JPWO2019136413A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019136413A5
JPWO2019136413A5 JP2020537593A JP2020537593A JPWO2019136413A5 JP WO2019136413 A5 JPWO2019136413 A5 JP WO2019136413A5 JP 2020537593 A JP2020537593 A JP 2020537593A JP 2020537593 A JP2020537593 A JP 2020537593A JP WO2019136413 A5 JPWO2019136413 A5 JP WO2019136413A5
Authority
JP
Japan
Prior art keywords
nucleic acid
target nucleic
modified
sequence
dhu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020537593A
Other languages
Japanese (ja)
Other versions
JP2021509587A (en
JP7136899B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/012627 external-priority patent/WO2019136413A1/en
Publication of JP2021509587A publication Critical patent/JP2021509587A/en
Publication of JPWO2019136413A5 publication Critical patent/JPWO2019136413A5/ja
Priority to JP2022139122A priority Critical patent/JP7539948B2/en
Application granted granted Critical
Publication of JP7136899B2 publication Critical patent/JP7136899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の実施形態では、修飾標的核酸の配列を決定する工程は、鎖終結配列決定、マイクロアレイ、高処理量配列決定、および制限酵素分析を含む。
本発明の実施形態において、例えば以下の項目が提供される。
(項目1)
標的核酸中の5-メチルシトシン(5mC)を特定するための方法であって、前記方法が、
a. 前記標的核酸を含む核酸試料を提供する工程、
b. 前記核酸を修飾する工程であって、前記修飾する工程が、
i. 核酸試料中の5-ヒドロキシメチルシトシン(5hmC)にブロッキング基を添加する工程と、
ii. 前記核酸試料中の前記5mCを5-カルボキシルシトシン(5caC)および/または5-ホルミルシトシン(5fC)に変換する工程と、
iii. 修飾標的核酸を含む修飾核酸試料を提供するために、前記5caCおよび/
または5fCをジヒドロウラシル(DHU)に変換する工程と、を含む、修飾する工程、および
c. 前記配列におけるDHUの存在を検出すること、または前記DHUをチミン(T)に変換して前記配列における前記チミン(T)の存在を検出することを含む、前記修飾標的核酸の配列を検出する工程、を含み、
前記標的核酸と比較した前記修標的核酸の配列におけるシトシン(C)のDHUへの移行またはシトシン(C)のチミン(T)への移行が、前記標的核酸中の5mCの位置を提供する、方法。
(項目2)
各移行位置でのDHUまたはTのパーセンテージが、前記標的核酸中の各位置での5mCの定量レベルを提供する、項目1に記載の方法。
(項目3)
標的核酸中の5mCまたは5hmCを特定する方法であって、前記方法が、
a. 前記標的核酸を含む核酸試料を提供する工程、
b. 前記核酸を修飾する工程であって、前記修飾する工程が、
i. 前記核酸試料中の前記5mCおよび5hmCを5-カルボキシルシトシン(5caC)および/または5fCに変換する工程と、
ii. 修飾標的核酸を含む修飾核酸試料を提供するために、前記5caCおよび/または5fCをジヒドロウラシル(DHU)に変換する工程と、を含む、修飾する工程、および
c. 前記配列におけるDHUの存在を検出すること、または前記DHUをチミン(T)に変換して前記配列における前記チミン(T)の存在を検出することを含む、前記修飾標的核酸の配列を検出する工程、を含み、
前記標的核酸と比較した前記修飾標的核酸の配列におけるシトシン(C)のDHUへの移行またはシトシン(C)のチミン(T)への移行が、前記標的核酸中の5mCまたは5hmCのいずれかの位置を提供する、方法。
(項目4)
各移行位置でのDHUまたはTのパーセンテージが、前記標的核酸中の各位置での5mCまたは5hmCの定量レベルを提供する、項目3に記載の方法。
(項目5)
標的核酸中の5mCを特定するための、および5hmCを特定するための方法であって、前記方法が、
a. 前記標的核酸中の5-メチルシトシン(5mC)を特定する工程であって、前記特定する工程が、
i. 前記標的核酸を含む第一核酸試料を提供する工程、
ii. 前記第一試料中の前記核酸を修飾する工程であって、前記修飾する工程が、
(1). 前記第一核酸試料中の、5-ヒドロキシメチルシトシン(5hmC)にブロッキング基を添加することと、
(2). 前記第一核酸試料中の前記5mCを、5caCおよび/または5fCに変換することと、
(3). 修飾標的核酸を含む修飾第一核酸試料を提供するために、前記5caCおよび/または5fCをジヒドロウラシル(DHU)に変換することと、を含む、修飾する工程、
iii. 前記配列におけるDHUの存在を検出すること、または前記DHUをチミン
(T)に変換して前記配列における前記チミン(T)の存在を検出することを含む、前記修飾標的核酸の配列を検出する工程であって、前記標的核酸と比較した前記修飾標的核酸の配列におけるシトシン(C)のDHUへの移行またはシトシン(C)のチミン(T)への移行が、前記標的核酸中の5mCの位置を提供する、検出する工程、を含む、特定する工程、
b. 前記標的核酸中の5mCまたは5hmCを特定する工程であって、前記特定する工程が、
i. 前記標的核酸を含む第二核酸試料を提供する工程、
ii. 前記第二試料中の前記核酸を修飾する工程であって、前記修飾する工程が、
(1). 前記第二核酸試料中の5mCおよび5hmCを、5caCおよび/または5fCに変換することと、
(2). 修飾標的核酸を含む修飾第二核酸試料を提供するために、前記5caCおよび/または5fCをジヒドロラシル(DHU)に変換することと、を含む、修飾する工程、および
iii. 前記配列におけるDHUの存在を検出すること、または前記DHUをチミン
(T)に変換して前記配列における前記チミン(T)の存在を検出することを含む、前記第二試料から前記修飾標的核酸の配列を検出する工程であって、前記標的核酸と比較した前記修飾標的核酸の配列におけるシトシン(C)のDHUへの移行またはシトシン(C)のチミン(T)への移行が、前記標的核酸中の5mCまたは5hmCのいずれかの位置を提供する、検出する工程、を含む、特定する工程、ならびに、
c. 工程(a)および(b)の結果を比較する工程であって、工程(b)で存在するが工程(a)では存在しないCからDHUまたはCからTへの移行が、前記標的核酸中の5hmCの位置を提供する、比較する工程、を含む、方法。
(項目6)
工程(a)において、各移行位置でのDHUまたはTのパーセンテージが、前記標的核酸中の各位置で5mCの定量レベルを提供し、工程(b)において、各移行位置でのDHUまたはTのパーセンテージが、前記標的核酸中の各位置で5mC、または5hmCの定量レベルを提供し、および工程(c)において、工程(b)で、工程(a)ではなく、特定されたCからDHUまたはTへの移行についてのパーセンテージの差異が、前記標的核酸中の各位置で5hmCの定量レベルを提供する、項目5に記載の方法。
(項目7)
前記5hmCに添加される前記ブロッキング基が糖である、項目1~2または項目5~6のいずれか一項に記載の方法。
(項目8)
前記糖がグルコースまたは修飾グルコースである、項目7に記載の方法。
(項目9)
前記ブロッキング基が、グルコシルトランスフェラーゼ酵素の存在下で、糖に連結されたウリジン二リン酸(UDP)に前記核酸試料を接触させることにより、前記5hmCに添加される、項目7に記載の方法。
(項目10)
前記グルコシルトランスフェラーゼ酵素が、T4バクテリオファージβ-グルコシルトランスフェラーゼ(βGT)、T4バクテリオファージα-グルコシルトランスフェラーゼ(αGT)、ならびにその誘導体および類似体からなる群から選択される、項目9に記載の方法。
(項目11)
前記核酸試料中の前記5mCを、5caC及び/または5fCに変換する工程、ならびに前記核酸試料中の前記5mC及び5hmCを、5caC及び/または5fCに変換する工程は、テンイレブントランスロケーション(TET)酵素と前記核酸試料を接触させることを含む、項目1~6のいずれか一項に記載の方法。
(項目12)
前記TET酵素が、ヒトTET1、TET2、及びTET3、マウスTet1、Tet2、及びTet3、ネグレリアTET(NgTET)、ウシグソヒトヨタケ(CcTET)、ならびにその誘導体または類似体からなる群から選択される、項目11に記載の方法。
(項目13)
前記TET酵素がNgTETまたはマウスTETである、項目12に記載の方法。
(項目14)
標的核酸中の5caC、または5fCを特定するための方法であって、前記方法が、
a. 前記標的核酸を含む核酸試料を提供する工程、
b. 修飾標的核酸を含む修飾核酸試料を提供するために、前記5caCおよび5fCをジヒドロウラシル(DHU)に変換する工程、
c. 前記修飾標的核酸のコピー数を増幅する工程、および
d. 前記修飾標的核酸の配列を検出する工程、を含み、
前記標的核酸と比較した前記修飾標的核酸の配列におけるシトシン(C)のチミン(T)への移行が、前記標的核酸中の5caC、または5fCのいずれかの位置を提供する、方法。
(項目15)
各移行位置でのTのパーセンテージが、前記標的核酸中の各位置で、5caC、または5fCの定量レベルを提供する、項目14に記載の方法。
(項目16)
標的核酸中の5caCを特定するための方法であって、前記方法が、
a. 前記標的核酸を含む核酸試料を提供する工程、
b. 前記核酸試料中の5fCにブロッキング基を添加する工程、
c. 修飾標的核酸を含む修飾核酸試料を提供するために、前記5caCをジヒドロウラシル(DHU)に変換する工程、および
d. 前記配列におけるDHUの存在を検出すること、または前記DHUをチミン(T)に変換して前記配列における前記チミン(T)の存在を検出することを含む、前記修飾標的核酸の配列を検出する工程、を含み、
前記標的核酸と比較した前記修飾標的核酸の配列におけるシトシン(C)のDHUへの移行またはシトシン(C)のチミン(T)への移行が、前記標的核酸中の5caCの位置を提供する、方法。
(項目17)
各移行位置でのDHUまたはTのパーセンテージが、前記標的核酸の各位置で5caCの定量レベルを提供する、項目16に記載の方法。
(項目18)
前記5fCにブロッキング基を添加する工程が、ヒドロキシルアミン誘導体、ヒドラジン誘導体、およびヒドラジド誘導体から選択されるアルデヒド反応性化合物と、前記核酸試料を接触させることを含む、項目16に記載の方法。
(項目19)
前記ヒドロキシルアミン誘導体が、O-エチルヒドロキシルアミンである、項目18に記載の方法。
(項目20)
標的核酸中の5fCを特定するための方法であって、前記方法が、
a. 前記標的核酸を含む核酸試料を提供する工程、
b. 前記核酸試料中の5caCにブロッキング基を添加する工程、
c. 修飾標的核酸を含む修飾核酸試料を提供するために、前記5fCをジヒドロウラシル(DHU)に変換する工程、および
d. 前記配列におけるDHUの存在を検出すること、または前記DHUをチミン(T)に変換して前記配列における前記チミン(T)の存在を検出することを含む、前記修飾標的核酸の配列を検出する工程、を含み、
前記標的核酸と比較した前記修飾標的核酸の配列におけるシトシン(C)のDHUへの移行またはシトシン(C)のチミン(T)への移行が、前記標的核酸中の5fCの位置を提供する、方法。
(項目21)
各移行位置でのDHUまたはTのパーセンテージが、前記標的核酸中の各位置で5fCの定量レベルを提供する、項目20に記載の方法。
(項目22)
5caCにブロッキング基を添加する前記工程が、前記核酸試料をカルボン酸誘導体化試薬、及びアミン、ヒドラジン又はヒドロキシルアミン化合物と接触させることを含む、項目20に記載の方法。
(項目23)
5caCにブロッキング基を添加する前記工程が、前記核酸試料を1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)と接触させることと、エチルアミンと接触させることと、を含む、項目22に記載の方法。
(項目24)
標的核酸中の5hmCを特定するための方法であって、前記方法が、
a. 前記標的核酸を含む核酸試料を提供する工程、
b. 前記試料中の前記核酸を修飾する工程であって、
i 前記核酸試料中の前記5hmCを5caCおよび/または5fCに変換する工程と
ii 前記5caCおよび/または5fCをジヒドロウラシル(DHU)に変換して修飾標的核酸を含む修飾核酸試料を提供する工程と、を含む、修飾する工程、および
c. 前記配列におけるDHUの存在を検出すること、または前記DHUをチミン(T
)に変換して前記配列におけるチミン(T)の存在を検出することを含む、前記修飾標的核酸の配列を検出する工程であって、前記標的核酸と比較した前記修飾標的核酸の配列におけるシトシン(C)のDHUへの移行またはシトシン(C)のチミン(T)への移行が、前記標的核酸中の5hmCの位置を提供する、検出する工程、を含む、方法。
(項目25)
各移行位置でのDHUまたはTのパーセンテージが、前記標的核酸中の各位置で5hmCの定量レベルを提供する、項目24に記載の方法。
(項目26)
前記5hmCを5caCおよび/または5fCに変換する工程が、前記核酸試料を酸化剤と接触させることを含む、項目24に記載の方法。
(項目27)
前記酸化剤が、過ルテニウム酸カリウムまたはCu(II)/TEMPOである、項目26に記載の方法。
(項目28)
前記方法が、前記修飾標的核酸のコピー数を増幅する前記工程をさらに含む、項目1~6、および14~27のいずれか一項に記載の方法。
(項目29)
前記修飾標的核酸のコピー数を増幅する前記工程が、ポリメラーゼ連鎖反応(PCR)、またはプライマー伸長を行うことを含む、項目28に記載の方法。
(項目30)
前記5caCおよび/または5fCをDHUへ変換する前記工程が、前記核酸試料を還元剤に接触させることを含む、項目1~6、および14~29のいずれか一項に記載の方法。
(項目31)
前記還元剤が、ピリジンボラン、2-ピコリンボラン(pic-BH )、ボラン、水素化ホウ素ナトリウム、シアノホウ水素化ナトリウム、およびナトリウムトリアセトキシボロヒドリドからなる群から選択される、項目30に記載の方法。
(項目32)
前記還元剤が、ピリジンボラン、または2-ピコリンボランである、項目31に記載の方法。
(項目33)
前記修飾標的核酸の配列を特定する前記工程が、鎖終結配列決定、マイクロアレイ、高処理量配列決定、および制限酵素分析のうちの一つ以上を含む、項目1~6、および14~27のいずれか一項に記載の方法。
(項目34)
前記核酸がDNAである、項目1~33のいずれか一項に記載の方法。
(項目35)
前記核酸がRNAである、項目1~33のいずれか一項に記載の方法。
In embodiments of the invention, the steps of sequencing the modified target nucleic acid include chain termination sequencing, microarray, high throughput sequencing, and restriction enzyme analysis.
In the embodiment of the present invention, for example, the following items are provided.
(Item 1)
A method for identifying 5-methylcytosine (5 mC) in a target nucleic acid, wherein the method is:
a. The step of providing a nucleic acid sample containing the target nucleic acid,
b. The step of modifying the nucleic acid, wherein the modifying step is
i. A step of adding a blocking group to 5-hydroxymethylcytosine (5 hmC) in a nucleic acid sample, and
ii. A step of converting the 5 mC in the nucleic acid sample to 5-carboxylcytosine (5caC) and / or 5-formylcytosine (5fC).
iii. 5caC and / above to provide a modified nucleic acid sample containing the modified target nucleic acid.
Or a step of converting 5fC to dihydrouracil (DHU), including, a step of modifying, and a step.
c. A step of detecting the sequence of the modified target nucleic acid, which comprises detecting the presence of DHU in the sequence or converting the DHU to thymine (T) to detect the presence of thymine (T) in the sequence. , Including
A method in which the transfer of cytosine (C) to DHU or the transfer of cytosine (C) to thymine (T) in the sequence of the repaired target nucleic acid compared to the target nucleic acid provides a position of 5 mC in the target nucleic acid. ..
(Item 2)
The method of item 1, wherein the percentage of DHU or T at each transition position provides a quantitative level of 5 mC at each position in said target nucleic acid.
(Item 3)
A method for identifying 5 mC or 5 hmC in a target nucleic acid, wherein the method is:
a. The step of providing a nucleic acid sample containing the target nucleic acid,
b. The step of modifying the nucleic acid, wherein the modifying step is
i. The step of converting the 5mC and 5hmC in the nucleic acid sample to 5-carboxycytosine (5caC) and / or 5fC, and
ii. A step of converting the 5caC and / or 5fC to dihydrouracil (DHU) to provide a modified nucleic acid sample containing the modified target nucleic acid, and a step of modifying.
c. A step of detecting the sequence of the modified target nucleic acid, which comprises detecting the presence of DHU in the sequence or converting the DHU to thymine (T) to detect the presence of thymine (T) in the sequence. , Including
The transfer of cytosine (C) to DHU or the transfer of cytosine (C) to thymine (T) in the sequence of the modified target nucleic acid compared to the target nucleic acid is at either the 5 mC or 5 hmC position in the target nucleic acid. How to provide.
(Item 4)
The method of item 3, wherein the percentage of DHU or T at each transition position provides a quantitative level of 5 mC or 5 hmC at each position in said target nucleic acid.
(Item 5)
A method for identifying 5 mC in a target nucleic acid and for identifying 5 hmC, wherein the method is:
a. The step of identifying 5-methylcytosine (5 mC) in the target nucleic acid, wherein the specifying step is
i. A step of providing a first nucleic acid sample containing the target nucleic acid,
ii. The step of modifying the nucleic acid in the first sample, wherein the modifying step is
(1). Adding a blocking group to 5-hydroxymethylcytosine (5 hmC) in the first nucleic acid sample and
(2). Converting the 5mC in the first nucleic acid sample to 5caC and / or 5fC,
(3). A step of modifying, comprising converting said 5caC and / or 5fC to dihydrouracil (DHU) to provide a modified primary nucleic acid sample comprising the modified target nucleic acid.
iii. Detecting the presence of DHU in the sequence, or thymine the DHU
A step of detecting the sequence of the modified target nucleic acid, which comprises converting to (T) to detect the presence of the thymine (T) in the sequence, wherein the sequence of the modified target nucleic acid is compared with the target nucleic acid. A step of identifying, comprising a step of detecting, where the transfer of cytosine (C) to DHU or the transfer of cytosine (C) to thymine (T) in said provides a position of 5 mC in the target nucleic acid.
b. The step of identifying 5 mC or 5 hmC in the target nucleic acid, wherein the specifying step is
i. The step of providing a second nucleic acid sample containing the target nucleic acid,
ii. The step of modifying the nucleic acid in the second sample, wherein the modifying step is
(1). Converting 5mC and 5hmC in the second nucleic acid sample to 5caC and / or 5fC,
(2). A step of modifying, comprising converting the 5caC and / or 5fC to dihydrorasyl (DHU) to provide a modified second nucleic acid sample comprising the modified target nucleic acid, and
iii. Detecting the presence of DHU in the sequence, or thymine the DHU
A step of detecting the sequence of the modified target nucleic acid from the second sample, which comprises converting to (T) to detect the presence of the thymine (T) in the sequence, wherein the sequence is compared with the target nucleic acid. The step of detecting that the transfer of cytosine (C) to DHU or the transfer of cytosine (C) to thymine (T) in the sequence of the modified target nucleic acid provides the position of either 5 mC or 5 hmC in the target nucleic acid. , Including, and identifying steps, as well.
c. In the step of comparing the results of steps (a) and (b), the transition from C to DHU or C to T, which is present in step (b) but not in step (a), is in the target nucleic acid. A method comprising a step of comparing, providing a position of 5 hmC.
(Item 6)
In step (a), the percentage of DHU or T at each transition position provides a quantitative level of 5 mC at each position in said target nucleic acid, and in step (b) the percentage of DHU or T at each transition position. Provides a quantitative level of 5 mC, or 5 hmC, at each position in said target nucleic acid, and in step (c), from step C to DHU or T, instead of step (a). 5. The method of item 5, wherein the difference in percentages for migration provides a quantitative level of 5 hmC at each position in said target nucleic acid.
(Item 7)
The method according to any one of items 1 to 2 or items 5 to 6, wherein the blocking group added to the 5 hmC is sugar.
(Item 8)
7. The method of item 7, wherein the sugar is glucose or modified glucose.
(Item 9)
7. The method of item 7, wherein the blocking group is added to the 5 hmC by contacting the nucleic acid sample with sugar-linked uridine diphosphate (UDP) in the presence of a glucosyltransferase enzyme.
(Item 10)
9. The method of item 9, wherein the glucosyltransferase enzyme is selected from the group consisting of T4 bacteriophage β-glucosyltransferase (βGT), T4 bacteriophage α-glucosyltransferase (αGT), and derivatives and analogs thereof.
(Item 11)
The step of converting the 5mC in the nucleic acid sample to 5caC and / or 5fC and the step of converting the 5mC and 5hmC in the nucleic acid sample to 5caC and / or 5fC are ten-eleven translocation (TET) enzymes. The method according to any one of items 1 to 6, which comprises contacting the nucleic acid sample with the nucleic acid sample.
(Item 12)
Item 11 The TET enzyme is selected from the group consisting of human TET1, TET2, and TET3, mouse Tet1, Tet2, and Tet3, Naegleria TET (NgTET), bovine inky cap (CcTET), and derivatives or analogs thereof. The method described in.
(Item 13)
12. The method of item 12, wherein the TET enzyme is NgTET or mouse TET.
(Item 14)
A method for identifying 5caC or 5fC in a target nucleic acid, wherein the method is:
a. The step of providing a nucleic acid sample containing the target nucleic acid,
b. The step of converting the 5caC and 5fC to dihydrouracil (DHU) to provide a modified nucleic acid sample containing the modified target nucleic acid.
c. The step of amplifying the copy number of the modified target nucleic acid, and
d. Including the step of detecting the sequence of the modified target nucleic acid.
A method, wherein the transfer of cytosine (C) to thymine (T) in the sequence of the modified target nucleic acid compared to the target nucleic acid provides either a 5caC or 5fC position in the target nucleic acid.
(Item 15)
14. The method of item 14, wherein the percentage of T at each transition position provides a quantitative level of 5caC, or 5fC, at each position in said target nucleic acid.
(Item 16)
A method for identifying 5caC in a target nucleic acid, wherein the method is:
a. The step of providing a nucleic acid sample containing the target nucleic acid,
b. The step of adding a blocking group to 5fC in the nucleic acid sample,
c. A step of converting the 5caC to dihydrouracil (DHU) to provide a modified nucleic acid sample containing the modified target nucleic acid, and
d. A step of detecting the sequence of the modified target nucleic acid, which comprises detecting the presence of DHU in the sequence or converting the DHU to thymine (T) to detect the presence of thymine (T) in the sequence. , Including
A method in which the transfer of cytosine (C) to DHU or the transfer of cytosine (C) to thymine (T) in the sequence of the modified target nucleic acid compared to the target nucleic acid provides the position of 5caC in the target nucleic acid. ..
(Item 17)
16. The method of item 16, wherein the percentage of DHU or T at each transition position provides a quantitative level of 5 caC at each position of said target nucleic acid.
(Item 18)
Item 16. The method of item 16, wherein the step of adding a blocking group to the 5fC comprises contacting the nucleic acid sample with an aldehyde-reactive compound selected from a hydroxylamine derivative, a hydrazine derivative, and a hydrazide derivative.
(Item 19)
18. The method of item 18, wherein the hydroxylamine derivative is O-ethylhydroxylamine.
(Item 20)
A method for identifying 5fC in a target nucleic acid, wherein the method is:
a. The step of providing a nucleic acid sample containing the target nucleic acid,
b. The step of adding a blocking group to 5caC in the nucleic acid sample,
c. A step of converting the 5fC to dihydrouracil (DHU) to provide a modified nucleic acid sample containing the modified target nucleic acid, and
d. A step of detecting the sequence of the modified target nucleic acid, which comprises detecting the presence of DHU in the sequence or converting the DHU to thymine (T) to detect the presence of thymine (T) in the sequence. , Including
A method in which the transfer of cytosine (C) to DHU or the transfer of cytosine (C) to thymine (T) in the sequence of the modified target nucleic acid compared to the target nucleic acid provides a position of 5fC in the target nucleic acid. ..
(Item 21)
20. The method of item 20, wherein the percentage of DHU or T at each transition position provides a quantitative level of 5 fC at each position in said target nucleic acid.
(Item 22)
The method of item 20, wherein the step of adding a blocking group to 5caC comprises contacting the nucleic acid sample with a carboxylic acid derivatizing reagent and an amine, hydrazine or hydroxylamine compound.
(Item 23)
Item 22. The step of adding a blocking group to 5caC comprises contacting the nucleic acid sample with 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) and with ethylamine. The method described in.
(Item 24)
A method for identifying 5 hmC in a target nucleic acid, wherein the method is:
a. Step of providing a nucleic acid sample containing the target nucleic acid,
b. A step of modifying the nucleic acid in the sample.
i A step of converting the 5 hmC in the nucleic acid sample to 5 caC and / or 5 fC.
ii A step of converting the 5caC and / or 5fC to dihydrouracil (DHU) to provide a modified nucleic acid sample containing the modified target nucleic acid, and a step of modifying.
c. Detecting the presence of DHU in the sequence, or thymine (T) the DHU.
) To detect the presence of thymine (T) in the sequence, the step of detecting the sequence of the modified target nucleic acid, cytosine (in the sequence of the modified target nucleic acid compared to the target nucleic acid). A method comprising the step of detecting, where the transfer of C) to DHU or the transfer of cytosine (C) to thymine (T) provides a position of 5 hmC in said target nucleic acid.
(Item 25)
24. The method of item 24, wherein the percentage of DHU or T at each transition position provides a quantitative level of 5 hmC at each position in said target nucleic acid.
(Item 26)
24. The method of item 24, wherein the step of converting 5 hmC to 5 caC and / or 5 fC comprises contacting the nucleic acid sample with an oxidizing agent.
(Item 27)
26. The method of item 26, wherein the oxidizing agent is potassium perteniumate or Cu (II) / TEMPO.
(Item 28)
The method according to any one of items 1 to 6 and 14 to 27, wherein the method further comprises the step of amplifying the copy number of the modified target nucleic acid.
(Item 29)
28. The method of item 28, wherein the step of amplifying the copy number of the modified target nucleic acid comprises performing a polymerase chain reaction (PCR) or primer extension.
(Item 30)
The method according to any one of items 1 to 6 and 14 to 29, wherein the step of converting 5caC and / or 5fC to DHU comprises contacting the nucleic acid sample with a reducing agent.
(Item 31)
30. The reducing agent is selected from the group consisting of pyridineborane, 2-picoline borane (pic-BH 3 ), borane, sodium borohydride, sodium cyanoborohydride, and sodium triacetoxyborohydride. Method.
(Item 32)
31. The method of item 31, wherein the reducing agent is pyridineborane or 2-picoline borane.
(Item 33)
Any of items 1-6 and 14-27, wherein the step of identifying the sequence of the modified target nucleic acid comprises one or more of chain termination sequencing, microarray, high throughput sequencing, and restriction enzyme analysis. The method described in item 1.
(Item 34)
The method according to any one of items 1 to 33, wherein the nucleic acid is DNA.
(Item 35)
The method according to any one of items 1 to 33, wherein the nucleic acid is RNA.

Claims (14)

標的核酸中の5-メチルシトシン(5mCまたは5-ヒドロキシメチルシトシン(5hmCを特定する方法であって、前記方法が、
前記標的核酸を含む核酸試料を提供する工程、
前記標的核酸を修飾する工程であって、前記修飾する工程が、
一つ以上の5caCまたは5fC残基が生成されるように前記核酸試料をテンイレブントランスロケーション(TET)酵素と接触させることによって、前記核酸試料中の前記5mCおよび5hmCを5-カルボキシルシトシン(5caC)および/または5-ホルミルシトシン(5fCに変換する工程と、
修飾標的核酸を含む修飾核酸試料を提供するために、前記標的核酸をボラン還元剤で処理することによって前記5caCおよび/または5fCをジヒドロウラシル(DHU)に変換する工程と、を含む、修飾する工程、および
前記修飾標的核酸の配列を検出する工程、
を含み、
前記標的核酸と比較した前記修飾標的核酸の配列におけるシトシン(C)のチミン(T)への移行またはシトシン(C)のDHUへの移行が、前記標的核酸中の5mCまたは5hmCのいずれかの位置を提供する、方法。
A method for identifying 5-methylcytosine ( 5 mC ) or 5-hydroxymethylcytosine ( 5 hmC ) in a target nucleic acid, wherein the method is described as described above.
The step of providing a nucleic acid sample containing the target nucleic acid,
The step of modifying the target nucleic acid, wherein the modifying step is
By contacting the nucleic acid sample with ten-eleven translocation (TET) enzyme so that one or more 5caC or 5fC residues are produced, the 5mC and 5hmC in the nucleic acid sample are 5-carboxylcytosine (5caC). And / or the process of converting to 5-formylcytosine ( 5fC ) , and
A step of converting the 5caC and / or 5fC to dihydrouracil (DHU) by treating the target nucleic acid with a borane reducing agent to provide a modified nucleic acid sample comprising the modified target nucleic acid. , And the step of detecting the sequence of the modified target nucleic acid,
Including
The transfer of cytosine (C) to thymine (T) or the transfer of cytosine (C) to DHU in the sequence of the modified target nucleic acid compared to the target nucleic acid is either 5 mC or 5 hmC in the target nucleic acid. How to provide that position.
前記ボラン還元剤が、2-ピコリンボランである、請求項1に記載の方法。 The method according to claim 1, wherein the borane reducing agent is 2-picoline borane. 前記修飾標的核酸の配列を検出する前記工程が、鎖終結配列決定、マイクロアレイ、高処理量配列決定、および制限酵素分析のうちの一つ以上を含む、請求項1に記載の方法。 The method of claim 1, wherein the step of detecting the sequence of the modified target nucleic acid comprises one or more of chain termination sequencing, microarray, high throughput sequencing, and restriction enzyme analysis. 前記TET酵素が、ヒトTET1、TET2、及びTET3、マウスTet1、Tet2、及びTet3、ネグレリアTET(NgTET)、およびウシグソヒトヨタケ(CcTET)からなる群から選択される、請求項1に記載の方法。 The method of claim 1, wherein the TET enzyme is selected from the group consisting of human TET1, TET2, and TET3, mouse Tet1, Tet2, and Tet3, Naegleria TET (NgTET), and Bovine Coprinus comatus (CcTET). 一つ以上の修飾シトシンをブロッキングする工程をさらに含む、請求項1に記載の方法。 The method of claim 1, further comprising blocking one or more modified cytosines. 前記ブロッキングする工程が、5hmCに糖を加えることを含む、請求項5に記載の方法。 The method of claim 5, wherein the blocking step comprises adding sugar to 5 hmC. 前記方法が、一つ以上の核酸配列のコピー数を増幅する工程をさらに含む、請求項1に記載の方法。 The method of claim 1, wherein the method further comprises a step of amplifying the number of copies of one or more nucleic acid sequences. 核酸試料を化学修飾するための方法であって、前記方法が、 A method for chemically modifying a nucleic acid sample, wherein the method is:
5-カルボキシルシトシン(5caC)および/または5-ホルミルシトシン(5fC)を含む核酸試料を提供する工程、および A step of providing a nucleic acid sample containing 5-carboxylcytosine (5caC) and / or 5-formylcytosine (5fC), and
修飾核酸を含む修飾核酸試料を提供するために、前記核酸をボラン還元剤で処理することによって前記5caCおよび/または5fCをジヒドロウラシル(DHU)に変換する工程 A step of converting the 5caC and / or 5fC to dihydrouracil (DHU) by treating the nucleic acid with a borane reducing agent to provide a modified nucleic acid sample containing the modified nucleic acid.
を含む、方法。Including, how.
前記ボラン還元剤が、2-ピコリンボラン(pic-BH The borane reducing agent is 2-picicoline borane (pic-BH). 3 )、ボラン、水素化ホウ素ナトリウム、シアノホウ水素化ナトリウム、およびナトリウムトリアセトキシボロヒドリドからなる群から選択される、請求項8に記載の方法。), Borane, sodium borohydride, sodium cyanoborohydride, and sodium triacetoxyborohydride, according to claim 8. 前記ボラン還元剤が、2-ピコリンボランである、請求項8に記載の方法。 The method according to claim 8, wherein the borane reducing agent is 2-picoline borane. 前記修飾核酸の配列を検出する工程をさらに含む、請求項8に記載の方法。 The method of claim 8, further comprising the step of detecting the sequence of the modified nucleic acid. 前記修飾核酸の配列を検出する前記工程が、鎖終結配列決定、マイクロアレイ、高処理量配列決定、および制限酵素分析のうちの一つ以上を含む、請求項11に記載の方法。 11. The method of claim 11, wherein the step of detecting the sequence of the modified nucleic acid comprises one or more of chain termination sequencing, microarray, high throughput sequencing, and restriction enzyme analysis. 前記配列決定する工程が、前記核酸試料における一つ以上のシトシン修飾の定量レベルを提供する、請求項11に記載の方法。 11. The method of claim 11, wherein the sequencing step provides a quantitative level of one or more cytosine modifications in the nucleic acid sample. 前記方法が、一つ以上の核酸配列のコピー数を増幅する工程をさらに含む、請求項11に記載の方法。 11. The method of claim 11, wherein the method further comprises the step of amplifying the number of copies of one or more nucleic acid sequences.


JP2020537593A 2018-01-08 2019-01-08 Cytosine-modified, bisulfite-free, base resolution specific Active JP7136899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022139122A JP7539948B2 (en) 2018-01-08 2022-09-01 Bisulfite-free, base-resolution identification of cytosine modifications

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201862614798P 2018-01-08 2018-01-08
US62/614,798 2018-01-08
US201862660523P 2018-04-20 2018-04-20
US62/660,523 2018-04-20
US201862771409P 2018-11-26 2018-11-26
US62/771,409 2018-11-26
PCT/US2019/012627 WO2019136413A1 (en) 2018-01-08 2019-01-08 Bisulfite-free, base-resolution identification of cytosine modifications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022139122A Division JP7539948B2 (en) 2018-01-08 2022-09-01 Bisulfite-free, base-resolution identification of cytosine modifications

Publications (3)

Publication Number Publication Date
JP2021509587A JP2021509587A (en) 2021-04-01
JPWO2019136413A5 true JPWO2019136413A5 (en) 2022-04-08
JP7136899B2 JP7136899B2 (en) 2022-09-13

Family

ID=67143801

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020537593A Active JP7136899B2 (en) 2018-01-08 2019-01-08 Cytosine-modified, bisulfite-free, base resolution specific
JP2022139122A Active JP7539948B2 (en) 2018-01-08 2022-09-01 Bisulfite-free, base-resolution identification of cytosine modifications

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022139122A Active JP7539948B2 (en) 2018-01-08 2022-09-01 Bisulfite-free, base-resolution identification of cytosine modifications

Country Status (15)

Country Link
US (4) US12071660B2 (en)
EP (1) EP3737748A4 (en)
JP (2) JP7136899B2 (en)
KR (2) KR20230030037A (en)
CN (2) CN111971386A (en)
AU (2) AU2019205416B2 (en)
BR (1) BR112020013718A2 (en)
CA (1) CA3087915A1 (en)
IL (2) IL275850B2 (en)
MA (1) MA51633A (en)
MX (2) MX2020007259A (en)
NZ (1) NZ765943A (en)
SG (1) SG11202006511YA (en)
WO (1) WO2019136413A1 (en)
ZA (1) ZA202004769B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3087915A1 (en) 2018-01-08 2019-07-11 Ludwig Institute For Cancer Research Ltd Bisulfite-free, base-resolution identification of cytosine modifications
CA3091335A1 (en) 2018-02-14 2019-08-22 Bluestar Genomics, Inc. Methods for the epigenetic analysis of dna, particularly cell-free dna
WO2020160414A1 (en) 2019-01-31 2020-08-06 Guardant Health, Inc. Compositions and methods for isolating cell-free dna
KR20220015367A (en) * 2019-05-31 2022-02-08 프리놈 홀딩스, 인크. Methods and Systems for Deep Sequencing of Methylated Nucleic Acids
BR112022000361A2 (en) * 2019-07-08 2022-05-10 Ludwig Inst For Cancer Res Ltd Bisulfite-free whole genome methylation analysis
CN110669824A (en) * 2019-10-11 2020-01-10 广州迈森致远基因科技有限公司 Kit and method for methylation library construction of low-initial-amount plasma free DNA
CN110820050A (en) * 2019-11-22 2020-02-21 北京吉因加科技有限公司 Whole genome methylation non-bisulfite sequencing library and construction
WO2021161192A1 (en) 2020-02-11 2021-08-19 The Chancellor, Masters And Scholars Of The University Of Oxford Targeted, long-read nucleic acid sequencing for the determination of cytosine modifications
CN113373207A (en) * 2020-02-25 2021-09-10 深圳华大基因科技服务有限公司 Methods for determining cytosine modifications
US11946044B2 (en) 2020-07-30 2024-04-02 Guardant Health, Inc. Methods for isolating cell-free DNA
KR20230083269A (en) 2020-07-30 2023-06-09 캠브리지 에피제네틱스 리미티드 Compositions and methods for nucleic acid analysis
WO2022040306A1 (en) 2020-08-19 2022-02-24 Mayo Foundation For Medical Education And Research Detecting non-hodgkin lymphoma
US20230357833A1 (en) 2020-09-14 2023-11-09 Ludwig Institute For Cancer Research Ltd Cytosine modification analysis
EP4232599A1 (en) * 2020-10-23 2023-08-30 Guardant Health, Inc. Compositions and methods for analyzing dna using partitioning and base conversion
GB202017653D0 (en) 2020-11-09 2020-12-23 Cambridge Entpr Ltd Methods for detection of nucleotide modification
KR20230150814A (en) 2021-01-29 2023-10-31 메이오 파운데이션 포 메디칼 에쥬케이션 앤드 리써치 Detection of presence or absence of various types of cancer
JP2024506899A (en) 2021-02-09 2024-02-15 エフ. ホフマン-ラ ロシュ アーゲー Method for base level detection of methylation in nucleic acids
GB202109469D0 (en) 2021-06-30 2021-08-11 Cambridge Entpr Ltd Methods for detecting modified nucleotides
CA3226747A1 (en) * 2021-07-27 2023-02-02 Chunxiao Song Compositions and methods related to tet-assisted pyridine borane sequencing for cell-free dna
CN113846160B (en) * 2021-09-14 2024-08-20 翌圣生物科技(上海)股份有限公司 Forward screening cytosine methylation rapid detection method and application of peroxytungstate in oxidizing 5hmC into thT
CN114085894A (en) * 2021-11-03 2022-02-25 翌圣生物科技(上海)股份有限公司 Method for converting nucleic acid methylated cytosine
CN118202065A (en) * 2021-11-15 2024-06-14 深圳华大智造科技股份有限公司 Method for detecting DNA methylation modification in whole genome range
WO2023129965A2 (en) * 2021-12-29 2023-07-06 Foundation Medicine, Inc. Detection of genetic and epigenetic information in a single workflow
CN114045345B (en) * 2022-01-07 2022-04-29 臻和(北京)生物科技有限公司 Free DNA-based genome canceration information detection system and detection method
EP4341425A2 (en) * 2022-03-15 2024-03-27 Illumina, Inc. Concurrent sequencing of forward and reverse complement strands on concatenated polynucleotides for methylation detection
WO2023183841A2 (en) * 2022-03-23 2023-09-28 Exact Sciences Corporation Compositions and methods for tet-assisted oxidation of methylated nucleotide bases
WO2023187012A1 (en) 2022-03-31 2023-10-05 Illumina Cambridge Limited Compositions including aqueous amine borane complexes and polynucleotides, and methods of using the same to detect methylcytosine or hydroxymethylcytosine
WO2024042217A1 (en) 2022-08-25 2024-02-29 Illumina, Inc. Methods of modifying methylcytosine or derivative thereof using a nucleophilic molecule, and methods of using the same to detect the methylcytosine or derivative thereof in a polynucleotide
WO2024073043A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Methods of using cpg binding proteins in mapping modified cytosine nucleotides
WO2024163669A1 (en) 2023-02-01 2024-08-08 Illumina, Inc. Methods of modifying methylcytosine or derivative thereof using a photoredox reaction, and methods of using the same to detect the methylcytosine or derivative thereof in a polynucleotide
WO2024164173A1 (en) * 2023-02-08 2024-08-15 Peking University 5-hydroxymethylcytosine sequencing
CN116287166A (en) * 2023-04-19 2023-06-23 纳昂达(南京)生物科技有限公司 Methylation sequencing joint and application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582420B2 (en) 2001-07-12 2009-09-01 Illumina, Inc. Multiplex nucleic acid reactions
WO2010037001A2 (en) * 2008-09-26 2010-04-01 Immune Disease Institute, Inc. Selective oxidation of 5-methylcytosine by tet-family proteins
WO2011127136A1 (en) 2010-04-06 2011-10-13 University Of Chicago Composition and methods related to modification of 5-hydroxymethylcytosine (5-hmc)
EP2694686B2 (en) 2011-04-06 2023-07-19 The University of Chicago COMPOSITION AND METHODS RELATED TO MODIFICATION OF 5-METHYLCYTOSINE (5mC)
US9290807B2 (en) * 2011-07-29 2016-03-22 Cambridge Epigenetix Limited Methods for detection of nucleotide modification
US9200260B2 (en) 2012-03-15 2015-12-01 New England Biolabs, Inc. Compositions and methods for the transfer of a hexosamine to a modified nucleotide in a nucleic acid
WO2013138644A2 (en) * 2012-03-15 2013-09-19 New England Biolabs, Inc. Methods and compositions for discrimination between cytosine and modifications thereof, and for methylome analysis
WO2014165770A1 (en) 2013-04-05 2014-10-09 The University Of Chicago Single-base resolution sequencing of 5-formylcytosine (5fc) and 5-carboxylcytosine (5cac)
US20160194696A1 (en) 2013-08-09 2016-07-07 New England Biolabs, Inc. Detecting, Sequencing and/or Mapping 5-Hydroxymethylcytosine and 5-Formylcytosine at Single-Base Resolution
US20180251815A1 (en) 2015-09-04 2018-09-06 The University Of Tokyo Oxidizing agent for 5-hydroxymethylcytosine and method for analyzing 5-hydroxymethylcytosine
US11162139B2 (en) 2016-03-02 2021-11-02 Shanghai Epican Genetech Co. Ltd. Method for genomic profiling of DNA 5-methylcytosine and 5-hydroxymethylcytosine
RU2742355C2 (en) 2016-04-07 2021-02-05 Те Борд Оф Трастиз Оф Те Лилэнд Стэнфорд Джуниор Юниверсити Non-invasive diagnosis by sequencing of 5-hydroxymethylated cell-free dna
CA3087915A1 (en) * 2018-01-08 2019-07-11 Ludwig Institute For Cancer Research Ltd Bisulfite-free, base-resolution identification of cytosine modifications
CA3091335A1 (en) 2018-02-14 2019-08-22 Bluestar Genomics, Inc. Methods for the epigenetic analysis of dna, particularly cell-free dna

Similar Documents

Publication Publication Date Title
JPWO2019136413A5 (en)
WO2019136413A4 (en) Bisulfite-free, base-resolution identification of cytosine modifications
Plongthongkum et al. Advances in the profiling of DNA modifications: cytosine methylation and beyond
US20180171401A1 (en) Methods for obtaining a sequence
JP4551216B2 (en) Methods for fragmenting, labeling and immobilizing nucleic acids
JP5770085B2 (en) Method for direct amplification from crude nucleic acid samples
US20230088159A1 (en) Compositions and methods for assessing immune response
JPH02231099A (en) Identification of nucleic acid segment based on difference in nucleotide
US11608518B2 (en) Methods for analyzing nucleic acids
JP2021512648A (en) Compositions and Techniques for Nucleic Acid Primer Extension
WO2024076981A2 (en) Tet-assisted pyridine borane sequencing
EP3022321B1 (en) Mirror bisulfite analysis
US20090203540A1 (en) Methods and Systems for Quality Control Metrics in Hybridization Assays
EP4267763A1 (en) Compositions and methods for highly sensitive detection of target sequences in multiplex reactions
US20180187251A1 (en) Methods of reducing density-dependent gc bias in amplification
JP4300321B2 (en) Method for promoting DNA synthesis reaction and composition therefor
US20240287578A1 (en) Concurrent sequencing of forward and reverse complement strands on concatenated polynucleotides for methylation detection
WO2023242075A1 (en) Detection of epigenetic cytosine modification
CA3223669A1 (en) Concurrent sequencing of forward and reverse complement strands on concatenated polynucleotides for methylation detection
Kieser Typing Highly Degraded DNA Using Target Enrichment
WO2021258032A1 (en) Methylated dma fragment enrichment methods, compositions and kits
Tserovski Chemical labeling and next-generation sequencing for detection of RNA-modifications
Liu Dynamic high-resolution mapping of histone tail modifications in Saccharomyces cerevisiae
WO2018136118A1 (en) Genotyping by polymerase binding