JPWO2019152409A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019152409A5
JPWO2019152409A5 JP2020541374A JP2020541374A JPWO2019152409A5 JP WO2019152409 A5 JPWO2019152409 A5 JP WO2019152409A5 JP 2020541374 A JP2020541374 A JP 2020541374A JP 2020541374 A JP2020541374 A JP 2020541374A JP WO2019152409 A5 JPWO2019152409 A5 JP WO2019152409A5
Authority
JP
Japan
Prior art keywords
cell
aitec
cdc
cells
pharmaceutical composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020541374A
Other languages
Japanese (ja)
Other versions
JP2021512595A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/015658 external-priority patent/WO2019152409A1/en
Publication of JP2021512595A publication Critical patent/JP2021512595A/en
Publication of JPWO2019152409A5 publication Critical patent/JPWO2019152409A5/ja
Pending legal-status Critical Current

Links

Claims (21)

細胞療法で使用するのに適した哺乳類細胞の治療効力を増加させる方法であって、前記方法は、強力でないまたはわずかに強力な哺乳類細胞を外因的な作用物質に接触させ、前記哺乳類細胞を十分に強力な組織エフェクター細胞に変換する程度まで、前記細胞における目的転写因子の発現レベルを増加させ、それにより活性化誘導組織エフェクター細胞(AITEC)を産生するステップを含前記哺乳類細胞は、カルディオスフィア由来細胞(CDC)または線維芽細胞を含む、方法。 A method of increasing the therapeutic efficacy of mammalian cells suitable for use in cell therapy, wherein the less potent or slightly more potent mammalian cells are brought into contact with an extrinsic agent to sufficiently bring the mammalian cells into contact. The mammalian cell comprises the step of increasing the expression level of the target transcription factor in the cell to the extent that it transforms into a potent tissue effector cell , thereby producing an activation-inducing tissue effector cell (AITEC). Is a method comprising Cardiosphere-derived cells (CDCs) or fibroblasts . 細胞療法で使用するのに適した、強力でないまたは十分に強力でない哺乳類細胞の活性化を誘導する方法であって、前記方法は、前記強力でないまたは十分に強力でない細胞を十分に強力な組織エフェクター細胞に変換する程度まで、前記細胞における目的転写因子のレベルを増加させる外因的な作用物質を、前記強力でないまたは十分に強力でない細胞に導入し、それによりAITECを産生するステップを含前記哺乳類細胞は、カルディオスフィア由来細胞(CDC)または線維芽細胞を含む、方法。 A method of inducing activation of weak or not strong enough mammalian cells suitable for use in cell therapy, wherein the method is a sufficiently strong tissue effector for the weak or not strong enough cells. Including the step of introducing an exogenous agent that increases the level of the target transcription factor in the cell to the extent of conversion into the cell into the weak or not sufficiently strong cell , thereby producing AITEC. The method, wherein the mammalian cell comprises a cardiosphere-derived cell (CDC) or a fibroblast . 前記AITECを細胞療法での使用に選択するステップをさらに含む、請求項1または2に記載の方法。 The method of claim 1 or 2 , further comprising the step of selecting the AITEC for use in cell therapy. 前記AITECを細胞療法での使用に選択する前記ステップが、遺伝子送達システム内に選択遺伝子を含めることと、前記細胞を抗生物質で処置することと、前記遺伝子送達システムの送達を首尾よく達成しない細胞を間引くこととによって実施される、請求項に記載の方法。 The steps in selecting AITEC for use in cell therapy include inclusion of the selected gene within the gene delivery system, treatment of the cells with antibiotics, and cells that do not successfully deliver the gene delivery system. The method according to claim 3 , which is carried out by thinning out. 前記目的転写因子がβ-カテニンである、請求項1~のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4 , wherein the target transcription factor is β-catenin. 前記哺乳類細胞がヒト細胞である、請求項1~のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5 , wherein the mammalian cell is a human cell. 前記ヒト細胞が、強力でないカルディオスフィア由来細胞(CDC)である、請求項に記載の方法。 The method of claim 6 , wherein the human cell is a weak cardiosphere-derived cell (CDC). 前記CDCが不死化CDCである、請求項に記載の方法。 The method of claim 7 , wherein the CDC is an immortalized CDC. 前記不死化CDCが、
(a) SV40のスモールT抗原及びラージT抗原をCDCの培養液中で過剰発現させるステップと、
(b) 少なくとも15回の倍増を継続することができるCDC培養液を選択するステップと、を含む方法によって産生される、請求項に記載の方法。
The immortalized CDC
(A) A step of overexpressing the small T antigen and the large T antigen of SV40 in the culture medium of CDC, and
(B) The method of claim 8 , wherein the method is produced by a method comprising selecting a CDC culture medium capable of continuing the doubling at least 15 times.
前記不死化CDCが、
(a) CDCの培養液中でc-Mycを過剰発現させるステップと、
(b) 少なくとも15回の倍増を継続することができるCDC培養液を選択するステップと、を含む方法によって産生される、請求項に記載の方法。
The immortalized CDC
(A) A step of overexpressing c-Myc in the culture medium of CDC and
(B) The method of claim 8 , wherein the method is produced by a method comprising selecting a CDC culture medium capable of continuing the doubling at least 15 times.
前記哺乳類細胞が、フィブロネクチンコーティング培養容器で平板培養される、請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10 , wherein the mammalian cells are plate-cultured in a fibronectin-coated culture vessel. 前記哺乳類細胞における別の目的転写因子のレベルを増加させるステップをさらに含む、請求項1~11のいずれか1項に記載の方法。 The method according to any one of claims 1 to 11 , further comprising increasing the level of another target transcription factor in the mammalian cell. 前記別の目的転写因子がGATA4である、請求項12に記載の方法。 12. The method of claim 12 , wherein the other target transcription factor is GATA4. 強力でない細胞のβ-カテニンのレベルが、6-ブロモインジルビン-3’-オキシム(BIO)、Wnt3a、またはCHIRを前記哺乳類細胞に投与することによって増加する、請求項1~13のいずれか1項に記載の方法。 Any one of claims 1-13 , wherein the levels of β-catenin in non-strong cells are increased by administering 6-bromoinsylbin-3'-oxime (BIO), Wnt3a, or CHIR to the mammalian cells. The method described in the section . 請求項1~14のいずれか1項に記載の方法によって産生される、AITEC。 AITEC produced by the method according to any one of claims 1 to 14 . 請求項1~14のいずれか1項に記載の方法によって産生されたAITECに由来する細胞外小胞の治療有効量を含む、医薬組成物。 A pharmaceutical composition comprising a therapeutically effective amount of AITEC-derived extracellular vesicles produced by the method according to any one of claims 1 to 14 . 前記細胞外小胞がエクソソームである、請求項16に記載の医薬組成物。 The pharmaceutical composition according to claim 16 , wherein the extracellular vesicle is an exosome. それを必要とする対象における疾患または状態を治療するための、請求項15に記載のAITECの治療有効量を含む、医薬組成物 A pharmaceutical composition comprising a therapeutically effective amount of AITEC according to claim 15 for treating a disease or condition in a subject in need thereof. 前記AITECを標的細胞に投与することにより、疾患または状態を治療するための細胞療法を必要とする対象を治療するための請求項15に記載のAITECの治療有効量を含む、医薬組成物 A pharmaceutical composition comprising a therapeutically effective amount of AITEC according to claim 15 , for treating a subject in need of cell therapy for treating a disease or condition by administering the AITEC to a target cell. .. 前記AITECの投与が、前記標的細胞におけるβ-カテニン/Wnt経路の活性化を誘導する、請求項19に記載の医薬組成物19. The pharmaceutical composition of claim 19 , wherein administration of AITEC induces activation of the β-catenin / Wnt pathway in the target cells. 前記AITECの投与が、抗炎症、再生、線維化の減弱、及び血管新生のうちの少なくとも一つの活性化を誘導する、請求項20に記載の医薬組成物
20. The pharmaceutical composition of claim 20 , wherein administration of AITEC induces activation of at least one of anti-inflammatory, regeneration, attenuation of fibrosis, and angiogenesis.
JP2020541374A 2018-01-30 2019-01-29 Activation-inducing tissue effector cells suitable for cell therapy and extracellular vesicles derived from them Pending JP2021512595A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862623927P 2018-01-30 2018-01-30
US62/623,927 2018-01-30
PCT/US2019/015658 WO2019152409A1 (en) 2018-01-30 2019-01-29 Activation-induced tissue-effector cells suitable for cell therapy and extracelluar vesicles derived therefrom

Publications (2)

Publication Number Publication Date
JP2021512595A JP2021512595A (en) 2021-05-20
JPWO2019152409A5 true JPWO2019152409A5 (en) 2022-03-30

Family

ID=67478506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020541374A Pending JP2021512595A (en) 2018-01-30 2019-01-29 Activation-inducing tissue effector cells suitable for cell therapy and extracellular vesicles derived from them

Country Status (6)

Country Link
US (1) US20210032598A1 (en)
EP (1) EP3746137A4 (en)
JP (1) JP2021512595A (en)
AU (1) AU2019216224A1 (en)
CA (1) CA3090003A1 (en)
WO (1) WO2019152409A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
EP2882445B1 (en) 2012-08-13 2019-04-24 Cedars-Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
AU2015327812B2 (en) 2014-10-03 2021-04-15 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
US11253551B2 (en) 2016-01-11 2022-02-22 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
WO2017210652A1 (en) 2016-06-03 2017-12-07 Cedars-Sinai Medical Center Cdc-derived exosomes for treatment of ventricular tachyarrythmias
WO2018057542A1 (en) 2016-09-20 2018-03-29 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
AU2018255346B2 (en) 2017-04-19 2024-05-02 Capricor, Inc. Methods and compositions for treating skeletal muscular dystrophy
WO2019126068A1 (en) 2017-12-20 2019-06-27 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery
US20220218757A1 (en) * 2019-05-08 2022-07-14 Cedars-Sinai Medical Center Therapeutically active cells and exosomes
KR102162727B1 (en) * 2020-04-22 2020-10-07 주식회사 이뮤니스바이오 Novel cell therapeutics composition by simultaneous administration of human cell-derived extracellular vesicles and cells

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2431425A1 (en) * 2003-06-05 2004-12-05 Angiogene, Inc. Epas1 gene transfer to improve cell therapy
WO2005034876A2 (en) * 2003-10-10 2005-04-21 Multicell Technologies, Inc. Use of cell lines to produce active therapeutic proteins
JP5892939B2 (en) * 2009-11-02 2016-03-23 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Method for monitoring cell status and method for immortalizing mesenchymal stem cells
US20130189780A1 (en) * 2009-12-31 2013-07-25 Fate Therapeutics, Inc. Reprogramming compositions
CA2899090A1 (en) * 2013-01-24 2014-07-31 Bernardo Nadal-Ginard Modulation of cardiac stem-progenitor cell differentiation, assays and uses thereof
US11377639B2 (en) * 2013-11-15 2022-07-05 Wisconsin Alumni Research Foundation Lineage reprogramming to induced cardiac progenitor cells (iCPC) by defined factors
US20160158291A1 (en) * 2014-12-03 2016-06-09 Capricor, Inc. Processes for producing stable exosome formulations
US10131878B2 (en) * 2015-04-06 2018-11-20 Wisconsin Alumni Research Foundation Methods for epicardial differentiation of human pluripotent stem cells

Similar Documents

Publication Publication Date Title
Cooper et al. Human adipose-derived stem cell conditioned media and exosomes containing MALAT1 promote human dermal fibroblast migration and ischemic wound healing
Marshall et al. Cutaneous scarring: basic science, current treatments, and future directions
Crutcher et al. Debate:“is increasing neuroinflammation beneficial for neural repair?”
US9089677B2 (en) Transcutaneous multimodal delivery system (TMDS)
JP5926758B2 (en) Oxygen generating composition for promoting cell and tissue survival in vivo
Braddock et al. Current therapies for wound healing: electrical stimulation, biological therapeutics, and the potential for gene therapy
JPWO2019152409A5 (en)
Günter et al. New strategies in clinical care of skin wound healing
JP6309033B2 (en) Wound healing
EP3562525A1 (en) Electrospun matrix and method
Yang et al. Multiple channel bridges for spinal cord injury: cellular characterization of host response
Panayi et al. A porous collagen‐GAG scaffold promotes muscle regeneration following volumetric muscle loss injury
Yao et al. Promotion of collagen deposition during skin healing through Smad3/mTOR pathway by parathyroid hormone-loaded microneedle
Chen et al. Use of adipose stem cells against hypertrophic scarring or keloid
Matar et al. Skin inflammation with a focus on wound healing
Yu et al. Liposomal SDF-1 alpha delivery in nanocomposite hydrogels promotes macrophage phenotype changes and skin tissue regeneration
Bleacher et al. Fetal tissue repair and wound healing
Chen et al. Strategies to develop polymeric microneedles for controlled drug release
Long et al. Microneedles for in situ tissue regeneration
Dini et al. Cutaneous tissue engineering and lower extremity wounds (part 2)
RU2248216C2 (en) Composition and method for elevating amount of stem cells and/or hemopoietic cell-precursors in circulation in peripheral blood of mammals
Firmansyah et al. Unraveling the Significance of Growth Factors (TGF-β, PDGF, KGF, FGF, Pro Collagen, VEGF) in the Dynamic of Wound Healing
Zhou et al. Diminished schwann cell repair responses play a role in delayed diabetes-associated wound healing
IL292008A (en) Orally implantable drug delivery device
Larson et al. Scarring and scarless wound healing