JPWO2019160782A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2019160782A5 JPWO2019160782A5 JP2020543365A JP2020543365A JPWO2019160782A5 JP WO2019160782 A5 JPWO2019160782 A5 JP WO2019160782A5 JP 2020543365 A JP2020543365 A JP 2020543365A JP 2020543365 A JP2020543365 A JP 2020543365A JP WO2019160782 A5 JPWO2019160782 A5 JP WO2019160782A5
- Authority
- JP
- Japan
- Prior art keywords
- beamlet
- electron beam
- photocathode surface
- electron
- beamlets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010894 electron beam technology Methods 0.000 claims 12
- 230000003287 optical Effects 0.000 claims 5
- 238000000926 separation method Methods 0.000 claims 2
- 238000007689 inspection Methods 0.000 claims 1
Claims (18)
入射放射線ビームを受け取るように構成され、前記入射放射線ビームから複数のビームレットを形成する回折光学素子であり、前記ビームレットは、それぞれ10μmから100μmまでのスポットサイズを有する、回折光学素子と、
引出板と、
前記ビームレットの視準及び集束を提供し、前記ビームレットの経路に沿って前記回折光学素子と前記引出板との間に配設されているマイクロレンズアレイと、
前記ビームレットの経路に沿って前記回折光学素子と前記マイクロレンズアレイとの間に配設された集光レンズと、
前記ビームレットの経路に沿って前記マイクロレンズアレイと前記引出板との間に配設され、前記ビームレットから複数の電子ビームを発生させる光電陰極面であり、その光電陰極面から発生された前記電子ビームは、それぞれ10μmから100μmまでのスポットサイズを有する、光電陰極面と、
を備える、システム。 It ’s a system,
A diffractive optical element configured to receive an incident radiation beam and forming a plurality of beamlets from the incident radiation beam , wherein the beamlets each have a spot size of 10 μm to 100 μm, and a diffractive optical element .
With a drawer board,
A microlens array that provides collimation and focusing of the beamlet and is disposed between the diffractive optics and the drawer plate along the path of the beamlet.
A condenser lens disposed between the diffractive optical element and the microlens array along the path of the beamlet.
A photocathode surface disposed between the microlens array and the drawer plate along the path of the beamlet to generate a plurality of electron beams from the beamlet , and the photocathode surface generated from the photocathode surface. The electron beam has a photocathode surface and a photocathode surface, each having a spot size of 10 μm to 100 μm .
The system.
放射線ビームを発生させるステップと、
回折光学素子において前記放射線ビームを受け取るステップと、
前記回折光学素子を用いて、前記放射線ビームから複数のビームレットを形成するステップであり、前記ビームレットは、それぞれ10μmから100μmまでのスポットサイズを有する、ステップと、
集光レンズを通して前記ビームレットを導くステップと、
前記ビームレットが射出される方向に関して前記集光レンズの下流で、マイクロレンズアレイによって前記ビームレットを視準して集束させるステップと、
前記ビームレットを前記マイクロレンズアレイから光電陰極面まで導くステップと、
前記光電陰極面を用いて、前記ビームレットから複数の電子ビームを発生させるステップであり、前記光電陰極面から発生された前記電子ビームは、それぞれ10μmから100μmまでのスポットサイズを有するステップと、
前記光電陰極面から前記電子ビームを引き出すステップと、を含む、方法。 It ’s a method,
Steps to generate a radiation beam and
The step of receiving the radiation beam in the diffractive optical element and
A step of forming a plurality of beamlets from the radiation beam using the diffractive optical element, wherein the beamlets each have a spot size of 10 μm to 100 μm .
The step of guiding the beamlet through the condenser lens,
A step of collimating and focusing the beamlet by a microlens array downstream of the condenser lens in the direction in which the beamlet is ejected.
A step of guiding the beamlet from the microlens array to the photocathode surface,
A step of generating a plurality of electron beams from the beamlet using the photocathode surface, and a step in which the electron beams generated from the photocathode surface each have a spot size of 10 μm to 100 μm .
A method comprising the step of drawing the electron beam from the photocathode surface.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862630429P | 2018-02-14 | 2018-02-14 | |
US62/630,429 | 2018-02-14 | ||
US16/106,272 | 2018-08-21 | ||
US16/106,272 US10741354B1 (en) | 2018-02-14 | 2018-08-21 | Photocathode emitter system that generates multiple electron beams |
PCT/US2019/017407 WO2019160782A1 (en) | 2018-02-14 | 2019-02-11 | Photocathode emitter system that generates multiple electron beams |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2021513204A JP2021513204A (en) | 2021-05-20 |
JPWO2019160782A5 true JPWO2019160782A5 (en) | 2022-02-18 |
JP7082674B2 JP7082674B2 (en) | 2022-06-08 |
Family
ID=67620023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020543365A Active JP7082674B2 (en) | 2018-02-14 | 2019-02-11 | Photocathode emitter system that generates multiple electron beams |
Country Status (7)
Country | Link |
---|---|
US (1) | US10741354B1 (en) |
EP (1) | EP3724910A4 (en) |
JP (1) | JP7082674B2 (en) |
KR (1) | KR102466578B1 (en) |
CN (1) | CN111684563B (en) |
TW (1) | TWI768180B (en) |
WO (1) | WO2019160782A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11217416B2 (en) * | 2019-09-27 | 2022-01-04 | Kla Corporation | Plasmonic photocathode emitters |
US11615938B2 (en) * | 2019-12-20 | 2023-03-28 | Nuflare Technology, Inc. | High-resolution multiple beam source |
JP2023119902A (en) * | 2022-02-17 | 2023-08-29 | 株式会社ニューフレアテクノロジー | Multi-electron beam drawing device and multi-electron beam drawing method |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5684360A (en) * | 1995-07-10 | 1997-11-04 | Intevac, Inc. | Electron sources utilizing negative electron affinity photocathodes with ultra-small emission areas |
US6465783B1 (en) | 1999-06-24 | 2002-10-15 | Nikon Corporation | High-throughput specimen-inspection apparatus and methods utilizing multiple parallel charged particle beams and an array of multiple secondary-electron-detectors |
US6448568B1 (en) | 1999-07-30 | 2002-09-10 | Applied Materials, Inc. | Electron beam column using high numerical aperture photocathode source illumination |
US6828574B1 (en) * | 2000-08-08 | 2004-12-07 | Applied Materials, Inc. | Modulator driven photocathode electron beam generator |
US6538256B1 (en) | 2000-08-17 | 2003-03-25 | Applied Materials, Inc. | Electron beam lithography system using a photocathode with a pattern of apertures for creating a transmission resonance |
US20030178583A1 (en) | 2000-09-18 | 2003-09-25 | Kampherbeek Bert Jan | Field emission photo-cathode array for lithography system and lithography system provided with such an array |
CN101446773A (en) | 2001-11-07 | 2009-06-03 | 应用材料有限公司 | Maskless photon-electron spot-grid array printer |
US6847164B2 (en) | 2002-12-10 | 2005-01-25 | Applied Matrials, Inc. | Current-stabilizing illumination of photocathode electron beam source |
EP1434092A1 (en) | 2002-12-23 | 2004-06-30 | ASML Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
US7301263B2 (en) * | 2004-05-28 | 2007-11-27 | Applied Materials, Inc. | Multiple electron beam system with electron transmission gates |
US8134135B2 (en) | 2006-07-25 | 2012-03-13 | Mapper Lithography Ip B.V. | Multiple beam charged particle optical system |
US7696498B2 (en) | 2007-01-11 | 2010-04-13 | Kla-Tencor Technologies Corporation | Electron beam lithography method and apparatus using a dynamically controlled photocathode |
EP2132763B1 (en) | 2007-02-22 | 2014-05-07 | Applied Materials Israel Ltd. | High throughput sem tool |
JP4711009B2 (en) * | 2008-10-16 | 2011-06-29 | ソニー株式会社 | Optical measuring device |
US9129780B2 (en) | 2009-09-22 | 2015-09-08 | Pfg Ip Llc | Stacked micro-channel plate assembly comprising a micro-lens |
CN102893217B (en) * | 2010-05-18 | 2016-08-17 | Asml荷兰有限公司 | Lithographic equipment and device making method |
WO2012123205A1 (en) * | 2011-03-11 | 2012-09-20 | Asml Netherlands B.V. | Lithographic apparatus, method for measuring radiation beam spot focus and device manufacturing method |
US8362425B2 (en) | 2011-03-23 | 2013-01-29 | Kla-Tencor Corporation | Multiple-beam system for high-speed electron-beam inspection |
KR101331518B1 (en) * | 2011-11-14 | 2013-11-20 | 한국기계연구원 | Laser processing device using doe and micro lens array, and laser modification device for wafer dicing having the same |
US10314745B2 (en) * | 2012-11-30 | 2019-06-11 | Amo Development, Llc | Automatic centration of a surgical pattern on the apex of a curved patient interface |
EP2879155B1 (en) * | 2013-12-02 | 2018-04-25 | ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH | Multi-beam system for high throughput EBI |
US10352860B2 (en) | 2014-04-24 | 2019-07-16 | Bruker Nano, Inc. | Super resolution microscopy |
NL2013411B1 (en) * | 2014-09-04 | 2016-09-27 | Univ Delft Tech | Multi electron beam inspection apparatus. |
WO2016145458A1 (en) | 2015-03-10 | 2016-09-15 | Hermes Microvision Inc. | Apparatus of plural charged-particle beams |
KR20240042242A (en) | 2015-07-22 | 2024-04-01 | 에이에스엠엘 네델란즈 비.브이. | Apparatus of plural charged-particle beams |
US10859517B2 (en) | 2016-04-18 | 2020-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | Single X-ray grating X-ray differential phase contrast imaging system |
-
2018
- 2018-08-21 US US16/106,272 patent/US10741354B1/en active Active
-
2019
- 2019-02-11 EP EP19754911.6A patent/EP3724910A4/en active Pending
- 2019-02-11 JP JP2020543365A patent/JP7082674B2/en active Active
- 2019-02-11 KR KR1020207026321A patent/KR102466578B1/en active IP Right Grant
- 2019-02-11 WO PCT/US2019/017407 patent/WO2019160782A1/en unknown
- 2019-02-11 CN CN201980011542.XA patent/CN111684563B/en active Active
- 2019-02-12 TW TW108104590A patent/TWI768180B/en active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4516832A (en) | Apparatus for transformation of a collimated beam into a source of _required shape and numerical aperture | |
KR20210031920A (en) | Apparatus, laser system and method for combining coherent laser beams | |
KR20190126326A (en) | Charged Particle Beam Systems and Methods | |
KR100487085B1 (en) | Illumination optical system and laser processor having the same | |
US20060274434A1 (en) | Combined laser source having deflection member | |
TWI576612B (en) | Light irradiation apparatus and drawing apparatus | |
WO2009102002A1 (en) | Laser processing method and device for transparent substrate | |
WO2015001866A1 (en) | Laser device | |
TW201239943A (en) | Drawing apparatus and method of manufacturing article | |
CN115039017B (en) | Apparatus, laser system and method for combining coherent laser beams | |
JP2024020355A (en) | Use, method and system for laser transmission addressable array | |
TW202113455A (en) | Structured light emission module and depth sensing device using same | |
KR20220072843A (en) | High Fill Factor Optical Array Fabrication Method | |
JP2013541419A (en) | Laser apparatus for generating a linear intensity distribution on a work surface | |
US20240075551A1 (en) | Laser material machining assembly | |
KR20070057074A (en) | Device for homogenizing light and arrangement for illuminating or focussing with said device | |
JP2009151313A (en) | Surface lighting device and device for allowing light to act on work area | |
US7075739B2 (en) | Assembly for correcting laser illumination emitted from a laser light source and method for producing said assembly | |
US20150165551A1 (en) | Fiber array line generator | |
JPWO2019160782A5 (en) | ||
JP7277614B2 (en) | VCSEL-based pattern projector | |
JP2014514779A (en) | Lithographic system for processing at least part of a target | |
JP6308523B2 (en) | Beam exposure equipment | |
US7755741B2 (en) | Substrate exposure apparatus and illumination apparatus | |
JP2017013081A (en) | Laser processing device and laser processing method |