JPWO2019160782A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019160782A5
JPWO2019160782A5 JP2020543365A JP2020543365A JPWO2019160782A5 JP WO2019160782 A5 JPWO2019160782 A5 JP WO2019160782A5 JP 2020543365 A JP2020543365 A JP 2020543365A JP 2020543365 A JP2020543365 A JP 2020543365A JP WO2019160782 A5 JPWO2019160782 A5 JP WO2019160782A5
Authority
JP
Japan
Prior art keywords
beamlet
electron beam
photocathode surface
electron
beamlets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020543365A
Other languages
Japanese (ja)
Other versions
JP2021513204A (en
JP7082674B2 (en
Publication date
Priority claimed from US16/106,272 external-priority patent/US10741354B1/en
Application filed filed Critical
Publication of JP2021513204A publication Critical patent/JP2021513204A/en
Publication of JPWO2019160782A5 publication Critical patent/JPWO2019160782A5/ja
Application granted granted Critical
Publication of JP7082674B2 publication Critical patent/JP7082674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (18)

システムであって、
入射放射線ビームを受け取るように構成され、前記入射放射線ビームから複数のビームレットを形成する回折光学素子であり、前記ビームレットは、それぞれ10μmから100μmまでのスポットサイズを有する、回折光学素子と、
引出板と、
前記ビームレットの視準及び集束を提供し、前記ビームレットの経路に沿って前記回折光学素子と前記引出板との間に配設されているマイクロレンズアレイと、
前記ビームレットの経路に沿って前記回折光学素子と前記マイクロレンズアレイとの間に配設された集光レンズと、
前記ビームレットの経路に沿って前記マイクロレンズアレイと前記引出板との間に配設され、前記ビームレットから複数の電子ビームを発生させる光電陰極面であり、その光電陰極面から発生された前記電子ビームは、それぞれ10μmから100μmまでのスポットサイズを有する、光電陰極面と、
を備える、システム。
It ’s a system,
A diffractive optical element configured to receive an incident radiation beam and forming a plurality of beamlets from the incident radiation beam , wherein the beamlets each have a spot size of 10 μm to 100 μm, and a diffractive optical element .
With a drawer board,
A microlens array that provides collimation and focusing of the beamlet and is disposed between the diffractive optics and the drawer plate along the path of the beamlet.
A condenser lens disposed between the diffractive optical element and the microlens array along the path of the beamlet.
A photocathode surface disposed between the microlens array and the drawer plate along the path of the beamlet to generate a plurality of electron beams from the beamlet , and the photocathode surface generated from the photocathode surface. The electron beam has a photocathode surface and a photocathode surface, each having a spot size of 10 μm to 100 μm .
The system.
前記入射放射線ビームを発生させるレーザ光源を更に備える、請求項1に記載のシステム。 The system according to claim 1, further comprising a laser light source for generating the incident radiation beam. 前記ビームレットは、アレイ状である、請求項1に記載のシステム。 The system according to claim 1, wherein the beamlets are in the form of an array. 前記電子ビームは、2nAから5nAまでの範囲を有する、請求項1に記載のシステム。 The system of claim 1, wherein the electron beam ranges from 2 nA to 5 nA. 前記複数の電子ビームは、前記電子ビームのうちの100から1000までを含む、請求項1に記載のシステム。 The system according to claim 1, wherein the plurality of electron beams include 100 to 1000 of the electron beams. 電子ビームカラムを更に備え、前記電子ビームは、前記引出板から前記電子ビームカラムに向けられている、請求項1に記載のシステム。 The system of claim 1, further comprising an electron beam column, wherein the electron beam is directed from the drawer plate to the electron beam column. 複数の前記電子ビームカラムを更に備え、前記電子ビームのそれぞれは、前記電子ビームカラムのうちの1つに向けられている、請求項6に記載のシステム。 The system of claim 6, further comprising a plurality of said electron beam columns, each of which is directed to one of the said electron beam columns. 前記電子ビームは、50μmから10mmまでの空間分離を有する、請求項1に記載のシステム。 The system of claim 1, wherein the electron beam has a spatial separation of 50 μm to 10 mm. 前記入射放射線ビームは、紫外線放射である、請求項1に記載のシステム。 The system according to claim 1, wherein the incident radiation beam is ultraviolet radiation. 前記引出板と電気通信している電圧源を更に備える、請求項1に記載のシステム。 The system according to claim 1, further comprising a voltage source that is in telecommunications with the drawer plate. 請求項1に記載のシステムを備えるウェーハ検査ツール。 A wafer inspection tool comprising the system according to claim 1. 方法であって、
放射線ビームを発生させるステップと、
回折光学素子において前記放射線ビームを受け取るステップと、
前記回折光学素子を用いて、前記放射線ビームから複数のビームレットを形成するステップであり、前記ビームレットは、それぞれ10μmから100μmまでのスポットサイズを有する、ステップと、
集光レンズを通して前記ビームレットを導くステップと、
前記ビームレットが射出される方向に関して前記集光レンズの下流で、マイクロレンズアレイによって前記ビームレットを視準して集束させるステップと、
前記ビームレットを前記マイクロレンズアレイから光電陰極面まで導くステップと、
前記光電陰極面を用いて、前記ビームレットから複数の電子ビームを発生させるステップであり、前記光電陰極面から発生された前記電子ビームは、それぞれ10μmから100μmまでのスポットサイズを有するステップと、
前記光電陰極面から前記電子ビームを引き出すステップと、を含む、方法。
It ’s a method,
Steps to generate a radiation beam and
The step of receiving the radiation beam in the diffractive optical element and
A step of forming a plurality of beamlets from the radiation beam using the diffractive optical element, wherein the beamlets each have a spot size of 10 μm to 100 μm .
The step of guiding the beamlet through the condenser lens,
A step of collimating and focusing the beamlet by a microlens array downstream of the condenser lens in the direction in which the beamlet is ejected.
A step of guiding the beamlet from the microlens array to the photocathode surface,
A step of generating a plurality of electron beams from the beamlet using the photocathode surface, and a step in which the electron beams generated from the photocathode surface each have a spot size of 10 μm to 100 μm .
A method comprising the step of drawing the electron beam from the photocathode surface.
前記ビームレットは、4×6から48×48までの範囲に及ぶアレイ状である、請求項12に記載の方法。 12. The method of claim 12, wherein the beamlets are in an array ranging from 4x6 to 48x48. 前記電子ビームは、2nAから5nAまでの範囲を有する、請求項12に記載の方法。 12. The method of claim 12, wherein the electron beam has a range of 2nA to 5nA. 前記複数の電子ビームは、前記電子ビームのうちの100から1000までを含む、請求項12に記載の方法。 12. The method of claim 12, wherein the plurality of electron beams comprises 100 to 1000 of the electron beams. 前記電子ビームは、50μmから10mmまでの空間分離を有する、請求項12に記載の方法。 12. The method of claim 12, wherein the electron beam has a spatial separation of 50 μm to 10 mm. 前記放射線ビームは、紫外線放射である、請求項12に記載の方法。 12. The method of claim 12, wherein the radiation beam is ultraviolet radiation. 前記ビームレットのパターンは、前記電子ビームに伝えられる、請求項12に記載の方法。 12. The method of claim 12, wherein the beamlet pattern is transmitted to the electron beam.
JP2020543365A 2018-02-14 2019-02-11 Photocathode emitter system that generates multiple electron beams Active JP7082674B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862630429P 2018-02-14 2018-02-14
US62/630,429 2018-02-14
US16/106,272 2018-08-21
US16/106,272 US10741354B1 (en) 2018-02-14 2018-08-21 Photocathode emitter system that generates multiple electron beams
PCT/US2019/017407 WO2019160782A1 (en) 2018-02-14 2019-02-11 Photocathode emitter system that generates multiple electron beams

Publications (3)

Publication Number Publication Date
JP2021513204A JP2021513204A (en) 2021-05-20
JPWO2019160782A5 true JPWO2019160782A5 (en) 2022-02-18
JP7082674B2 JP7082674B2 (en) 2022-06-08

Family

ID=67620023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020543365A Active JP7082674B2 (en) 2018-02-14 2019-02-11 Photocathode emitter system that generates multiple electron beams

Country Status (7)

Country Link
US (1) US10741354B1 (en)
EP (1) EP3724910A4 (en)
JP (1) JP7082674B2 (en)
KR (1) KR102466578B1 (en)
CN (1) CN111684563B (en)
TW (1) TWI768180B (en)
WO (1) WO2019160782A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11217416B2 (en) * 2019-09-27 2022-01-04 Kla Corporation Plasmonic photocathode emitters
US11615938B2 (en) * 2019-12-20 2023-03-28 Nuflare Technology, Inc. High-resolution multiple beam source
JP2023119902A (en) * 2022-02-17 2023-08-29 株式会社ニューフレアテクノロジー Multi-electron beam drawing device and multi-electron beam drawing method

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684360A (en) * 1995-07-10 1997-11-04 Intevac, Inc. Electron sources utilizing negative electron affinity photocathodes with ultra-small emission areas
US6465783B1 (en) 1999-06-24 2002-10-15 Nikon Corporation High-throughput specimen-inspection apparatus and methods utilizing multiple parallel charged particle beams and an array of multiple secondary-electron-detectors
US6448568B1 (en) 1999-07-30 2002-09-10 Applied Materials, Inc. Electron beam column using high numerical aperture photocathode source illumination
US6828574B1 (en) * 2000-08-08 2004-12-07 Applied Materials, Inc. Modulator driven photocathode electron beam generator
US6538256B1 (en) 2000-08-17 2003-03-25 Applied Materials, Inc. Electron beam lithography system using a photocathode with a pattern of apertures for creating a transmission resonance
US20030178583A1 (en) 2000-09-18 2003-09-25 Kampherbeek Bert Jan Field emission photo-cathode array for lithography system and lithography system provided with such an array
CN101446773A (en) 2001-11-07 2009-06-03 应用材料有限公司 Maskless photon-electron spot-grid array printer
US6847164B2 (en) 2002-12-10 2005-01-25 Applied Matrials, Inc. Current-stabilizing illumination of photocathode electron beam source
EP1434092A1 (en) 2002-12-23 2004-06-30 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7301263B2 (en) * 2004-05-28 2007-11-27 Applied Materials, Inc. Multiple electron beam system with electron transmission gates
US8134135B2 (en) 2006-07-25 2012-03-13 Mapper Lithography Ip B.V. Multiple beam charged particle optical system
US7696498B2 (en) 2007-01-11 2010-04-13 Kla-Tencor Technologies Corporation Electron beam lithography method and apparatus using a dynamically controlled photocathode
EP2132763B1 (en) 2007-02-22 2014-05-07 Applied Materials Israel Ltd. High throughput sem tool
JP4711009B2 (en) * 2008-10-16 2011-06-29 ソニー株式会社 Optical measuring device
US9129780B2 (en) 2009-09-22 2015-09-08 Pfg Ip Llc Stacked micro-channel plate assembly comprising a micro-lens
CN102893217B (en) * 2010-05-18 2016-08-17 Asml荷兰有限公司 Lithographic equipment and device making method
WO2012123205A1 (en) * 2011-03-11 2012-09-20 Asml Netherlands B.V. Lithographic apparatus, method for measuring radiation beam spot focus and device manufacturing method
US8362425B2 (en) 2011-03-23 2013-01-29 Kla-Tencor Corporation Multiple-beam system for high-speed electron-beam inspection
KR101331518B1 (en) * 2011-11-14 2013-11-20 한국기계연구원 Laser processing device using doe and micro lens array, and laser modification device for wafer dicing having the same
US10314745B2 (en) * 2012-11-30 2019-06-11 Amo Development, Llc Automatic centration of a surgical pattern on the apex of a curved patient interface
EP2879155B1 (en) * 2013-12-02 2018-04-25 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Multi-beam system for high throughput EBI
US10352860B2 (en) 2014-04-24 2019-07-16 Bruker Nano, Inc. Super resolution microscopy
NL2013411B1 (en) * 2014-09-04 2016-09-27 Univ Delft Tech Multi electron beam inspection apparatus.
WO2016145458A1 (en) 2015-03-10 2016-09-15 Hermes Microvision Inc. Apparatus of plural charged-particle beams
KR20240042242A (en) 2015-07-22 2024-04-01 에이에스엠엘 네델란즈 비.브이. Apparatus of plural charged-particle beams
US10859517B2 (en) 2016-04-18 2020-12-08 The Board Of Trustees Of The Leland Stanford Junior University Single X-ray grating X-ray differential phase contrast imaging system

Similar Documents

Publication Publication Date Title
US4516832A (en) Apparatus for transformation of a collimated beam into a source of _required shape and numerical aperture
KR20210031920A (en) Apparatus, laser system and method for combining coherent laser beams
KR20190126326A (en) Charged Particle Beam Systems and Methods
KR100487085B1 (en) Illumination optical system and laser processor having the same
US20060274434A1 (en) Combined laser source having deflection member
TWI576612B (en) Light irradiation apparatus and drawing apparatus
WO2009102002A1 (en) Laser processing method and device for transparent substrate
WO2015001866A1 (en) Laser device
TW201239943A (en) Drawing apparatus and method of manufacturing article
CN115039017B (en) Apparatus, laser system and method for combining coherent laser beams
JP2024020355A (en) Use, method and system for laser transmission addressable array
TW202113455A (en) Structured light emission module and depth sensing device using same
KR20220072843A (en) High Fill Factor Optical Array Fabrication Method
JP2013541419A (en) Laser apparatus for generating a linear intensity distribution on a work surface
US20240075551A1 (en) Laser material machining assembly
KR20070057074A (en) Device for homogenizing light and arrangement for illuminating or focussing with said device
JP2009151313A (en) Surface lighting device and device for allowing light to act on work area
US7075739B2 (en) Assembly for correcting laser illumination emitted from a laser light source and method for producing said assembly
US20150165551A1 (en) Fiber array line generator
JPWO2019160782A5 (en)
JP7277614B2 (en) VCSEL-based pattern projector
JP2014514779A (en) Lithographic system for processing at least part of a target
JP6308523B2 (en) Beam exposure equipment
US7755741B2 (en) Substrate exposure apparatus and illumination apparatus
JP2017013081A (en) Laser processing device and laser processing method