、チューブ内の溶液を除去する。更に、1000〜20000×g、室温で1〜10分間遠心分離した後、新しいチューブに交換し、緩衝液(例えば、トリス緩衝液) 10〜100μLを加え、1000〜20000×g、室温で1〜5分間遠心分離し、フロースルー液を回収する。
上記で得られた、本発明に係る工程2で処理された溶液又はフロースルー液を、本発明に係る工程3に付す。
(4)本発明に係る工程3
上記本発明に係る工程2で処理された溶液又はフロースルー液 10〜50μLに、1〜300ユニット/μLの一本鎖特異的ヌクレアーゼ(例えば、S1ヌクレアーゼ) 1〜5μL及び一本鎖特異的ヌクレアーゼ用緩衝液(例えば、酢酸緩衝液) 1〜10μLを加え、滅菌水で50〜200μLに調製する。その後、10〜37℃で5〜30分間反応させることで、本発明に係る工程3で処理された溶液を得る。
更に、必要に応じて、本発明に係る工程3で処理された溶液を、以下のように本発明に係る精製工程に付してもよい。
即ち、上記本発明に係る工程3で処理された溶液に、タンパク質変性剤(例えば、グアニジン塩酸塩) 100〜700μL及び緩衝液(例えば、トリス緩衝液) 100〜700μLをそれぞれ加えて混合し、充填剤を充填したカラム[例えば、エコノスピン((株)ジーンデザイン製)]に移し、1000〜20000×g、室温で1〜5分間遠心分離し、チューブ内の溶液を除去する。その後、緩衝液(例えば、トリス緩衝液) 100〜700μL及びアルコール(例えば、エタノール) 100〜700μLをそれぞれ加え、1000〜20000×g、室温で1〜5分間遠心分離し、チューブ内の溶液を除去する。更に、1000〜20000×g、室温で1〜10分間遠心分離した後、新しいチューブに交換し、緩衝液(例えば、トリス緩衝液) 10〜100μLを加え、1000〜20000×g、室温で1〜5分間遠心分離し、フロースルー液を回収する。
(1) DNA extraction For example, nucleic acid extraction kit [for example, NucleoSpin ™ Plasma XS (manufactured by Machrai Nagel Co., Ltd.), MagMAX ™ Cell-Free DNA Isolation Kit (manufactured by Thermo Fisher Scientific Co., Ltd.) ) Or Quick Gene SP kit DNA tissue (manufactured by Kurashiki Spinning Co., Ltd.)] to extract double-stranded DNA having a target region (for example, the base sequence represented by SEQ ID NO: 2) from a sample (for example, whole blood). To do.
(2) Step 1 according to the present invention
To the DNA obtained in (1) above, 5 to 20 μL of the buffer solution (for example, Tris buffer solution) and 1 to 150 units / μL of the restriction enzyme A (for example, PstI) in step 1 according to the present invention, 0.5 to 4 μL and 1 Add 0.5-4 μL of restriction enzyme B (eg, MboI, or BamHI and BglII) of ~ 150 units / μL and prepare to 50-200 μL with sterile water.
Then, the reaction is carried out at 20 to 50 ° C. for 60 to 150 minutes to obtain the solution treated in step 1 according to the present invention.
Further, if necessary, the solution treated in step 1 according to the present invention may be subjected to the purification step according to the present invention as follows.
That is, 100 to 700 μL of a protein denaturant (for example, guanidine hydrochloride) and 100 to 700 μL of a buffer solution (for example, Tris buffer solution) are added to the solution treated in step 1 according to the present invention, mixed and filled. Transfer to a column packed with the agent [for example, Econospin (manufactured by Gene Design Co., Ltd.)] and centrifuge at 1000 to 20000 xg at room temperature for 1 to 5 minutes to remove the solution in the tube. Then, 100 to 700 μL of buffer solution (for example, Tris buffer solution) and 100 to 700 μL of alcohol (for example, ethanol) are added, and the mixture is centrifuged at 1000 to 20000 × g at room temperature for 1 to 5 minutes to remove the solution in the tube. To do. Further, after centrifuging at 1000 to 20000 xg at room temperature for 1 to 10 minutes, replace with a new tube, add 10 to 100 μL of buffer solution (for example, Tris buffer solution), and add 1000 to 20000 × g, 1 to 1 to room temperature. Centrifuge for 5 minutes and collect the flow-through solution.
The solution or flow-through solution obtained in the step 1 according to the present invention obtained above is referred to the step 2 according to the present invention.
(3) Step 2 according to the present invention
1 to 300 units / μL of Exonuclease III 1 to 5 μL and Exonuclease III treatment buffer (for example, Tris buffer) 1 to 10 to 50 μL of the solution or flow-through solution treated in step 1 according to the present invention. Add ~ 10 μL and prepare to 50 ~ 200 μL with sterile water. Then, the reaction is carried out at 15 to 50 ° C. for 40 to 120 minutes, and 0.5 to 1.5 μL of a reaction terminator (for example, EDTA) is added to obtain the solution treated in step 2 according to the present invention.
Further, if necessary, the solution treated in the step 2 according to the present invention may be subjected to the purification step according to the present invention as follows.
That is, 100 to 700 μL of a protein denaturant (for example, guanidine hydrochloride) and 100 to 700 μL of a buffer solution (for example, Tris buffer solution) are added to the solution treated in step 2 of the present invention, mixed and filled. Transfer to a column packed with the agent [for example, Econospin (manufactured by Gene Design Co., Ltd.)] and centrifuge at 1000 to 20000 xg at room temperature for 1 to 5 minutes to remove the solution in the tube. Then, 100 to 700 μL of buffer solution (for example, Tris buffer solution) and 100 to 700 μL of alcohol (for example, ethanol) are added, and the mixture is centrifuged at 1000 to 20000 × g at room temperature for 1 to 5 minutes to remove the solution in the tube. To do. Further, after centrifuging at 1000 to 20000 xg at room temperature for 1 to 10 minutes, replace with a new tube, add 10 to 100 μL of buffer solution (for example, Tris buffer solution), and add 1000 to 20000 × g, 1 to 1 to room temperature. Centrifuge for 5 minutes and collect the flow-through solution.
The solution or flow-through solution obtained in the step 2 according to the present invention obtained above is referred to the step 3 according to the present invention.
(4) Step 3 according to the present invention
1 to 300 units / μL of single-strand-specific nuclease (eg, S1 nuclease) 1 to 5 μL and single-strand-specific nuclease in 10 to 50 μL of the solution or flow-through solution treated in step 2 of the present invention. Add 1 to 10 μL of buffer solution (for example, acetate buffer) and prepare to 50 to 200 μL with sterile water. Then, by reacting at 10 to 37 ° C. for 5 to 30 minutes, the solution treated in step 3 according to the present invention is obtained.
Further, if necessary, the solution treated in step 3 of the present invention may be subjected to the purification step of the present invention as follows.
That is, 100 to 700 μL of a protein denaturant (for example, guanidine hydrochloride) and 100 to 700 μL of a buffer solution (for example, Tris buffer solution) are added to the solution treated in step 3 of the present invention, mixed and filled. Transfer to a column packed with the agent [for example, Econospin (manufactured by Gene Design Co., Ltd.)] and centrifuge at 1000 to 20000 xg at room temperature for 1 to 5 minutes to remove the solution in the tube. Then, 100 to 700 μL of buffer solution (for example, Tris buffer solution) and 100 to 700 μL of alcohol (for example, ethanol) are added, and the mixture is centrifuged at 1000 to 20000 × g at room temperature for 1 to 5 minutes to remove the solution in the tube. To do. Further, after centrifuging at 1000 to 20000 xg at room temperature for 1 to 10 minutes, replace with a new tube, add 10 to 100 μL of buffer solution (for example, Tris buffer solution), and add 1000 to 20000 × g, 1 to 1 to room temperature. Centrifuge for 5 minutes and collect the flow-through solution.

<本発明の二本鎖DNA中の標的領域の検出方法>
本発明の二本鎖DNA中の標的領域の検出方法(以下、本発明の検出方法と略記する場合がある。)は、本発明の精製方法により精製された標的領域を有する二本鎖DNA中の標的領域を検出するものである。
即ち、上記本発明の精製方法に引き続いて、標的領域を増幅処理に付し、目的の増幅産物の有無を確認することにより標的領域を検出するものであり、下記工程1〜5を含むことを特徴とする。
(1)(a)末端に3’突出を生じさせる制限酵素Aを1種以上及び(b)末端に5’突出を生じさせる制限酵素Bを1種以上用いて、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]並びに、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片]を生じさせる工程1、ここで、当該制限酵素Aは当該標的領域中の塩基配列を切断せず、当該制限酵素Bは当該3’突出標的二本鎖DNA断片に対応する領域中の塩基配列を切断しないものである、
(2)前記工程1で生じた、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を、エキソヌクレアーゼIIIで処理することにより、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、それぞれ(iv)標的領域を有さない一本鎖DNA断片を生じさせる工程2、
(3)前記工程2で生じた、(iv)標的領域を有さない一本鎖DNA断片及び(i)3’突出標的二本鎖DNA断片を、一本鎖特異的ヌクレアーゼで処理することにより、(i)3’突出標的二本鎖DNA断片から、(v)標的領域を有しその両端が平滑である二本鎖DNA断片[平滑標的二本鎖DNA断片]を生じさせる工程3、
(4)前記工程3で生じた、(v)平滑標的二本鎖DNA断片中の標的領域を増幅処理に付す工程4、
及び
(5)前記工程4で生じた、増幅産物の有無を確認する工程5
尚、標的領域を増幅処理に付す工程の前までの工程1〜3は、前述の本発明の精製方法における工程1〜3と同じであり、その具体例、好ましい例等も同じである。
また、[二本鎖DNA]及び[標的領域]は、本発明の精製方法における[二本鎖DNA]及び[標的領域]と同じであり、その具体例、好ましい例等も同じである。
尚、本発明の検出方法においても、各工程に引き続いて精製工程を行ってもよく、その具体例、好ましい例等は、本発明の精製方法における[精製工程]で説明した通りである。
<Method for detecting target region in double-stranded DNA of the present invention>
The method for detecting a target region in a double-stranded DNA of the present invention (hereinafter, may be abbreviated as the detection method of the present invention) is in a double-stranded DNA having a target region purified by the purification method of the present invention. It detects the target area of.
That is, following the purification method of the present invention, the target region is subjected to amplification treatment, and the target region is detected by confirming the presence or absence of the target amplification product, and the following steps 1 to 5 are included. It is a feature.
(1) A double-strand having a target region using one or more restriction enzymes A that cause 3'protrusion at the end and (b) one or more restriction enzymes B that cause 5'projection at the end. From DNA, (i) a double-stranded DNA fragment having a target region and 3'protruding at both ends [3'protruding target double-stranded DNA fragment], and (ii) 5 without a target region at both ends. 'Protruding double-stranded DNA fragment [5'protruding non-target double-stranded DNA fragment] or / and (iii) Double-stranded DNA that does not have a target region and has 5'protruding and 3'protruding ends, respectively. Step 1 to generate a fragment [5'/3'protruding non-target double-stranded DNA fragment], where the restriction enzyme A does not cleave the base sequence in the target region, and the restriction enzyme B is the 3'. It does not cleave the base sequence in the region corresponding to the overhanging target double-stranded DNA fragment.
(2) (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/ 3'protruding non-protruding generated in step 1. By treating the target double-stranded DNA fragment with Exonuclease III, from (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-target double-stranded DNA fragment. Step 2, each producing a single-stranded DNA fragment that does not have a target region 2.
(3) By treating the (iv) single-stranded DNA fragment having no target region and (i) the 3'protruding target double-stranded DNA fragment generated in the above step 2 with a single-stranded specific nuclease. , (I) From a 3'protruding target double-stranded DNA fragment, (v) a double-stranded DNA fragment having a target region and smooth at both ends [smooth target double-stranded DNA fragment] is generated.
(4) Step 4, in which the target region in the (v) smoothing target double-stranded DNA fragment generated in step 3 is subjected to amplification treatment.
And (5) Step 5 to confirm the presence or absence of the amplified product generated in the above step 4.
The steps 1 to 3 before the step of subjecting the target region to the amplification treatment are the same as the steps 1 to 3 in the purification method of the present invention described above, and specific examples and preferred examples thereof are also the same.
Further, the [double-stranded DNA] and the [target region] are the same as the [double-stranded DNA] and the [target region] in the purification method of the present invention, and specific examples and preferred examples thereof are also the same.
In the detection method of the present invention, a purification step may be performed following each step, and specific examples, preferred examples, etc. thereof are as described in [Purification step] in the purification method of the present invention.

[本発明の検出方法に係る工程4]
本発明の検出方法に係る工程4は、本発明の検出方法に係る工程3で生じた、(v)平滑標的二本鎖DNA断片中の標的領域を増幅処理に付す工程である。
本発明の検出方法に係る工程4における増幅産物は、標的領域そのものであっても、標的領域以外の塩基配列(例えば、プライマー配列等)を含むものであってもよい。
本発明の検出方法に係る工程4における増幅産物の大きさ(塩基対数)としては、通常、50〜1100塩基対であり、50〜800塩基対が好ましく、50〜600塩基対がより好ましい。
本発明の検出方法に係る工程4における増幅産物としては、具体的には、例えば、表2に示すものが挙げられ、(i)又は(ii)が好ましく、(ii)がより好ましい。
[Step 4 relating to the detection method of the present invention]
Step 4 according to the detection method of the present invention is a step of subjecting the target region in the (v) smooth target double-stranded DNA fragment generated in step 3 according to the detection method of the present invention to an amplification treatment.
The amplification product in step 4 according to the detection method of the present invention may be the target region itself or may contain a base sequence other than the target region (for example, a primer sequence).
The size (number of base pairs) of the amplification product in step 4 according to the detection method of the present invention is usually 50 to 1100 base pairs, preferably 50 to 800 base pairs, and more preferably 50 to 600 base pairs.
Specific examples of the amplification product in step 4 according to the detection method of the present invention include those shown in Table 2, with (i) or (ii) being preferred, and (ii) being more preferred.

Figure 2019163602
Figure 2019163602

本発明の検出方法に係る工程4における標的領域を増幅する方法は、特に制限されず、自体公知の方法に基づいてなされればよい。このような自体公知の増幅方法としては、具体的には、例えば、PCR(Polymerase Chain Reaction)法、LAMP(Loop-Mediated Isothermal Amplification)法等が挙げられ、PCR法が好ましい。 The method for amplifying the target region in step 4 according to the detection method of the present invention is not particularly limited, and may be performed based on a method known per se. Specific examples of such an amplification method known per se include a PCR (Polymerase Chain Reaction) method, a LAMP (Loop-Mediated Isothermal Amplification) method, and the like, and the PCR method is preferable.

上記PCR法は、プライマー、核酸合成酵素、核酸合成基質、緩衝液、要すればプローブ等を用いて公知の方法により行えばよい。具体的には、例えば、Nucleic Acids Research, 1991, Vol.19, 3749、 BioTechniques, 1994, Vol.16, 1134-1137や「目的別で選べるPCR実験プロトコール, 2011, p.p. 56-73, 120-131」に記載の方法に基づいてなされればよい。 The above PCR method may be carried out by a known method using a primer, a nucleic acid synthase, a nucleic acid synthesizing substrate, a buffer solution, a probe if necessary, or the like. Specifically, for example, Nucleic Acids Research, 1991, Vol.19, 3749, BioTechniques, 1994, Vol.16, 1134-1137 and "PCR experiment protocol that can be selected according to purpose, 2011, pp 56-73, 120-131". It may be done based on the method described in.

上記PCR法としては、全血、血漿、尿等の体液中に存在する、CTC由来のDNA中の標的領域、cfDNA中の標的領域又はエクソソーム(エキソソーム)由来のDNA中の標的領域を増幅する場合、デジタルPCR法が好ましい。 The above PCR method is used to amplify a target region in CTC-derived DNA, a target region in cfDNA, or a target region in exosome-derived DNA present in body fluids such as whole blood, plasma, and urine. , Digital PCR method is preferable.

上記デジタルPCR法は、PCR反応液を、多数の小区画にDNA断片が1分子になるように分割してPCR反応を実施し、増幅産物が検出された小区画の数に基づいてターゲットDNAを検出、定量することによりなされる。
上記デジタルPCR法は、具体的には、例えば、以下のようになされればよい。
即ち、鋳型となるDNA含有溶液、フォワードプライマー及びリバースプライマーからなるプライマー対、プローブ、核酸合成基質、核酸合成酵素等を含むデジタルPCR用反応液を調製する。次いで、ドロップレット作製装置[例えば、QX200 Droplet Generator(バイオ・ラッドラボラトリーズ(株)製)、Automated Droplet Generator(バイオ・ラッドラボラトリーズ(株)製)等]により上記デジタルPCR用反応液を多数のドロップレット(1サンプルにつき5000〜4万個)に分割する。その後、核酸増幅装置[例えば、サーマルサイクラ―(バイオ・ラッドラボラトリーズ(株)製)、Droplet Digital PCR(バイオ・ラッドラボラトリーズ(株)製)、QuantStudio 3D Digital PCR System(サーモフィッシャーサイエンティフィック(株)製)等]によりPCR反応を行う。
In the above digital PCR method, the PCR reaction solution is divided into a large number of compartments so that the DNA fragment becomes one molecule, the PCR reaction is carried out, and the target DNA is determined based on the number of compartments in which the amplification product is detected. It is done by detection and quantification.
Specifically, the digital PCR method may be performed as follows, for example.
That is, a reaction solution for digital PCR containing a DNA-containing solution as a template, a primer pair consisting of a forward primer and a reverse primer, a probe, a nucleic acid synthesizing substrate, a nucleic acid synthase, and the like is prepared. Next, a large number of droplets of the reaction solution for digital PCR are used in a droplet production device [for example, QX200 Droplet Generator (manufactured by Bio-Rad Laboratories Co., Ltd.), Automated Droplet Generator (manufactured by Bio-Rad Laboratories Co., Ltd.), etc.]. Divide into (5,000 to 40,000 pieces per sample). After that, a nucleic acid amplification device [for example, Thermal Cycler (manufactured by Bio-Radola Volatries Co., Ltd.), Droplet Digital PCR (manufactured by Bio-Radola Volatries Co., Ltd.), QuantStudio 3D Digital PCR System (Thermo Fisher Scientific Co., Ltd.) ) Etc.] to carry out the PCR reaction.

上記PCR法におけるフォワードプライマー及びリバースプライマー(以下、本発明に係るプライマーと略記する場合がある。)からなるプライマー対(以下、本発明に係るプライマー対と略記する場合がある。)は、本発明に係る標的領域を増幅するように設計されたものであれば何れでもよい。
本発明に係るプライマーの大きさ(塩基数)としては、通常10〜50塩基であり、10〜35塩基が好ましく、15〜35塩基がより好ましく、20〜30塩基が特に好ましい。
各種標的領域を増幅する場合に用いられる、本発明に係るプライマー対を以下表3に記載する。
A primer pair consisting of a forward primer and a reverse primer (hereinafter, may be abbreviated as a primer according to the present invention) in the above PCR method (hereinafter, may be abbreviated as a primer pair according to the present invention) is the present invention. Any one designed to amplify the target region according to the above may be used.
The size (number of bases) of the primer according to the present invention is usually 10 to 50 bases, preferably 10 to 35 bases, more preferably 15 to 35 bases, and particularly preferably 20 to 30 bases.
The primer pairs according to the present invention used when amplifying various target regions are shown in Table 3 below.

Figure 2019163602
Figure 2019163602

また、本発明に係るプライマー対は、本発明に係るプライマー対をそのまま用いることが好ましいが、フォワードプライマー又はリバースプライマーの何れか一方或いは両方を標識物質で標識したプライマーからなるものであってもよい。 Further, the primer pair according to the present invention preferably uses the primer pair according to the present invention as it is, but may consist of a primer in which either one or both of the forward primer and the reverse primer are labeled with a labeling substance. ..

本発明に係るプライマーを標識物質で標識する方法としては、特に制限されず、自体公知の方法に基づいてなされればよい。
本発明に係るプライマーを標識物質で標識するために用いられる標識物質としては、蛍光物質、放射性同位体、酵素、発光物質など公知の標識物質が挙げられ、蛍光物質が好ましい。
蛍光物質としては、例えば、TAMRA(商標)(シグマアルドリッチ(株)製)、Alexa555、Alexa647(インビトロジェン(株)製)、Cyanine Dye系のCy3、Cy5(アマシャムバイオサイエンス(株)製)、フルオレセイン等が挙げられる。放射性同位体としては、例えば、32P、33P、35S等が挙げられる。酵素としては、例えば、アルカリホスファターゼ、西洋ワサビペルオキシダーゼ等が挙げられる。また、発光物質としては、例えば、Acridinium Easterを含む化学発光試薬等が挙げられる。
The method for labeling the primer according to the present invention with a labeling substance is not particularly limited, and may be performed based on a method known per se.
Examples of the labeling substance used for labeling the primer according to the present invention with a labeling substance include known labeling substances such as fluorescent substances, radioisotopes, enzymes, and luminescent substances, and fluorescent substances are preferable.
Examples of fluorescent substances include TAMRA ™ (trademark) (Sigma-Aldrich Co., Ltd.), Alexa555, Alexa647 (Invitrogen Co., Ltd.), Cyanine Dye-based Cy3, Cy5 (Amersham Bioscience Co., Ltd.), fluorescein, etc. Can be mentioned. Examples of the radioactive isotope include 32 P, 33 P, 35 S and the like. Examples of the enzyme include alkaline phosphatase and horseradish peroxidase. In addition, examples of the luminescent substance include a chemiluminescent reagent containing Acridinium Easter.

本発明に係るプライマーを蛍光物質で標識する方法としては、例えば、フルオレセイン標識したヌクレオチドを自体公知の方法に基づいて、プライマーに取り込ませる方法、リンカーアームを有するヌクレオチドを配列のオリゴヌクレオチド中に置換する方法(Nucleic Acids Res., 1986年、第14巻、p.6115)等が挙げられる。 Examples of the method for labeling the primer according to the present invention with a fluorescent substance include a method in which a fluorescein-labeled nucleotide is incorporated into the primer based on a method known per se, and a nucleotide having a linker arm is replaced with an oligonucleotide of a sequence. Methods (Nucleic Acids Res., 1986, Vol. 14, p.6115) and the like can be mentioned.

本発明に係るプライマーを放射性同位体で標識する方法としては、プライマーを合成する際に、放射性同位体で標識されたヌクレオチドを取り込ませることによって、プライマーを標識する方法、プライマーを合成した後、放射性同位体で標識する方法等が挙げられる。具体的には、一般的に用いられるランダムプライマー法、ニックトランスレーション、T4ポリヌクレオチドキナーゼによる5’末端標識法、ターミナルデオキシヌクレオチジルトランスフェラーゼによる3’末端標識法等が挙げられる。 As a method for labeling the primer according to the present invention with a radioisotope, a method for labeling the primer by incorporating a nucleotide labeled with the radioisotope when synthesizing the primer, and a method for synthesizing the primer and then radioactively Examples include a method of labeling with an isotope. Specific examples thereof include a commonly used random primer method, nick translation, 5'end labeling method using T4 polynucleotide kinase, 3'end labeling method using terminal deoxynucleotidyl transferase, and the like.

本発明に係るプライマーを酵素で標識する方法としては、アルカリホスファターゼ、西洋ワサビペルオキシダーゼ等の酵素分子を、標識するプライマーに直接共有結合させる等の直接標識法が挙げられる。 Examples of the method for labeling the primer according to the present invention with an enzyme include a direct labeling method such as directly covalently binding an enzyme molecule such as alkaline phosphatase or horseradish peroxidase to the labeling primer.

本発明に係るプライマーを発光物質で標識する方法としては、自体公知の方法に基づいて、ヌクレオチドを発光標識する方法が挙げられる。 Examples of the method for labeling the primer according to the present invention with a luminescent substance include a method for luminescent labeling a nucleotide based on a method known per se.

また、「ビオチン−アビジン反応を利用した検出システム」に従って、上述の標識物質を本発明に係るプライマーに結合させてもよく、その場合には、自体公知の方法に基づいてなされればよい。 Further, the above-mentioned labeling substance may be bound to the primer according to the present invention according to the "detection system using biotin-avidin reaction", and in that case, it may be carried out based on a method known per se.

上記PCR法におけるプローブ(以下、本発明に係るプローブと略記する場合がある。)は、本発明に係るプライマー対を用いてPCR等を行った場合に増幅される領域にハイブリダイズするように設計されたものであり、その5’末端がレポーター蛍光色素で標識され、3’末端がクエンチャー蛍光色素で標識されたものであれば何れでもよい。
本発明に係るプローブの大きさ(塩基数)としては、通常10〜50塩基であり、15〜40塩基が好ましく、20〜30塩基がより好ましい。
ヒト由来のFOXB2遺伝子のプロモーター領域内の特定領域(配列番号2:149塩基対)を標的領域として増幅する場合に用いる、本発明に係るプローブは以下の通りである。
cacagaatctctccgcactccgttc(配列番号10、GenBank Accession No. AL353637:107065-107089)
The probe in the above PCR method (hereinafter, may be abbreviated as the probe according to the present invention) is designed to hybridize to a region to be amplified when PCR or the like is performed using the primer pair according to the present invention. Any of the following is used as long as the 5'end is labeled with a reporter fluorescent dye and the 3'end is labeled with a quencher fluorescent dye.
The size (number of bases) of the probe according to the present invention is usually 10 to 50 bases, preferably 15 to 40 bases, and more preferably 20 to 30 bases.
The probe according to the present invention used when amplifying a specific region (SEQ ID NO: 2: 149 base pairs) in the promoter region of a human-derived FOXB2 gene as a target region is as follows.
cacagaatctctccgcactccgttc (SEQ ID NO: 10, GenBank Accession No. AL353637: 107065-107089)

本発明に係るプローブの5’末端をレポーター蛍光色素で、3’末端をクエンチャー蛍光色素で標識する方法としては、上述の本発明に係るプライマー対を標識物質で標識する方法で説明した通りである。 The method for labeling the 5'end of the probe according to the present invention with a reporter fluorescent dye and the 3'end with a quencher fluorescent dye is as described in the above-mentioned method for labeling the primer pair according to the present invention with a labeling substance. is there.

本発明に係るプローブをレポーター蛍光色素及びクエンチャー蛍光色素により標識するために用いられるレポーター蛍光色素としては、FAM、HEX、VIC等が挙げられ、クエンチャー蛍光色素としては、TAMRA(商標)、BHQ1、BHQ2等が挙げられる。
尚、本発明に係るプローブとして配列番号10で表される塩基配列からなるものを用いた場合、レポーター蛍光色素としてはFAMが好ましく、クエンチャー蛍光色素としてはBHQ1が好ましい。
Examples of the reporter fluorescent dye used for labeling the probe according to the present invention with the reporter fluorescent dye and the quencher fluorescent dye include FAM, HEX, VIC and the like, and examples of the quencher fluorescent dye include TAMRA ™ and BHQ1. , BHQ2 and the like.
When a probe having the base sequence represented by SEQ ID NO: 10 is used as the probe according to the present invention, FAM is preferable as the reporter fluorescent dye, and BHQ1 is preferable as the quencher fluorescent dye.

また、上記PCR法における核酸合成酵素としては、Taq DNAポリメラーゼ、KOD DNAポリメラーゼ等が挙げられ、核酸合成基質としては、dNTP(dATP、dCTP、dGTP、dTTP)等が挙げられ、緩衝液としては、MES、ADA、PIPES、ACES、MOPS、BES、TES、HEPES、TRINCE、BICINE等のグッド緩衝液、リン酸緩衝液、トリス緩衝液、グリシン緩衝液、ホウ酸緩衝液等が挙げられるが、通常この分野で用いられているものであれば何れでもよい。
更に、上記PCR用反応液中に、MgCl2、KCl、(NH4)2SO4等の塩、ポリエチレングリコール、Triton(ユニオンカーバイド(株)製)、Nohidet(シェルケミカルズ(株)製)、CHAPS((株)同仁化学製)等の界面活性剤、プロクリン300(シグマアルドリッチ(株)製)等の防腐剤、HapII、HpaII、SacII、FauI、AciI、BstuI等のメチル化感受性制限酵素等が含まれていてもよい。
Further, examples of the nucleic acid synthase in the above PCR method include Taq DNA polymerase, KOD DNA polymerase and the like, examples of the nucleic acid synthesis substrate include dNTP (dATP, dCTP, dGTP, dTTP), and examples of the buffer solution include dNTP (dATP, dCTP, dGTP, dTTP). Good buffers such as MES, ADA, PIPES, ACES, MOPS, BES, TES, HEPES, TRINCE, BICINE, phosphate buffers, Tris buffers, glycine buffers, borate buffers, etc. are usually mentioned. Any one used in the field may be used.
Further, in the above PCR reaction solution, salts of MgCl 2 , KCl, (NH 4 ) 2 SO 4, etc., polyethylene glycol, Triton (manufactured by Union Carbide Co., Ltd.), Nohidet (manufactured by Shell Chemicals Co., Ltd.), CHAPS Includes surfactants (manufactured by Dojin Chemical Co., Ltd.), preservatives such as Proclin 300 (manufactured by Sigma Aldrich Co., Ltd.), methylation susceptibility restriction enzymes such as HapII, HpaII, SacII, FauI, AciI, BstuI, etc. It may be.

このように本発明の検出方法に係る工程4を行うことにより、本発明の検出方法に係る工程3で生じた、(v)平滑標的二本鎖DNA断片中の標的領域を特異的に増幅させることができる。 By performing step 4 according to the detection method of the present invention in this way, the target region in the (v) smoothing target double-stranded DNA fragment generated in step 3 according to the detection method of the present invention is specifically amplified. be able to.

[本発明の検出方法に係る工程5]
本発明の検出方法に係る工程5は、本発明の検出方法に係る工程4で生じた増幅産物の有無を確認する工程である。
[Step 5 according to the detection method of the present invention]
Step 5 according to the detection method of the present invention is a step of confirming the presence or absence of the amplification product generated in step 4 according to the detection method of the present invention.

本発明の検出方法に係る工程5における増幅産物の有無を確認する方法は、通常、この分野でなされている方法であれば、特に制限されず、自体公知の方法に基づいてなされればよい。
具体的には、例えば、(a)電気泳動により確認する方法、(b)蛍光リーダーにより確認する方法等が挙げられる。
The method for confirming the presence or absence of an amplification product in step 5 according to the detection method of the present invention is not particularly limited as long as it is a method generally used in this field, and may be performed based on a method known per se.
Specific examples thereof include (a) a method of confirming by electrophoresis, (b) a method of confirming by a fluorescence reader, and the like.

(a)電気泳動により確認する方法
電気泳動により確認する方法とは、本発明の検出方法に係る工程4で得られた増幅産物を、電気泳動に付し、その泳動度(移動度等)に基づいて確認する方法であり、具体的な方法としては、(a-1)標識プライマー法、(a-2)インターカレーター法、(a-3)標識プローブ法等が挙げられる。
(A) Method of confirming by electrophoresis The method of confirming by electrophoresis is that the amplification product obtained in step 4 according to the detection method of the present invention is subjected to electrophoresis and subjected to electrophoresis (mobility, etc.). It is a method of confirmation based on the above, and specific methods include (a-1) labeled primer method, (a-2) intercalator method, and (a-3) labeled probe method.

(a-1)標識プライマー法
標識プライマー法とは、『本発明に係るプライマーの少なくとも一方を標識物質で標識した標識プライマーを含むプライマー対を用い、本発明の検出方法に係る工程4を行う。次いで、得られた増幅産物を電気泳動に付し、当該増幅産物中の標識を検出することにより、本発明の検出方法に係る工程4で得られた増幅産物の有無を確認する』方法である。
尚、標識物質で標識した標識プライマーについては、本発明の検出方法に係る工程4で説明した通りである。
また、上記「標識を検出する」とは、標識物質の性質に基づいて標識物質を直接又は間接的に測定することを意味する。
標識プライマー法における電気泳動としては、物質の荷電強度に依存して異なる速度で移動又は異なる距離を移動する方法に基づくものであればよく、具体的には、例えば、アガロースゲル電気泳動法、アクリルアミドゲル電気泳動法、キャピラリー電気泳動法等が挙げられ、アガロースゲル電気泳動法又はキャピラリー電気泳動法がより好ましい。
尚、上記アガロースゲル電気泳動法は、例えば、「バイオ実験イラステッドII遺伝子解析の基礎, 2006, p.p. 53-56」に記載の方法に基づいてなされればよい。また、上記キャピラリー電気泳動法は、例えば、WO2007/027495、WO2011/118496、WO2008/075520等に記載の方法に基づいてなされればよい。
(A-1) Labeled Primer Method The labeled primer method refers to "the step 4 according to the detection method of the present invention is carried out using a primer pair containing a labeled primer in which at least one of the primers according to the present invention is labeled with a labeling substance. Next, the obtained amplification product is subjected to electrophoresis, and the presence or absence of the amplification product obtained in step 4 according to the detection method of the present invention is confirmed by detecting the label in the amplification product. ” ..
The labeled primer labeled with the labeling substance is as described in step 4 according to the detection method of the present invention.
Further, the above-mentioned "detecting a label" means directly or indirectly measuring a labeling substance based on the properties of the labeling substance.
The electrophoresis in the labeled primer method may be based on a method of moving at a different speed or moving a different distance depending on the charge intensity of the substance. Specifically, for example, agarose gel electrophoresis or acrylamide. Examples thereof include gel electrophoresis, capillary electrophoresis and the like, and agarose gel electrophoresis or capillary electrophoresis is more preferable.
The agarose gel electrophoresis method may be performed based on, for example, the method described in "Bioexperimental Ilasted II Gene Analysis Basics, 2006, pp 53-56". Further, the capillary electrophoresis method may be performed based on, for example, the methods described in WO2007 / 027495, WO2011 / 118496, WO2008 / 075520 and the like.

(a-2)インターカレーター法
インターカレーター法とは、『本発明に係るプライマー対を用い、本発明の検出方法に係る工程4を行い、得られた増幅産物を電気泳動に付す。次いで、当該増幅産物をインターカレーターで染色し、当該インターカレーター由来の蛍光を検出することにより、本発明の検出方法に係る工程4で得られた増幅産物の有無を確認する』方法である。
インターカレーター法における電気泳動としては、(a-1)標識プライマー法に記載のものと同じものが挙げられ、その具体例、好ましい例等も同じである。
また、インターカレーター法におけるインターカレーターとしては、通常、この分野で用いられているインターカレーターであれば何れでもよい。具体的には、例えば、(1)〜(5)のインターカレーター並びに下記(6)及び(7)のインターカレーター類似物質が挙げられる。
(1)エチジウム化合物[例えば、エチジウムブロマイド、エチジウムホモダイマー1(EthD-1)、エチジウムホモダイマー2(EthD-2)、臭化エチジウムモノアジド(EMA)、ジヒドロエチジウム等]、
(2)アクリジン色素(例えば、アクリジンオレンジ等)、
(3)ヨウ素化合物(ヨウ素化プロピジウム、ヨウ素化ヘキシジウム等)、シアニンダイマー系色素[例えば、POPO-1、BOBO-1、YOYO-1、TOTO-1、JOJO-1、POPO-3、LOLO-1、BOBO-3、YOYO-3、TOTO-3(何れもモレキュラープローブ(株)製)等]、
(4)シアニンモノマー系色素[例えば、PO-PRO-1、BO-PRO-1、YO-PRO-1、TO-PRO-1、JO-PRO-1、PO-PRO-3、LO-PRO-1、BO-PRO-3、YO-PRO-3、TO-PRO-3、TO-PRO-5(何れもモレキュラープローブ(株)製)等]、
(5)SYTOX(商標)系色素[例えば、SYBR Gold(商標)、SYBR Green I(商標)、SYBR Green II(商標)、SYTOX Green(商標)、SYTOX Blue(商標)、SYTOX Orange(商標)(何れもモレキュラープローブ(株)製)等]、GelRed(商標)系色素[例えば、GelRed(商標)核酸ゲル染色液(富士フイルム和光純薬(株)製)等]、
(6)DNA二重らせんのマイナーグルーブに結合するもの[例えば、4’,6-ジアミジノ-2-フェニルインドール(DAPI:モレキュラープローブ(株)製)等]、
(7)アデニン−チミン(A-T)配列に特異的に結合するもの[例えば、ペンタハイドレ−ト(ビス−ベンズイミド)(Hoechst 33258:モレキュラープローブ(株)製)、トリヒドロクロライド(Hoechst 33342:モレキュラープローブ(株)製)、ビスベンズイミド色素(Hoechst 34580:モレキュラープローブ(株)製)等]
上記した中でも、SYTOX(商標)系色素[例えば、SYBR Gold(商標)、SYBR Green I(商標)、SYBR Green II(商標)、SYTOX Green(商標)、SYTOX Blue(商標)、SYTOX Orange(商標)(何れもモレキュラープローブ(株)製)等]、GelRed(商標)系色素[例えば、GelRed(商標)核酸ゲル染色液(富士フイルム和光純薬(株)製)等]が好ましく、GelRed(商標)系色素[例えば、GelRed(商標)核酸ゲル染色液(富士フイルム和光純薬(株)製)等]がより好ましい。
(A-2) Intercalator method The intercalator method is as follows: "Using the primer pair according to the present invention, step 4 according to the detection method of the present invention is performed, and the obtained amplification product is subjected to electrophoresis. Next, the amplification product is stained with an intercalator, and the fluorescence derived from the intercalator is detected to confirm the presence or absence of the amplification product obtained in step 4 according to the detection method of the present invention. ”
Examples of the electrophoresis in the intercalator method include those described in (a-1) Labeled Primer Method, and specific examples and preferred examples thereof are also the same.
Further, as the intercalator in the intercalator method, any intercalator used in this field may be used. Specifically, for example, the intercalators of (1) to (5) and the intercalator-like substances of the following (6) and (7) can be mentioned.
(1) Ethidium compounds [for example, ethidium bromide, ethidium homodimer 1 (EthD-1), ethidium homodimer 2 (EthD-2), ethidium bromide (EMA), dihydroethidium, etc.],
(2) Acridine dye (for example, acridine orange),
(3) Iodine compounds (propidium iodide, hexidium iodide, etc.), cyanine dimer dyes [for example, POPO-1, BOBO-1, YOYO-1, TOTO-1, JOJO-1, POPO-3, LOLO-1 , BOBO-3, YOYO-3, TOTO-3 (all manufactured by Molecular Probe Co., Ltd.)],
(4) Cyanine monomer dyes [for example, PO-PRO-1, BO-PRO-1, YO-PRO-1, TO-PRO-1, JO-PRO-1, PO-PRO-3, LO-PRO- 1, BO-PRO-3, YO-PRO-3, TO-PRO-3, TO-PRO-5 (all manufactured by Molecular Probe Co., Ltd.)],
(5) SYTOX ™ dyes [for example, SYBR Gold ™, SYBR Green I ™, SYBR Green II ™, SYTOX Green ™, SYTOX Blue ™, SYTOX Orange ™ (Trademark) All are manufactured by Molecular Probe Co., Ltd.], GelRed (trademark) dyes [for example, GelRed (trademark) nucleic acid gel stain (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), etc.],
(6) Those that bind to the minor groove of the DNA double helix [for example, 4', 6-diamidino-2-phenylindole (DAPI: manufactured by Molecular Probe Co., Ltd.), etc.],
(7) Those that specifically bind to the adenine-thymine (AT) sequence [for example, pentahydrate (bis-benzimide) (Hoechst 33258: manufactured by Molecular Probe Co., Ltd.), trihydrochloride (Hoechst 33342: molecular probe) (Manufactured by Co., Ltd.), Bisbenzimide dye (Hoechst 34580: manufactured by Molecular Probe Co., Ltd.), etc.]
Among the above, SYTOX (trademark) dyes [for example, SYBR Gold (trademark), SYBR Green I (trademark), SYBR Green II (trademark), SYTOX Green (trademark), SYTOX Blue (trademark), SYTOX Orange (trademark)) (All manufactured by Molecular Probe Co., Ltd.), etc.], GelRed (trademark) dyes [for example, GelRed (trademark) nucleic acid gel stain (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), etc.] are preferable, and GelRed (trademark) A system dye [for example, GelRed ™ nucleic acid gel stain (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), etc.] is more preferable.

(a-3)標識プローブ法
標識プローブ法とは、『本発明に係るプライマー対を用い、本発明の検出方法に係る工程4を行い、得られた増幅産物を電気泳動に付す。次いで、上記増幅産物を熱処理に付すことにより、一本鎖にする。次いで、標識物質で標識された、上記増幅産物の塩基配列と相補的な塩基配列を有するプローブをハイブリダイズさせることで、ハイブリッド体を得て、当該ハイブリッド体中の標識を検出することにより、本発明の検出方法に係る工程4で得られた増幅産物の有無を確認する』方法である。
尚、標識物質で標識した標識プローブとしては、本発明の検出方法に係る工程4に記載のものと同じものが挙げられ、その具体例、好ましい例等も同じである。
また、標識プローブ法における電気泳動としては、(a-1)標識プライマー法に記載のものと同じものが挙げられ、その具体例、好ましい例等も同じである。
(A-3) Labeled probe method The labeled probe method refers to "using the primer pair according to the present invention, performing step 4 according to the detection method of the present invention, and subjecting the obtained amplification product to electrophoresis. The amplification product is then subjected to heat treatment to form a single strand. Next, by hybridizing a probe labeled with a labeling substance and having a base sequence complementary to the base sequence of the amplification product, a hybrid is obtained, and the label in the hybrid is detected. It is a method of confirming the presence or absence of the amplification product obtained in step 4 according to the detection method of the present invention.
Examples of the labeled probe labeled with the labeling substance include the same as those described in step 4 according to the detection method of the present invention, and specific examples and preferred examples thereof are also the same.
Further, as the electrophoresis in the labeled probe method, the same ones as described in (a-1) Labeled primer method can be mentioned, and specific examples, preferred examples and the like thereof are also the same.

(b)蛍光リーダーにより検出する方法
蛍光リーダーにより検出する方法とは、『本発明に係るプライマー対及びプローブを用いた本発明の検出方法に係る工程4を行う。次いで、各ドロップレット由来の蛍光を蛍光リーダーにより検出することにより、本発明の検出方法に係る工程4で得られた増幅産物の有無を確認する』方法である。
蛍光リーダーにより検出する方法における蛍光リーダーとしては、核酸増幅装置に付属のもの[例えば、QX200 Droplet Reader(バイオ・ラッドラボラトリーズ(株)製)等]を用いればよい。
(B) Method of detecting with a fluorescent reader The method of detecting with a fluorescent reader is "Step 4 according to the detection method of the present invention using the primer pair and the probe according to the present invention. Then, by detecting the fluorescence derived from each droplet with a fluorescence reader, the presence or absence of the amplification product obtained in step 4 according to the detection method of the present invention is confirmed. ”
As the fluorescence reader in the method of detecting with a fluorescence reader, one attached to a nucleic acid amplification device [for example, QX200 Droplet Reader (manufactured by Bio-Rad Laboratories Co., Ltd.), etc.] may be used.

[本発明の検出方法の具体例]
(1)DNAの抽出、(2)本発明の検出方法に係る工程1、(3)本発明の検出方法に係る工程2及び(4)本発明の検出方法に係る工程3の具体例については、前述の[本発明の精製方法の具体例]で説明した通りである。本発明の検出方法に係る工程4及び本発明の検出方法に係る工程5の具体例について、以下に説明する。
(5)本発明の検出方法に係る工程4
本発明の検出方法に係る工程3で処理された溶液又はフロースルー液 1〜50μLに、核酸合成基質、核酸合成酵素等を含むデジタルPCR用試薬[例えば、ddPCR(登録商標)Supermix for probes(バイオ・ラッドラボラトリーズ(株)製)] 5〜15μL、1〜20μM フォワードプライマー(例えば、h149-f-fox) 0.5〜1.5μL、1〜20μM リバースプライマー(例えば、h149-r-fox) 0.5〜1.5μL及び1〜20μM プローブ(例えば、h149-p-fox) 0.5〜1.5μLを加え、滅菌水で15〜100μLに調製し、デジタルPCR用反応液とする。
次いで、上記デジタルPCR用反応液を核酸増幅装置[例えば、サーマルサイクラ―(バイオ・ラッドラボラトリーズ(株))製]にセットし、30〜40℃で15〜60分間インキュベートする。その後、ドロップレット作製装置[例えば、QX 200 Droplet Generator(バイオ・ラッドラボラトリーズ(株)製)又はAutomated Droplet Generator(バイオ・ラッドラボラトリーズ(株)製)]にてドロップレットを作製する。次いで、上記ドロップレットをウェルプレート(例えば、96ウェルプレート)に分注した後、核酸増幅装置[例えば、サーマルサイクラ―(バイオ・ラッド(株)製)]を用いて、90〜97℃で1〜15分間加熱した後、(1)90〜97℃で5〜35秒間、(2)60〜70℃で10〜90秒間を1サイクルとして、30〜50サイクル加熱することにより、標的領域(例えば、配列番号2で表される塩基配列)を増幅させることができる。
(6)本発明の検出方法に係る工程5
各ドロップレットにおける上記本発明の検出方法に係る工程4で増幅された増幅産物中の蛍光を、蛍光リーダー[例えば、QX200 Droplet Reader(バイオ・ラッドラボラトリーズ(株)製)等]により検出することにより、上記本発明の検出方法に係る工程4で増幅された増幅産物の有無を確認することができる。
[Specific Example of Detection Method of the Present Invention]
Specific examples of (1) DNA extraction, (2) step 1 according to the detection method of the present invention, (3) step 2 according to the detection method of the present invention, and (4) step 3 according to the detection method of the present invention. , As described in the above-mentioned [Specific example of the purification method of the present invention]. Specific examples of the step 4 according to the detection method of the present invention and the step 5 according to the detection method of the present invention will be described below.
(5) Step 4 according to the detection method of the present invention
A reagent for digital PCR containing a nucleic acid synthesizing substrate, a nucleic acid synthase, etc. in 1 to 50 μL of the solution or flow-through solution treated in step 3 according to the detection method of the present invention [for example, ddPCR® Supermix for probes (bio).・ Raddora Volatries Co., Ltd.] 5 to 15 μL, 1 to 20 μM forward primer (for example, h149-f-fox) 0.5 to 1.5 μL, 1 to 20 μM reverse primer (for example, h149-r-fox) 0.5 to 1.5 μL And 1 to 20 μM probe (for example, h149-p-fox) 0.5 to 1.5 μL is added, and the mixture is prepared to 15 to 100 μL with sterile water to prepare a reaction solution for digital PCR.
Next, the reaction solution for digital PCR is set in a nucleic acid amplification device [for example, manufactured by Thermal Cycler (Bio-Rad Laboratories Co., Ltd.)] and incubated at 30 to 40 ° C. for 15 to 60 minutes. Then, a droplet is produced by a droplet production device [for example, QX 200 Droplet Generator (manufactured by Bio-Rad Laboratories Co., Ltd.) or Automated Droplet Generator (manufactured by Bio-Rad Laboratories Co., Ltd.)]. Next, the droplet is dispensed into a well plate (for example, a 96-well plate), and then using a nucleic acid amplification device [for example, Thermal Cycler (manufactured by Bio-Rad Laboratories, Inc.)], 1 at 90 to 97 ° C. After heating for ~ 15 minutes, the target region (eg,) is heated for 30-50 cycles, with (1) 90-97 ° C for 5-35 seconds and (2) 60-70 ° C for 10-90 seconds as one cycle. , The base sequence represented by SEQ ID NO: 2) can be amplified.
(6) Step 5 according to the detection method of the present invention
By detecting the fluorescence in the amplification product amplified in step 4 according to the detection method of the present invention in each droplet with a fluorescence reader [for example, QX200 Droplet Reader (manufactured by Bio-Radola Volatries Co., Ltd.)]. , The presence or absence of the amplified product amplified in step 4 according to the detection method of the present invention can be confirmed.

<本発明の癌の判定方法>
本発明の癌の判定方法(以下、本発明の判定方法と略記する場合がある。)は、本発明の精製方法により精製された標的領域を有する二本鎖DNA等に対して、メチル化感受性制限酵素による処理を行い、次いで、標的領域を増幅し、その結果に基づいて癌であるか否か判定をするものであり、下記工程1〜7を含むことを特徴とする。
(1)(a)末端に3’突出を生じさせる制限酵素Aを1種以上及び(b)末端に5’突出を生じさせる制限酵素Bを1種以上用いて、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]並びに、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’/3’突出非標的二本鎖DNA断片を生じさせる工程1、ここで、当該制限酵素Aは当該標的領域中の塩基配列を切断せず、当該制限酵素Bは当該3’突出標的二本鎖DNA断片中の塩基配列を切断しないものである、
(2)前記工程1で生じた、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を、エキソヌクレアーゼIIIで処理することにより、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、それぞれ(iv)標的領域を有さない一本鎖DNA断片を生じさせる工程2、
(3)前記工程2で生じた、(iv)標的領域を有さない一本鎖DNA断片及び(i)3’突出標的二本鎖DNA断片を、一本鎖特異的ヌクレアーゼで処理することにより、(i)3’突出標的二本鎖DNA断片から、(v)標的領域を有しその両端が平滑である二本鎖DNA断片[平滑標的二本鎖DNA断片]を生じさせる工程3、
(4)前記工程3で生じた、(v)平滑標的二本鎖DNA断片を、メチル化感受性制限酵素で処理する工程4、
(5)前記工程4で処理された、(v)平滑標的二本鎖DNA断片中の標的領域を増幅処理に付す工程5、
(6)前記工程5で生じた、増幅産物の有無を確認する工程6、
及び
(7)前記工程6の確認結果に基づいて、癌を判定する工程7を含むことを特徴とするものである。
尚、メチル化感受性制限酵素による処理を行う前までの工程1〜3は前述の本発明の精製方法における工程1〜3と同じであり、その具体例、好ましい例等も同じである。また、標的領域を増幅する工程5及び増幅産物の有無を確認する工程6については、前述の本発明の検出方法における工程4及び工程5と同じであり、その具体例、好ましい例等も同じである。
[二本鎖DNA]、[標的領域]、[癌]、[工程4]及び[工程7]について以下に詳述する。
尚、本発明の判定方法においても、各工程に引き続いて精製工程を行ってもよく、その具体例、好ましい例等は、本発明の精製方法における[精製工程]で説明した通りである。
<Method for determining cancer of the present invention>
The method for determining cancer of the present invention (hereinafter, may be abbreviated as the method for determining cancer of the present invention) is methylation-sensitive to double-stranded DNA or the like having a target region purified by the purification method of the present invention. Treatment with a restriction enzyme is performed, then the target region is amplified, and based on the result, it is determined whether or not the cancer is present, and the following steps 1 to 7 are included.
(1) A double-strand having a target region using one or more restriction enzymes A that cause 3'protrusion at the end and (b) one or more restriction enzymes B that cause 5'projection at the end. From DNA, (i) a double-stranded DNA fragment having a target region and 3'protruding at both ends [3'protruding target double-stranded DNA fragment], and (ii) 5 without a target region at both ends. 'Protruding double-stranded DNA fragment [5'protruding non-target double-stranded DNA fragment] or / and (iii) Double-stranded DNA that does not have a target region and has 5'protruding and 3'protruding ends, respectively. Fragment [5'/ 3'protruding Step 1 to generate a non-target double-stranded DNA fragment, where the restriction enzyme A does not cleave the base sequence in the target region and the restriction enzyme B does not cleave the 3'protruding It does not cleave the base sequence in the target double-stranded DNA fragment,
(2) (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/ 3'protruding non-protruding generated in step 1. By treating the target double-stranded DNA fragment with Exonuclease III, from (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-target double-stranded DNA fragment. Step 2, each producing a single-stranded DNA fragment that does not have a target region 2.
(3) By treating the (iv) single-stranded DNA fragment having no target region and (i) the 3'protruding target double-stranded DNA fragment generated in the above step 2 with a single-stranded specific nuclease. , (I) From a 3'protruding target double-stranded DNA fragment, (v) a double-stranded DNA fragment having a target region and smooth at both ends [smooth target double-stranded DNA fragment] is generated.
(4) Step 4, in which the (v) smoothing target double-stranded DNA fragment generated in step 3 is treated with a methylation susceptibility restriction enzyme.
(5) Step 5, in which the target region in the (v) smoothing target double-stranded DNA fragment treated in step 4 is subjected to amplification treatment.
(6) Step 6 to confirm the presence or absence of amplification products generated in step 5 above,
And (7), it is characterized by including step 7 of determining cancer based on the confirmation result of step 6.
Steps 1 to 3 before the treatment with the methylation susceptibility restriction enzyme are the same as steps 1 to 3 in the purification method of the present invention described above, and specific examples and preferred examples thereof are also the same. Further, the step 5 for amplifying the target region and the step 6 for confirming the presence or absence of the amplified product are the same as the steps 4 and 5 in the detection method of the present invention described above, and the specific examples and preferable examples thereof are also the same. is there.
[Double-stranded DNA], [target region], [cancer], [step 4] and [step 7] will be described in detail below.
In the determination method of the present invention, a purification step may be performed following each step, and specific examples, preferred examples, etc. thereof are as described in [Purification step] in the purification method of the present invention.

[本発明の判定方法に係る二本鎖DNA]
本発明の判定方法に係る二本鎖DNAは、CpG配列(−CG−)を含む二本鎖DNAであって、且つ本発明に係る工程1における制限酵素A及び制限酵素Bの作用により、(i)標的領域を有しその両端が3’突出である二本鎖DNA断片[3’突出標的二本鎖DNA断片]並びに、(ii)標的領域を有さずその両端が5’突出である二本鎖DNA断片[5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である二本鎖DNA断片[5’ /3’突出非標的二本鎖DNA断片を生じ得るものであればよく、(1)その両端がそれぞれ突出(3’突出又は/及び5’突出)、(2)その両端がそれぞれ平滑、(3)一方の端が突出(3’突出又は5’突出)且つもう一方の端が平滑、又は(4)環状、の何れであってもよい。
尚、本発明の判定方法に係る二本鎖DNAにおける、標的領域、制限酵素Aの認識配列及び制限酵素Bの認識配列の位置関係、並びに本発明の判定方法に係る二本鎖DNAの抽出については、前述の本発明の精製方法における[二本鎖DNA]と同じであり、その具体例、好ましい例等も同じである。
[Double-stranded DNA according to the determination method of the present invention]
The double-stranded DNA according to the determination method of the present invention is a double-stranded DNA containing a CpG sequence (-CG-), and due to the action of the restriction enzymes A and B in step 1 according to the present invention, ( i) A double-stranded DNA fragment having a target region and 3'protruding at both ends [3'protruding target double-stranded DNA fragment], and (ii) a double-stranded DNA fragment having no target region and 5'protruding at both ends. Double-stranded DNA fragment [5'protruding non-targeted double-stranded DNA fragment] or / and (iii) Double-stranded DNA fragment having no target region and having 5'protruding and 3'protruding ends, respectively [5' Anything that can produce a / 3'protruding non-target double-stranded DNA fragment is sufficient, (1) both ends are protruding (3'protruding or / and 5'protruding), and (2) both ends are smooth. 3) One end may be protruding (3'protruding or 5'protruding) and the other end may be smooth or (4) annular.
Regarding the positional relationship between the target region, the recognition sequence of restriction enzyme A and the recognition sequence of restriction enzyme B in the double-stranded DNA according to the determination method of the present invention, and the extraction of the double-stranded DNA according to the determination method of the present invention. Is the same as the [double-stranded DNA] in the purification method of the present invention described above, and specific examples thereof, preferred examples, and the like are also the same.

[本発明の判定方法に係る標的領域]
本発明の判定方法に係る標的領域としては、本発明の判定方法に係る二本鎖DNA中に存在するシトシンがメチル化されたCpG配列を含む連続した特定の二本鎖DNA部分である。
尚、上記メチル化とは、DNAメチラーゼによる塩基修飾のことであり、シトシンの次にグアニンが現れる2塩基配列であるCpG配列のシトシン塩基の5位等にメチル基が付加した状態を意味する。
本発明の判定方法に係る標的領域の具体例、好ましい例等は、前述の本発明の精製方法における[標的領域]で説明した通りである。
[Target region according to the determination method of the present invention]
The target region according to the determination method of the present invention is a continuous specific double-stranded DNA portion containing a CpG sequence in which cytosine present in the double-stranded DNA according to the determination method of the present invention is methylated.
The above methylation is base modification by DNA methylase, and means a state in which a methyl group is added to the 5-position of the cytosine base of the CpG sequence, which is a two-base sequence in which guanine appears next to cytosine.
Specific examples, preferred examples, etc. of the target region according to the determination method of the present invention are as described in [Target region] in the above-mentioned purification method of the present invention.

[本発明の判定方法に係る癌]
本発明の判定方法に係る癌とは、制御不能な細胞分裂又は/及び浸潤を通しての隣接組織への直接的な増殖又は/及び転移等に特徴付けられる、疾病又は疾患のことである。本発明の判定方法により判定される癌の具体例としては、細胞癌、腺癌、リンパ腫、白血病、肉腫、中皮腫、神経腫、骨肉腫、胚細胞腫、前立腺癌、肺癌、乳癌、結腸直腸癌、胃腸癌、膀胱癌、膵臓癌、子宮内膜癌、子宮頸癌、卵巣癌、メラノーマ、脳癌、精巣癌、腎臓癌、皮膚癌、甲状腺癌、頭頸部癌、肝臓癌、食道癌、胃癌、大腸癌、骨髄癌、神経芽細胞腫、網膜芽細胞腫等が挙げられ、肺癌、乳癌、膵臓癌、肝臓癌、胃癌又は大腸癌が好ましく、膵臓癌又は大腸癌がより好ましい。
[Cancer according to the determination method of the present invention]
A cancer according to the determination method of the present invention is a disease or disease characterized by uncontrolled cell division and / and direct proliferation and / and metastasis to adjacent tissues through infiltration. Specific examples of the cancer determined by the determination method of the present invention include cell cancer, adenocarcinoma, lymphoma, leukemia, sarcoma, mesenteric tumor, neuroma, osteosarcoma, germ cell tumor, prostate cancer, lung cancer, breast cancer, colon. Rectal cancer, gastrointestinal cancer, bladder cancer, pancreatic cancer, endometrial cancer, cervical cancer, ovarian cancer, melanoma, brain cancer, testicular cancer, kidney cancer, skin cancer, thyroid cancer, head and neck cancer, liver cancer, esophageal cancer , Gastric cancer, colon cancer, bone marrow cancer, neuroblastoma, retinal blastoma, etc., lung cancer, breast cancer, pancreatic cancer, liver cancer, gastric cancer or colon cancer are preferable, and pancreatic cancer or colon cancer is more preferable.

[本発明の判定方法に係る工程4]
本発明の判定方法に係る工程4は、本発明の判定方法に係る工程3で生じた、(v)平滑標的二本鎖DNA断片を、メチル化感受性制限酵素で処理する工程である。
本発明の判定方法に係る工程4におけるメチル化感受性制限酵素とは、認識配列中におけるCpG配列中のシトシンがメチル化されているか否かにより切断活性が変化する制限酵素のことである。
即ち、メチル化感受性制限酵素とは、認識配列がメチル化されたシトシン塩基を含むCpG配列を有する場合、当該認識配列を切断できないが、認識配列がメチル化されたシトシン塩基を含むCpG配列を有さない場合、当該認識配列を切断することができる制限酵素のことである。
本発明の判定方法に係る工程4におけるメチル化感受性制限酵素は、認識する塩基配列が標的領域内に存在するものであれば、何れでもよい。即ち、標的領域に応じて適宜選択されればよい。
本発明の判定方法に係る工程4におけるメチル化感受性制限酵素としては、具体的には、例えば、AatII、AccI、AccII、AciI、AfaI、Aor13HI、Aor51HI、ApaI、ApalI、BglI、BmgT120I、BspT104I、BssHII、BstuI、Cfr10I、ClaI、CpoI、EaeI、Eco52I、FauI、HaeII、HapII、HpaII、HhaI、MluI、NaeI、NheI、NotI、NruI、NsbI、PmaCI、Psp1406I、PvuI、SacII、SalI、Sau3AI、SmaI、SnaBI、VpaK11BI等が挙げられる。
ヒト由来のFOXB2遺伝子のプロモーター領域内の特定領域(配列番号1:267塩基対)、ヒト由来のFOXB2遺伝子のプロモーター領域内の特定領域(配列番号2:149塩基対)又はイヌ由来のFOXB2遺伝子のプロモーター領域内の特定領域(配列番号3:433塩基対)を標的領域とした場合、本発明の判定方法に係る工程4におけるメチル化感受性制限酵素としては、HapII、HpaII、BstUI、AciI又は/及びFauIが好ましい。
本発明の判定方法に係る工程4におけるメチル化感受性制限酵素のユニット数は、通常、目的のDNA1〜10μgに対して、1〜150ユニット/μLであり、5〜100ユニット/μLが好ましく、10〜50ユニット/μLがより好ましい。
また、複数種のメチル化感受性制限酵素を用いた場合の本発明の判定方法に係る工程4におけるメチル化感受性制限酵素のユニット数についても上記と同様であり、目的のDNA1〜10μgに対して、1〜150ユニット/μLであり、5〜100ユニット/μLが好ましく、10〜50ユニット/μLがより好ましい
本発明の判定方法に係る工程4におけるメチル化感受性制限酵素による処理は、通常20〜50℃で、好ましくは35〜45℃で、通常30〜150分間、好ましくは30〜120分間反応を行えばよい。
また、本発明の判定方法に係る工程4におけるメチル化感受性制限酵素による処理は、pH6〜10の条件の下なされることが好ましく、ここで用いられる緩衝液としては、例えば、MES、ADA、PIPES、ACES、MOPS、BES、TES、HEPES、TRINCE、BICINE等のグッド緩衝液、リン酸緩衝液、トリス緩衝液、グリシン緩衝液、ホウ酸緩衝液等を用いればよい。
[Step 4 relating to the determination method of the present invention]
Step 4 according to the determination method of the present invention is a step of treating (v) a smooth target double-stranded DNA fragment generated in step 3 according to the determination method of the present invention with a methylation susceptibility restriction enzyme.
The methylation susceptibility restriction enzyme in step 4 according to the determination method of the present invention is a restriction enzyme whose cleavage activity changes depending on whether or not cytosine in the CpG sequence in the recognition sequence is methylated.
That is, the methylation susceptibility restriction enzyme has a CpG sequence containing a cytosine base in which the recognition sequence is methylated, although the recognition sequence cannot be cleaved when the recognition sequence has a CpG sequence containing a methylated cytosine base. If not, it is a restriction enzyme that can cleave the recognition sequence.
The methylation susceptibility restriction enzyme in step 4 according to the determination method of the present invention may be any enzyme as long as the base sequence to be recognized exists in the target region. That is, it may be appropriately selected according to the target region.
Specific examples of the methylation susceptibility restriction enzyme in step 4 according to the determination method of the present invention include AatII, AccI, AccII, AciI, AfaI, Aor13HI, Aor51HI, ApaI, ApalI, BglI, BmgT120I, BspT104I, and BssHII. , BstuI, Cfr10I, ClaI, CpoI, EaeI, Eco52I, FauI, HaeII, HapII, HpaII, HhaI, MluI, NaeI, NheI, NotI, NruI, NsbI, PmaCI, Psp1406I, PvuI, SacII, SalI , VpaK11BI, etc.
A specific region within the promoter region of the human-derived FOXB2 gene (SEQ ID NO: 1: 267 base pairs), a specific region within the promoter region of the human-derived FOXB2 gene (SEQ ID NO: 2: 149 base pairs), or a canine-derived FOXB2 gene. When a specific region (SEQ ID NO: 3: 433 base pairs) in the promoter region is used as the target region, the methylation susceptibility restriction enzymes in step 4 according to the determination method of the present invention include HapII, HpaII, BstUI, AciI and / and. FauI is preferred.
The number of units of the methylation susceptibility restriction enzyme in step 4 according to the determination method of the present invention is usually 1 to 150 units / μL, preferably 5 to 100 units / μL, preferably 10 to 1 to 10 μg of the target DNA. More preferably ~ 50 units / μL.
Further, the number of units of the methylation susceptibility restriction enzyme in step 4 according to the determination method of the present invention when a plurality of types of methylation susceptibility restriction enzymes are used is the same as above, and the target DNA is 1 to 10 μg. It is 1 to 150 units / μL, preferably 5 to 100 units / μL, and more preferably 10 to 50 units / μL. The treatment with a methylation susceptibility restriction enzyme in step 4 according to the determination method of the present invention is usually 20 to 50. The reaction may be carried out at ° C., preferably 35 to 45 ° C., for usually 30 to 150 minutes, preferably 30 to 120 minutes.
Further, the treatment with the methylation susceptibility limiting enzyme in step 4 according to the determination method of the present invention is preferably performed under the conditions of pH 6 to 10, and the buffer solution used here is, for example, MES, ADA, PIPES. , ACES, MOPS, BES, TES, HEPES, TRINCE, BICINE and other Good's buffers, phosphate buffers, Tris buffers, glycine buffers, borate buffers and the like may be used.

更に、本発明の判定方法に係る工程4の後、DNA断片を精製するのが好ましい。尚、上記精製については、本発明の精製方法における[精製工程]と同じであり、その具体例、好ましい例等も同じである。 Furthermore, it is preferable to purify the DNA fragment after step 4 according to the determination method of the present invention. The above purification is the same as the [purification step] in the purification method of the present invention, and specific examples and preferred examples thereof are also the same.

このように、本発明の判定方法に係る工程4におけるメチル化感受性制限酵素による処理を行うことにより、メチル化されている二本鎖DNAの標的領域は切断されず、メチル化されていない二本鎖DNAの標的領域が切断されるため、本発明の判定方法に係る工程5において、メチル化されている二本鎖DNAの標的領域を特異的且つ高感度に増幅することができる。 As described above, by performing the treatment with the methylation susceptibility restriction enzyme in step 4 according to the determination method of the present invention, the target region of the methylated double-stranded DNA is not cleaved, and the two unmethylated DNAs are not cleaved. Since the target region of the strand DNA is cleaved, the target region of the methylated double-stranded DNA can be amplified specifically and with high sensitivity in step 5 according to the determination method of the present invention.

[本発明の判定方法に係る工程7]
本発明の判定方法に係る工程7は、本発明の判定方法に係る工程6の結果に基づいて、癌の判定を行う工程である。即ち、本発明の判定方法に係る工程5で増幅された増幅産物の有無の確認の結果に基づいてなされる。
本発明の判定方法に係る工程7における癌の判定とは、本発明の判定方法に係る工程1〜6の結果により得られたデータを用いてなされる。即ち、本発明の判定方法に係る工程5で増幅された目的の増幅産物を検出し、当該増幅産物が検出されたという結果に基づき、癌の判定をすることである。
[Step 7 according to the determination method of the present invention]
Step 7 according to the determination method of the present invention is a step of determining cancer based on the result of step 6 according to the determination method of the present invention. That is, it is performed based on the result of confirmation of the presence or absence of the amplified product amplified in step 5 according to the determination method of the present invention.
The determination of cancer in step 7 according to the determination method of the present invention is made using the data obtained from the results of steps 1 to 6 according to the determination method of the present invention. That is, the target amplification product amplified in step 5 according to the determination method of the present invention is detected, and the cancer is determined based on the result that the amplification product is detected.

上記癌の判定対象は、標的領域を含むDNA由来の試料に基づく。
例えば、標的領域を含むDNA由来の試料が組織、細胞等の場合、癌の判定対象は、当該組織、細胞等自体、更には、当該組織、細胞等が由来する動物である。
即ち、当該組織、細胞等自体が癌(化)されているか否かが判定されるのみではなく、当該組織、細胞等が由来する動物が癌に罹患しているか又は当該動物に癌細胞が存在しているか否かも判定される。
一方、標的領域を含むDNA由来の試料が全血、血清、血漿、尿等の体液である場合、癌の判定対象は、以下(i)及び(ii)の通りである。
(i)標的領域を含むDNAが上記全血、血清、血漿、尿等の体液中の細胞(白血球等の血液細胞、各組織由来の細胞、CTC等)に由来する場合には、当該細胞自体、更には、当該細胞が由来する動物である。
即ち、当該細胞自体が癌(化)されているか否かが判定されるのみではなく、当該細胞が由来する動物が癌に罹患しているか又は当該動物に癌細胞が存在しているか否かも判定される。
(ii)標的領域を含むDNAが上記全血、血清、血漿、尿等の体液中のcfDNA、エクソソーム(エキソソーム)等に由来する場合には、癌の判定対象は、上記全血、血清、血漿、尿等の体液に由来する動物である。
即ち、上記全血、血清、血漿、尿等の体液に由来する動物が癌に罹患しているか又は当該動物に癌細胞が存在しているか否かが判定される。
The target for determining cancer is based on a sample derived from DNA containing a target region.
For example, when the DNA-derived sample containing the target region is a tissue, cell, or the like, the cancer determination target is the tissue, the cell, or the like itself, or an animal from which the tissue, the cell, or the like is derived.
That is, not only is it determined whether or not the tissue, cell, etc. itself is cancerous, but the animal from which the tissue, cell, etc. is derived is suffering from cancer, or cancer cells are present in the animal. It is also judged whether or not it is done.
On the other hand, when the DNA-derived sample containing the target region is a body fluid such as whole blood, serum, plasma, or urine, the cancer determination target is as follows (i) and (ii).
(I) When the DNA containing the target region is derived from cells in body fluid such as whole blood, serum, plasma, urine (blood cells such as leukocytes, cells derived from each tissue, CTC, etc.), the cells themselves. Furthermore, it is an animal from which the cell is derived.
That is, not only is it determined whether or not the cell itself is cancerous (chemical), but it is also determined whether or not the animal from which the cell is derived has cancer or whether or not the animal has cancer cells. Will be done.
(Ii) When the DNA containing the target region is derived from cfDNA, exosomes, etc. in body fluids such as whole blood, serum, plasma, and urine, the target for determining cancer is the whole blood, serum, and plasma. , An animal derived from body fluids such as urine.
That is, it is determined whether or not an animal derived from a body fluid such as whole blood, serum, plasma, or urine has cancer, or whether or not cancer cells are present in the animal.

癌の判定対象が癌に罹患している又は当該対象中に癌細胞が存在している場合、本発明の判定方法に係る工程5において、当該標的領域が増幅されるため、増幅産物が得られる。一方、癌の判定対象が癌に罹患していない又は当該対象中に癌細胞が存在していない場合、本発明の判定方法に係る工程5において、標的領域が増幅されないため、増幅産物が検出されない。これは、本発明の判定方法に係る工程4におけるメチル化感受性制限酵素の性質によるものである。
つまり、標的領域がメチル化されている場合、メチル化感受性制限酵素で処理しても、標的領域は切断されないため、本発明の判定方法に係る工程5の増幅処理において標的領域が増幅され、本発明の判定方法に係る工程6において増幅産物が確認される。
一方、標的領域がメチル化されていない場合、メチル化感受性制限酵素により標的領域が切断されるため、本発明の判定方法に係る工程5の増幅処理において標的領域が増幅されず、本発明の判定方法に係る工程6において増幅産物が確認されない。
従って、本発明の判定方法に係る工程6において(a)電気泳動により確認する方法を行った場合、(i)増幅産物が確認された場合、当該標的領域由来の癌の判定対象は癌に罹患している又は当該対象中に癌細胞が存在していると判定することができ、(ii)増幅産物が確認されなかった場合、当該標的領域由来の癌の判定対象は、癌に罹患していない又は当該対象中に癌細胞が存在していないと判定することができる。
一方、本発明の判定方法に係る工程6において(b)蛍光リーダーにより確認する方法を行った場合、(i)予め設定した閾値を超える蛍光を発するドロップレットが少なくとも1つ確認された場合、当該標的領域由来の癌の判定対象は癌に罹患している又は当該対象中に癌細胞が存在していると判定することができ、(ii)予め設定した閾値を超える蛍光を発するドロップレットが確認されなかった場合、当該標的領域由来の癌の判定対象は、癌に罹患していない又は当該対象中に癌細胞が存在していないと判定することができる。
尚、上記閾値については、上記蛍光リーダー[例えば、QX200 Droplet Reader(バイオ・ラッドラボラトリーズ(株)製)]の閾値設定機能に従って決定してもよく、標的領域を増幅した結果から決定してもよい。
When the cancer determination target is affected by cancer or cancer cells are present in the target, the target region is amplified in step 5 according to the determination method of the present invention, so that an amplification product can be obtained. .. On the other hand, when the cancer determination target is not affected by cancer or cancer cells are not present in the target, the amplification product is not detected because the target region is not amplified in step 5 according to the determination method of the present invention. .. This is due to the nature of the methylation susceptibility restriction enzyme in step 4 according to the determination method of the present invention.
That is, when the target region is methylated, the target region is not cleaved even if it is treated with a methylation sensitivity restriction enzyme. Therefore, the target region is amplified in the amplification treatment of step 5 according to the determination method of the present invention. The amplification product is confirmed in step 6 according to the determination method of the invention.
On the other hand, when the target region is not methylated, the target region is cleaved by the methylation susceptibility restriction enzyme, so that the target region is not amplified in the amplification process of step 5 according to the determination method of the present invention, and the determination of the present invention is made. No amplification product is confirmed in step 6 of the method.
Therefore, when (a) the method of confirming by electrophoresis is performed in step 6 according to the determination method of the present invention, and (i) the amplification product is confirmed, the determination target of cancer derived from the target region is affected by cancer. If it can be determined that the cancer cells are present or the cancer cells are present in the target, and (ii) the amplification product is not confirmed, the target for determining cancer derived from the target region is suffering from cancer. It can be determined that there are no cancer cells or no cancer cells are present in the subject.
On the other hand, when (b) the method of confirming with a fluorescence reader is performed in step 6 according to the determination method of the present invention, and (i) at least one droplet that emits fluorescence exceeding a preset threshold value is confirmed. It can be determined that the target for determining cancer derived from the target region is suffering from cancer or cancer cells are present in the target, and (ii) a droplet that emits fluorescence exceeding a preset threshold is confirmed. If this is not the case, it can be determined that the target for determining cancer derived from the target region is not affected by cancer or that no cancer cells are present in the target.
The threshold value may be determined according to the threshold value setting function of the fluorescence reader [for example, QX200 Droplet Reader (manufactured by Bio-Rad Laboratories Co., Ltd.)], or may be determined from the result of amplifying the target region. ..

このように本発明の判定方法に係る工程7によれば、増幅産物の有無を確認するのみで、癌の判定を行うことができる。 As described above, according to the step 7 according to the determination method of the present invention, the cancer can be determined only by confirming the presence or absence of the amplification product.

[本発明の判定方法の具体例]
本発明の判定方法の具体例を、以下に説明する。
尚、(1)DNAの抽出、(2)本発明の判定方法に係る工程1、(3)本発明の判定方法に係る工程2及び(4)本発明の判定方法に係る工程3については、[本発明の精製方法の具体例]で説明した通りである。また、(6)本発明の判定方法に係る工程5及び(7)本発明の判定方法に係る工程6については、[本発明の検出方法の具体例]で説明した通りである。本発明の判定方法に係る工程4及び本発明の判定方法に係る工程7の具体例について、以下に説明する。
[Specific Example of the Determination Method of the Present Invention]
Specific examples of the determination method of the present invention will be described below.
Regarding (1) DNA extraction, (2) step 1 according to the determination method of the present invention, (3) step 2 according to the determination method of the present invention, and (4) step 3 according to the determination method of the present invention. As described in [Specific example of the purification method of the present invention]. Further, (6) Step 5 according to the determination method of the present invention and (7) Step 6 according to the determination method of the present invention are as described in [Specific example of the detection method of the present invention]. Specific examples of the step 4 according to the determination method of the present invention and the step 7 according to the determination method of the present invention will be described below.

(5)本発明の判定方法に係る工程4
本発明の判定方法に係る工程3で処理された溶液又はフロースルー液 5〜50μLに、1〜150ユニット/μLのメチル化感受性制限酵素(例えば、HapII、HpaII、SacII、BstUI、AciI又は/及びFauI) 0.5〜3μL、メチル化感受性制限酵素処理用緩衝液(例えば、トリス緩衝液) 2.5〜15μLを加え、滅菌水で25〜100μLに調製する。次いで、20〜50℃で30〜150分間反応させることで本発明の判定方法に係る工程4で処理された溶液を得る。
更に、必要に応じて、本発明の判定方法に係る工程4で処理された溶液を、以下のように本発明に係る精製工程に付してもよい。
即ち、上記本発明の判定方法に係る工程4で処理された溶液に、タンパク質変性剤(例えば、グアニジン塩酸塩) 100〜700μL及び緩衝液(例えば、トリス緩衝液) 100〜700μLをそれぞれ加えて混合し、充填剤を充填したカラム[例えば、エコノスピン((株)ジーンデザイン製)]に移し、1000〜20000×g、室温で1〜5分間遠心分離し、チューブ内の溶液を除去する。その後、緩衝液(例えば、トリス緩衝液) 100〜700μL及びアルコール(例えば、エタノール) 100〜700μLをそれぞれ加え、1000〜20000×g、室温で1〜5分間遠心分離し、チューブ内の溶液を除去する。更に、1000〜20000×g、室温で1〜10分間遠心分離した後、新しいチューブに交換し、緩衝液(例えば、トリス緩衝液) 10〜100μLを加え、1000〜20000×g、室温で1〜5分間遠心分離し、フロースルー液を回収する。
(8)本発明の判定方法に係る工程7
本発明の判定方法に係る工程6の増幅産物の有無の確認の結果、予め設定した閾値を超える蛍光を発するドロップレットが少なくとも1つ確認された場合、「その標的領域由来の癌の判定対象は、癌に罹患している又は当該対象中に癌細胞が存在している。」と判定することができる。一方、予め設定した閾値を超える蛍光を発するドロップレットが確認されなかった場合、「その標的領域由来の癌の判定対象は、癌に罹患していない又は当該対象中に癌細胞が存在していない。」と判定することができる。
(5) Step 4 according to the determination method of the present invention
In 5 to 50 μL of the solution or flow-through solution treated in step 3 according to the determination method of the present invention, 1 to 150 units / μL of methylation sensitivity restriction enzymes (for example, HapII, HpaII, SacII, BstUI, AciI or / and). FauI) Add 0.5 to 3 μL and 2.5 to 15 μL of a buffer solution for methylation sensitivity restriction enzyme treatment (for example, Tris buffer solution), and prepare to 25 to 100 μL with sterile water. Then, the solution treated in step 4 according to the determination method of the present invention is obtained by reacting at 20 to 50 ° C. for 30 to 150 minutes.
Further, if necessary, the solution processed in step 4 according to the determination method of the present invention may be subjected to the purification step according to the present invention as follows.
That is, 100 to 700 μL of a protein denaturant (for example, guanidine hydrochloride) and 100 to 700 μL of a buffer solution (for example, Tris buffer solution) are added to and mixed with the solution treated in step 4 according to the determination method of the present invention. Then, the mixture is transferred to a column packed with a filler [for example, Econospin (manufactured by Gene Design Co., Ltd.)], centrifuged at 1000 to 20000 × g at room temperature for 1 to 5 minutes, and the solution in the tube is removed. Then, 100 to 700 μL of buffer solution (for example, Tris buffer solution) and 100 to 700 μL of alcohol (for example, ethanol) are added, and the mixture is centrifuged at 1000 to 20000 × g at room temperature for 1 to 5 minutes to remove the solution in the tube. To do. Further, after centrifuging at 1000 to 20000 xg at room temperature for 1 to 10 minutes, replace with a new tube, add 10 to 100 μL of buffer solution (for example, Tris buffer solution), and add 1000 to 20000 × g, 1 to 1 to room temperature. Centrifuge for 5 minutes and collect the flow-through solution.
(8) Step 7 according to the determination method of the present invention
As a result of confirming the presence or absence of the amplification product in step 6 according to the determination method of the present invention, when at least one droplet that emits fluorescence exceeding a preset threshold value is confirmed, "the determination target of cancer derived from the target region is , Cancer is present in the subject, or cancer cells are present in the subject. " On the other hand, if no droplet that emits fluorescence exceeding a preset threshold value is confirmed, "the target for determining cancer derived from the target region is not affected by cancer or no cancer cells are present in the target. . ”Can be determined.

<本発明に係る癌の判定用試薬>
本発明に係る癌の判定用試薬は、制限酵素A、制限酵素B、エキソヌクレアーゼIII、一本鎖特異的ヌクレアーゼ及びメチル化感受性制限酵素を含むことを特徴とするものである。
本発明に係る癌の判定用試薬に用いられる制限酵素A、制限酵素B、一本鎖特異的ヌクレアーゼ及びメチル化感受性制限酵素については、<本発明の精製方法>、<本発明の検出方法>及び<本発明の癌の判定方法>で説明した通りであり、その具体例及び好ましい例等も同じである。
本発明に係る癌の判定用試薬は、更に、この分野で通常用いられる下記のような試薬類何れか1種以上が含まれていてもよい。
a)DNA精製用のカラム[例えば、エコノスピン((株)ジーンデザイン製)等]、
b)核酸増幅反応用試薬[例えば、1種又は2種以上のプライマー、プローブ、核酸合成基質、核酸合成酵素等]、
c)核酸増幅産物確認用試薬[例えば、アガロースゲル、ローディング緩衝液、染色用試薬(GeL Red(商標)系染色液、臭化エチジウム等)]、
d)DNA抽出用試薬[例えば、QuickGene SP kit DNA tissue(倉敷紡績(株)製)、NucleoSpin(商標) Plasma XS(マッハライ・ナーゲル(株)製)、MagMAX(商標) Cell-Free DNA Isolation Kit(サーモフィッシャーサイエンティフィック(株)製)等]
また、本発明に係る癌の判定用試薬には、本発明の判定方法を実施するための説明書等を含ませておいてもよい。当該「説明書」とは、本発明の判定方法における特徴、原理及び操作手順などが文章又は図表等により実質的に記載されている本発明に係る癌の判定用試薬の取扱い説明書、添付文章或いはパンフレット(リーフレット)等を意味する。
このように本発明に係る癌の判定用試薬により、本発明の判定方法を簡便、短時間且つ精度よく行うことができる。
<Reagent for determining cancer according to the present invention>
The cancer determination reagent according to the present invention is characterized by containing a restriction enzyme A, a restriction enzyme B, an exonuclease III, a single-stranded specific nuclease, and a methylation susceptibility limiting enzyme.
Regarding the restriction enzymes A, restriction enzymes B, single-strand-specific nucleases and methylation susceptibility limiting enzymes used in the reagents for determining cancer according to the present invention, <purification method of the present invention> and <detection method of the present invention>. And <Method for determining cancer of the present invention>, and the same applies to specific examples and preferred examples thereof.
The reagent for determining cancer according to the present invention may further contain any one or more of the following reagents usually used in this field.
a) Column for DNA purification [for example, Econospin (manufactured by Gene Design Co., Ltd.)],
b) Reagents for nucleic acid amplification reaction [for example, one or more primers, probes, nucleic acid synthesis substrates, nucleic acid synthases, etc.],
c) Nucleic acid amplification product confirmation reagent [for example, agarose gel, loading buffer, staining reagent (GeL Red ™ -based staining solution, ethidium bromide, etc.)],
d) DNA extraction reagents [For example, QuickGene SP kit DNA tissue (manufactured by Kurashiki Spinning Co., Ltd.), NucleoSpin (trademark) Plasma XS (manufactured by Machrai Nagel Co., Ltd.), MagMAX (trademark) Cell-Free DNA Isolation Kit ( Thermo Fisher Scientific Co., Ltd., etc.]
In addition, the cancer determination reagent according to the present invention may include an instruction manual or the like for carrying out the determination method of the present invention. The "instruction manual" is an instruction manual and an attached text of the reagent for determining cancer according to the present invention, in which the features, principles, operating procedures, etc. of the determination method of the present invention are substantially described by sentences or charts. Alternatively, it means a pamphlet (leaflet) or the like.
As described above, the determination reagent for cancer according to the present invention enables the determination method of the present invention to be carried out easily, in a short time and with high accuracy.

<本発明に係る癌の判定を行うためのデータを得る方法>
本発明に係る癌の判定を行うためのデータを得る方法(以下、本発明に係るデータを得る方法と略記する場合がある。)は、本発明の精製方法により精製された標的領域を有する二本鎖DNAに対して、メチル化感受性制限酵素による処理を行い、次いで、標的領域を増幅し、その結果に基づいて癌であるか否かが判定される対象について、癌の判定を下すためのデータを取得するものである。
即ち、本発明の精製方法に引き続いて、メチル化感受性制限酵素により処理する工程、標的領域を増幅する工程及び増幅産物の有無を確認する工程を行うものであり、具体的には、本発明の判定方法における工程1〜6を行うものである。
尚、メチル化感受性制限酵素による処理を行う前までの工程工程1〜3は、前述した本発明の精製方法における工程1〜3と同じであり、その具体例、好ましい例等も同じである。
標的領域を増幅する工程5及び増幅産物の有無を確認する工程6は、前述の本発明の検出方法における工程4及び工程5と同じであり、その具体例、好ましい例等も同じである。
メチル化感受性制限酵素による処理の工程4は、前述の本発明の判定方法における工程4と同じであり、その具体例、好ましい例等も同じである。
[二本鎖DNA]、[標的領域]及び[癌]は、本発明の判定方法における[本発明の判定方法に係る二本鎖DNA]、[本発明の判定方法に係る標的領域]及び[本発明の判定方法に係る癌]と同じであり、その具体例、好ましい例等も同じである。
また、本発明に係るデータを得る方法におけるデータとしては、(i)本発明に係るデータを得る方法に係る工程6で得られた結果値(例えば、蛍光強度、電気泳動図等)、(ii)当該結果値を更に多重ロジスティック回帰分析、判別分析、ポアソン回帰分析、重回帰分析、コックスの比例ハザードモデル、パス解析等の多変量解析に付して得られる値、(iii)本発明に係るデータを得る方法に係る工程6で得られた結果値と、基準値(例えば、カットオフ値等)との比較データ(例えば、大小関係を示すデータ)(iv)前述の、標的領域由来の癌の判定対象は癌に罹患している、又は当該対象中に癌細胞が存在しているとを示すデータ等が挙げられ、(i)又は(iii)が好ましく、(i)がより好ましい。
尚、本発明に係るデータを得る方法においても、各工程に引き続いて精製工程を行ってもよく、その具体例、好ましい例等は、本発明の精製方法における[精製工程]で説明した通りである。
このように本発明に係るデータを得る方法によれば、癌の判定を精度よく行うためのデータを取得することができる。
<Method of obtaining data for determining cancer according to the present invention>
The method for obtaining data for determining cancer according to the present invention (hereinafter, may be abbreviated as the method for obtaining data according to the present invention) has a target region purified by the purification method of the present invention. To determine cancer in a subject whose main-stranded DNA is treated with a methylation susceptibility restriction enzyme, then the target region is amplified, and whether or not it is cancer is determined based on the result. It is for acquiring data.
That is, following the purification method of the present invention, a step of treating with a methylation susceptibility restriction enzyme, a step of amplifying a target region, and a step of confirming the presence or absence of an amplification product are performed. Steps 1 to 6 in the determination method are performed.
The steps 1 to 3 before the treatment with the methylation susceptibility restriction enzyme are the same as the steps 1 to 3 in the purification method of the present invention described above, and specific examples and preferred examples thereof are also the same.
The step 5 for amplifying the target region and the step 6 for confirming the presence or absence of the amplified product are the same as the steps 4 and 5 in the detection method of the present invention described above, and the specific examples and preferable examples thereof are also the same.
The step 4 of the treatment with the methylation susceptibility restriction enzyme is the same as the step 4 in the determination method of the present invention described above, and specific examples, preferred examples and the like thereof are also the same.
[Double-stranded DNA], [target region] and [cancer] are [double-stranded DNA according to the determination method of the present invention], [target region according to the determination method of the present invention] and [] in the determination method of the present invention. Cancer according to the determination method of the present invention], and specific examples, preferred examples, etc.
Further, as the data in the method for obtaining the data according to the present invention, (i) the result value (for example, fluorescence intensity, electrophoretic map, etc.) obtained in step 6 according to the method for obtaining the data according to the present invention, (ii). ) Values obtained by further applying the result values to multivariate analysis such as multiple logistic regression analysis, discriminant analysis, Poisson regression analysis, multiple regression analysis, Cox's proportional hazard model, path analysis, (iii) the present invention. Comparison data (for example, data showing magnitude relationship) between the result value obtained in step 6 related to the method for obtaining data and a reference value (for example, cutoff value) (iv) The above-mentioned cancer derived from the target region Examples of the determination target include data indicating that the subject is suffering from cancer or that cancer cells are present in the subject, and (i) or (iii) is preferable, and (i) is more preferable.
In the method for obtaining data according to the present invention, a purification step may be carried out following each step, and specific examples, preferred examples and the like thereof are as described in [Purification step] in the purification method of the present invention. is there.
As described above, according to the method for obtaining the data according to the present invention, it is possible to obtain the data for accurately determining the cancer.

<本発明に係る癌の判定を行うためのマーカー>
本発明に係る癌の判定を行うためのマーカー(以下、本発明に係るマーカーと略記する場合がある。)は、本発明の精製方法により精製された標的領域を有する二本鎖DNA等に対して、メチル化感受性制限酵素による処理を行い、次いで、標的領域を増幅することにより得られる増幅産物である。即ち、本発明に係るマーカーの有無によって標的領域由来の癌の判定対象について、癌の判定をすることができるものである。
具体的には、本発明の精製方法に引き続いて、メチル化感受性制限酵素により処理する工程及び標的領域を増幅する工程を行うことにより得られるものであり、上述の本発明の判定方法における工程1〜5を行うことによって得られるものである。
尚、メチル化感受性制限酵素を行う前までの工程1〜3は、前述の本発明の精製方法における工程1〜3と同じであり、その具体例、好ましい例等も同じである。
標的領域を増幅する工程5は、前述の本発明の検出方法における工程4と同じであり、その具体例、好ましい例等も同じである。
メチル化感受性制限酵素による処理の工程4は、前述の本発明の判定方法における工程4と同じであり、その具体例、好ましい例等も同じである。
また、[二本鎖DNA]、[標的領域]及び[癌]は、本発明の判定方法における[本発明の判定方法に係る二本鎖DNA]、[本発明の判定方法に係る標的領域]及び[本発明の判定方法に係る癌]と同じであり、その具体例、好ましい例等も同じである。
尚、本発明に係るマーカーを得るための各工程においても、精製工程を行ってもよく、その具体例、好ましい例等は、本発明の精製方法における[精製工程]で説明した通りである。
本発明に係るマーカーとしては、具体的には、(i)配列番号1で表される塩基配列であって、該塩基配列における少なくとも1つのシトシンがメチル化されている塩基配列、(ii)配列番号2で表される塩基配列であって、該塩基配列における少なくとも1つのシトシンがメチル化されている塩基配列及び(iii)配列番号3で表される塩基配列であって、該塩基配列における少なくとも1つのシトシンがメチル化されている塩基配列が挙げられ、(i)又は(ii)が好ましく、(ii)がより好ましい。
尚、上記(i)〜(iii)におけるシトシンは、当該塩基配列における何れのシトシンでもよいが、CpG配列由来のシトシンであることが好ましい。
このように本発明に係るマーカーを用いることにより、本発明の判定方法を簡便、短時間且つ精度よく行うことができる。
<Marker for determining cancer according to the present invention>
The marker for determining cancer according to the present invention (hereinafter, may be abbreviated as the marker according to the present invention) is for double-stranded DNA or the like having a target region purified by the purification method of the present invention. It is an amplification product obtained by treating with a methylation susceptibility restriction enzyme and then amplifying the target region. That is, it is possible to determine cancer in a target for determining cancer derived from a target region depending on the presence or absence of a marker according to the present invention.
Specifically, it is obtained by performing a step of treating with a methylation susceptibility restriction enzyme and a step of amplifying a target region following the purification method of the present invention, and step 1 in the above-mentioned determination method of the present invention. It is obtained by performing ~ 5.
Steps 1 to 3 before performing the methylation sensitivity restriction enzyme are the same as steps 1 to 3 in the above-mentioned purification method of the present invention, and specific examples and preferred examples thereof are also the same.
The step 5 for amplifying the target region is the same as the step 4 in the detection method of the present invention described above, and the specific examples, preferred examples, etc. thereof are also the same.
The step 4 of the treatment with the methylation susceptibility restriction enzyme is the same as the step 4 in the determination method of the present invention described above, and specific examples, preferred examples and the like thereof are also the same.
Further, [double-stranded DNA], [target region] and [cancer] are [double-stranded DNA according to the determination method of the present invention] and [target region according to the determination method of the present invention] in the determination method of the present invention. And [Cancer according to the determination method of the present invention], and specific examples and preferred examples thereof are also the same.
The purification step may also be performed in each step for obtaining the marker according to the present invention, and specific examples, preferred examples and the like thereof are as described in [Purification step] in the purification method of the present invention.
Specific examples of the marker according to the present invention include (i) a base sequence represented by SEQ ID NO: 1, and a base sequence in which at least one cytosine in the base sequence is methylated, (ii) sequence. The base sequence represented by No. 2, the base sequence in which at least one cytosine in the base sequence is methylated, and (iii) the base sequence represented by SEQ ID NO: 3, at least in the base sequence. A base sequence in which one cytosine is methylated can be mentioned, with (i) or (ii) being preferred, and (ii) being more preferred.
The cytosine in (i) to (iii) above may be any cytosine in the base sequence, but is preferably a cytosine derived from the CpG sequence.
By using the marker according to the present invention in this way, the determination method of the present invention can be performed easily, in a short time, and with high accuracy.

<本発明に係るメチル化判定方法>
本発明に係るメチル化判定方法は、本発明の精製方法により精製された標的領域を有する二本鎖DNA等に対して、メチル化感受性制限酵素による処理を行い、次いで、標的領域を増幅し、その結果に基づいて標的領域がメチル化されているか否かを判定するものである。
即ち、本発明の精製方法に引き続いて、メチル化感受性制限酵素により処理する工程、標的領域を増幅する工程、増幅産物の有無を確認する工程及びメチル化を判定する工程を行うものであり、本発明の判定方法における工程1〜6及び
(7)工程6の結果に基づいて、標的領域がメチル化されているか否かを判定する工程7を含むことを特徴とするものである。
尚、メチル化感受性制限酵素による処理を行う前までの工程1〜3は、前述の本発明の精製方法における工程1〜3と同じであり、その具体例、好ましい例等も同じである。
標的領域を増幅する工程5及び増幅産物の有無を確認する工程6は、前述の本発明の検出方法における工程4及び工程5と同じであり、その具体例、好ましい例等も同じである。
メチル化感受性制限酵素による処理の工程4は、前述の本発明の判定方法における工程4と同じであり、その具体例、好ましい例等も同じである。
また、[二本鎖DNA]及び[標的領域]は、本発明の判定方法における[本発明の判定方法に係る二本鎖DNA]及び[本発明の判定方法に係る標的領域]と同じであり、その具体例、好ましい例等も同じである。
尚、本発明に係るメチル化判定方法においても、各工程に引き続いて精製工程を行ってもよく、その具体例、好ましい例等は、本発明の精製方法における[精製工程]で説明した通りである。
[工程7]について以下に詳述する。
<Method for determining methylation according to the present invention>
In the methylation determination method according to the present invention, a double-stranded DNA or the like having a target region purified by the purification method of the present invention is treated with a methylation susceptibility restriction enzyme, and then the target region is amplified. Based on the result, it is determined whether or not the target region is methylated.
That is, following the purification method of the present invention, a step of treating with a methylation susceptibility limiting enzyme, a step of amplifying a target region, a step of confirming the presence or absence of an amplified product, and a step of determining methylation are performed. It is characterized by including a step 7 of determining whether or not the target region is methylated based on the results of steps 1 to 6 and (7) step 6 in the determination method of the present invention.
The steps 1 to 3 before the treatment with the methylation susceptibility restriction enzyme are the same as the steps 1 to 3 in the purification method of the present invention described above, and specific examples and preferred examples thereof are also the same.
The step 5 for amplifying the target region and the step 6 for confirming the presence or absence of the amplified product are the same as the steps 4 and 5 in the detection method of the present invention described above, and the specific examples and preferable examples thereof are also the same.
The step 4 of the treatment with the methylation susceptibility restriction enzyme is the same as the step 4 in the determination method of the present invention described above, and specific examples, preferred examples and the like thereof are also the same.
Further, [double-stranded DNA] and [target region] are the same as [double-stranded DNA according to the determination method of the present invention] and [target region according to the determination method of the present invention] in the determination method of the present invention. , Specific examples, preferred examples, etc. are the same.
In the methylation determination method according to the present invention, a purification step may be performed following each step, and specific examples, preferred examples, etc. thereof are as described in [Purification step] in the purification method of the present invention. is there.
[Step 7] will be described in detail below.

[本発明に係るメチル化判定方法における工程7]
本発明に係るメチル化判定方法における工程7は、本発明に係るメチル化判定方法における工程6の結果に基づいて標的領域がメチル化されているか否かの判定を行う工程である。
即ち、本発明に係るメチル化判定方法における標的領域がメチル化されているか否かの判定は、本発明に係るメチル化判定方法における工程5で増幅された増幅産物の有無の確認の結果に基づいてなされる。標的領域がメチル化されている場合、本発明に係るメチル化判定方法における工程5において、当該標的領域が増幅されるので、増幅産物が得られる。一方、標的領域がメチル化されていない場合、本発明に係るメチル化判定方法における工程5において、当該標的領域が増幅されないので、増幅産物が得られない。これは、本発明に係るメチル化判定方法における工程4におけるメチル化感受性制限酵素の性質によるものである。
つまり、標的領域がメチル化されている場合、メチル化感受性制限酵素で処理しても、標的領域は切断されないので、本発明に係るメチル化判定方法における工程5の増幅反応において標的領域が増幅され、本発明に係るメチル化判定方法における工程6において増幅産物が確認される。
一方、標的領域がメチル化されていない場合、メチル化感受性制限酵素により標的領域が切断されるので、本発明に係るメチル化判定方法における工程5において標的領域が増幅されず、本発明に係るメチル化判定方法における工程6において増幅産物が確認されない。
従って、本発明に係るメチル化判定方法における工程6において(a)電気泳動により確認する方法を行った場合、(i)増幅産物が確認された場合、当該標的領域はメチル化されていると判定することができ、(ii)増幅産物が確認されなかった場合、当該標的領域はメチル化されていないと判定することができる。
一方、本発明に係るメチル化判定方法における工程6において(b)蛍光リーダーにより確認する方法を行った場合、(i)予め設定した閾値を超える蛍光を発するドロップレットが少なくとも1つ確認された場合、当該標的領域はメチル化されていると判定することができ、(ii)予め設定した閾値を超える蛍光を発するドロップレットが確認されなかった場合、当該標的領域はメチル化されていないと判定することができる。
尚、上記閾値については、上記蛍光リーダー[例えば、QX200 Droplet Reader(バイオ・ラッドラボラトリーズ(株)製)]の閾値設定機能に従って決定してもよく、標的領域を増幅した結果から決定してもよい。
[Step 7 in the methylation determination method according to the present invention]
Step 7 in the methylation determination method according to the present invention is a step of determining whether or not the target region is methylated based on the result of step 6 in the methylation determination method according to the present invention.
That is, the determination of whether or not the target region in the methylation determination method according to the present invention is methylated is based on the result of confirmation of the presence or absence of the amplified product amplified in step 5 in the methylation determination method according to the present invention. Will be done. When the target region is methylated, the target region is amplified in step 5 of the methylation determination method according to the present invention, so that an amplified product can be obtained. On the other hand, when the target region is not methylated, the target region is not amplified in step 5 of the methylation determination method according to the present invention, so that an amplified product cannot be obtained. This is due to the nature of the methylation susceptibility restriction enzyme in step 4 in the methylation determination method according to the present invention.
That is, when the target region is methylated, the target region is not cleaved even if it is treated with a methylation sensitivity restriction enzyme, so that the target region is amplified in the amplification reaction of step 5 in the methylation determination method according to the present invention. , The amplification product is confirmed in step 6 of the methylation determination method according to the present invention.
On the other hand, when the target region is not methylated, the target region is cleaved by the methylation susceptibility restriction enzyme, so that the target region is not amplified in step 5 of the methylation determination method according to the present invention, and the methyl according to the present invention is not amplified. No amplification product is confirmed in step 6 of the methylation determination method.
Therefore, when (a) the method of confirming by electrophoresis is performed in step 6 of the methylation determination method according to the present invention, and (i) the amplification product is confirmed, it is determined that the target region is methylated. (Ii) If no amplification product is confirmed, it can be determined that the target region is not methylated.
On the other hand, when (b) the method of checking with a fluorescence reader is performed in step 6 of the methylation determination method according to the present invention, (i) when at least one droplet that emits fluorescence exceeding a preset threshold is confirmed. , It can be determined that the target region is methylated, and (ii) if no droplet that emits fluorescence exceeding a preset threshold is confirmed, it is determined that the target region is not methylated. be able to.
The threshold value may be determined according to the threshold value setting function of the fluorescence reader [for example, QX200 Droplet Reader (manufactured by Bio-Rad Laboratories Co., Ltd.)], or may be determined from the result of amplifying the target region. ..

このように、本発明に係るメチル化判定方法における工程7によれば、増幅産物の有無を確認するのみで、メチル化の判定を行うことができる。
従って、本発明に係るメチル化判定方法は、標的領域がメチル化されているか否かの判定を簡便、短時間且つ精度よく行うことができる。
As described above, according to the step 7 in the methylation determination method according to the present invention, the methylation determination can be performed only by confirming the presence or absence of the amplification product.
Therefore, the methylation determination method according to the present invention can easily determine whether or not the target region is methylated in a short time and with high accuracy.

<本発明に係るメチル化されたDNAの増幅方法>
本発明に係るメチル化されたDNAの増幅方法は、本発明の精製方法により精製された標的領域を有する二本鎖DNA等に対して、メチル化感受性制限酵素による処理を行い、次いで、標的領域を増幅するものである。
即ち、本発明の精製方法に引き続いて、メチル化感受性制限酵素により処理する工程及び標的領域を増幅する工程を行うものであり、本発明の判定方法における工程1〜5を行うものである。
尚、メチル化感受性制限酵素による処理を行う前までの工程1〜3は、前述の本発明の精製方法における工程1〜3と同じであり、その具体例、好ましい例等も同じである。
標的領域を増幅する工程5は、前述の本発明の検出方法における工程4と同じであり、その具体例、好ましい例等も同じである。
メチル化感受性制限酵素による処理の工程4は、前述の本発明の判定方法における工程4と同じであり、その具体例、好ましい例等も同じである。
また、[二本鎖DNA]、及び[標的領域]は、本発明の判定方法における[本発明の判定方法に係る二本鎖DNA]及び[本発明の判定方法に係る標的領域]と同じであり、その具体例、好ましい例等も同じである。
尚、本発明に係るメチル化されたDNAの増幅方法においても、各工程に引き続いて精製工程を行ってもよく、その具体例、好ましい例等は、本発明の精製方法における[精製工程]で説明した通りである。
このように、本発明に係るメチル化されたDNAの増幅方法により、メチル化されたDNAの増幅を簡便、短時間且つ精度よく行うことができる。
<Method for Amplifying Methylated DNA According to the Present Invention>
In the method for amplifying methylated DNA according to the present invention, a double-stranded DNA or the like having a target region purified by the purification method of the present invention is treated with a methylation susceptibility restriction enzyme, and then the target region. Is amplified.
That is, following the purification method of the present invention, a step of treating with a methylation susceptibility restriction enzyme and a step of amplifying a target region are performed, and steps 1 to 5 in the determination method of the present invention are performed.
The steps 1 to 3 before the treatment with the methylation susceptibility restriction enzyme are the same as the steps 1 to 3 in the purification method of the present invention described above, and specific examples and preferred examples thereof are also the same.
The step 5 for amplifying the target region is the same as the step 4 in the detection method of the present invention described above, and the specific examples, preferred examples, etc. thereof are also the same.
The step 4 of the treatment with the methylation susceptibility restriction enzyme is the same as the step 4 in the determination method of the present invention described above, and specific examples, preferred examples and the like thereof are also the same.
Further, [double-stranded DNA] and [target region] are the same as [double-stranded DNA according to the determination method of the present invention] and [target region according to the determination method of the present invention] in the determination method of the present invention. Yes, the same applies to specific examples and preferred examples thereof.
In the method for amplifying methylated DNA according to the present invention, a purification step may be performed following each step, and specific examples, preferred examples, etc. thereof are described in [Purification step] in the purification method of the present invention. As explained.
As described above, according to the method for amplifying methylated DNA according to the present invention, amplification of methylated DNA can be performed easily, in a short time and with high accuracy.

<本発明に係るメチル化判定用試薬>
本発明に係るメチル化判定用試薬は、制限酵素A、制限酵素B、エキソヌクレアーゼIII、一本鎖特異的ヌクレアーゼ及びメチル化感受性制限酵素を含むことを特徴とするものであり、その具体例、好ましい例等は<本発明に係る癌の判定用試薬>で説明した通りである。
また、本発明に係るメチル化判定用試薬には、本発明に係るメチル化判定方法を実施するための説明書等を含ませておいてもよい。当該「説明書」とは、本発明に係るメチル化判定方法における特徴、原理及び操作手順などが文章又は図表等により実質的に記載されている本発明に係るメチル化判定用試薬の取扱い説明書、添付文章或いはパンフレット(リーフレット)等を意味する。
このように本発明に係るメチル化判定用試薬により、本発明に係るメチル化判定方法を簡便、短時間且つ精度よく行うことができる。
<Reagent for determining methylation according to the present invention>
The methylation determination reagent according to the present invention is characterized by containing a restriction enzyme A, a restriction enzyme B, an exonuclease III, a single-stranded specific nuclease, and a methylation susceptibility limiting enzyme. Preferred examples and the like are as described in <Reagent for determining cancer according to the present invention>.
In addition, the methylation determination reagent according to the present invention may include a description or the like for carrying out the methylation determination method according to the present invention. The "manual" is an instruction manual for the reagent for methylation determination according to the present invention, in which the features, principles, operating procedures, etc. of the methylation determination method according to the present invention are substantially described in texts, charts, etc. , Attached text or pamphlet (leaflet), etc.
As described above, the methylation determination reagent according to the present invention makes it possible to carry out the methylation determination method according to the present invention easily, in a short time and with high accuracy.

以下に、実施例等により本発明を詳細に説明するが、本発明はこれら実施例等により何等限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples and the like, but the present invention is not limited to these Examples and the like.

実験例1 各種DNAのメチル化状態の確認
後述の実施例で使用する試料に由来するDNAについて、バイサルファイト法によるメチル化状態の確認を行った。
Experimental Example 1 Confirmation of methylation status of various DNAs The methylation status of DNA derived from the samples used in the examples described later was confirmed by the bisulfite method.

(1)条件の設定
下記の通りに、試料及びメチル化状態の確認領域を設定した。
<試料>
・ヒト人工多能性幹細胞(正常細胞)
・ヒト正常全血
・大腸癌細胞(癌細胞)
<メチル化状態の確認領域>
・図1で表されるヒト由来のFOXB2遺伝子のプロモーター領域内の、配列番号1で表される塩基配列からなる領域(267塩基対)のうち、四角で囲まれた3つの、CpG配列を含む配列(CCGG)
・図2で表されるヒト由来のFOXB2遺伝子のプロモーター領域内の、配列番号2で表される塩基配列からなる領域(149塩基対)のうち、四角で囲まれた7つの、CpG配列を含む配列(CCGG及びGCGG)
(1) Setting of conditions The sample and the confirmation area of the methylation state were set as follows.
<Sample>
・ Human induced pluripotent stem cells (normal cells)
・ Human normal whole blood ・ Colorectal cancer cells (cancer cells)
<Methylation status confirmation area>
-Includes three CpG sequences surrounded by a square in the region (267 base pairs) consisting of the base sequence represented by SEQ ID NO: 1 in the promoter region of the human-derived FOXB2 gene represented by FIG. Array (CCGG)
-Includes seven CpG sequences surrounded by a square in the region (149 base pairs) consisting of the base sequence represented by SEQ ID NO: 2 in the promoter region of the human-derived FOXB2 gene represented by FIG. Sequences (CCGG and GCGG)

(2)DNAの抽出
上記試料(ヒト人工多能性幹細胞、ヒト正常全血及び大腸癌細胞)より、QuickGene SP kit DNA tissue(倉敷紡績(株)製)を使用して、DNAをそれぞれ抽出した。
(2) DNA extraction DNA was extracted from the above samples (human induced pluripotent stem cells, human normal whole blood and colon cancer cells) using QuickGene SP kit DNA tissue (manufactured by Kurashiki Spinning Co., Ltd.). ..

(3)バイサルファイト反応
上記(2)で得たDNA 400ngそれぞれを、10μLの滅菌水に溶解した。
その後、Episight Bisulfite Conversion kit(富士フイルム和光純薬(株)製)を使用して、当該溶液それぞれをキット記載の方法に準じてバイサルファイト反応に付した。
(3) Bisulfite reaction Each 400 ng of DNA obtained in (2) above was dissolved in 10 μL of sterile water.
Then, using an Episight Bisulfite Conversion kit (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), each of the solutions was subjected to a bisulfite reaction according to the method described in the kit.

(4)PCR増幅反応
上記(3)で得たバイサルファイト反応産物含有溶液 1μLそれぞれに、滅菌水 17.3μL、10×バッファー for Blend Taq(東洋紡(株)製) 2.5μL、2.5ユニット/μL Blend Taq−Plus(東洋紡(株)製) 0.2μL、2mM dNTPs(東洋紡(株)製) 2μL、10μM フォワードプライマー[GGAATTAGTGGGGGCAGCCAGGCCCCAGG(配列番号11)] 1μL及び10μM リバースプライマー[CCCAAAAACTACCCTTACCAAACTAATC(配列番号12)] 1μLを加えて混合し、これをPCR用反応液とした。
次いで、上記PCR用反応液それぞれを、サーマルサイクラ―(バイオ・ラッドラボラトリーズ(株)製)にセットし、下記反応条件でPCR増幅反応を行った。
※反応条件
94℃ 2分間

94℃ 10秒間→55℃ 10秒間→72℃ 20秒間を1サイクルとして36サイクル

72℃ 2分間
尚、上記PCR増幅反応により得られる増幅産物は、ヒト由来のFOXB2遺伝子のプロモーター領域内の、配列番号13で表される塩基配列からなる領域(355塩基対)であり、配列番号1及び2で表される塩基配列の一部を有するものである。
(4) PCR amplification reaction For each 1 μL of the bisulfite reaction product-containing solution obtained in (3) above, 17.3 μL of sterile water, 10 × buffer for Blend Taq (manufactured by Toyobo Co., Ltd.) 2.5 μL, 2.5 units / μL Blend Taq −Plus (Toyobo Co., Ltd.) 0.2 μL, 2 mM dNTPs (Toyobo Co., Ltd.) 2 μL, 10 μM Forward primer [GGAATTAGTGGGGGCAGCCAGGCCCCAGG (SEQ ID NO: 11)] 1 μL and 10 μM reverse primer [CCCAAAAACTACCCTTACCAAACTAATC (SEQ ID NO: 12)] 1 μL added And mixed to prepare a reaction solution for PCR.
Next, each of the above PCR reaction solutions was set in a thermal cycler (manufactured by Bio-Rad Laboratories, Inc.), and a PCR amplification reaction was carried out under the following reaction conditions.
* Reaction conditions
94 ℃ for 2 minutes ↓
94 ℃ 10 seconds → 55 ℃ 10 seconds → 72 ℃ 20 seconds as one cycle 36 cycles ↓
72 ° C for 2 minutes The amplification product obtained by the PCR amplification reaction is a region (355 base pairs) consisting of the nucleotide sequence represented by SEQ ID NO: 13 in the promoter region of the human-derived FOXB2 gene, and has a SEQ ID NO: It has a part of the base sequence represented by 1 and 2.

(5)PCR増幅産物のクローニング
上記(4)で得たPCR増幅産物それぞれを、1.5%アガロースゲルにて電気泳動した。次いで、GeLRed核酸ゲル染色液(富士フイルム和光純薬(株)製)で染色し、QIAquick Gel Extraction kit((株)キアゲン製)を使用して、PCR増幅産物をそれぞれ回収した。
(5) Cloning of PCR amplification products Each of the PCR amplification products obtained in (4) above was electrophoresed on a 1.5% agarose gel. Next, the cells were stained with a GeLRed nucleic acid gel stain (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and PCR amplification products were recovered using the QIAquick Gel Extraction kit (manufactured by Qiagen Co., Ltd.).

(6)PCR増幅産物に制限酵素認識部位を付加するためのPCR増幅反応
上記(5)で得たPCR増幅産物含有溶液 1μLそれぞれに、蒸留水17.3μL、10×バッファー for Blend Taq(東洋紡(株)製) 2.5μL、2.5ユニット/μL Blend Taq−PLus(東洋紡(株)製) 0.2μL、2mM dNTPs(東洋紡(株)製) 2μL、10μM フォワードプライマー 1μL及び10μM リバースプライマー 1μLを加えて混合し、これをPCR用反応液とした。
尚、上記フォワードプライマーは、上記(4)のフォワードプライマーに制限酵素(HindIII)認識部位(配列中の括弧内)を付加したものであり、下記塩基配列からなる。また、上記リバースプライマーは、上記(4)のリバースプライマーに制限酵素(BamHI)認識部位(配列中の括弧内)を付加したものであり、下記塩基配列からなる。
フォワードプライマー:(TTACCATAAGCTT)GGAATTAGTGGGGGCAGCCAGGCCCCAGG(配列番号14)
リバースプライマー:(TAATTAAGGATCC)CCCAAAAACTACCCTTACCAAACTAATC(配列番号15)
次いで、上記PCR用反応液それぞれを、サーマルサイクラ―(バイオ・ラッドラボラトリーズ(株)製)にセットし、下記反応条件でPCR増幅反応を行った。
※反応条件
94℃ 2分間

94℃ 10秒間→55℃ 10秒間→72℃ 20秒間を1サイクルとして12サイクル

72℃ 2分間
次いで、PCR増幅産物含有溶液 25μLそれぞれに、6×Loading Buffer Double Dye((株)ニッポンジーン製) 5μLを加えて混合し、1.5%アガロースゲルにて電気泳動した。次いで、GelRed核酸ゲル染色液(富士フイルム和光純薬(株)製)で染色し、QIAquick Gel Extraction Kit((株)キアゲン製)を使用して、PCR増幅産物それぞれを回収した。
(6) PCR amplification reaction for adding a restriction enzyme recognition site to the PCR amplification product 17.3 μL of distilled water and 10 × buffer for Blend Taq (Toyo Boseki Co., Ltd.) for each 1 μL of the PCR amplification product-containing solution obtained in (5) above. )) 2.5 μL, 2.5 units / μL Blend Taq-PLus (manufactured by Toyo Boseki Co., Ltd.) 0.2 μL, 2 mM dNTPs (manufactured by Toyo Boseki Co., Ltd.) 2 μL, 10 μM forward primer 1 μL and 10 μM reverse primer 1 μL are added and mixed. This was used as a reaction solution for PCR.
The forward primer is obtained by adding a restriction enzyme (HindIII) recognition site (in parentheses in the sequence) to the forward primer of (4) above, and has the following base sequence. Further, the reverse primer is obtained by adding a restriction enzyme (BamHI) recognition site (in parentheses in the sequence) to the reverse primer of (4) above, and has the following base sequence.
Forward primer: (TTACCATAAGCTT) GGAATTAGTGGGGGCAGCCAGGCCCCAGG (SEQ ID NO: 14)
Reverse primer: (TAATTAAGGATCC) CCCAAAAACTACCCTTACCAAACTAATC (SEQ ID NO: 15)
Next, each of the above PCR reaction solutions was set in a thermal cycler (manufactured by Bio-Rad Laboratories, Inc.), and a PCR amplification reaction was carried out under the following reaction conditions.
* Reaction conditions
94 ℃ for 2 minutes ↓
94 ℃ 10 seconds → 55 ℃ 10 seconds → 72 ℃ 20 seconds as one cycle 12 cycles ↓
Then, 5 μL of 6 × Loading Buffer Double Dye (manufactured by Nippon Gene Co., Ltd.) was added to each of 25 μL of the PCR amplification product-containing solution for 2 minutes at 72 ° C., mixed, and electrophoresed on a 1.5% agarose gel. Next, the cells were stained with a GelRed nucleic acid gel stain (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and each PCR amplification product was recovered using the QIAquick Gel Extraction Kit (manufactured by Qiagen Co., Ltd.).

(7)制限酵素処理
上記(6)で得たPCR増幅産物含有溶液 43μLそれぞれに、10×Bバッファー((株)ニッポンジーン製) 5μL、20ユニット/μL HindIII((株)ニッポンジーン製) 1μL及び20ユニット/μL BamHI((株)ニッポンジーン製) 1μLを混合した後、37℃で1時間反応させた。同様にpUC19((株)ニッポンジーン製) 500ngに蒸留水を加えて43μLに調製し、20ユニット/μL HindIII((株)ニッポンジーン製) 1μL及び20ユニット/μL BamHI((株)社ニッポンジーン製) 1μLを加えた後、37℃で1時間反応させた。次いで、5.5M グアニジン塩酸塩(富士フイルム和光純薬(株)製)を250μLそれぞれ加えて混合した後、エコノスピン((株)ジーンデザイン製)に移し、12000×g、室温で1分間遠心分離し、チューブ内の溶液を除去した。次いで、2mM Tris−HCL pH7.5((株)ニッポンジーン製)を500μLそれぞれ加え、12000×g、室温で1分間遠心分離し、チューブ内の溶液を除去した。更に、12000×g、室温で1分間遠心分離した後、新しいチューブに交換し、2mM Tris−HCL pH8.0((株)ニッポンジーン製)を25μLそれぞれ加え、12000×g、室温で1分間遠心分離することにより、制限酵素(HindIII及びBamHI)により処理した各PCR増幅産物及びpUC19をそれぞれ回収した。
(7) Restriction enzyme treatment For each 43 μL of the PCR amplification product-containing solution obtained in (6) above, 5 μL of 10 × B buffer (manufactured by Nippon Gene Co., Ltd.), 20 units / μL HindIII (manufactured by Nippon Gene Co., Ltd.) 1 μL and 20 Unit / μL BamHI (manufactured by Nippon Gene Co., Ltd.) 1 μL was mixed and then reacted at 37 ° C. for 1 hour. Similarly, add distilled water to 500 ng of pUC19 (Nippon Gene Co., Ltd.) to prepare 43 μL, and prepare 20 units / μL HindIII (Nippon Gene Co., Ltd.) 1 μL and 20 units / μL BamHI (Nippon Gene Co., Ltd.) 1 μL. Was added, and the mixture was reacted at 37 ° C. for 1 hour. Next, 250 μL of 5.5M guanidine hydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added and mixed, then transferred to Econospin (manufactured by Genedesign Co., Ltd.) and centrifuged at 12000 × g at room temperature for 1 minute. And the solution in the tube was removed. Next, 500 μL of 2 mM Tris-HCL pH 7.5 (manufactured by Nippon Gene Co., Ltd.) was added, and the mixture was centrifuged at 12000 × g at room temperature for 1 minute to remove the solution in the tube. Further, after centrifuging at 12000 × g at room temperature for 1 minute, replace with a new tube, add 25 μL of 2 mM Tris-HCL pH8.0 (manufactured by Nippon Gene Co., Ltd.), and centrifuge at 12000 × g at room temperature for 1 minute. By doing so, each PCR amplification product and pUC19 treated with restriction enzymes (HindIII and BamHI) were recovered.

(8)形質転換
上記(7)で得たPCR増幅産物含有溶液 1μLそれぞれに、制限酵素により処理したpUC19 1μL、DNA Ligation Kit Mighty Mix(タカラバイオ(株)製) 2μLを加えて混合し、16℃で1時間反応させた。次いで、全量4μLそれぞれをECOS(商標)CompetentE. coli DH5α((株)ニッポンジーン製)に形質転換し、アンピシリン添加LB寒天培地にスプレッドした。その後、コロニーをアンピシリン添加LB培地において、37℃で16時間培養した。その後、プラスミドキットSII(倉敷紡績(株)製)を使用して、プラスミドをそれぞれ抽出した。次いで、得られたプラスミドを用いて、タカラバイオ(株)のシークエンス受託サービスにて塩基配列をそれぞれ解読した。
その結果を図3に示す。
(8) Transformation To each 1 μL of the PCR amplification product-containing solution obtained in (7) above, 1 μL of pUC19 treated with a restriction enzyme and 2 μL of DNA Ligation Kit Mighty Mix (manufactured by Takara Bio Inc.) were added and mixed, and 16 The reaction was carried out at ° C. for 1 hour. Then, each 4 μL of the total amount was transformed into ECOS ™ Competent E. coli DH5α (manufactured by Nippon Gene Co., Ltd.) and spread on ampicillin-added LB agar medium. Then, the colonies were cultured in ampicillin-added LB medium at 37 ° C. for 16 hours. Then, each plasmid was extracted using the plasmid kit SII (manufactured by Kurabo Industries Ltd.). Then, using the obtained plasmid, the nucleotide sequences were deciphered by the sequence contract service of Takara Bio Inc.
The results are shown in Fig. 3.

図3は、ヒト人工多能性幹細胞、ヒト正常全血及び大腸癌細胞の塩基配列解読結果について、メチル化状態の確認領域である、CpG配列を含む配列(CCGG及びGCGG)のシトシンがメチル化シトシン又は非メチル化シトシンの何れかであるかを表したものである。
図3中の丸1〜丸3は、図1及び2中の丸1〜丸3に該当する。また、図3中の丸4〜7は、図2中の丸4〜7に該当する。
尚、図3中の○は、CpG配列のシトシンが非メチル化シトシンであることを、●は、CpG配列のシトシンがメチル化シトシンであること表す。
図3の結果から明らかな通り、ヒト人工多能性幹細胞及びヒト正常全血のメチル化状態の確認領域である、CpG配列を含む配列(CCGG及びGCGG)のシトシンは、非メチル化シトシンであることが分かった。
一方、大腸癌細胞のメチル化状態の確認領域である、CpG配列を含む配列(CCGG及びGCGG)のシトシンは、メチル化シトシンであることが分かった。
Figure 3 shows the results of nucleotide sequence decoding of human induced pluripotent stem cells, human normal whole blood, and colon cancer cells, in which cytosine in the sequences containing the CpG sequence (CCGG and GCGG), which is a confirmation region of the methylation state, is methylated. It indicates whether it is cytosine or unmethylated cytosine.
Circles 1 to 3 in FIG. 3 correspond to circles 1 to 3 in FIGS. 1 and 2. In addition, circles 4 to 7 in FIG. 3 correspond to circles 4 to 7 in FIG.
In FIG. 3, ○ indicates that the cytosine in the CpG sequence is unmethylated cytosine, and ● indicates that the cytosine in the CpG sequence is methylated cytosine.
As is clear from the results of FIG. 3, the cytosines of the sequences containing the CpG sequence (CCGG and GCGG), which are the confirmation regions of the methylated state of human induced pluripotent stem cells and human normal whole blood, are unmethylated cytosines. It turned out.
On the other hand, the cytosine of the sequences containing the CpG sequence (CCGG and GCGG), which is a region for confirming the methylation state of colorectal cancer cells, was found to be methylated cytosine.

実施例1 正常細胞及び癌細胞のFOXB2遺伝子の解析
正常細胞及び癌細胞に由来するDNAについて、FOXB2遺伝子の解析を行った。
Example 1 Analysis of FOXB2 gene of normal cells and cancer cells FOXB2 gene was analyzed for DNA derived from normal cells and cancer cells.

(1)条件の設定
実施例1に用いた試料、当該試料に由来する鋳型DNA量及び標的領域は表4に示す通りである。
(1) Setting of conditions The sample used in Example 1, the amount of template DNA derived from the sample, and the target region are as shown in Table 4.

Figure 2019163602
Figure 2019163602

(2)DNAの抽出
QuickGene SP kit DNA tissue(倉敷紡績(株)製)により、その現品説明書に従ってヒト人工多能性幹細胞及び大腸癌細胞に由来するDNA(100μg及び3μg)をそれぞれ抽出した。
(2) DNA extraction
Using the QuickGene SP kit DNA tissue (manufactured by Kurashiki Spinning Co., Ltd.), DNA (100 μg and 3 μg) derived from human induced pluripotent stem cells and colon cancer cells were extracted according to the actual product instructions.

(3)制限酵素A(PstI)及び制限酵素B(MboI)による処理並びに精製
上記(2)で得たDNAそれぞれに、10×CutSmart Buffer(ニュー・イングランド・バイオラボ(株)製) 20μL、100ユニット/μLのPstI(ニュー・イングランド・バイオラボ(株)製) 1μL及び10ユニット/μLのMboI(タカラバイオ(株)製) 5μLを加え、滅菌水で200μLに調製した。その後、37℃で1時間反応させた。
次いで、5.5M グアニジン塩酸塩(富士フイルム和光純薬(株)製) 500μL及び20mM Tris−HCL(pH7.0)((株)ニッポンジーン製) 500μLをそれぞれ加えて混合した後、600μLずつ2回に分けてエコノスピン((株)ジーンデザイン製)に移し、25000×g、室温で2分間遠心分離し、チューブ内の溶液を除去した。その後、2mM Tris−HCL(pH7.5)((株)ニッポンジーン製) 600μL及び80% エタノール(富士フイルム和光純薬(株)製) 600μLをそれぞれ加え、12000×g、室温で1分間遠心分離し、チューブ内の溶液を除去した。更に、12000×g、室温で5分間遠心分離した後、新しいチューブに交換し、2mM Tris−HCL(pH8.0)((株)ニッポンジーン製) 30μLをそれぞれ加え、12000×g、室温で1分間遠心分離することにより、制限酵素A(PstI)及び制限酵素B(MboI)により処理したDNAをそれぞれ得た。
(3) Treatment and purification with restriction enzyme A (PstI) and restriction enzyme B (MboI) 10 × CutSmart Buffer (manufactured by New England Biolabs Co., Ltd.) 20 μL, 100 units for each of the DNAs obtained in (2) above. 1 μL of / μL of PstI (manufactured by New England Biolabs Co., Ltd.) and 5 μL of 10 units / μL of MboI (manufactured by Takara Bio Co., Ltd.) were added, and the mixture was prepared to 200 μL with sterile water. Then, the reaction was carried out at 37 ° C. for 1 hour.
Next, 500 μL of 5.5M guanidine hydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 500 μL of 20 mM Tris-HCL (pH 7.0) (manufactured by Nippon Gene Co., Ltd.) were added and mixed, and then 600 μL was added twice. The cells were separated and transferred to EconoSpin (manufactured by Gene Design Co., Ltd.), centrifuged at 25000 × g at room temperature for 2 minutes, and the solution in the tube was removed. Then, add 600 μL of 2 mM Tris-HCL (pH 7.5) (manufactured by Nippon Gene Co., Ltd.) and 600 μL of 80% ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and centrifuge at 12000 × g at room temperature for 1 minute. , The solution in the tube was removed. Further, after centrifuging at 12000 × g at room temperature for 5 minutes, replace with a new tube, add 30 μL of 2 mM Tris-HCL (pH 8.0) (manufactured by Nippon Gene Co., Ltd.), and add 12000 × g at room temperature for 1 minute. Centrifugation gave DNA treated with restriction enzyme A (PstI) and restriction enzyme B (MboI), respectively.

(4)エキソヌクレアーゼIIIによる処理並びに精製
上記(3)で得たDNA含有Tris−HCL溶液 30μLそれぞれに、10×エキソヌクレアーゼIIIバッファー(タカラバイオ(株)製) 10μL及び200ユニット/μLのエキソヌクレアーゼIII(タカラバイオ(株)製) 2μLを加え、滅菌水で100μLに調製した。その後、37℃で1時間反応させた後、0.5M EDTA((株)ニッポンジーン製) 1μLをそれぞれ加えた。
次いで、5.5M グアニジン塩酸塩(富士フイルム和光純薬(株)製) 500μL及び20mM Tris−HCL(pH7.0)((株)ニッポンジーン製) 500μLをそれぞれ加えて混合した後、600μLずつ2回に分けてエコノスピン((株)ジーンデザイン製)に移し、25000×g、室温で2分間遠心分離し、チューブ内の溶液を除去した。その後、2mM Tris−HCL(pH7.5)((株)ニッポンジーン製) 600μL及び80% エタノール(富士フイルム和光純薬(株)製) 600μLをそれぞれ加え、12000×g、室温で1分間遠心分離し、チューブ内の溶液を除去した。更に、12000×g、室温で5分間遠心分離した後、新しいチューブに交換し、2mM Tris−HCL(pH8.0)((株)ニッポンジーン製) 30μLをそれぞれ加え、12000×g、室温で1分間遠心分離することにより、エキソヌクレアーゼIIIにより処理したDNAをそれぞれ得た。
(4) Treatment and purification with exonuclease III 10 μL of 10 × exonuclease III buffer (manufactured by Takara Bio Co., Ltd.) and 200 units / μL of exonuclease are added to 30 μL of the DNA-containing Tris-HCL solution obtained in (3) above, respectively. 2 μL of III (manufactured by Takara Bio Co., Ltd.) was added, and the mixture was prepared to 100 μL with sterile water. Then, after reacting at 37 ° C. for 1 hour, 1 μL of 0.5 M EDTA (manufactured by Nippon Gene Co., Ltd.) was added.
Next, 500 μL of 5.5M guanidine hydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 500 μL of 20 mM Tris-HCL (pH 7.0) (manufactured by Nippon Gene Co., Ltd.) were added and mixed, and then 600 μL was added twice. The cells were separated and transferred to EconoSpin (manufactured by Gene Design Co., Ltd.), centrifuged at 25000 × g at room temperature for 2 minutes, and the solution in the tube was removed. Then, add 600 μL of 2 mM Tris-HCL (pH 7.5) (manufactured by Nippon Gene Co., Ltd.) and 600 μL of 80% ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and centrifuge at 12000 × g at room temperature for 1 minute. , The solution in the tube was removed. Further, after centrifuging at 12000 × g at room temperature for 5 minutes, replace with a new tube, add 30 μL of 2 mM Tris-HCL (pH 8.0) (manufactured by Nippon Gene Co., Ltd.), and add 12000 × g at room temperature for 1 minute. Centrifugation gave each DNA treated with Exonuclease III.

(5)一本鎖特異的ヌクレアーゼ(S1ヌクレアーゼ)による処理並びに精製
上記(4)で得たDNA含有Tris−HCL溶液 30μLそれぞれに、10×S1ヌクレアーゼバッファー(タカラバイオ(株)製) 10μL及び180ユニット/μLのS1ヌクレアーゼ 2μLを加え、滅菌水で100μLに調製した。その後、23℃で20分間反応させた後、0.5M EDTA((株)ニッポンジーン製) 1μLをそれぞれ加えた。
次いで、5.5M グアニジン塩酸塩(富士フイルム和光純薬(株)製) 500μL及び20mM Tris−HCL(pH7.0)((株)ニッポンジーン製) 500μLをそれぞれ加えて混合した後、600μLずつ2回に分けてエコノスピン((株)ジーンデザイン製)に移し、25000×g、室温で2分間遠心分離し、チューブ内の溶液を除去した。その後、2mM Tris−HCL(pH7.5)((株)ニッポンジーン製) 600μL及び80% エタノール(富士フイルム和光純薬(株)製) 600μLをそれぞれ加え、12000×g、室温で1分間遠心分離し、チューブ内の溶液を除去した。更に、12000×g、室温で5分間遠心分離した後、新しいチューブに交換し、2mM Tris−HCL(pH8.0)((株)ニッポンジーン製) 30μLをそれぞれ加え、12000×g、室温で1分間遠心分離することにより、一本鎖特異的ヌクレアーゼ(S1ヌクレアーゼ)により処理したDNAをそれぞれ得た。
(5) Treatment and purification with single-stranded specific nuclease (S1 nuclease) 10 μL and 180 of 10 × S1 nuclease buffer (manufactured by Takara Bio Co., Ltd.) for each 30 μL of the DNA-containing Tris-HCL solution obtained in (4) above. 2 μL of unit / μL of S1 nuclease was added and prepared to 100 μL with sterile water. Then, after reacting at 23 ° C. for 20 minutes, 1 μL of 0.5 M EDTA (manufactured by Nippon Gene Co., Ltd.) was added.
Next, 500 μL of 5.5M guanidine hydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 500 μL of 20 mM Tris-HCL (pH 7.0) (manufactured by Nippon Gene Co., Ltd.) were added and mixed, and then 600 μL was added twice. The cells were separated and transferred to EconoSpin (manufactured by Gene Design Co., Ltd.), centrifuged at 25000 × g at room temperature for 2 minutes, and the solution in the tube was removed. Then, add 600 μL of 2 mM Tris-HCL (pH 7.5) (manufactured by Nippon Gene Co., Ltd.) and 600 μL of 80% ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and centrifuge at 12000 × g at room temperature for 1 minute. , The solution in the tube was removed. Further, after centrifuging at 12000 × g at room temperature for 5 minutes, replace with a new tube, add 30 μL of 2 mM Tris-HCL (pH 8.0) (manufactured by Nippon Gene Co., Ltd.), and add 12000 × g at room temperature for 1 minute. Centrifugation gave each DNA treated with a single-stranded specific nuclease (S1 nuclease).

(6)メチル化感受性制限酵素(HapII)による処理並びに精製
上記(5)で得たDNA含有Tris−HCL溶液 30μLそれぞれに、10×Lバッファー(タカラバイオ(株)製) 10μL及び50ユニット/μLのHapII(タカラバイオ(株)製) 2μLを加え、滅菌水で100μLに調製した。その後、37℃で2時間反応させた。
次いで、5.5M グアニジン塩酸塩(富士フイルム和光純薬(株)製) 500μL及び20mM Tris−HCL(pH7.0)((株)ニッポンジーン製) 500μLをそれぞれ加えて混合した後、600μLずつ2回に分けてエコノスピン((株)ジーンデザイン製)に移し、25000×g、室温で2分間遠心分離し、チューブ内の溶液を除去した。その後、2mM Tris−HCL(pH7.5)((株)ニッポンジーン製) 600μL及び80% エタノール(富士フイルム和光純薬(株)製) 600μLをそれぞれ加え、12000×g、室温で1分間遠心分離し、チューブ内の溶液を除去した。更に、12000×g、室温で5分間遠心分離した後、新しいチューブに交換し、2mM Tris−HCL(pH8.0)((株)ニッポンジーン製) 30μLをそれぞれ加え、12000×g、室温で1分間遠心分離することにより、メチル化感受性制限酵素(HapII)により処理したDNAをそれぞれ得た。
尚、HapIIが認識する配列は、図1で表されるヒト由来のFOXB2遺伝子プロモーター領域内の配列番号1で表される塩基配列からなる領域(267塩基対)のうち、四角で囲まれた3つ(丸1、丸2及び丸3)の、CpG配列を含む配列(CCGG)である。
(6) Treatment and purification with methylation sensitivity restriction enzyme (HapII) 10 μL and 50 units / μL of 10 × L buffer (manufactured by Takara Bio Co., Ltd.) for each 30 μL of the DNA-containing Tris-HCL solution obtained in (5) above. 2 μL of HapII (manufactured by Takara Bio Co., Ltd.) was added, and the mixture was prepared to 100 μL with sterile water. Then, the reaction was carried out at 37 ° C. for 2 hours.
Next, 500 μL of 5.5M guanidine hydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 500 μL of 20 mM Tris-HCL (pH 7.0) (manufactured by Nippon Gene Co., Ltd.) were added and mixed, and then 600 μL was added twice. The cells were separated and transferred to EconoSpin (manufactured by Gene Design Co., Ltd.), centrifuged at 25000 × g at room temperature for 2 minutes, and the solution in the tube was removed. Then, add 600 μL of 2 mM Tris-HCL (pH 7.5) (manufactured by Nippon Gene Co., Ltd.) and 600 μL of 80% ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and centrifuge at 12000 × g at room temperature for 1 minute. , The solution in the tube was removed. Further, after centrifuging at 12000 × g at room temperature for 5 minutes, replace with a new tube, add 30 μL of 2 mM Tris-HCL (pH 8.0) (manufactured by Nippon Gene Co., Ltd.), and add 12000 × g at room temperature for 1 minute. Centrifugation gave each DNA treated with methylation sensitivity restriction enzyme (HapII).
The sequence recognized by HapII is the region (267 base pairs) consisting of the base sequence represented by SEQ ID NO: 1 in the human-derived FOXB2 gene promoter region shown in FIG. 1, which is surrounded by a square 3 One (circle 1, circle 2 and circle 3) sequence containing the CpG sequence (CCGG).

(7)増幅反応
上記(6)で得たDNA含有Tris−HCL溶液 1μLそれぞれに、10×KOD−Plus−Ver. 2 Buffer(東洋紡(株)製) 1.5μL、1ユニット/μLのKOD−Plus−Ver. 2(東洋紡(株)製) 0.2μL、2mM dNTPs(東洋紡(株)製) 1.5μL、5μM フォワードプライマー(h267-f-fox) 1μL及び5μM リバースプライマー(h267-r-fox)を加え、滅菌水で15μLに調製し、これをPCR用反応液とした。
尚、上記プライマーにより得られる増幅産物の大きさ(塩基対数)は、267塩基対(配列番号1)である。
また、鋳型として上記(5)で得たものを用いた以外は、上記と同様にしてPCR用反応液を調整し、これをコントロールとした。
上記PCR用反応液それぞれをサーマルサイクラ―(バイオ・ラッドラボラトリーズ(株)製)にセットし、下記反応条件でPCRを行った。
※反応条件
94℃ 2分間

96℃ 5秒間→68℃ 20秒間を1サイクルとして40サイクル

68℃ 2分間
(7) Amplification reaction 10 × KOD-Plus-Ver. 2 Buffer (manufactured by Toyobo Co., Ltd.) 1.5 μL, 1 unit / μL of KOD-Plus for each 1 μL of the DNA-containing Tris-HCL solution obtained in (6) above. − Ver. 2 (manufactured by Toyobo Co., Ltd.) 0.2 μL, 2 mM dNTPs (manufactured by Toyobo Co., Ltd.) 1.5 μL, 5 μM forward primer (h267-f-fox) 1 μL and 5 μM reverse primer (h267-r-fox) added , Prepared to 15 μL with sterile water, and used this as a reaction solution for PCR.
The size (number of base pairs) of the amplification product obtained by the above primers is 267 base pairs (SEQ ID NO: 1).
Further, the reaction solution for PCR was prepared in the same manner as above except that the template obtained in (5) above was used, and this was used as a control.
Each of the above PCR reaction solutions was set in a thermal cycler (manufactured by Bio-Rad Laboratories, Inc.), and PCR was performed under the following reaction conditions.
* Reaction conditions
94 ℃ for 2 minutes ↓
96 ℃ 5 seconds → 68 ℃ 20 seconds as one cycle 40 cycles ↓
68 ℃ for 2 minutes

(8)電気泳動
上記(7)で得た増幅産物含有溶液 15μLそれぞれに、6×Loading Buffer Double Dye((株)ニッポンジーン製) 3μLを加えて混合した後、該混合物を2%アガロースゲルにて電気泳動した。次いで、GeLRed核酸ゲル染色液(富士フイルム和光純薬(株)製)で染色し、UV照射装置により増幅産物をそれぞれ確認した。また、その結果を図4に示す。
(8) Electrophoresis Add 3 μL of 6 × Loading Buffer Double Dye (manufactured by Nippon Gene Co., Ltd.) to each of 15 μL of the amplification product-containing solution obtained in (7) above and mix, and then mix the mixture with a 2% agarose gel. Electrophoresed. Next, the cells were stained with a GeLRed nucleic acid gel stain (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and the amplified products were confirmed by a UV irradiation device. The results are shown in Fig. 4.

また、図4の各レーンにおける試料、試料に由来する鋳型DNA量及び標的領域を表5にまとめた。 Table 5 summarizes the sample in each lane of FIG. 4, the amount of template DNA derived from the sample, and the target region.

Figure 2019163602
Figure 2019163602

図4の結果より、ヒト人工多能性幹細胞に由来するDNA(100μg)を、制限酵素A、制限酵素B、エキソヌクレアーゼIII、一本鎖特異的ヌクレアーゼ及びメチル化感受性制限酵素により処理し、本発明に係るプライマー対を用いてPCR増幅反応を行った場合(レーン2)、何れも目的の増幅産物[ヒト由来のFOXB2遺伝子の特定領域(267塩基対、配列番号1)]は確認されず、標的領域は得られていないことが分かった。
従って、標的領域はメチル化感受性制限酵素により切断されており、「標的領域はメチル化されていない。」と判定することができた。また、「試料(ヒト人工多能性幹細胞)は、正常細胞である。」と判定することもできた。
一方、大腸癌細胞に由来するDNA(3μg)をメチル化感受性制限酵素により処理し、本発明に係るプライマー対を用いてPCR増幅反応を行った場合(レーン4)、目的の増幅産物[ヒト由来のFOXB2遺伝子のうちの特定領域(267塩基対、配列番号1)]は確認され、標的領域は得られていることが分かった。
従って、標的領域はメチル化感受性制限酵素により切断されておらず、「標的領域はメチル化されている。」と判定することができた。また、「試料(大腸癌細胞)は、癌細胞である。」と判定することもできた。
From the results shown in FIG. 4, DNA (100 μg) derived from human artificial pluripotent stem cells was treated with restriction enzyme A, restriction enzyme B, exonuclease III, single-stranded specific nuclease, and methylation susceptibility restriction enzyme. When the PCR amplification reaction was carried out using the primer pair according to the invention (lane 2), the target amplification product [specific region of human-derived FOXB2 gene (267 base pairs, SEQ ID NO: 1)] was not confirmed. It was found that the target area was not obtained.
Therefore, the target region was cleaved by a methylation susceptibility restriction enzyme, and it was possible to determine that "the target region is not methylated." It was also possible to determine that "the sample (human induced pluripotent stem cell) is a normal cell."
On the other hand, when DNA (3 μg) derived from colorectal cancer cells was treated with a methylation susceptibility restriction enzyme and a PCR amplification reaction was performed using the primer pair according to the present invention (lane 4), the target amplification product [human origin]. A specific region of the FOXB2 gene (267 base pairs, SEQ ID NO: 1)] was confirmed, and it was found that the target region was obtained.
Therefore, the target region was not cleaved by the methylation susceptibility restriction enzyme, and it was possible to determine that "the target region is methylated." It was also possible to determine that "the sample (colorectal cancer cells) is a cancer cell."

実施例1の結果より、本発明の方法によれば、試料(細胞)が癌細胞であるか否かの判定を簡便且つ精度よく行えることが分かった。 From the results of Example 1, it was found that according to the method of the present invention, it is possible to easily and accurately determine whether or not the sample (cell) is a cancer cell.

実施例2 ヒト正常全血におけるFOXB2遺伝子の解析
試料、試料に由来する鋳型DNA量及び標的領域を表6の通りに設定し、実施例1と同様の方法により、増幅産物の確認を行った。その結果を図5に示す。
Example 2 Analysis of FOXB2 gene in normal human whole blood The sample, the amount of template DNA derived from the sample, and the target region were set as shown in Table 6, and the amplification product was confirmed by the same method as in Example 1. The results are shown in Fig. 5.

Figure 2019163602
Figure 2019163602

図5の結果より、ヒト正常全血由来のDNA(60.5μg)を、制限酵素A、制限酵素B、エキソヌクレアーゼIII、一本鎖特異的ヌクレアーゼ及びメチル化感受性制限酵素により処理し、本発明に係るプライマー対を用いてPCR増幅反応を行った場合(レーン2)、目的の増幅産物[ヒト由来のFOXB2遺伝子のうちの特定領域(267塩基対、配列番号1)]は確認されず、標的領域は得られていないことが分かる。
従って、標的領域はメチル化感受性制限酵素により切断されており、「標的領域はメチル化されていない。」と判定することができた。また、「試料(ヒト正常全血)中に癌細胞は存在しない。」又は「試料(ヒト正常全血)に由来する対象(ヒト)は癌に罹患していない。」と判定することもできた。
From the results shown in FIG. 5, DNA derived from normal human whole blood (60.5 μg) was treated with restriction enzyme A, restriction enzyme B, exonuclease III, single-stranded specific nuclease and methylation susceptibility limiting enzyme to the present invention. When a PCR amplification reaction was performed using such a primer pair (lane 2), the target amplification product [a specific region of the human-derived FOXB2 gene (267 base pairs, SEQ ID NO: 1)] was not confirmed, and the target region was not confirmed. It turns out that has not been obtained.
Therefore, the target region was cleaved by a methylation susceptibility restriction enzyme, and it was possible to determine that "the target region is not methylated." It can also be determined that "there are no cancer cells in the sample (normal human whole blood)" or "the subject (human) derived from the sample (normal human whole blood) does not have cancer." It was.

実施例3 癌患者全血及びヒト正常全血におけるFOXB2遺伝子の解析
膵臓癌患者(ステージIV)全血及びヒト正常全血に由来するDNAについて、FOXB2遺伝子の解析を行った。
Example 3 Analysis of FOXB2 gene in whole blood of cancer patients and normal human whole blood The FOXB2 gene was analyzed for DNA derived from whole blood of pancreatic cancer patients (stage IV) and normal human whole blood.

(1)条件の設定
実施例3に用いた試料、当該試料に由来する鋳型DNA量及び標的領域は表7に示す通りである。
(1) Setting of conditions The sample used in Example 3, the amount of template DNA derived from the sample, and the target region are as shown in Table 7.

Figure 2019163602
Figure 2019163602

(2)DNAの抽出
NucleoSpin(商標) Plasma XS(マッハライ・ナーゲル(株)製)により、その現品説明書に従って、膵臓癌患者由来の全血及びヒト正常全血よりDNA 2μgをそれぞれ抽出した。
(2) DNA extraction
2 μg of DNA was extracted from whole blood derived from pancreatic cancer patients and normal human whole blood by NucleoSpin ™ Plasma XS (manufactured by Machrai Nagel Co., Ltd.) according to the instruction manual of the actual product.

(3)制限酵素A(PstI)及び制限酵素B(BamHI及びHindIII)による処理並びに精製
(2)で得たDNAそれぞれに、10×CutSmart Buffer(NEB(株)製) 10μL、100ユニット/μL PstI(NEB(株)製) 1μL、100ユニット/μL BamHI(NEB(株)製) 1μL及び100ユニット/μL HindIII(NEB(株)製) 1μLを加え、滅菌水で全量100μLにした。その後、37℃で2時間反応させた。次いで、5.5M グアニジン塩酸塩(富士フイルム和光純薬(株)製) 500μL及び20mM Tris−HCL pH7.0((株)ニッポンジーン製) 500μLをそれぞれ加えて混合した後、エコノスピン((株)ジーンデザイン製)に移し、13000×g、室温で2分間遠心し、チューブ内の溶液を除去した。次いで、2mM Tris−HCL pH7.5((株)ニッポンジーン製) 600μL及び80%エタノール(富士フイルム和光純薬(株)製) 600μLをそれぞれ加え、13000×g、室温で1分間遠心分離し、チューブ内の溶液を除去した。更に、13000×g、室温で3分間遠心分離した後、それぞれ新しいチューブに交換し、滅菌水 50μLをそれぞれ添加し、13000×g、室温で1分間遠心分離することにより、制限酵素A(PstI)及び制限酵素B(BamHI及びHindIII)により処理したDNAをそれぞれ得た。
(3) Treatment with restriction enzymes A (PstI) and restriction enzymes B (BamHI and HindIII) and purification For each DNA obtained in (2), 10 × Cut Smart Buffer (manufactured by NEB Co., Ltd.) 10 μL, 100 units / μL PstI (NEB Co., Ltd.) 1 μL, 100 units / μL BamHI (NEB Co., Ltd.) 1 μL and 100 units / μL HindIII (NEB Co., Ltd.) 1 μL were added, and the total volume was adjusted to 100 μL with sterile water. Then, the reaction was carried out at 37 ° C. for 2 hours. Next, 500 μL of 5.5M guanidine hydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 500 μL of 20 mM Tris-HCL pH7.0 (manufactured by Nippon Gene Co., Ltd.) were added and mixed, and then Econospin (manufactured by Gene Co., Ltd.) Transferred to Design) and centrifuged at 13000 xg at room temperature for 2 minutes to remove the solution in the tube. Next, add 600 μL of 2 mM Tris-HCL pH 7.5 (manufactured by Nippon Gene Co., Ltd.) and 600 μL of 80% ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), centrifuge at 13000 × g at room temperature for 1 minute, and tube. The solution in was removed. Furthermore, after centrifuging at 13000 xg at room temperature for 3 minutes, replace each with a new tube, add 50 μL of sterilized water, respectively, and centrifuge at 13000 xg at room temperature for 1 minute to restrict enzyme A (PstI). And DNA treated with restriction enzymes B (BamHI and HindIII) was obtained, respectively.

(4)エキソヌクレアーゼIIIによる処理及び精製
上記(3)で得たDNA含有Tris−HCL溶液 50μLに、10×エキソヌクレアーゼIIIバッファー(タカラバイオ(株)製) 10μL及び200ユニット/μLのエキソヌクレアーゼIII(タカラバイオ(株)製) 1μLを加え、滅菌水で100μLに調製した。その後、23℃で1時間反応させた後、0.5M EDTA((株)ニッポンジーン製) 1μLをそれぞれ加えた。
次いで、5.5M グアニジン塩酸塩(富士フイルム和光純薬(株)製) 500μL及び20mM Tris−HCL(pH7.0)((株)ニッポンジーン製) 500μLをそれぞれ加えて混合した後、エコノスピン((株)ジーンデザイン製)に移し、3000×g、室温で2分間遠心分離し、チューブ内の溶液を除去した。その後、2mM Tris−HCL(pH7.5)((株)ニッポンジーン製) 600μL及び80% エタノール(富士フイルム和光純薬(株)製) 600μLをそれぞれ加え、13000×g、室温で1分間遠心分離し、チューブ内の溶液を除去した。更に、13000×g、室温で5分間遠心分離した後、新しいチューブに交換し、滅菌水 50μLをそれぞれ加え、13000×g、室温で1分間遠心分離することにより、エキソヌクレアーゼIIIにより処理したDNAをそれぞれ得た。
(4) Treatment and purification with exonuclease III In 50 μL of the DNA-containing Tris-HCL solution obtained in (3) above, 10 μL of 10 × exonuclease III buffer (manufactured by Takara Bio Co., Ltd.) and 200 units / μL of exonuclease III (Manufactured by Takara Bio Co., Ltd.) 1 μL was added, and the mixture was prepared to 100 μL with sterile water. Then, after reacting at 23 ° C. for 1 hour, 1 μL of 0.5 M EDTA (manufactured by Nippon Gene Co., Ltd.) was added.
Next, 500 μL of 5.5M guanidine hydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 500 μL of 20 mM Tris-HCL (pH 7.0) (manufactured by Nippon Gene Co., Ltd.) were added and mixed, and then Econospin (manufactured by Nippon Gene Co., Ltd.) ) Transferred to Gene Design) and centrifuged at 3000 × g for 2 minutes at room temperature to remove the solution in the tube. Then, add 600 μL of 2 mM Tris-HCL (pH 7.5) (manufactured by Nippon Gene Co., Ltd.) and 600 μL of 80% ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and centrifuge at 13000 × g at room temperature for 1 minute. , The solution in the tube was removed. Further, after centrifuging at 13000 × g at room temperature for 5 minutes, replace with a new tube, add 50 μL of sterile water, and centrifuge at 13000 × g at room temperature for 1 minute to obtain the DNA treated with exonuclease III. I got each.

(5)一本鎖特異的ヌクレアーゼ(S1ヌクレアーゼ)による処理並びに精製
上記(3)で得たDNA含有滅菌水 50μLそれぞれに、10×S1ヌクレアーゼバッファー(タカラバイオ(株)製) 10μL及び180ユニット/μLのS1ヌクレアーゼ 1μLを加え、滅菌水で100μLに調製した。その後、23℃で15分間反応させた。
次いで、5.5M グアニジン塩酸塩(富士フイルム和光純薬(株)製) 500μL及び20mM Tris−HCL(pH7.0)((株)ニッポンジーン製) 500μLをそれぞれ加えて混合した後、エコノスピン((株)ジーンデザイン製)に移し、3000×g、室温で2分間遠心分離し、チューブ内の溶液を除去した。その後、2mM Tris−HCL(pH7.5)((株)ニッポンジーン製) 600μL及び80% エタノール(富士フイルム和光純薬(株)製) 600μLをそれぞれ加え、13000×g、室温で1分間遠心分離し、チューブ内の溶液を除去した。更に、13000×g、室温で5分間遠心分離した後、新しいチューブに交換し、滅菌水 50μLを加え、13000×g、室温で1分間遠心分離することにより、一本鎖特異的ヌクレアーゼ(S1ヌクレアーゼ)により処理したDNAをそれぞれ得た。
(5) Treatment and purification with single-strand-specific nuclease (S1 nuclease) 10 μL of 10 × S1 nuclease buffer (manufactured by Takara Bio Co., Ltd.) and 180 units / for each of 50 μL of DNA-containing sterilized water obtained in (3) above. 1 μL of μL of S1 nuclease was added, and the mixture was prepared to 100 μL with sterile water. Then, it was reacted at 23 ° C. for 15 minutes.
Next, 500 μL of 5.5M guanidine hydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 500 μL of 20 mM Tris-HCL (pH 7.0) (manufactured by Nippon Gene Co., Ltd.) were added and mixed, and then Econospin (manufactured by Nippon Gene Co., Ltd.) ) Transferred to Gene Design) and centrifuged at 3000 × g for 2 minutes at room temperature to remove the solution in the tube. Then, add 600 μL of 2 mM Tris-HCL (pH 7.5) (manufactured by Nippon Gene Co., Ltd.) and 600 μL of 80% ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and centrifuge at 13000 × g at room temperature for 1 minute. , The solution in the tube was removed. Further, after centrifuging at 13000 × g at room temperature for 5 minutes, replace with a new tube, add 50 μL of sterile water, and centrifuge at 13000 × g at room temperature for 1 minute to obtain a single-stranded specific nuclease (S1nuclease). ) Was obtained.

(6)メチル化感受性制限酵素(HpaII及びAciI)による処理並びに精製
上記(5)で得たDNA含有滅菌水 50μLそれぞれに、10×CutSmart Bufferバッファー(NEB(株)製) 10μL、50ユニット/μL HpaII(NEB(株)製) 1μL及び10ユニット/μL AciI(NEB(株)製)を加え、滅菌水で100μLに調製した。その後、37℃で1時間反応させた。
次いで、5.5M グアニジン塩酸塩(富士フイルム和光純薬(株)製) 500μL及び20mM Tris−HCL(pH7.0)((株)ニッポンジーン製) 500μLをそれぞれ加えて混合した後、エコノスピン((株)ジーンデザイン製)に移し、3000×g、室温で2分間遠心分離し、チューブ内の溶液を除去した。その後、2mM Tris−HCL(pH7.5)((株)ニッポンジーン製) 600μL及び80% エタノール(富士フイルム和光純薬(株)製) 600μLをそれぞれ加え、13000×g、室温で5分間遠心分離し、チューブ内の溶液を除去した。更に、12000×g、室温で5分間遠心分離した後、新しいチューブに交換し、滅菌水 50μLをそれぞれ加え、13000×g、室温で1分間遠心分離することにより、メチル化感受性制限酵素(HpaII及びAciI)により処理したDNAをそれぞれ得た。
尚、HpaIIが認識する配列は、図2で表されるヒト由来のFOXB2遺伝子プロモーター領域内の配列番号2で表される塩基配列からなる領域(149塩基対)のうち、四角で囲まれた3つ(丸1、丸2及び丸3)の、CpG配列を含む配列(CCGG)である。
また、AciIが認識する配列は、図2で表されるヒト由来のFOXB2遺伝子プロモーター領域内の配列番号2で表される塩基配列からなる領域(149塩基対)のうち、四角で囲まれた4つ(丸4、丸5、丸6及び丸7)の、CpG配列を含む配列(5’-CCGC-3’, 3’-GGCG-5’)である。
(6) Treatment and purification with methylation susceptibility restriction enzymes (HpaII and AciI) 10 μL and 50 units / μL of 10 × Cut Smart Buffer buffer (manufactured by NEB Co., Ltd.) for each 50 μL of DNA-containing sterilized water obtained in (5) above. HpaII (manufactured by NEB Co., Ltd.) 1 μL and 10 units / μL AciI (manufactured by NEB Co., Ltd.) were added, and the preparation was made to 100 μL with sterile water. Then, the reaction was carried out at 37 ° C. for 1 hour.
Next, 500 μL of 5.5M guanidine hydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 500 μL of 20 mM Tris-HCL (pH 7.0) (manufactured by Nippon Gene Co., Ltd.) were added and mixed, and then Econospin (manufactured by Nippon Gene Co., Ltd.) ) Transferred to Gene Design) and centrifuged at 3000 × g for 2 minutes at room temperature to remove the solution in the tube. Then, add 600 μL of 2 mM Tris-HCL (pH 7.5) (manufactured by Nippon Gene Co., Ltd.) and 600 μL of 80% ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and centrifuge at 13000 × g at room temperature for 5 minutes. , The solution in the tube was removed. Furthermore, after centrifuging at 12000 × g at room temperature for 5 minutes, replace with a new tube, add 50 μL of sterile water, and centrifuge at 13000 × g at room temperature for 1 minute to perform methylation sensitivity restriction enzymes (HpaII and). DNAs treated with AciI) were obtained respectively.
The sequence recognized by HpaII is the region (149 base pairs) consisting of the base sequence represented by SEQ ID NO: 2 in the human-derived FOXB2 gene promoter region shown in FIG. 2, which is surrounded by a square 3 One (circle 1, circle 2 and circle 3) sequence containing the CpG sequence (CCGG).
The sequence recognized by AciI is the region (149 base pairs) consisting of the base sequence represented by SEQ ID NO: 2 in the human-derived FOXB2 gene promoter region shown in FIG. 2, which is surrounded by a square 4 One (circle 4, circle 5, circle 6 and circle 7) sequence containing the CpG sequence (5'-CCGC-3', 3'-GGCG-5').

(7)増幅反応
上記(6)で得たDNA含有滅菌水 3μLに、20μM フォワードプライマー(h149-f-fox) 1μL、20μM リバースプライマー(h149-r-fox) 1μL、10μM プローブ[h149-p-fox(5’末端をFAM、3’末端をBHQ1で標識)] 0.6μL、20μM フォワードプライマー(配列番号16で表される塩基配列Genbank Accession No. NG_007073、7259-7283)1μL、20μM リバースプライマー(配列番号17で表される塩基配列:Genbank Accession No. NG_007073、7383-7407) 1μL、10μM プローブ[配列番号18で表される塩基配列(5’末端をHEX、3’末端をBHQ1で標識):Genbank Accession No. NG_007073、7342-7366] 0.6μM、ddPCR(登録商標)Supermix for Probes(バイオ・ラッドラボラトリーズ(株)製) 11μL及び50ユニット/μL HpaII 0.3μLを加え、滅菌水で全量22μLに調製し、これをデジタルPCR用反応液とした。その後、上記デジタルPCR用反応液をサーマルサイクラー(バイオ・ラッドラボラトリーズ(株)製)にセットし、37℃で30分間反応させた。次いで、Automated Droplet Generator(バイオ・ラッドラボラトリーズ(株)製)にてドロップレットを作成し、このドロップレットを96ウェルプレートに分注した後、サーマルサイクラー(バイオ・ラッドラボラトリーズ(株)製)にて下記反応条件でデジタルPCR法による増幅反応を行った。
下記反応条件でPCRを行った。
※反応条件
95℃ 10分間

94℃ 30秒間→62℃ 1分間を1サイクルとして40サイクル

98℃ 10分間
尚、上記配列番号16及び17で表される塩基配列からなるプライマー、並びに配列番号18で表される塩基配列からなるプローブは、内在性コントロールとして選択したGAPDH遺伝子の特定領域(配列番号19:Genbank Accession No. NG_007073、7259-7407)を増幅するためのものである。
(7) Amplification reaction To 3 μL of the DNA-containing sterile water obtained in (6) above, 1 μL of 20 μM forward primer (h149-f-fox), 1 μL of 20 μM reverse primer (h149-r-fox), 1 μL of 10 μM probe [h149-p- fox (labeled 5'end with FAM, 3'end with BHQ1)] 0.6 μL, 20 μM forward primer (base sequence represented by SEQ ID NO: 16 Genbank Accession No. NG_007073, 7259-7283) 1 μL, 20 μM reverse primer (sequence) Base sequence represented by No. 17: Genbank Accession No. NG_007073, 7383-7407) 1 μL, 10 μM probe [Base sequence represented by SEQ ID NO: 18 (labeled with HEX at the 5'end and BHQ1 at the 3'end): Genbank Accession No. NG_007073, 7342-7366] 0.6 μM, ddPCR (registered trademark) Supermix for Probes (manufactured by Bio-Rad Laboratories Co., Ltd.) 11 μL and 50 units / μL HpaII 0.3 μL were added, and the total volume was adjusted to 22 μL with sterile water. , This was used as a reaction solution for digital PCR. Then, the reaction solution for digital PCR was set in a thermal cycler (manufactured by Bio-Rad Laboratories Co., Ltd.) and reacted at 37 ° C. for 30 minutes. Next, a droplet was created with an Automated Droplet Generator (manufactured by Bio-Rad Laboratories Co., Ltd.), and after dispensing this droplet into a 96-well plate, a thermal cycler (manufactured by Bio-Rad Laboratories Co., Ltd.) was used. The amplification reaction was carried out by the digital PCR method under the following reaction conditions.
PCR was performed under the following reaction conditions.
* Reaction conditions
95 ℃ for 10 minutes ↓
94 ℃ 30 seconds → 62 1 minute as one cycle 40 cycles ↓
98 ° C for 10 minutes The primer consisting of the nucleotide sequences represented by SEQ ID NOs: 16 and 17 and the probe consisting of the nucleotide sequence represented by SEQ ID NO: 18 are specific regions (sequences) of the GAPDH gene selected as an endogenous control. No. 19: Genbank Accession No. NG_007073, 7259-7407) is for amplification.

(8)蛍光リーダーによる増幅産物の確認
上記(7)で得た増幅産物を含有する各ドロップレット由来の蛍光を、QX200 Droplet Reader(バイオ・ラッドラボラトリーズ(株)製)にて検出することにより、増幅産物の確認を行った。
FOXB2遺伝子の解析結果を図6のAに、GAPDH遺伝子の解析結果を図6のBにそれぞれ示す。
尚、図6のA及びBにおける縦軸は蛍光強度を、横軸はドロップレット数を示す。
また、陽性又は陰性の判定の基準となる閾値については、FOXB2遺伝子の解析については、FOXB2遺伝子の解析結果より、蛍光強度8000とした。また、GAPDH遺伝子の解析については、GAPDH遺伝子の解析結果より、蛍光強度4000とした。
従って、FOXB2遺伝子の解析については、蛍光強度8000を超えるドロップレットが少なくとも1つあった場合、陽性(目的の増幅産物が得られた)と判定し、蛍光強度8000を超えるドロップレットが存在しなかった場合、陰性(目的の増幅産物が得られなかった)と判定した。また、GAPDH遺伝子の解析については、蛍光強度4000を超えるドロップレットが少なくとも1つあった場合、陽性(目的の増幅産物が得られた)と判定し、蛍光強度4000を超えるドロップレットが存在しなかった場合、陰性(目的の増幅産物が得られなかった)と判定した。
図6における試料、標的領域、陽性ドロップレット数、陰性ドロップレット数、総ドロップレット数及び閾値について、表8並びに表9に示す。
(8) Confirmation of amplification product by fluorescence reader By detecting the fluorescence derived from each droplet containing the amplification product obtained in (7) above with QX200 Droplet Reader (manufactured by Bio-Rad Laboratories Co., Ltd.), The amplified product was confirmed.
The analysis results of the FOXB2 gene are shown in A of FIG. 6, and the analysis results of the GAPDH gene are shown in B of FIG.
The vertical axis in A and B in FIG. 6 indicates the fluorescence intensity, and the horizontal axis indicates the number of droplets.
Regarding the threshold value that serves as a criterion for determining positive or negative, the fluorescence intensity of the FOXB2 gene was set to 8000 based on the analysis result of the FOXB2 gene. Regarding the analysis of the GAPDH gene, the fluorescence intensity was set to 4000 based on the analysis result of the GAPDH gene.
Therefore, regarding the analysis of the FOXB2 gene, if there is at least one droplet having a fluorescence intensity exceeding 8000, it is judged as positive (the target amplification product has been obtained), and there is no droplet having a fluorescence intensity exceeding 8000. If the result was negative (the target amplification product could not be obtained). Regarding the analysis of the GAPDH gene, if there was at least one droplet having a fluorescence intensity exceeding 4000, it was judged to be positive (the target amplification product was obtained), and there was no droplet having a fluorescence intensity exceeding 4000. If the result was negative (the target amplification product could not be obtained).
Tables 8 and 9 show the sample, target region, number of positive droplets, number of negative droplets, total number of droplets, and threshold value in FIG.

Figure 2019163602
Figure 2019163602

Figure 2019163602
Figure 2019163602

図6のA及び表8より、膵臓癌患者由来の全血を用いた場合、閾値を超える蛍光を発する陽性ドロップレットが確認できたことから、目的の増幅産物[FOXB2遺伝子の特定領域:配列番号2で表される塩基配列からなる領域(149塩基対)]が得られていることが分かった。
また、ヒト正常全血を用いた場合、閾値を超える蛍光を発する陽性ドロップレットが確認できたことから、目的の増幅産物[FOXB2遺伝子の特定領域:配列番号2で表される塩基配列からなる領域(149塩基対)]が得られていないことが分かった。
From A of FIG. 6 and Table 8, when whole blood derived from a pancreatic cancer patient was used, a positive droplet that fluoresces exceeding the threshold value was confirmed. Therefore, the target amplification product [FOXB2 gene specific region: SEQ ID NO: It was found that a region consisting of the base sequence represented by 2 (149 base pairs)] was obtained.
In addition, when normal human whole blood was used, a positive droplet that fluoresces exceeding the threshold value was confirmed. Therefore, the target amplification product [specific region of FOXB2 gene: region consisting of the base sequence represented by SEQ ID NO: 2] (149 base pairs)] was found not to be obtained.

図6のB及び表9より、膵臓癌患者由来の全血及びヒト正常全血を用いた場合、閾値を超える蛍光を発する陽性ドロップレットが確認できたことから、目的の増幅産物[GAPDH遺伝子の特定領域:配列番号19で表される塩基配列からなる領域(149塩基対)]が得られていることが分かった。 From B of FIG. 6 and Table 9, when whole blood derived from pancreatic cancer patients and normal human whole blood were used, positive droplets emitting fluorescence exceeding the threshold were confirmed. Therefore, the target amplification product [GAPDH gene] It was found that a specific region: a region consisting of the base sequence represented by SEQ ID NO: 19 (149 base pairs)] was obtained.

従って、膵臓癌患者由来の全血については、標的領域はメチル化感受性制限酵素により切断されておらず、「標的領域はメチル化されている。」と判定することができた。また、「試料(膵臓癌患者由来の全血)に由来する対象(膵臓癌患者)は、癌に罹患している又は当該対象(膵臓癌患者)中に癌細胞が存在している」と判定することもできた。
一方、ヒト正常全血については、標的領域はメチル化感受性制限酵素により切断されており、「標的領域はメチル化されていない。」と判定することができた。また、「試料(ヒト正常全血)に由来する対象(ヒト)は、癌に罹患していない又は当該対象(ヒト)中に癌細胞が存在していない」と判定することもできた。
Therefore, for whole blood derived from pancreatic cancer patients, the target region was not cleaved by the methylation susceptibility restriction enzyme, and it could be determined that "the target region is methylated." In addition, it is determined that "a subject (pancreatic cancer patient) derived from a sample (whole blood derived from a pancreatic cancer patient) has cancer or cancer cells are present in the subject (pancreatic cancer patient)". I was able to do it.
On the other hand, in human normal whole blood, the target region was cleaved by a methylation susceptibility restriction enzyme, and it was possible to determine that "the target region is not methylated." It was also possible to determine that "a subject (human) derived from a sample (human normal whole blood) does not have cancer or no cancer cells are present in the subject (human)".

実施例2及び3の結果より、本発明の方法によれば、試料における癌細胞の有無の判定、試料に由来する対象が癌に罹患しているか否かの判定等を精度よく行えることが分かった。 From the results of Examples 2 and 3, it was found that according to the method of the present invention, it is possible to accurately determine the presence or absence of cancer cells in the sample, determine whether or not the subject derived from the sample has cancer, and the like. It was.

本発明の標的領域の精製方法、標的領域の検出方法及び癌の判定方法によれば、標的領域の精製及び検出並びに癌の判定を簡便、短時間且つ精度よく行うことができる。 According to the method for purifying a target region, the method for detecting a target region, and the method for determining cancer, the purification and detection of a target region and the determination of cancer can be performed easily, in a short time, and with high accuracy.

Claims (10)

下記工程1〜3を含む、二本鎖DNA中の標的領域の精製方法:
(1)(a)末端に3’突出を生じさせる制限酵素Aを1種以上及び(b)末端に5’突出を生じさせる制限酵素Bを1種以上用いて、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である、3’突出標的二本鎖DNA断片並びに、(ii)標的領域を有さずその両端が5’突出である、5’突出非標的二本鎖DNA断片又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である、5’/3’突出非標的二本鎖DNA断片を生じさせる工程1、ここで、当該制限酵素Aは当該標的領域中の塩基配列を切断せず、当該制限酵素Bは当該3’突出標的二本鎖DNA断片中の塩基配列を切断しないものである、
(2)前記工程1で生じた、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を、エキソヌクレアーゼIIIで処理することにより、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、それぞれ(iv)標的領域を有さない一本鎖DNA断片を生じさせる工程2、
(3)前記工程2で生じた、(iv)標的領域を有さない一本鎖DNA断片及び(i)3’突出標的二本鎖DNA断片を、一本鎖特異的ヌクレアーゼで処理することにより、(i)3’突出標的二本鎖DNA断片から、(v)標的領域を有しその両端が平滑である、平滑標的二本鎖DNA断片を生じさせる工程3。
A method for purifying a target region in double-stranded DNA, which comprises steps 1 to 3 below:
(1) A double strand having a target region using one or more restriction enzymes A that cause 3'protrusion at the end (a) and one or more restriction enzymes B that cause 5'projection at the end (b). From the DNA, (i) a 3'protruding target double-stranded DNA fragment having a target region and 3'protruding at both ends thereof, and (ii) having no target region and 5'protruding at both ends thereof, 5 'Protruding non-targeted double-stranded DNA fragment and / and (iii) resulting in a 5'/3'protruding non-targeted double-stranded DNA fragment having no target region and both ends being 5'protruding and 3'protruding, respectively Step 1, where the restriction enzyme A does not cleave the base sequence in the target region, and the restriction enzyme B does not cleave the base sequence in the 3'protruding target double-stranded DNA fragment.
(2) (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-protruding generated in step 1. By treating the target double-stranded DNA fragment with Exonuclease III, from (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-target double-stranded DNA fragment. Step 2, each producing a single-stranded DNA fragment having no (iv) target region,
(3) By treating the (iv) single-stranded DNA fragment having no target region and (i) 3'protruding target double-stranded DNA fragment generated in the above step 2 with a single-stranded specific nuclease. , (I) From a 3'protruding target double-stranded DNA fragment, (v) a smooth target double-stranded DNA fragment having a target region and smooth at both ends.
前記工程1において、制限酵素A及び制限酵素Bを同時に用いる、請求項1に記載の精製方法。 The purification method according to claim 1, wherein the restriction enzyme A and the restriction enzyme B are used at the same time in the step 1. 下記工程1〜5を含む、二本鎖DNA中の標的領域の検出方法:
(1)(a)末端に3’突出を生じさせる制限酵素Aを1種以上及び(b)末端に5’突出を生じさせる制限酵素Bを1種以上用いて、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である、3’突出標的二本鎖DNA断片並びに、(ii)標的領域を有さずその両端が5’突出である、5’突出非標的二本鎖DNA断片]又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である、5’/3’突出非標的二本鎖DNA断片を生じさせる工程1、ここで、当該制限酵素Aは当該標的領域中の塩基配列を切断せず、当該制限酵素Bは当該3’突出標的二本鎖DNA断片中の塩基配列を切断しないものである、
(2)前記工程1で生じた、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を、エキソヌクレアーゼIIIで処理することにより、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、それぞれ(iv)標的領域を有さない一本鎖DNA断片を生じさせる工程2、
(3)前記工程2で生じた、(iv)標的領域を有さない一本鎖DNA断片及び(i)3’突出標的二本鎖DNA断片を、一本鎖特異的ヌクレアーゼで処理することにより、(i)3’突出標的二本鎖DNA断片から、(v)標的領域を有しその両端が平滑である、平滑標的二本鎖DNA断片を生じさせる工程3、
(4)前記工程3で生じた、(v)平滑標的二本鎖DNA断片中の標的領域を増幅処理に付す工程4、
(5)前記工程4で生じた、増幅産物の有無を確認する工程5。
Method for detecting a target region in double-stranded DNA, which comprises steps 1 to 5 below:
(1) A double strand having a target region using one or more restriction enzymes A that cause 3'protrusion at the end (a) and one or more restriction enzymes B that cause 5'projection at the end (b). From the DNA, (i) a 3'protruding target double-stranded DNA fragment having a target region and 3'protruding at both ends thereof, and (ii) having no target region and 5'protruding at both ends thereof, 5 'Protruding non-target double-stranded DNA fragment] or / and (iii) A 5'/ 3'protruding non-target double-stranded DNA fragment having no target region and having 5'protruding and 3'protruding ends thereof, respectively. Step 1, where the restriction enzyme A does not cleave the base sequence in the target region, and the restriction enzyme B does not cleave the base sequence in the 3'protruding target double-stranded DNA fragment. ,
(2) (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-protruding generated in step 1. By treating the target double-stranded DNA fragment with Exonuclease III, from (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-target double-stranded DNA fragment. Step 2, each producing a single-stranded DNA fragment having no (iv) target region,
(3) By treating the (iv) single-stranded DNA fragment having no target region and (i) 3'protruding target double-stranded DNA fragment generated in the above step 2 with a single-stranded specific nuclease. , (I) From a 3'protruding target double-stranded DNA fragment, (v) a step of producing a smooth target double-stranded DNA fragment having a target region and smooth at both ends.
(4) Step 4, in which the target region in the (v) smoothing target double-stranded DNA fragment generated in the above step 3 is subjected to amplification treatment.
(5) Step 5 for confirming the presence or absence of the amplification product generated in the step 4.
前記工程1において、制限酵素A及び制限酵素Bを同時に用いる、請求項3に記載の検出方法。 The detection method according to claim 3, wherein the restriction enzyme A and the restriction enzyme B are used at the same time in the step 1. 下記工程1〜7を含む、癌の判定方法:
(1)(a)末端に3’突出を生じさせる制限酵素Aを1種以上及び(b)末端に5’突出を生じさせる制限酵素Bを1種以上用いて、標的領域を有する二本鎖DNAから、(i)標的領域を有しその両端が3’突出である、3’突出標的二本鎖DNA断片並びに、(ii)標的領域を有さずその両端が5’突出である、5’突出非標的二本鎖DNA断片又は/及び(iii)標的領域を有さずその両端がそれぞれ5’突出及び3’突出である、5’/3’突出非標的二本鎖DNA断片を生じさせる工程1、ここで、当該制限酵素Aは当該標的領域中の塩基配列を切断せず、当該制限酵素Bは当該3’突出標的二本鎖DNA断片中の塩基配列を切断しないものである、
(2)前記工程1で生じた、(i)3’突出標的二本鎖DNA断片並びに、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片を、エキソヌクレアーゼIIIで処理することにより、(ii)5’突出非標的二本鎖DNA断片又は/及び(iii)5’/3’突出非標的二本鎖DNA断片から、それぞれ(iv)標的領域を有さない一本鎖DNA断片を生じさせる工程2、
(3)前記工程2で生じた、(iv)標的領域を有さない一本鎖DNA断片及び(i)3’突出標的二本鎖DNA断片を、一本鎖特異的ヌクレアーゼで処理することにより、(i)3’突出標的二本鎖DNA断片から、(v)標的領域を有しその両端が平滑である、平滑標的二本鎖DNA断片を生じさせる工程3、
(4)前記工程3で生じた、(v)平滑標的二本鎖DNA断片を、メチル化感受性制限酵素で処理する工程4、
(5)前記工程4で処理された、(v)平滑標的二本鎖DNA断片中の標的領域を増幅処理に付す工程5、
(6)前記工程5で生じた、増幅産物の有無を確認する工程6、
(7)前記工程6の確認結果に基づいて、癌を判定する工程7。
Cancer determination method including the following steps 1 to 7:
(1) A double strand having a target region using one or more restriction enzymes A that cause 3'protrusion at the end (a) and one or more restriction enzymes B that cause 5'projection at the end (b). From the DNA, (i) a 3'protruding target double-stranded DNA fragment having a target region and 3'protruding at both ends thereof, and (ii) having no target region and 5'protruding at both ends thereof, 5 'Protruding non-targeted double-stranded DNA fragment and / and (iii) resulting in a 5'/3'protruding non-targeted double-stranded DNA fragment having no target region and both ends being 5'protruding and 3'protruding, respectively Step 1, where the restriction enzyme A does not cleave the base sequence in the target region, and the restriction enzyme B does not cleave the base sequence in the 3'protruding target double-stranded DNA fragment.
(2) (i) 3'protruding target double-stranded DNA fragment and (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-protruding generated in step 1. By treating the target double-stranded DNA fragment with Exonuclease III, from (ii) 5'protruding non-target double-stranded DNA fragment and / and (iii) 5'/3'protruding non-target double-stranded DNA fragment. Step 2, each producing a single-stranded DNA fragment having no (iv) target region,
(3) By treating the (iv) single-stranded DNA fragment having no target region and (i) 3'protruding target double-stranded DNA fragment generated in the above step 2 with a single-stranded specific nuclease. , (I) From a 3'protruding target double-stranded DNA fragment, (v) a step of producing a smooth target double-stranded DNA fragment having a target region and smooth at both ends.
(4) Step 4, in which the (v) smoothing target double-stranded DNA fragment generated in the above step 3 is treated with a methylation susceptibility restriction enzyme.
(5) Step 5, in which the target region in the (v) smoothing target double-stranded DNA fragment processed in the above step 4 is subjected to the amplification treatment.
(6) Step 6 for confirming the presence or absence of the amplification product generated in the step 5.
(7) A step 7 of determining cancer based on the confirmation result of the step 6.
前記工程1において、制限酵素A及び制限酵素Bを同時に用いる、請求項5に記載の判定方法。 The determination method according to claim 5, wherein the restriction enzyme A and the restriction enzyme B are used at the same time in the step 1. 前記標的領域が配列番号1又は配列番号2で表される塩基配列を含む塩基配列である、請求項5に記載の判定方法。 The determination method according to claim 5, wherein the target region is a base sequence containing the base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2. 前記工程1の制限酵素AがPstIであって、制限酵素BがMboI、BamHI、BglII又はHindIIIである、請求項7に記載の判定方法。 The determination method according to claim 7, wherein the restriction enzyme A in step 1 is PstI and the restriction enzyme B is MboI, BamHI, BglII or HindIII. 前記工程3の一本鎖特異的ヌクレアーゼが、S1ヌクレアーゼである、請求項7に記載の判定方法。 The determination method according to claim 7, wherein the single-strand-specific nuclease in step 3 is an S1 nuclease. 前記工程4のメチル化感受性制限酵素が、HapII、HpaII、SacII、BstuI、AciI又はFauIである、請求項7に記載の判定方法。 The determination method according to claim 7, wherein the methylation susceptibility restriction enzyme in step 4 is HapII, HpaII, SacII, BtuI, AciI or FauI.
JP2020501700A 2018-02-21 2019-02-13 Target region purification method, detection method, and cancer determination method Abandoned JPWO2019163602A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018028402 2018-02-21
JP2018028402 2018-02-21
PCT/JP2019/005090 WO2019163602A1 (en) 2018-02-21 2019-02-13 Method for purifying target region, detection method, and method for determining cancer

Publications (2)

Publication Number Publication Date
JPWO2019163602A1 true JPWO2019163602A1 (en) 2021-02-18
JPWO2019163602A5 JPWO2019163602A5 (en) 2022-06-02

Family

ID=67688097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020501700A Abandoned JPWO2019163602A1 (en) 2018-02-21 2019-02-13 Target region purification method, detection method, and cancer determination method

Country Status (2)

Country Link
JP (1) JPWO2019163602A1 (en)
WO (1) WO2019163602A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843003A (en) * 1984-02-17 1989-06-27 Fred Hutchinson Cancer Research Center Process for producing shortened target DNA fragments usable in sequencing large DNA segments
JP2002522091A (en) * 1998-08-17 2002-07-23 フィロス インク. Methods for generating nucleic acid lacking the 3 'untranslated region to optimize cellular RNA protein fusion formation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190226031A1 (en) * 2016-09-02 2019-07-25 Fujifilm Wako Pure Chemical Corporation Method for amplifying methylated dna, method for determining methylation of dna, and method for determining cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843003A (en) * 1984-02-17 1989-06-27 Fred Hutchinson Cancer Research Center Process for producing shortened target DNA fragments usable in sequencing large DNA segments
JP2002522091A (en) * 1998-08-17 2002-07-23 フィロス インク. Methods for generating nucleic acid lacking the 3 'untranslated region to optimize cellular RNA protein fusion formation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HENIKOFF, S.: "Unidirectional digestion with exonuclease III in DNA sequence analysis", METH. ENZYMOL., vol. 155, JPN6019015529, 1987, pages 156 - 165, ISSN: 0004982950 *

Also Published As

Publication number Publication date
WO2019163602A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
KR102648647B1 (en) Improved detection of short homopolymeric repeat sequences
JP7169192B2 (en) Method for amplifying methylated DNA, method for determining methylation of DNA, and method for determining cancer
KR20160033239A (en) Probes for improved melt discrimination and multiplexing in nucleic acid assays
JP6844613B2 (en) Primer set for Chlamydia trachomatis detection, Chlamydia trachomatis detection method using this, and reagent kit for that
JP2015508995A (en) Nucleic acid hybridization probe
CN109563530B (en) RNase H mutants in emulsion
US8673563B2 (en) Amplification method of methylated or unmethylated nucleic acid
WO2019163602A1 (en) Method for purifying target region, detection method, and method for determining cancer
EP1918711A2 (en) Prostate cancer field effect analysis methods and kits
JP6082730B2 (en) Identification and detection method of mutant gene using intercalator
WO2017142070A1 (en) Cancer cell determination method using foxb2 gene
WO2014150938A1 (en) Methods for generating nucleic acid molecule fragments having a customized size distribution
WO2013141331A1 (en) Method for detecting dna having microsatellite region
EP4317455A1 (en) Target nucleic acid amplification method using guide probe and clamping probe and composition for amplifying target nucleic acid comprising same
WO2023104136A1 (en) Methylation marker in diagnosis of benign and malignant nodules of thyroid cancer and applications thereof
EP4253564A1 (en) Target nucleic acid amplification method with high specificity and target nucleic acid amplifying composition using same
KR20170135410A (en) PNA probe for Differentiating Recombinant CSFV Vaccinated Swine and Wild Type CSFV Infected Swine, and Differeanting Method Using Thereof
WO2023215524A2 (en) Primary template-directed amplification and methods thereof
JP5300335B2 (en) Highly efficient method for preparing mismatched base pair-containing nucleic acid fragments

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20230328