JPWO2019159493A1 - Motion detection sensor and motion detection method - Google Patents

Motion detection sensor and motion detection method Download PDF

Info

Publication number
JPWO2019159493A1
JPWO2019159493A1 JP2020500287A JP2020500287A JPWO2019159493A1 JP WO2019159493 A1 JPWO2019159493 A1 JP WO2019159493A1 JP 2020500287 A JP2020500287 A JP 2020500287A JP 2020500287 A JP2020500287 A JP 2020500287A JP WO2019159493 A1 JPWO2019159493 A1 JP WO2019159493A1
Authority
JP
Japan
Prior art keywords
finger
motion detection
stress
sensor
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020500287A
Other languages
Japanese (ja)
Other versions
JP7136882B2 (en
Inventor
達也 芹沢
達也 芹沢
川副 智行
智行 川副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Publication of JPWO2019159493A1 publication Critical patent/JPWO2019159493A1/en
Application granted granted Critical
Publication of JP7136882B2 publication Critical patent/JP7136882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

動作検出センサ(1)の一態様は、指に装着され、該指の動作を検出する動作検出センサであって、指に固定される支持部材と、支持部材に支持され、指から作用する3軸方向の応力を検出する3軸応力センサ(13)と、支持部材に支持され、指が動作した時の該指の加速度を検出する加速度センサ(14)と、を有する。One aspect of the motion detection sensor (1) is a motion detection sensor that is attached to a finger and detects the motion of the finger, and is a support member fixed to the finger and a support member that is supported by the support member and acts from the finger. It has a triaxial stress sensor (13) that detects axial stress, and an acceleration sensor (14) that is supported by a support member and detects the acceleration of the finger when the finger moves.

Description

本発明は、動作検出センサ及び動作検出方法に関する。 The present invention relates to a motion detection sensor and a motion detection method.

一般に、化粧を行う場合には種々の化粧品や化粧道具を用いる。化粧品の中には、化粧を行う施術者が化粧品を直接把持して化粧を行うものがある(例えば、マスカラ,アイライナー等)。また化粧を行うに際し、施術者が化粧道具(リップブラシやチークブラシ等の各種ブラシ、メーキャップパフ、ファンデーションスポンジ、コットン等)を用いる場合もある。 Generally, when applying makeup, various cosmetics and makeup tools are used. In some cosmetics, the practitioner who applies the makeup directly grasps the cosmetics to apply the makeup (for example, mascara, eyeliner, etc.). In addition, the practitioner may use makeup tools (various brushes such as lip brush and teak brush, makeup puff, foundation sponge, cotton, etc.) when applying makeup.

このように化粧を行う場合、施術者は化粧品や化粧道具(以下、総称して化粧道具等という)を手にとって使用することになる。従って化粧道具等は、施術者が直接把持した際の使用感を向上させることが重要となる。また、使用性の向上を客観的に判断できるように、化粧道具等の使用感は定量的に検出できることが望ましい。 When applying makeup in this way, the practitioner picks up cosmetics and makeup tools (hereinafter collectively referred to as makeup tools and the like) and uses them. Therefore, it is important to improve the usability of cosmetic tools and the like when the practitioner directly grips them. In addition, it is desirable that the usability of cosmetic tools and the like can be quantitatively detected so that the improvement in usability can be objectively judged.

この化粧道具等の使用感を定量的に検出するには、化粧を行う際の指先の動作と、その動作を行った時に指先に感じる感触を検出することが必要となる。指先に感じる感触は、被験者(化粧道具等を使用する者)に対して官能検査を行うことにより得ることができる。これに対して指先の動作は、特許文献1に開示されているような動作検出センサを用いて検出することが可能である。特許文献1に開示されたセンサでは、指をアームで挟持し、このアームに取り付けられた歪ゲージで指の変形を検出している。 In order to quantitatively detect the feeling of use of the makeup tool or the like, it is necessary to detect the movement of the fingertip when applying makeup and the feeling felt by the fingertip when the movement is performed. The feel of the fingertips can be obtained by performing a sensory test on the subject (a person who uses a makeup tool or the like). On the other hand, the movement of the fingertip can be detected by using a movement detection sensor as disclosed in Patent Document 1. In the sensor disclosed in Patent Document 1, a finger is sandwiched between arms, and a strain gauge attached to the arm detects deformation of the finger.

特開2013−3782号公報Japanese Unexamined Patent Publication No. 2013-3782

しかしながら、官能検査により得られる感触には被験者の主観が大きく影響するため、官能検査は客観的な判断を行うために十分とはいえない。特許文献1に開示された発明によれば、所期の目的を達成できるものの、指先に感じる感触を正確に評価するには十分ではなかった。 However, since the subjectivity of the subject greatly affects the feel obtained by the sensory test, the sensory test is not sufficient for making an objective judgment. According to the invention disclosed in Patent Document 1, although the intended purpose can be achieved, it is not sufficient to accurately evaluate the feel of the fingertip.

本発明は上記の問題点に鑑みてなされたものであり、被験者が指先に感じる感触の客観的な判断に好適な検出を行うことができる動作検出センサ及び動作検出方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a motion detection sensor and a motion detection method capable of performing detection suitable for objectively determining the feel of a subject's fingertips. To do.

動作検出センサの一態様は、指に装着され、該指の動作を検出する動作検出センサであって、前記指に固定される支持部材と、前記支持部材に支持され、前記指から作用する3軸方向の応力を検出する3軸応力センサと、前記支持部材に支持され、前記指が動作した時の該指の加速度を検出する加速度センサと、を有することを特徴とする。 One aspect of the motion detection sensor is a motion detection sensor that is attached to a finger and detects the motion of the finger, that is, a support member fixed to the finger and a support member supported by the support member and acting from the finger. It is characterized by having a triaxial stress sensor that detects axial stress and an acceleration sensor that is supported by the support member and detects the acceleration of the finger when the finger moves.

動作検出方法の一態様は、3軸応力センサ及び加速度センサを備えた動作検出センサを指に装着し、物体の表面に前記指を接触させながら前記指を動かす工程と、前記指を動かしている間の前記動作検出センサにより検出された3軸方向の応力及び前記加速度センサにより検出された加速度を集計する工程と、を有することを特徴とする。 One aspect of the motion detection method is a step of attaching a motion detection sensor equipped with a triaxial stress sensor and an acceleration sensor to a finger and moving the finger while bringing the finger into contact with the surface of an object, and moving the finger. It is characterized by having a step of totaling the stress in the triaxial direction detected by the motion detection sensor and the acceleration detected by the acceleration sensor.

開示の技術によれば、電源スイッチ回路を含む半導体チップ内での配線の配置の自由度を向上することができる。 According to the disclosed technology, it is possible to improve the degree of freedom in arranging wiring in the semiconductor chip including the power switch circuit.

図1は、本発明の実施形態に係る動作検出センサを示す上面図である。FIG. 1 is a top view showing an motion detection sensor according to an embodiment of the present invention. 図2は、本発明の実施形態に係る動作検出センサを示す上面からの透視図である。FIG. 2 is a perspective view from the upper surface showing the motion detection sensor according to the embodiment of the present invention. 図3は、本発明の実施形態に係る動作検出センサを示す上面からの下面図である。FIG. 3 is a bottom view from the top surface showing the motion detection sensor according to the embodiment of the present invention. 図4は、本発明の実施形態に係る動作検出センサが指に装着された状態を示す正面図である。FIG. 4 is a front view showing a state in which the motion detection sensor according to the embodiment of the present invention is attached to a finger. 図5は、本発明の実施形態に係る動作検出センサが指に装着された状態を示す斜視図である。FIG. 5 is a perspective view showing a state in which the motion detection sensor according to the embodiment of the present invention is attached to a finger. 図6は、基板及び3軸応力センサを示す斜視図である。FIG. 6 is a perspective view showing the substrate and the triaxial stress sensor. 図7は、3軸応力センサを示す平面図である。FIG. 7 is a plan view showing a triaxial stress sensor. 図8Aは、3軸応力センサに含まれるせん断応力用の応力検出部の構成を示す模式図である。FIG. 8A is a schematic view showing the configuration of a stress detection unit for shear stress included in the triaxial stress sensor. 図8Bは、3軸応力センサに含まれるせん断応力用の応力検出部の動作を示す模式図である。FIG. 8B is a schematic view showing the operation of the stress detection unit for shear stress included in the triaxial stress sensor. 図9は、本発明の実施形態に係る動作検出センサの変形例が指に装着された状態を示す正面図である。FIG. 9 is a front view showing a state in which a modified example of the motion detection sensor according to the embodiment of the present invention is attached to a finger.

化粧品は、保湿及び紫外線防御等の機能的な価値と共に、「すべすべ」及び「さらさら」等の仕上がり感や高級感等の感性的な価値が重要な商材である。工業製品の価値としての感性価値は、ヒトの五感を通じて入手された情報をもとに実感される。化粧品は微妙なテクスチャの違いで嗜好が左右されることも多いことから、触覚を通じて実感される触感が重要な位置づけとなる。特に肌に塗擦して使用するスキンケア化粧品では、「しっとり」及び「なめらか」等の触感に関連した数多くの感性ワードが製品評価の表現として多用される。 Cosmetics are products in which functional values such as moisturizing and UV protection, as well as emotional values such as "smoothness" and "smoothness" and a sense of quality are important. Sensitivity value as the value of industrial products is realized based on the information obtained through the five human senses. Since the taste of cosmetics is often influenced by subtle differences in texture, the tactile sensation felt through the tactile sensation is important. In particular, in skin care cosmetics that are used by rubbing on the skin, many sensibility words related to tactile sensation such as "moist" and "smooth" are often used as expressions for product evaluation.

しかしながら、これら感性ワードには工学的な定義がなく、個人の価値観や経験によって定義や程度が異なっている。環境や状況に応じて感性は揺らぎ、変動するものであるため、客観的に把握することが困難である。また、一般的に、「ざらざら」及び「つるつる」等の指先での触感の認識には、触圧や指の動きなどの触動作が影響を及ぼす。すなわち、「強く押す」及び「軽く押す」等の触圧の違い、「素早く触る」及び「ゆっくり触る」の触動作の速度の違いによって、実感される感性ワードの種類や度合いが異なってしまう。 However, these Kansei words have no engineering definition, and their definitions and degrees differ depending on individual values and experiences. It is difficult to objectively grasp the sensibilities because they fluctuate and fluctuate according to the environment and circumstances. Further, in general, tactile movements such as tactile pressure and finger movement affect the recognition of tactile sensations such as "roughness" and "smoothness" at the fingertips. That is, the type and degree of the perceived sensitivity words differ depending on the difference in tactile pressure such as "strongly press" and "lightly press", and the difference in the speed of tactile movements of "quickly touch" and "slowly touch".

触動作とそれに関連したスキルを把握し、共有化することは重要である。しかしながら、個人の触動作や指先のニュアンスの伝達を「もう少しギュッと」及び「そっと触れて」等の曖昧な程度を示す言葉を介して正確に把握することは難しい。このように、触動作における触圧を他人と共有化することが難しく、また、自身の触動作の状況を客観的に確認することも容易ではない。従って、触動作における触圧は、「ざらざら」及び「つるつる」等の個人の触感を示す感性ワードと同様に、暗黙知といえる。 It is important to understand and share tactile movements and related skills. However, it is difficult to accurately grasp an individual's tactile movements and transmission of fingertip nuances through words that indicate an ambiguous degree such as "a little tighter" and "softly touch". As described above, it is difficult to share the tactile pressure in the tactile motion with others, and it is not easy to objectively confirm the state of the tactile motion of oneself. Therefore, the tactile pressure in the tactile motion can be said to be tacit knowledge, similar to the Kansei words that indicate the individual tactile sensation such as "roughness" and "smoothness".

スキンケア化粧品のレオロジカルな性質は、肌の上での基剤の水分揮発によって連続的に変化する。この変化をヒトは指と肌のシェア動作によって知覚する。触覚は、肌や指に存在するパッチニ小体やマイスナー小体等の感覚受容器で知覚される。これらの感覚受容器は、触動作に伴い生じる振動の特定周波数に対して発火する。例えば、パッチニ小体は200Hz〜500Hzの中周波数帯域の振動に対して発火し、マイスナー小体は低周波帯域の振動に対して発火する。 The leological properties of skin care cosmetics change continuously due to the volatilization of the base water on the skin. Humans perceive this change by sharing the finger and skin. Tactile sensation is perceived by sensory receptors such as patchni and Meissner corpuscles present on the skin and fingers. These sensory receptors ignite at specific frequencies of vibrations that accompany tactile movements. For example, the Patchuni body ignites for vibrations in the middle frequency band of 200 Hz to 500 Hz, and the Meissner body ignites for vibrations in the low frequency band.

また、指の感覚受容体は、振動のみならず摩擦による指の変形状態も知覚している。従って、被験者が指先に感じる感触をより客観的に評価するためには、振動及び摩擦の計測が極めて重要である。しかしながら、従来の動作検出センサによれば、触圧を検出することはできるものの、どのような摩擦が生じているかを高精度に検出することができない。本発明者らは、このような新たな着想に基づいて、下記の発明の実施形態に想到した。 In addition, the sensory receptors of the finger perceive not only vibration but also the deformed state of the finger due to friction. Therefore, in order to more objectively evaluate the feel of the subject's fingertips, measurement of vibration and friction is extremely important. However, according to the conventional motion detection sensor, although it is possible to detect the tactile pressure, it is not possible to detect what kind of friction is occurring with high accuracy. Based on such a new idea, the present inventors have come up with the following embodiments of the invention.

以下、実施形態について添付の図面を参照しながら具体的に説明する。図1乃至図5は、本発明の実施形態に係る動作検出センサを示す図である。図1は上面図であり、図2は上面からの透視図であり、図3は下面図である。図4は指に装着された状態での正面図であり、図5は指に装着された状態での斜視図である。 Hereinafter, embodiments will be specifically described with reference to the accompanying drawings. 1 to 5 are diagrams showing motion detection sensors according to an embodiment of the present invention. FIG. 1 is a top view, FIG. 2 is a perspective view from the top surface, and FIG. 3 is a bottom view. FIG. 4 is a front view in a state of being attached to a finger, and FIG. 5 is a perspective view in a state of being attached to a finger.

本実施形態に係る動作検出センサ1は被験者の指31を被検査体とし、この指31の動作を検出する機能を奏する。動作検出センサ1は、筐体11、3軸応力センサ13、加速度センサ14及び緩衝材15を含み、指31に装着され、指31の動作を検出する。 The motion detection sensor 1 according to the present embodiment has a function of detecting the motion of the finger 31 of the subject as an object to be inspected. The motion detection sensor 1 includes the housing 11, the triaxial stress sensor 13, the acceleration sensor 14, and the cushioning material 15, and is attached to the finger 31 to detect the motion of the finger 31.

筐体11は緩衝材15を収容する。但し、筐体11には緩衝材15を露出する部分が含まれており、緩衝材15は装着状態で指31の側部に接することができる。3軸応力センサ13は、その検出面を指31に向けるようにして、基板12と共に緩衝材15に埋め込まれている。3軸応力センサ13には、基板12を通じてフレキシブルフラットケーブル(flexible flat cable:FFC)16が接続されており、FFC16の他端は、緩衝材15内の制御基板20に接続されている。加速度センサ14は、例えば制御基板20に実装されている。また、制御基板20には、3軸応力センサ13の検出結果及び加速度センサ14の検出結果を集計する制御回路23が含まれている。 The housing 11 houses the cushioning material 15. However, the housing 11 includes a portion that exposes the cushioning material 15, and the cushioning material 15 can come into contact with the side portion of the finger 31 in the mounted state. The triaxial stress sensor 13 is embedded in the cushioning material 15 together with the substrate 12 so that the detection surface thereof faces the finger 31. A flexible flat cable (FFC) 16 is connected to the triaxial stress sensor 13 through the substrate 12, and the other end of the FFC 16 is connected to the control substrate 20 in the cushioning material 15. The acceleration sensor 14 is mounted on, for example, the control board 20. Further, the control board 20 includes a control circuit 23 that aggregates the detection results of the triaxial stress sensor 13 and the detection results of the acceleration sensor 14.

緩衝材15は、例えば、シリコーンゴム材等のゴム材から構成され、装着状態で指31に接し、指31が動作した時の指31の変形量に応じた応力を3軸応力センサ13に印加する。一方、筐体11は、硬質プラスチック等の高剛性の材料から構成され、緩衝材15が3軸応力センサ13に印加する程度の応力によっては実質的に変形しない。基板12も高剛性の材料から構成され、緩衝材15が3軸応力センサ13に印加する程度の応力によっては実質的に変形しない。すなわち、緩衝材15は筐体11及び基板12よりも弾性変形しやすい。本実施形態では、筐体11、基板12及び緩衝材15が支持部材に含まれ、基板12が土台に相当する。支持部材は、装着状態で指31を挟持する挟持部21を有し、また、挟持部21よりも指31の根本側で指31に接触する接触部22を有する。挟持部21は接触部22から装着状態で爪32が視認できるように指31の両側方に延出している。また、指31の動作中に筐体11は一定形状を保つため、この支持部材は、指31の動作中に一定の外形を保つ。 The cushioning material 15 is made of, for example, a rubber material such as a silicone rubber material, is in contact with the finger 31 in the mounted state, and applies a stress to the triaxial stress sensor 13 according to the amount of deformation of the finger 31 when the finger 31 operates. To do. On the other hand, the housing 11 is made of a highly rigid material such as hard plastic, and is not substantially deformed by the stress applied to the triaxial stress sensor 13 by the cushioning material 15. The substrate 12 is also made of a highly rigid material, and is not substantially deformed by the stress applied to the triaxial stress sensor 13 by the cushioning material 15. That is, the cushioning material 15 is more easily elastically deformed than the housing 11 and the substrate 12. In the present embodiment, the housing 11, the substrate 12, and the cushioning material 15 are included in the support member, and the substrate 12 corresponds to the base. The support member has a holding portion 21 that holds the finger 31 in the mounted state, and also has a contact portion 22 that comes into contact with the finger 31 on the root side of the finger 31 with respect to the holding portion 21. The sandwiching portion 21 extends from the contact portion 22 to both sides of the finger 31 so that the claw 32 can be visually recognized in the mounted state. Further, since the housing 11 keeps a constant shape during the operation of the finger 31, this support member keeps a constant outer shape during the operation of the finger 31.

ここで、3軸応力センサ13について説明する。図6は、基板12及び3軸応力センサ13を示す斜視図である。図7は、3軸応力センサ13を示す平面図である。 Here, the triaxial stress sensor 13 will be described. FIG. 6 is a perspective view showing the substrate 12 and the triaxial stress sensor 13. FIG. 7 is a plan view showing the triaxial stress sensor 13.

図6に示すように、3軸応力センサ13は基板12上に設けられており、基板12には、3軸応力センサ13に電気的に接続されるFFC16が取り付けられている。本実施形態では、基板12に2本のFFC16が取り付けられているが、FFC16の数は限定されない。3軸応力センサ13は、図7に示すように、x軸方向の応力を検出する応力検出部13x、y軸方向の応力を検出する応力検出部13y及びz軸方向の応力を検出する応力検出部13zを含む。応力検出部13x及び応力検出部13yは、検出面13sに平行で、互いに直交する2方向の応力を検出する。応力検出部13zは検出面13sに垂直な方向の応力を検出する。すなわち、応力検出部13x及び応力検出部13yは3軸応力センサ13に作用するせん断応力を検出し、応力検出部13zは3軸応力センサ13に作用する垂直応力を検出する。 As shown in FIG. 6, the triaxial stress sensor 13 is provided on the substrate 12, and the substrate 12 is attached with an FFC 16 electrically connected to the triaxial stress sensor 13. In the present embodiment, two FFCs 16 are attached to the substrate 12, but the number of FFCs 16 is not limited. As shown in FIG. 7, the triaxial stress sensor 13 includes a stress detection unit 13x that detects stress in the x-axis direction, a stress detection unit 13y that detects stress in the y-axis direction, and a stress detection unit that detects stress in the z-axis direction. Includes part 13z. The stress detection unit 13x and the stress detection unit 13y detect stresses in two directions parallel to the detection surface 13s and orthogonal to each other. The stress detection unit 13z detects the stress in the direction perpendicular to the detection surface 13s. That is, the stress detection unit 13x and the stress detection unit 13y detect the shear stress acting on the triaxial stress sensor 13, and the stress detection unit 13z detects the normal stress acting on the triaxial stress sensor 13.

ここで、せん断応力部の一つである応力検出部13xについて説明する。図8Aは、応力検出部13xの構成を示す模式図である。図8Bは、応力検出部13xの動作を示す模式図である。 Here, the stress detection unit 13x, which is one of the shear stress units, will be described. FIG. 8A is a schematic view showing the configuration of the stress detection unit 13x. FIG. 8B is a schematic view showing the operation of the stress detection unit 13x.

応力検出部13xは、図8Aに示すように、基板上に設けられた導電膜30、40及び50を含む。導電膜30と導電膜40との間に梁43が設けられ、導電膜30と導電膜50との間に梁53が設けられている。梁43は、不純物が導入されていないi型のSi膜41及び不純物が導入され導電性を帯びた不純物Si膜42を有する。梁53は、不純物が導入されていないi型のSi膜51及び不純物が導入され導電性を帯びた不純物Si膜52を有する。Si膜41及び不純物Si膜42はx軸方向で接触し、Si膜51及び不純物Si膜52はx軸方向で接触している。梁43及び53は、互いに平行に延びており、不純物Si膜42と不純物Si膜52とが互いに対向している。そして、不純物Si膜42及び52並びに抵抗R1及びR2からホイートストンブリッジ回路が構成されている。抵抗R1と抵抗R2との接続点と導電膜30との間に電圧Eが供給され、導電膜40と導電膜50との間の電位差eが測定される。As shown in FIG. 8A, the stress detection unit 13x includes the conductive films 30, 40 and 50 provided on the substrate. A beam 43 is provided between the conductive film 30 and the conductive film 40, and a beam 53 is provided between the conductive film 30 and the conductive film 50. The beam 43 has an i-type Si film 41 in which impurities are not introduced and an impurity Si film 42 in which impurities are introduced and is conductive. The beam 53 has an i-type Si film 51 in which impurities are not introduced and an impurity Si film 52 in which impurities are introduced and is conductive. The Si film 41 and the impurity Si film 42 are in contact with each other in the x-axis direction, and the Si film 51 and the impurity Si film 52 are in contact with each other in the x-axis direction. The beams 43 and 53 extend in parallel with each other, and the impurity Si film 42 and the impurity Si film 52 face each other. A Wheatstone bridge circuit is composed of the impurity Si films 42 and 52 and the resistors R1 and R2. A voltage E is supplied between the connection point between the resistor R1 and the resistor R2 and the conductive film 30, and the potential difference e 0 between the conductive film 40 and the conductive film 50 is measured.

不純物Si膜42及び52の抵抗は、ピエゾ抵抗効果により、それ自身に作用する応力の大きさに応じて変化する。すなわち、図8Bに示すように、梁43及び53にせん断応力35が作用すると、その大きさに応じて不純物Si膜42及び52の抵抗が変化する。従って、電位差eはせん断応力35の大きさ反映し、電位差eを測定することでせん断応力のx軸方向成分の大きさを検出することができる。なお、梁43と梁53との間では、Si膜を基準としたx軸方向における不純物Si膜の位置が相違するため、抵抗値の変化は逆向きとなる。すなわち、不純物Si膜42の抵抗値が上がれば不純物Si膜52の抵抗値が下がり、不純物Si膜42の抵抗値が下がれば不純物Si膜52の抵抗値が上がる。The resistance of the impurity Si films 42 and 52 changes according to the magnitude of the stress acting on itself due to the piezoresistive effect. That is, as shown in FIG. 8B, when the shear stress 35 acts on the beams 43 and 53, the resistance of the impurity Si films 42 and 52 changes according to the magnitude thereof. Therefore, the potential difference e 0 reflects the magnitude of the shear stress 35, and the magnitude of the x-axis direction component of the shear stress can be detected by measuring the potential difference e 0 . Since the position of the impurity Si film in the x-axis direction with respect to the Si film is different between the beam 43 and the beam 53, the change in the resistance value is opposite. That is, if the resistance value of the impurity Si film 42 increases, the resistance value of the impurity Si film 52 decreases, and if the resistance value of the impurity Si film 42 decreases, the resistance value of the impurity Si film 52 increases.

応力検出部13yは、応力検出部13xと同様の機構により、せん断応力のy軸方向成分の大きさを検出することができる。応力検出部13zについては、梁が検出面に垂直な方向に変形することで、検出面に作用する垂直応力を検出することができる。 The stress detection unit 13y can detect the magnitude of the y-axis direction component of the shear stress by the same mechanism as the stress detection unit 13x. With respect to the stress detection unit 13z, the vertical stress acting on the detection surface can be detected by deforming the beam in the direction perpendicular to the detection surface.

このように、本実施形態では、指31から作用する直交3軸方向の応力を3軸応力センサ13が検出することができる。 As described above, in the present embodiment, the triaxial stress sensor 13 can detect the stress in the orthogonal triaxial direction acting from the finger 31.

加速度センサ14は、例えば3軸加速度センサである。加速度センサ14としては、例えば、加速度感度が0.061mg,0.122mg,0.244mg,0.488mg、加速度レンジが±2g,±4g,±8g,±16gのものを用いることができる。また、加速度センサ14として、3軸方向の加速度に加えて角加速度も併せて検出できる6軸加速度センサを用いることもできる。このような6軸加速度センサとしては、加速度感度に併せて、例えば検出可能な角加速度感度が4.375mdps,8.75mdps,17.50mdps,35,70mdps、角加速度レンジが±125dps,±250dps,±500dps,±1000dps,±2000dpsのものを用いることができる。角加速度のみを検出する角加速度センサが用いられてもよい。 The acceleration sensor 14 is, for example, a 3-axis acceleration sensor. As the acceleration sensor 14, for example, one having an acceleration sensitivity of 0.061 mg, 0.122 mg, 0.244 mg, 0.488 mg and an acceleration range of ± 2 g, ± 4 g, ± 8 g, ± 16 g can be used. Further, as the acceleration sensor 14, a 6-axis acceleration sensor that can detect angular acceleration in addition to acceleration in the 3-axis direction can also be used. As such a 6-axis acceleration sensor, for example, the detectable angular acceleration sensitivity is 4.375 mdps, 8.75 mdps, 17.50 mdps, 35, 70 mdps, and the angular acceleration range is ± 125 dps, ± 250 dps, in addition to the acceleration sensitivity. Those of ± 500 dps, ± 1000 dps, ± 2000 dps can be used. An angular acceleration sensor that detects only angular acceleration may be used.

次に、動作検出センサ1の動作について説明する。 Next, the operation of the motion detection sensor 1 will be described.

動作検出センサ1は、図5に示すように、挟持部21で指31の爪32の両側部を挟持し、接触部22が指31に接触するようにして、指31に装着される。このとき、指31が若干変形し、この変形が緩衝材15に伝播し、緩衝材15が弾性変形し、この変形量に応じた応力が3軸応力センサ13に作用する。また、動作検出センサ1は少なくとも3か所で指31に接触するため、動作検出センサ1の指31に対する相対位置が固定される。 As shown in FIG. 5, the motion detection sensor 1 is attached to the finger 31 by sandwiching both side portions of the claw 32 of the finger 31 with the sandwiching portion 21 so that the contact portion 22 comes into contact with the finger 31. At this time, the finger 31 is slightly deformed, this deformation propagates to the cushioning material 15, the cushioning material 15 is elastically deformed, and stress corresponding to the amount of this deformation acts on the triaxial stress sensor 13. Further, since the motion detection sensor 1 contacts the finger 31 at at least three places, the relative position of the motion detection sensor 1 with respect to the finger 31 is fixed.

動作検出センサ1を装着した被験者が肌に化粧品を塗擦すると、肌と指31の腹の部分との間に複雑な応力が作用すると共に、指31の両側部も複雑に変形する。指31の両側部の変形は緩衝材15に伝播し、緩衝材15が複雑に弾性変形し、この変形量に応じた応力が3軸応力センサ13に作用する。そして、3軸応力センサ13は、応力検出部13x、13y及び13zにより、それ自身に作用するせん断応力及び垂直応力を検出する。また、3軸応力センサ13による3軸応力の検出と並行して、加速度センサ14が、塗擦の際の指31の加速度を検出する。これらの検出結果はFFC16等を経由して制御基板20に実装された制御回路23に入力され、制御回路23が集計する。この集計結果は、外部のコンピュータ等の電子機器に送信される。この送信は、有線通信で行われてもよく、無線通信で行われてもよい。そして、電子機器にて、塗擦中に指31にどのような方向からどのような強さの応力が作用しているかを解析する。 When a subject wearing the motion detection sensor 1 rubs cosmetics on the skin, a complicated stress acts between the skin and the abdomen of the finger 31, and both sides of the finger 31 are also deformed in a complicated manner. Deformation of both sides of the finger 31 propagates to the cushioning material 15, and the cushioning material 15 is elastically deformed in a complicated manner, and stress corresponding to the amount of this deformation acts on the triaxial stress sensor 13. Then, the triaxial stress sensor 13 detects the shear stress and the normal stress acting on itself by the stress detection units 13x, 13y and 13z. Further, in parallel with the detection of the triaxial stress by the triaxial stress sensor 13, the acceleration sensor 14 detects the acceleration of the finger 31 at the time of rubbing. These detection results are input to the control circuit 23 mounted on the control board 20 via the FFC 16 and the like, and the control circuit 23 aggregates them. The aggregated result is transmitted to an electronic device such as an external computer. This transmission may be performed by wired communication or wireless communication. Then, in an electronic device, it is analyzed from what direction and what strength of stress is applied to the finger 31 during rubbing.

動作検出センサ1によれば、指31の側部の変形を3次元で検出することができる。指31の側部の変形は指31それ自体の変形を反映するため、指31の側部の変形を3次元で検出し、この検出結果及び加速度センサ14による検出結果を解析することで、塗擦中に指31にどのような方向からどのような強さの応力が作用しているか推定することができる。そして、この推定結果は被験者の主観を伴わず、客観的に数値化できる。従って、動作検出センサ1によれば、被験者が指先に感じる感触の客観的な判断に好適な検出を行うことができる。 According to the motion detection sensor 1, the deformation of the side portion of the finger 31 can be detected in three dimensions. Since the deformation of the side part of the finger 31 reflects the deformation of the finger 31 itself, the deformation of the side part of the finger 31 is detected three-dimensionally, and the detection result and the detection result by the acceleration sensor 14 are analyzed for painting. It is possible to estimate from what direction and what strength of stress is acting on the finger 31. Then, this estimation result can be objectively quantified without the subjectivity of the subject. Therefore, according to the motion detection sensor 1, it is possible to perform detection suitable for objectively determining the feel of the subject's fingertips.

このようにして得られた動作検出の結果は、次のように活用することができる。 The result of motion detection obtained in this way can be utilized as follows.

例えば、化粧の熟練者及び初心者が化粧品の塗擦中の動作検出を行い、これらの結果を数値化して比較する。この比較の後、初心者は熟練者と同様の検出結果が得られるようにトレーニングすることで、自身の技術を向上させることができる。この方法によれば、化粧の技術を客観的に比較できるため、初心者は、塗擦中のどのタイミングでどのような修正を加えればよいか、容易に理解できるようになる。 For example, a cosmetic expert and a beginner detect movements during rubbing of cosmetics, and quantify and compare these results. After this comparison, beginners can improve their skills by training to obtain detection results similar to those of experts. According to this method, makeup techniques can be objectively compared, so that a beginner can easily understand what kind of correction should be made at what timing during rubbing.

例えば、熟練者であっても、一定期間ごとに自身の動作検出の結果を比較し、改良点を見出し、より高い技術で塗擦できるようにトレーニングすることができる。 For example, even an expert can compare the results of his / her own motion detection at regular intervals, find improvements, and train him / her to apply with a higher technique.

指31に作用する応力は、被験者の動作のみならず、塗擦される化粧品の状態の影響も受ける。従って、例えば、動作検出の結果から、化粧品の状態を数値化することができる。このため、化粧品の開発に際して、指31と肌との間で生じる化粧品の変化とそれに伴い知覚される触感を数値化し、化粧品のテクスチャの設計に有効に活用することができる。 The stress acting on the finger 31 is affected not only by the movement of the subject but also by the state of the cosmetics to be rubbed. Therefore, for example, the state of cosmetics can be quantified from the result of motion detection. Therefore, in the development of cosmetics, the change in cosmetics that occurs between the finger 31 and the skin and the tactile sensation perceived accordingly can be quantified and effectively utilized in the design of the texture of the cosmetics.

例えば、指31に作用する応力だけでなく、肌に作用する応力を数値化することもできる。指31における触感だけでなく、肌における触感も重要視される場合等、肌に作用する応力を数値化することで、より客観的な評価が可能となる。 For example, not only the stress acting on the finger 31 but also the stress acting on the skin can be quantified. When not only the tactile sensation on the finger 31 but also the tactile sensation on the skin is regarded as important, the stress acting on the skin can be quantified to enable a more objective evaluation.

図9に示すように、緩衝材15が、装着状態で3軸応力センサ13上において指31に向けて膨張した膨張部19を含むことが好ましい。緩衝材15が膨張部19を含むことで緩衝材15の変形が3軸応力センサ13上に集中し、より精度の高い検出を行うことが可能となる。 As shown in FIG. 9, it is preferable that the cushioning material 15 includes an expansion portion 19 that expands toward the finger 31 on the triaxial stress sensor 13 in the mounted state. Since the cushioning material 15 includes the expansion portion 19, the deformation of the cushioning material 15 is concentrated on the triaxial stress sensor 13, and more accurate detection can be performed.

なお、指31の形状及び変形しやすさ等には個人差があり、また、同一の被験者であっても指31の形状及び変形しやすさ等が変化することがある。このため、より高精度の検出を行うためには、動作検出センサ1を用いた指31の動作検出処理に先立ち、指31の側部の変形量と指接触力の値とを相関させる校正処理(キャリブレーション)を行っておくことが好ましい。 There are individual differences in the shape and deformability of the finger 31, and the shape and deformability of the finger 31 may change even for the same subject. Therefore, in order to perform more accurate detection, prior to the motion detection process of the finger 31 using the motion detection sensor 1, a calibration process that correlates the deformation amount of the side portion of the finger 31 with the value of the finger contact force. It is preferable to perform (calibration).

本実施形態では、動作検出センサ1から集計結果が外部に送信され、外部で解析が行われるが、動作検出センサ1に解析回路を設け、この解析回路が応力の解析を行い、この解析結果が外部に送信されてもよい。 In the present embodiment, the aggregated result is transmitted from the motion detection sensor 1 to the outside and the analysis is performed externally. However, the motion detection sensor 1 is provided with an analysis circuit, and this analysis circuit analyzes the stress, and the analysis result is obtained. It may be sent to the outside.

以上、本発明の実施形態について詳述したが、本発明は上記した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形及び変更が可能なものである。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-mentioned specific embodiments, and various modifications are made within the scope of the gist of the present invention described in the claims. And can be changed.

例えば、化粧道具等を使用せず、素肌と指を直接接触させることにより、肌状態の評価に用いることが可能である。 For example, it can be used for evaluation of skin condition by directly contacting the bare skin with a finger without using a makeup tool or the like.

本出願は、2018年2月19日に日本国特許庁に出願された特許出願第2018−027162号に基づく優先権を主張するものであり、これらの全内容を含むものである。 This application claims priority based on Patent Application No. 2018-021762 filed with the Japan Patent Office on February 19, 2018, and includes all of these contents.

1 動作検出センサ
11 筐体
12 基板
13 3軸応力センサ
14 加速度センサ
15 緩衝材
16 フレキシブルフラットケーブル
19 膨張部
20 制御基板
21 挟持部
22 接触部
23 制御回路
1 Motion detection sensor 11 Housing 12 Board 13 Triaxial stress sensor 14 Accelerometer 15 Cushioning material 16 Flexible flat cable 19 Expansion part 20 Control board 21 Holding part 22 Contact part 23 Control circuit

Claims (18)

指に装着され、該指の動作を検出する動作検出センサであって、
前記指に固定される支持部材と、
前記支持部材に支持され、前記指から作用する3軸方向の応力を検出する3軸応力センサと、
前記支持部材に支持され、前記指が動作した時の該指の加速度を検出する加速度センサと、
を有することを特徴とする動作検出センサ。
A motion detection sensor that is attached to a finger and detects the motion of the finger.
The support member fixed to the finger and
A triaxial stress sensor that is supported by the support member and detects stress in the triaxial direction that acts from the finger.
An acceleration sensor that is supported by the support member and detects the acceleration of the finger when the finger moves,
A motion detection sensor characterized by having.
前記加速度センサは、3軸方向の加速度を検出する3軸加速度センサ及び角加速度を検出する角加速度センサの少なくとも一方を含むことを特徴とする請求項1に記載の動作検出センサ。 The motion detection sensor according to claim 1, wherein the acceleration sensor includes at least one of a three-axis acceleration sensor that detects acceleration in the three-axis direction and an angular acceleration sensor that detects angular acceleration. 前記3軸応力センサを覆い、装着状態で前記指に接し、前記指が動作した時の該指の変形量に応じた応力を前記3軸応力センサに印加する緩衝材を有することを特徴とする請求項1に記載の動作検出センサ。 It is characterized by having a buffer material that covers the triaxial stress sensor, is in contact with the finger in a mounted state, and applies stress to the triaxial stress sensor according to the amount of deformation of the finger when the finger is operated. The motion detection sensor according to claim 1. 前記緩衝材は、弾性材であることを特徴とする請求項3に記載の動作検出センサ。 The motion detection sensor according to claim 3, wherein the cushioning material is an elastic material. 前記弾性材は、ゴム材であることを特徴とする請求項4に記載の動作検出センサ。 The motion detection sensor according to claim 4, wherein the elastic material is a rubber material. 前記弾性材は、シリコーンゴム材であることを特徴とする請求項4に記載の動作検出センサ。 The motion detection sensor according to claim 4, wherein the elastic material is a silicone rubber material. 前記緩衝材は、装着状態で前記3軸応力センサ上において前記指に向けて膨張した膨張部を有することを特徴とする請求項3に記載の動作検出センサ。 The motion detection sensor according to claim 3, wherein the cushioning material has an inflated portion that expands toward the finger on the triaxial stress sensor in a mounted state. 前記支持部材は、前記指の動作中に一定形状を保つことを特徴とする請求項1に記載の動作検出センサ。 The motion detection sensor according to claim 1, wherein the support member maintains a constant shape during the motion of the finger. 前記支持部材は、装着状態で前記指を挟持する挟持部を有することを特徴とする請求項1に記載の動作検出センサ。 The motion detection sensor according to claim 1, wherein the support member has a holding portion for holding the finger in a mounted state. 前記3軸応力センサは、前記挟持部の互いに対向する面に固定されていることを特徴とする請求項9に記載の動作検出センサ。 The motion detection sensor according to claim 9, wherein the triaxial stress sensor is fixed to surfaces of the sandwiching portions facing each other. 前記支持部材は、
前記3軸応力センサを収容する筐体と、
前記筐体内で前記挟持部に設けられた土台と、
を有し、
前記3軸応力センサは、前記土台に固定されることを特徴とする請求項9に記載の動作検出センサ。
The support member
A housing that houses the 3-axis stress sensor and
A base provided on the holding portion in the housing and
Have,
The motion detection sensor according to claim 9, wherein the triaxial stress sensor is fixed to the base.
前記支持部材は、前記3軸応力センサよりも前記指の根本側で当該指に接触する接触部を有し、
前記挟持部は、前記接触部から装着状態で爪が視認できるように前記指の側方に延出していることを特徴とする請求項9に記載の動作検出センサ。
The support member has a contact portion that comes into contact with the finger on the root side of the finger with respect to the triaxial stress sensor.
The motion detection sensor according to claim 9, wherein the sandwiching portion extends laterally of the finger so that the claw can be visually recognized from the contact portion in the mounted state.
3軸応力センサ及び加速度センサを備えた動作検出センサを指に装着し、物体の表面に前記指を接触させながら前記指を動かす工程と、
前記指を動かしている間の前記動作検出センサにより検出された3軸方向の応力及び前記加速度センサにより検出された加速度を集計する工程と、
を有することを特徴とする動作検出方法。
A process of attaching a motion detection sensor equipped with a 3-axis stress sensor and an acceleration sensor to a finger and moving the finger while bringing the finger into contact with the surface of an object.
A step of totaling the stress in the triaxial direction detected by the motion detection sensor while moving the finger and the acceleration detected by the acceleration sensor, and
An operation detection method characterized by having.
前記加速度センサは、3軸方向の加速度を検出する3軸加速度センサ及び角加速度を検出する角加速度センサの少なくとも一方を含むことを特徴とする請求項13に記載の動作検出方法。 The motion detection method according to claim 13, wherein the acceleration sensor includes at least one of a three-axis acceleration sensor that detects acceleration in the three-axis direction and an angular acceleration sensor that detects angular acceleration. 前記3軸方向の応力及び前記加速度の集計結果に基づいて前記物体の表面の状態を数値化する工程を有することを特徴とする請求項13に記載の動作検出方法。 The motion detection method according to claim 13, further comprising a step of quantifying the state of the surface of the object based on the aggregation result of the stress in the three axial directions and the acceleration. 前記3軸方向の応力及び前記加速度の集計結果に基づいて前記物体が受ける応力を数値化する工程を有することを特徴とする請求項13に記載の動作検出方法。 The motion detection method according to claim 13, further comprising a step of quantifying the stress received by the object based on the aggregation result of the stress in the three axial directions and the acceleration. 前記指を動かす工程において、前記物体の表面に物質を塗擦することを特徴とする請求項15に記載の動作検出方法。 The motion detection method according to claim 15, wherein in the step of moving the finger, a substance is rubbed on the surface of the object. 前記3軸方向の応力及び前記加速度の集計結果を複数取得し、複数の集計結果同士を比較する工程を有することを特徴とする請求項13に記載の動作検出方法。 The motion detection method according to claim 13, further comprising a step of acquiring a plurality of aggregation results of the stress in the three axial directions and comparing the aggregation results of the plurality of aggregation results.
JP2020500287A 2018-02-19 2018-11-29 Motion detection sensor and motion detection method Active JP7136882B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018027162 2018-02-19
JP2018027162 2018-02-19
PCT/JP2018/044050 WO2019159493A1 (en) 2018-02-19 2018-11-29 Movement detection sensor and movement detection method

Publications (2)

Publication Number Publication Date
JPWO2019159493A1 true JPWO2019159493A1 (en) 2021-01-28
JP7136882B2 JP7136882B2 (en) 2022-09-13

Family

ID=67619198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020500287A Active JP7136882B2 (en) 2018-02-19 2018-11-29 Motion detection sensor and motion detection method

Country Status (3)

Country Link
JP (1) JP7136882B2 (en)
TW (1) TW201939220A (en)
WO (1) WO2019159493A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060290A (en) * 2019-10-07 2021-04-15 株式会社 資生堂 Motion measurement device, motion measurement system, and motion measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315089A (en) * 2002-04-18 2003-11-06 Tokyo Sokki Kenkyusho Co Ltd Strain gauge
JP2006285451A (en) * 2005-03-31 2006-10-19 Nec Corp Cosmetics-counseling system, server, and counseling program
JP2013003782A (en) * 2011-06-15 2013-01-07 Shiseido Co Ltd Movement detection sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315089A (en) * 2002-04-18 2003-11-06 Tokyo Sokki Kenkyusho Co Ltd Strain gauge
JP2006285451A (en) * 2005-03-31 2006-10-19 Nec Corp Cosmetics-counseling system, server, and counseling program
JP2013003782A (en) * 2011-06-15 2013-01-07 Shiseido Co Ltd Movement detection sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
川副 智行: "メイクにおける化粧スキルを可視化する指装着型センサ", フレグランス ジャーナル, vol. 40, no. 5, JPN6019003010, 15 May 2012 (2012-05-15), pages 55 - 60, ISSN: 0004845741 *

Also Published As

Publication number Publication date
TW201939220A (en) 2019-10-01
JP7136882B2 (en) 2022-09-13
WO2019159493A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
Dahiya et al. Tactile sensing—from humans to humanoids
JP5809452B2 (en) Motion detection sensor
Cutkosky et al. Force and tactile sensing
Makikawa et al. Flexible fabric Sensor toward a humanoid robot's skin: fabrication, characterization, and perceptions
JP6232273B2 (en) Fingertip contact state measurement device
Pérez-González et al. Stiffness map of the grasping contact areas of the human hand
JP7136882B2 (en) Motion detection sensor and motion detection method
JP2004077346A (en) Tactile sensor, surface form measurement system using the same, and surface form measurement method
JP2018109599A (en) Touch feel evaluation device
Wolterink et al. Evaluation of a 3D printed soft sensor for measuring fingertip interaction forces
JP5700497B2 (en) Calibration method of motion detection sensor
Shirakawa et al. Wearable artificial fingers with skin vibration and multi-axis force sensors
Yoshikawa et al. Development of a wearable cybernic glove that enables object grasping and gripping force measurement with open finger pad
JP7075589B2 (en) Hand sensor device
De Rossi et al. Skin-like sensor arrays
JP6881161B2 (en) Feel evaluation device
Escoto et al. A sensorized glove for therapist skill performance assessment during neck manipulation
Inoue et al. Local minimum of elastic potential energy on hemispherical soft fingertip
JP2002181693A (en) Surface characteristic measuring system and method
Okuyama et al. Mechanical modeling of a ring-type fingertip force sensor
CN112839570A (en) Skin evaluation method and skin evaluation device
Rosono et al. PondusHand: Estimation Method of Fingertips Force by User's Forearm Muscle Deformation based on Calibration with Mobile Phone's Touch Screen
JP7461638B2 (en) Tactile evaluation device, tactile evaluation method, and program
JP6499900B2 (en) Haptic control device and haptic presentation device
Baskaran et al. An anthropomorphic passive instrumented hand for validating wearable robotic systems

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20200804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220901

R150 Certificate of patent or registration of utility model

Ref document number: 7136882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150