JPWO2019117122A1 - Manufacturing method of LAS-based crystallized glass plate and LAS-based crystallized glass plate - Google Patents

Manufacturing method of LAS-based crystallized glass plate and LAS-based crystallized glass plate Download PDF

Info

Publication number
JPWO2019117122A1
JPWO2019117122A1 JP2019559646A JP2019559646A JPWO2019117122A1 JP WO2019117122 A1 JPWO2019117122 A1 JP WO2019117122A1 JP 2019559646 A JP2019559646 A JP 2019559646A JP 2019559646 A JP2019559646 A JP 2019559646A JP WO2019117122 A1 JPWO2019117122 A1 JP WO2019117122A1
Authority
JP
Japan
Prior art keywords
glass plate
las
crystallized glass
based crystallized
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019559646A
Other languages
Japanese (ja)
Inventor
裕基 横田
裕基 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of JPWO2019117122A1 publication Critical patent/JPWO2019117122A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本発明のLAS系結晶化ガラス板の製造方法は、主結晶相としてβ−スポジュメン固溶体を含むLAS系結晶化ガラス板の製造方法において、結晶性ガラス板を用意する工程と、300〜900℃/時間の昇温速度で900℃超となる最高熱処理温度まで結晶性ガラス板を昇温すると共に、平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体を析出させて、LAS系結晶化ガラス板を得る工程と、を有することを特徴とする。The method for producing a LAS-based crystallized glass plate of the present invention is a step for preparing a crystalline glass plate and a step of preparing a crystalline glass plate in the method for producing a LAS-based crystallized glass plate containing a β-spodium solid solution as a main crystal phase, and 300 to 900 ° C./ The temperature of the crystalline glass plate is raised to the maximum heat treatment temperature of more than 900 ° C. at the heating rate of time, and the β-spodium solid solution having an average crystal grain size of 100 to 1000 nm is precipitated to form a LAS-based crystallized glass plate. It is characterized by having a step of obtaining.

Description

本発明は、LiO−Al−SiO系(以下、LAS系)結晶化ガラス板の製造方法及びLAS系結晶化ガラス板に関する。The present invention relates to a method for producing a Li 2 O-Al 2 O 3- SiO 2 system (hereinafter referred to as LAS system) crystallized glass plate and a LAS system crystallized glass plate.

家庭用や業務用の調理器として、ガスコンロを採用したガス調理器だけでなく、ラジエントヒーターやハロゲンヒーターを採用した赤外線加熱調理器、電磁加熱調理器が使用されている。電磁加熱調理器に用いられるトッププレートには、高熱効率、安全性、熱衝撃性が要求されるため、電磁誘導加熱量が少なく、熱膨張係数が低い結晶化ガラス板が使用されている。 Not only gas cookers that use a gas stove, but also infrared cookers and electromagnetic cookers that use radiant heaters and halogen heaters are used as cookers for home and business use. Since high thermal efficiency, safety, and thermal shock resistance are required for the top plate used in the electromagnetic heating cooker, a crystallized glass plate having a small amount of electromagnetic induction heating and a low coefficient of thermal expansion is used.

ところで、トッププレートの役割は、加熱装置に対して、水、調味料、食品等が飛散する事態を防止することに加えて、加熱装置、配線等の調理器の内部構造を隠蔽して美観を高めることである。 By the way, the role of the top plate is to prevent water, seasonings, food, etc. from scattering to the heating device, and to conceal the internal structure of the cooking device such as the heating device, wiring, etc. To increase.

トッププレートとして結晶化ガラス板を用いる場合、調理器の内部構造を隠蔽する方法として、主に2つの方法がある。第1の方法は、低膨張結晶化ガラス板自体を不透明又は半透明にする方法である。例えば、特許文献1には、着色剤によって濃色に着色された低膨張結晶化ガラスが開示されており、また特許文献2には、透明から不透明までの範囲の可視光線透過特性を有する低膨張結晶化ガラス板が開示されている。第2の方法は、透明な低膨張結晶化ガラス板の表面に印刷法を用いて装飾膜を形成し、この装飾膜によって調理器の内部構造を隠蔽する方法である。例えば、特許文献3には、裏面(調理面の反対側の面)に、貴金属と卑金属からなるラスター彩の装飾膜を設けた結晶化ガラス板が記載されている。 When a crystallized glass plate is used as the top plate, there are mainly two methods for concealing the internal structure of the cooker. The first method is a method of making the low-expansion crystallized glass plate itself opaque or translucent. For example, Patent Document 1 discloses low-expansion crystallized glass colored darkly by a colorant, and Patent Document 2 discloses low-expansion glass having visible light transmission characteristics in the range from transparent to opaque. A crystallized glass plate is disclosed. The second method is a method in which a decorative film is formed on the surface of a transparent low-expansion crystallized glass plate by a printing method, and the internal structure of the cooker is concealed by the decorative film. For example, Patent Document 3 describes a crystallized glass plate provided with a raster-colored decorative film made of a precious metal and a base metal on the back surface (the surface opposite to the cooking surface).

しかし、特許文献1に記載の結晶化ガラス板は、色調が濃いため、印加される電力量等を表示するインジケータの光を透過し難いという問題がある。すなわち特許文献1に記載の結晶化ガラス板を電磁加熱調理器のトッププレートに用いる場合、インジケータをトッププレートの裏面側に設けると、調理面側からは赤色のインジケータの光がかろうじて見えるだけになり、インジケータが赤色以外の色を発光しても、トッププレートが赤色以外の光(例えば青色や黄色)を全く透過しないために、そのような色の光を調理面側に表示することができない。そして、インジケータが赤色以外の色を発光する場合、その色の光を調理面側に表示させるためには、トッププレートの所定箇所に孔を開ける必要があり、その結果、トッププレートに欠けや割れが生じ易くなるという問題が生じる。更に、調理器用トッププレートの商品価値を高める要素の一つとして、外観意匠性が重視されつつあり、以前は濃色が主流であったが、最近は明るい色合いのものが好まれつつある。しかし、特許文献1の結晶化ガラス板は、色調が濃いため、消費者の最近の趣向に十分に応えることができない。 However, since the crystallized glass plate described in Patent Document 1 has a dark color tone, there is a problem that it is difficult to transmit the light of an indicator that displays the amount of applied power or the like. That is, when the crystallized glass plate described in Patent Document 1 is used for the top plate of the electromagnetic heating cooker, if the indicator is provided on the back surface side of the top plate, the light of the red indicator is barely visible from the cooking surface side. Even if the indicator emits a color other than red, the light of such a color cannot be displayed on the cooking surface side because the top plate does not transmit light other than red (for example, blue or yellow) at all. When the indicator emits a color other than red, it is necessary to make a hole at a predetermined position on the top plate in order to display the light of that color on the cooking surface side, and as a result, the top plate is chipped or cracked. Is likely to occur. Furthermore, as one of the factors that enhance the commercial value of the top plate for cookers, the appearance design is being emphasized. In the past, dark colors were the mainstream, but recently, bright colors are being preferred. However, since the crystallized glass plate of Patent Document 1 has a dark color tone, it cannot sufficiently meet the recent tastes of consumers.

また、特許文献2に記載の結晶化ガラス板は、ガラス中に亜鉛尖晶石を析出させるため、ZnOを2〜5質量%含有しているが、このようにZnOを多量に含有させると、熱処理時に異種結晶が析出し易くなる。その結果、半透明の色調を得ようとする場合に、色調が微妙に変化し易く、安定生産が困難になるという問題が生じる。 Further, the crystallized glass plate described in Patent Document 2 contains 2 to 5% by mass of ZnO in order to precipitate zinc oxide stones in the glass. However, when a large amount of ZnO is contained in this way, Dissimilar crystals are likely to precipitate during heat treatment. As a result, when trying to obtain a translucent color tone, there arises a problem that the color tone tends to change subtly, which makes stable production difficult.

更に、特許文献3に記載の結晶化ガラス板は、装飾膜の色調や光沢がそのままトッププレートの外観に反映されるため、トッププレートが目立ち過ぎてしまい、キッチン全体と調和せず、美観が損なわれることがある。また装飾膜の光沢が強過ぎると、照明等の光が反射して、調理する人が眩しく調理し難いという問題もある。 Further, in the crystallized glass plate described in Patent Document 3, since the color tone and gloss of the decorative film are directly reflected in the appearance of the top plate, the top plate becomes too conspicuous, does not harmonize with the entire kitchen, and spoils the aesthetic appearance. May occur. Further, if the gloss of the decorative film is too strong, light such as lighting is reflected, and there is a problem that the cook is dazzling and difficult to cook.

特公平3−9056号公報Special Fair 3-9056 Gazette 特開平5−213629号公報Japanese Unexamined Patent Publication No. 5-213629 特公平7−17409号公報Special Fair 7-17409 Gazette 特表2001−501168号公報Special Table 2001-501168 Gazette 特許第4315075号公報Japanese Patent No. 4315075

このような事情から、特許文献4には、新しい外観と光学特性を有するトッププレートが開示されており、このトッププレートは、LAS系結晶化ガラス板からなり、50%以上の曇り度を呈し、結晶粒径が小さいβ−スポジュメン固溶体を含んでいる。しかし、結晶粒径が小さい結晶化ガラス板は、可視光が散乱し難く、透明性が高いため、色調が非常に薄く、調理器の内部構造を隠蔽し難い。 Under these circumstances, Patent Document 4 discloses a top plate having a new appearance and optical characteristics. The top plate is made of a LAS-based crystallized glass plate and exhibits a cloudiness of 50% or more. It contains a β-spodium solid solution with a small crystal grain size. However, a crystallized glass plate having a small crystal grain size does not easily scatter visible light and has high transparency, so that the color tone is very light and it is difficult to hide the internal structure of the cooker.

また、特許文献5には、平均結晶粒径100〜1000nmのβ−スポジュメン固溶体が析出し、半透明のLAS系結晶化ガラス板が開示されている。この結晶化ガラス板は、明るい色合いを有しながら、目立ち過ぎないため、各種インジケータの光を表示することが可能である。しかし、この結晶化ガラス板は、長時間の結晶化工程(少なくとも8時間の熱処理工程)を経ているため、製造コストが高騰してしまうという問題がある。 Further, Patent Document 5 discloses a translucent LAS-based crystallized glass plate in which a β-spodium solid solution having an average crystal grain size of 100 to 1000 nm is precipitated. Since this crystallized glass plate has a bright color and is not too conspicuous, it is possible to display the light of various indicators. However, since this crystallized glass plate has undergone a long crystallization step (a heat treatment step of at least 8 hours), there is a problem that the manufacturing cost rises.

本発明は、このような事情に鑑みなされたものであり、その技術的課題は、明るい色合いで調理器の内部構造を隠蔽し得ると共に、裏側に装飾膜が形成された場合でも、装飾膜が目立ち過ぎないLAS系結晶化ガラス板を効率良く生産する方法及びLAS系結晶化ガラス板を創案することである。 The present invention has been made in view of such circumstances, and the technical problem thereof is that the internal structure of the cooker can be concealed with a bright color, and even when the decorative film is formed on the back side, the decorative film can be formed. It is to devise a method for efficiently producing a LAS-based crystallized glass plate that is not too conspicuous and a LAS-based crystallized glass plate.

本発明者が鋭意検討した結果、結晶性ガラス板の熱処理条件を厳密に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のLAS系結晶化ガラス板の製造方法は、主結晶相としてβ−スポジュメン固溶体を含むLAS系結晶化ガラス板の製造方法において、結晶性ガラス板を用意する工程と、300〜900℃/時間の昇温速度で900℃超となる最高熱処理温度まで結晶性ガラス板を昇温すると共に、平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体を析出させて、LAS系結晶化ガラス板を得る工程と、を有することを特徴とする。 As a result of diligent studies by the present inventor, it has been found that the above technical problems can be solved by strictly regulating the heat treatment conditions of the crystalline glass plate, and the present invention is proposed. That is, the method for producing a LAS-based crystallized glass plate of the present invention is a step for preparing a crystalline glass plate and 300 to 900 in the method for producing a LAS-based crystallized glass plate containing a β-spojumen solid solution as a main crystal phase. The crystalline glass plate is heated to a maximum heat treatment temperature of more than 900 ° C. at a temperature rising rate of ° C./hour, and a β-spodium solid solution having an average crystal grain size of 100 to 1000 nm is precipitated to form LAS-based crystallization. It is characterized by having a step of obtaining a glass plate.

本発明のLAS系結晶化ガラス板の製造方法は、300〜900℃/時間の昇温速度で900℃超となる最高熱処理温度まで結晶性ガラス板を昇温すると共に、平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体を析出させて、LAS系結晶化ガラス板を得る工程を有する。このようにすれば、明るい色合いを有し、また裏側に装飾膜が形成された場合に、装飾膜が目立ち過ぎないLAS系結晶化ガラス板を効率良く生産することができる。つまりオパール調で半透明の外観を有する結晶化ガラス板を短時間で作製することができる。 In the method for producing a LAS-based crystallized glass plate of the present invention, the crystalline glass plate is heated to a maximum heat treatment temperature of over 900 ° C. at a heating rate of 300 to 900 ° C./hour, and the average crystal grain size is 100. It has a step of precipitating a β-spodium solid solution having a diameter of about 1000 nm to obtain a LAS-based crystallized glass plate. By doing so, it is possible to efficiently produce a LAS-based crystallized glass plate having a bright color and in which the decorative film is not too conspicuous when the decorative film is formed on the back side. That is, a crystallized glass plate having an opal-like and translucent appearance can be produced in a short time.

また、本発明のLAS系結晶化ガラス板の製造方法は、(最高熱処理温度±10℃)における保持時間が60分間未満であることが好ましい。このようにすれば、結晶化ガラス板の生産性を高めることができる。 Further, in the method for producing a LAS-based crystallized glass plate of the present invention, the holding time at (maximum heat treatment temperature ± 10 ° C.) is preferably less than 60 minutes. In this way, the productivity of the crystallized glass plate can be increased.

また、本発明のLAS系結晶化ガラス板の製造方法は、平均結晶粒径が150〜900nmとなるβ−スポジュメン固溶体を析出させることが好ましい。 Further, in the method for producing a LAS-based crystallized glass plate of the present invention, it is preferable to precipitate a β-spodium solid solution having an average crystal grain size of 150 to 900 nm.

また、本発明のLAS系結晶化ガラス板の製造方法は、板厚3.0mm換算で、JIS Z8729に準拠したL表示系の明度値Lが30〜80となるLAS系結晶化ガラス板を得ることが好ましい。このようにすれば、美観に優れたオパール調の外観を得易くなる。Further, the method for producing a LAS-based crystallized glass plate of the present invention is a LAS-based method in which the brightness value L * of the L * a * b * display system conforming to JIS Z8729 is 30 to 80 in terms of plate thickness of 3.0 mm. It is preferable to obtain a crystallized glass plate. In this way, it becomes easy to obtain an opal-like appearance having an excellent appearance.

また、本発明のLAS系結晶化ガラス板の製造方法は、板厚3.0mm換算で、波長400〜800nmにおける平均透過率が10〜50%になるLAS系結晶化ガラス板を得ることが好ましい。このようにすれば、トッププレートを透過する光量を適正化し易くなる。 Further, in the method for producing a LAS-based crystallized glass plate of the present invention, it is preferable to obtain a LAS-based crystallized glass plate having an average transmittance of 10 to 50% at a wavelength of 400 to 800 nm in terms of a plate thickness of 3.0 mm. .. By doing so, it becomes easy to optimize the amount of light transmitted through the top plate.

また、本発明のLAS系結晶化ガラス板の製造方法は、板厚3.0mm換算で、波長800〜1500nmにおける平均透過率が50%以上になるLAS系結晶化ガラス板を得ることが好ましい。このようすれば、調理時に熱線を透過し易くなる Further, in the method for producing a LAS-based crystallized glass plate of the present invention, it is preferable to obtain a LAS-based crystallized glass plate having an average transmittance of 50% or more at a wavelength of 800 to 1500 nm in terms of a plate thickness of 3.0 mm. This makes it easier for heat rays to pass through during cooking.

また、本発明のLAS系結晶化ガラス板の製造方法は、30〜750℃における平均線熱膨張係数が−10×10−7〜+30×10−7/℃になるLAS系結晶化ガラス板を得ることが好ましい。このようすれば、トッププレート内部に大きな温度分布が生じた時でも、結晶化ガラス板が破損し難くなる。結果として、調理器用トッププレートに適用し易くなる。Further, in the method for producing a LAS-based crystallized glass plate of the present invention, a LAS-based crystallized glass plate having an average coefficient of linear thermal expansion at 30 to 750 ° C. of −10 × 10-7 to +30 × 10-7 / ° C. is used. It is preferable to obtain. In this way, the crystallized glass plate is less likely to be damaged even when a large temperature distribution is generated inside the top plate. As a result, it becomes easy to apply to the top plate for cookers.

また、本発明のLAS系結晶化ガラス板の製造方法は、LAS系結晶化ガラス板中のZnOの含有量が2質量%未満であることが好ましい。このようにすれば、熱処理時に異種結晶が析出し難くなる。 Further, in the method for producing a LAS-based crystallized glass plate of the present invention, it is preferable that the ZnO content in the LAS-based crystallized glass plate is less than 2% by mass. In this way, dissimilar crystals are less likely to precipitate during the heat treatment.

また、本発明のLAS系結晶化ガラス板の製造方法は、LAS系結晶化ガラス板が、組成として、質量%で、SiO 55〜75%、Al 15〜30%、LiO 2〜6%、MgO 0〜3%、BaO 0〜5%、ZnO 0〜2%未満、TiO 1〜6%、ZrO 0〜4%、P 0〜5%、NaO 0〜4%、KO 0〜4%を含有することが好ましい。Further, in the method for producing a LAS-based crystallized glass plate of the present invention, the LAS-based crystallized glass plate has a composition of SiO 2 55 to 75%, Al 2 O 3 15 to 30%, Li 2 O in mass%. 2~6%, 0~3% MgO, BaO 0~5%, ZnO less than 0~2%, TiO 2 1~6%, ZrO 2 0~4%, P 2 O 5 0~5%, Na 2 O It preferably contains 0 to 4% and K 2 O 0 to 4%.

また、本発明のLAS系結晶化ガラス板の製造方法は、LAS系結晶化ガラス板を調理器用トッププレートに用いることが好ましい。 Further, in the method for producing a LAS-based crystallized glass plate of the present invention, it is preferable to use the LAS-based crystallized glass plate as a top plate for a cooker.

本発明のLAS系結晶化ガラス板は、平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体が析出したLAS系結晶化ガラス板であって、板厚3.0mm換算で、JIS Z8729に準拠したL表示系の明度値Lが30〜80であることを特徴とする。The LAS-based crystallized glass plate of the present invention is a LAS-based crystallized glass plate in which a β-spodium solid solution having an average crystal grain size of 100 to 1000 nm is precipitated, and conforms to JIS Z8729 in terms of plate thickness of 3.0 mm. It is characterized in that the brightness value L * of the L * a * b * display system is 30 to 80.

また、本発明のLAS系結晶化ガラス板は、板厚3.0mm換算で、波長400〜800nmにおける平均透過率が10〜50%であることが好ましい。 Further, the LAS-based crystallized glass plate of the present invention preferably has an average transmittance of 10 to 50% at a wavelength of 400 to 800 nm in terms of a plate thickness of 3.0 mm.

また、本発明のLAS系結晶化ガラス板は、板厚3.0mm換算で、波長800〜1500nmにおける平均透過率が50%以上であることが好ましい。 Further, the LAS-based crystallized glass plate of the present invention preferably has an average transmittance of 50% or more at a wavelength of 800 to 1500 nm in terms of a plate thickness of 3.0 mm.

また、本発明のLAS系結晶化ガラス板は、30〜750℃における平均線熱膨張係数が−10×10−7〜+30×10−7/℃であことが好ましい。Further, the LAS-based crystallized glass plate of the present invention preferably has an average linear thermal expansion coefficient of −10 × 10 −7 to + 30 × 10 −7 / ° C. at 30 to 750 ° C.

また、本発明のLAS系結晶化ガラス板は、組成として、質量%で、SiO 55〜75%、Al 15〜30%、LiO 2〜6%、MgO 0〜3%、BaO 0〜5%、ZnO 0〜2%未満、TiO 1〜6%、ZrO 0〜4%、P 0〜5%、NaO 0〜4%、KO 0〜4%を含有することが好ましい。The LAS-based crystallized glass plate of the present invention has a composition of SiO 2 55 to 75%, Al 2 O 3 15 to 30%, Li 2 O 2 to 6%, MgO 0 to 3%, by mass%. BaO 0 to 5%, ZnO less than 0~2%, TiO 2 1~6%, ZrO 2 0~4%, P 2 O 5 0~5%, Na 2 O 0~4%, K 2 O 0~4 It is preferable to contain%.

また、本発明のLAS系結晶化ガラス板は、組成として、質量%で、SiO 60〜70%、Al 20超〜30%、LiO 3〜5%、MgO 0〜1%、BaO 1〜2%、ZnO 0〜0.4%未満、TiO 1〜4%、ZrO 2〜3%、P 0〜2%、NaO 0〜4%、KO 0〜4%を含有することが好ましい。Further, the LAS-based crystallized glass plate of the present invention has a composition of SiO 2 60 to 70%, Al 2 O 3 over 20 to 30%, Li 2 O 3 to 5%, MgO 0 to 1% in mass%. , BaO 1~2%, ZnO less than 0~0.4%, TiO 2 1~4%, ZrO 2 2~3%, P 2 O 5 0~2%, Na 2 O 0~4%, K 2 O It preferably contains 0 to 4%.

本発明のLAS系結晶化ガラス板の製造方法は、結晶性ガラス板を用意する工程を有する。結晶性ガラス板は、公知の方法で作製することが可能である。例えば、所定の組成になるようにガラス原料を調合し、得られたガラスバッチを1550〜1750℃の温度で溶融した後、板状に成形することにより、結晶性ガラス板を作製することができる。なお、成形方法として、フロート法、ロールアウト法、プレス法等があるが、結晶性ガラス板の表面平滑性を高めたい場合は、フロート法が好ましく、大型の結晶性ガラス板を作製したい場合は、ロールアウト法が好ましく、成形時の失透を抑制したい場合は、プレス法が好ましい。 The method for producing a LAS-based crystallized glass plate of the present invention includes a step of preparing a crystalline glass plate. The crystalline glass plate can be produced by a known method. For example, a crystalline glass plate can be produced by blending glass raw materials so as to have a predetermined composition, melting the obtained glass batch at a temperature of 1550 to 1750 ° C., and then molding the glass into a plate shape. .. The molding method includes a float method, a rollout method, a press method, etc. However, if the surface smoothness of the crystalline glass plate is to be improved, the float method is preferable, and if a large crystalline glass plate is to be produced, the float method is preferable. , The roll-out method is preferable, and the press method is preferable when it is desired to suppress devitrification during molding.

本発明のLAS系結晶化ガラス板の製造方法は、900℃超(好ましくは1000〜1230℃)となる最高熱処理温度まで結晶性ガラス板を昇温することを特徴とする。最高熱処理温度が低過ぎると、β−石英固溶体が析出し易くなるため、透明性が高くなり、オパール調で半透明の外観を得難くなる。 The method for producing a LAS-based crystallized glass plate of the present invention is characterized in that the temperature of the crystalline glass plate is raised to a maximum heat treatment temperature of over 900 ° C. (preferably 1000 to 1230 ° C.). If the maximum heat treatment temperature is too low, the β-quartz solid solution tends to precipitate, so that the transparency becomes high and it becomes difficult to obtain an opal-like translucent appearance.

本発明のLAS系結晶化ガラス板の製造方法は、300〜900℃/時間の昇温速度(好ましくは350〜850℃/時間の昇温速度)で結晶性ガラス板を昇温することを特徴とする。昇温速度が低くなると、結晶粒径が粗大化するため、白濁が強くなり過ぎて、不透明になり易い。一方、昇温速度が高くなると、結晶粒径が微細化するため、可視光の散乱効果が低減して、透明性が高くなり、オパール調で半透明の外観を得難くなる。 The method for producing a LAS-based crystallized glass plate of the present invention is characterized in that the temperature of the crystalline glass plate is raised at a heating rate of 300 to 900 ° C./hour (preferably a heating rate of 350 to 850 ° C./hour). And. When the rate of temperature rise is low, the crystal grain size becomes coarse, so that the white turbidity becomes too strong and the crystal grain size tends to become opaque. On the other hand, when the rate of temperature rise is high, the grain size becomes finer, so that the scattering effect of visible light is reduced, the transparency is increased, and it becomes difficult to obtain an opal-like translucent appearance.

本発明のLAS系結晶化ガラス板の製造方法は、(最高熱処理温度±10℃)における保持時間が60分間未満、特に45分間未満であることが好ましい。最高熱処理温度付近での保持時間が長過ぎると、結晶化ガラス板の製造コストが上昇する。また結晶粒径が粗大化するため、白濁が強くなり過ぎて、不透明になり易い。 In the method for producing a LAS-based crystallized glass plate of the present invention, the holding time at (maximum heat treatment temperature ± 10 ° C.) is preferably less than 60 minutes, particularly less than 45 minutes. If the holding time near the maximum heat treatment temperature is too long, the manufacturing cost of the crystallized glass plate increases. Further, since the crystal grain size becomes coarse, the white turbidity becomes too strong and tends to become opaque.

本発明のLAS系結晶化ガラス板の製造方法では、最高熱処理温度に昇温する前に、結晶核を形成させるための核形成工程を設けてもよい。このようにすれば、最高熱処理温度まで昇温する熱処理工程(結晶成長工程)で、平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体を析出させ易くなる。結果として、明るい色合いを有し、また裏側に装飾膜が形成された場合に、装飾膜が目立ち過ぎないLAS系結晶化ガラス板を安定的に生産することができる。核形成工程における熱処理温度は、好ましくは700〜950℃、750〜950℃、特に750〜930℃である。熱処理温度が上記範囲外になると、核形成を適正に行うことが困難になる。また、核形成工程における熱処理時間は、好ましくは7時間以内、5時間以内、特に4時間以内が好ましい。熱処理時間が長過ぎると、LAS系結晶化ガラス板の生産コストが上昇し易くなる。なお、核形成工程では、所定の温度で一度だけ保持してもよいが、平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体を適正に得る観点から、複数回保持することが好ましい。また、核形成工程は、特定の温度に保持することなく、昇温しながら行ってもよい。 In the method for producing a LAS-based crystallized glass plate of the present invention, a nucleation step for forming crystal nuclei may be provided before the temperature is raised to the maximum heat treatment temperature. In this way, in the heat treatment step (crystal growth step) in which the temperature is raised to the maximum heat treatment temperature, a β-spodium solid solution having an average crystal grain size of 100 to 1000 nm can be easily precipitated. As a result, it is possible to stably produce a LAS-based crystallized glass plate having a bright color and in which the decorative film is not too conspicuous when the decorative film is formed on the back side. The heat treatment temperature in the nucleation step is preferably 700 to 950 ° C., 750 to 950 ° C., particularly 750 to 930 ° C. If the heat treatment temperature is out of the above range, it becomes difficult to properly perform nucleation. The heat treatment time in the nucleation step is preferably 7 hours or less, 5 hours or less, and particularly preferably 4 hours or less. If the heat treatment time is too long, the production cost of the LAS-based crystallized glass plate tends to increase. In the nucleation step, it may be held only once at a predetermined temperature, but it is preferable to hold it a plurality of times from the viewpoint of appropriately obtaining a β-spodium solid solution having an average crystal grain size of 100 to 1000 nm. Further, the nucleation step may be performed while raising the temperature without maintaining the temperature at a specific temperature.

本発明のLAS系結晶化ガラス板の製造方法は、平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体を析出させて、LAS系結晶化ガラス板を得ることを特徴とする。平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体を析出させると、明るく柔らかな色合いの上品な外観を得ることができる。更に可視光を適正に散乱させることが可能になり、優れた防眩効果を享受することができる。 The method for producing a LAS-based crystallized glass plate of the present invention is characterized in that a β-spodium solid solution having an average crystal grain size of 100 to 1000 nm is precipitated to obtain a LAS-based crystallized glass plate. When a β-spodium solid solution having an average crystal grain size of 100 to 1000 nm is precipitated, an elegant appearance with a bright and soft color can be obtained. Further, it becomes possible to appropriately scatter visible light, and an excellent antiglare effect can be enjoyed.

β−スポジュメン固溶体の平均粒子径は100〜1000nmであり、好ましくは150〜900nm、より好ましくは200〜900nmである。β−スポジュメン固溶体の平均粒子径が小さ過ぎると、可視光の散乱効果が低減して、透明性が高くなり、オパール調で半透明の外観を得難くなる。一方、β−スポジュメン固溶体の平均粒子径が大き過ぎると、白濁が強くなり過ぎて、不透明になり易い。ここで、「オパール調」とは、一般にオパールに特徴的に示される特異な可視光の散乱を有する外観や色調を意味している。このような外観や色調は、散乱体である粒子が可視光の短波長領域を散乱することで、物体の透過光が黄色みを帯び、散乱光が青みを帯びることで得られるものである。 The average particle size of the β-spodium solid solution is 100 to 1000 nm, preferably 150 to 900 nm, and more preferably 200 to 900 nm. If the average particle size of the β-spojumen solid solution is too small, the effect of scattering visible light is reduced, the transparency is increased, and it becomes difficult to obtain an opal-like translucent appearance. On the other hand, if the average particle size of the β-spojumen solid solution is too large, the white turbidity becomes too strong and it tends to become opaque. Here, the "opal tone" means an appearance or a color tone having a peculiar scattering of visible light, which is generally characteristic of opal. Such appearance and color tone are obtained by scattering the particles, which are scattering bodies, in a short wavelength region of visible light, so that the transmitted light of the object is yellowish and the scattered light is bluish.

本発明に係るLAS系結晶化ガラス板において、板厚3.0mm換算で、JIS Z8729に準拠したL表示系の明度値Lは、好ましくは30〜80、より好ましくは30〜70、更に好ましくは30〜60である。明度値Lが上記範囲外になると、美観に優れたオパール調の外観を得難くなる。In the LAS-based crystallized glass plate according to the present invention, the brightness value L * of the L * a * b * display system conforming to JIS Z8729 is preferably 30 to 80, more preferably 30 in terms of plate thickness of 3.0 mm. It is ~ 70, more preferably 30-60. When the brightness value L * is out of the above range, it becomes difficult to obtain an opal-like appearance with excellent aesthetics.

本発明に係るLAS系結晶化ガラス板において、板厚3.0mm換算で、波長400〜800nmの平均透過率は、好ましくは10〜50%、より好ましくは15〜40%、更に好ましくは18〜30%であり、特に青色や黄色のインジケータの光を透過させたい場合は20%以上が好ましい。波長400〜800nmにおける平均透過率が低過ぎると、トッププレートを透過する光量が減少し過ぎて、オパール調の外観を得難くなる。またトッププレートの裏面側に設けられるインジケータの光を視認し難くなる。一方、波長400〜800nmにおける平均透過率が高過ぎると、光散乱性が低下して、色調が非常に薄くなるため、調理器の内部構造を隠蔽し難くなる。なお、板厚3.0mm換算で、波長400〜800nmにおける平均透過率を上記範囲に規制すると、トッププレートの裏面に光沢の強い装飾膜を形成しても、この装飾膜からの反射光が、トッププレート内部で程良く散乱されるため、鋭い光沢色が緩和されて、柔らかい色合いを有する高級感のある外観を得易くなる。 In the LAS-based crystallized glass plate according to the present invention, the average transmittance at a wavelength of 400 to 800 nm is preferably 10 to 50%, more preferably 15 to 40%, still more preferably 18 to 18 to a thickness of 3.0 mm. It is 30%, and 20% or more is preferable when it is desired to transmit the light of a blue or yellow indicator. If the average transmittance at a wavelength of 400 to 800 nm is too low, the amount of light transmitted through the top plate is too small, and it becomes difficult to obtain an opal-like appearance. In addition, it becomes difficult to visually recognize the light of the indicator provided on the back surface side of the top plate. On the other hand, if the average transmittance at a wavelength of 400 to 800 nm is too high, the light scattering property is lowered and the color tone becomes very light, so that it becomes difficult to hide the internal structure of the cooker. If the average transmittance at a wavelength of 400 to 800 nm is regulated within the above range in terms of plate thickness of 3.0 mm, even if a highly glossy decorative film is formed on the back surface of the top plate, the reflected light from this decorative film will be generated. Since it is scattered moderately inside the top plate, the sharp glossy color is alleviated, and it becomes easy to obtain a high-class appearance having a soft hue.

本発明に係るLAS系結晶化ガラス板において、板厚3.0mm換算で、波長800〜1500nmの平均透過率は、好ましくは50%以上、より好ましくは60%以上、特に好ましくは70〜90%である。波長800〜1500nmの平均透過率が低過ぎると、熱線を透過し難くなるため、被調理物を加熱し難くなる。 In the LAS-based crystallized glass plate according to the present invention, the average transmittance at a wavelength of 800 to 1500 nm is preferably 50% or more, more preferably 60% or more, and particularly preferably 70 to 90% in terms of plate thickness of 3.0 mm. Is. If the average transmittance at a wavelength of 800 to 1500 nm is too low, it becomes difficult to transmit heat rays, and thus it becomes difficult to heat the object to be cooked.

調理器用トッププレートに使用される結晶化ガラス板は、加熱、冷却が繰り返されるため、熱膨張係数が低く、耐熱衝撃性に優れていることが要求される。本発明に係るLAS系結晶化ガラス板において、30〜750℃における平均線熱膨張係数は、好ましくは−10×10−7〜+30×10−7/℃、より好ましくは−10×10−7〜+20×10−7/℃である。30〜750℃における平均線熱膨張係数が上記範囲外になると、トッププレート内部に大きな温度分布が生じた時に、膨張差で割れる虞がある。Since the crystallized glass plate used for the top plate for a cooker is repeatedly heated and cooled, it is required to have a low coefficient of thermal expansion and excellent thermal shock resistance. In the LAS-based crystallized glass plate according to the present invention, the average coefficient of linear thermal expansion at 30 to 750 ° C. is preferably −10 × 10 −7 to + 30 × 10 −7 / ° C., more preferably −10 × 10 −7. ~ + 20 × 10 -7 / ° C. If the average coefficient of linear thermal expansion at 30 to 750 ° C. is out of the above range, it may be divided by the expansion difference when a large temperature distribution occurs inside the top plate.

本発明に係るLAS系結晶化ガラス板において、LAS系結晶化ガラス板の結晶化度は、好ましくは70%以上、より好ましくは80%以上、更に好ましくは85%以上である。結晶化度が低過ぎると、熱膨張係数が上昇して、耐熱衝撃性が低下し易くなる。 In the LAS-based crystallized glass plate according to the present invention, the crystallinity of the LAS-based crystallized glass plate is preferably 70% or more, more preferably 80% or more, still more preferably 85% or more. If the crystallinity is too low, the coefficient of thermal expansion increases and the thermal shock resistance tends to decrease.

本発明に係るLAS系結晶化ガラス板は、組成として、質量%で、SiO 55〜75%、Al 15〜30%、LiO 2〜6%、MgO 0〜3%、BaO 0〜5%、ZnO 0〜2%未満、TiO 1〜6%、ZrO 0〜4%、P 0〜5%、NaO 0〜4%、KO 0〜4%を含有することが好ましい。LAS系結晶化ガラス板の組成を限定した理由は下記の通りである。なお、各成分の含有範囲の説明において、%表示は、質量%を意味する。The LAS-based crystallized glass plate according to the present invention has a composition of SiO 2 55 to 75%, Al 2 O 3 15 to 30%, Li 2 O 2 to 6%, MgO 0 to 3%, BaO in mass%. 0 to 5%, less than 0~2% ZnO, TiO 2 1~6% , ZrO 2 0~4%, P 2 O 5 0~5%, Na 2 O 0~4%, K 2 O 0~4% Is preferably contained. The reason for limiting the composition of the LAS-based crystallized glass plate is as follows. In the description of the content range of each component, the% indication means mass%.

SiOは、ガラスのネットワークフォーマーであると共に、LAS系結晶を構成する成分である。しかし、SiOの含有量が少なくなると、成形や徐冷時にガラスが失透し易くなり、化学的耐久性も低下し易くなる。一方、SiOの含有量が多くなると、ガラスバッチの溶解性が低下し易くなる。よって、SiOの含有量は、好ましくは55〜75%、より好ましくは60〜70%である。SiO 2 is a glass network former and is a component constituting LAS-based crystals. However, when the content of SiO 2 is low, the glass tends to be devitrified during molding or slow cooling, and the chemical durability is also likely to decrease. On the other hand, as the content of SiO 2 increases, the solubility of the glass batch tends to decrease. Therefore, the content of SiO 2 is preferably 55 to 75%, more preferably 60 to 70%.

Alは、LAS系結晶を構成する成分である。しかし、Alの含有量が少なくなると、溶融性が低下し易くなる。一方、Alの含有量が多くなると、成形や徐冷時にガラスが失透し易くなり、化学的耐久性も低下し易くなる。よって、Alの含有量は、好ましくは15〜30%、より好ましくは15〜25%、更に好ましくは20超〜25%である。Al 2 O 3 is a component constituting LAS-based crystals. However, when the content of Al 2 O 3 decreases, the meltability tends to decrease. On the other hand, when the content of Al 2 O 3 is large, the glass tends to be devitrified during molding or slow cooling, and the chemical durability is also likely to decrease. Therefore, the content of Al 2 O 3 is preferably 15 to 30%, more preferably 15 to 25%, and even more preferably more than 20 to 25%.

LiOは、LAS系結晶を構成する成分である。しかし、LiOの含有量が少なくなると、LAS系結晶が析出し難くなる。一方、LiOの含有量が多くなると、化学的耐久性が低下し易くなる。よって、LiOの含有量は、好ましくは2〜6%、より好ましくは3〜5%である。Li 2 O is a component constituting LAS-based crystals. However, when the Li 2 O content is low, LAS-based crystals are less likely to precipitate. On the other hand, as the content of Li 2 O increases, the chemical durability tends to decrease. Therefore, the content of Li 2 O is preferably 2 to 6%, more preferably 3 to 5%.

MgOは、LAS系結晶を析出し易くする成分である。しかし、MgOの含有量が多くなると、熱膨張係数が高くなり過ぎる。よって、MgOの含有量は、好ましくは0〜3%、より好ましくは0〜2%、更に好ましくは0〜1.5%、特に好ましくは0〜1%である。 MgO is a component that facilitates precipitation of LAS-based crystals. However, when the content of MgO increases, the coefficient of thermal expansion becomes too high. Therefore, the content of MgO is preferably 0 to 3%, more preferably 0 to 2%, still more preferably 0 to 1.5%, and particularly preferably 0 to 1%.

BaOは、溶融性を高めると共に、失透ブツの発生を防止する成分である。しかし、BaOの含有量が多くなると、LAS系結晶が析出し難くなる。また熱膨張係数が高くなって、熱的特性が低下し易くなる。よって、BaOの含有量は、好ましくは0〜5%、より好ましくは0〜4%、更に好ましくは0〜3%、特に好ましくは1〜2%である。 BaO is a component that enhances meltability and prevents the occurrence of devitrified lumps. However, when the BaO content increases, it becomes difficult for LAS-based crystals to precipitate. In addition, the coefficient of thermal expansion becomes high, and the thermal characteristics tend to deteriorate. Therefore, the content of BaO is preferably 0 to 5%, more preferably 0 to 4%, still more preferably 0 to 3%, and particularly preferably 1 to 2%.

ZnOは、溶融性を高めると共に、LAS系結晶を析出させ易くする成分である。しかし、ZnOの含有量が多くなると、成形時にガラスが失透し易くなり、徐冷時や結晶化時に異種結晶が析出し易くなる。よって、ZnOの含有量は、好ましくは2%未満、より好ましくは1.5%未満、更に好ましくは1%未満、特に好ましくは0.4%未満である。 ZnO is a component that enhances meltability and facilitates precipitation of LAS-based crystals. However, when the ZnO content is high, the glass tends to be devitrified during molding, and dissimilar crystals are likely to precipitate during slow cooling or crystallization. Therefore, the ZnO content is preferably less than 2%, more preferably less than 1.5%, still more preferably less than 1%, and particularly preferably less than 0.4%.

TiOは、核形成剤として作用する成分である。TiOの含有量が少なくなると、LAS系結晶が粗大になって、化学的耐久性が低下し易くなる。一方、TiOの含有量が多くなると、色調が褐色になって、オパール調の外観を確保し難くなる。よって、TiOの含有量は、好ましくは1〜6%、より好ましくは1〜5%、更に好ましくは1〜4%である。TiO 2 is a component that acts as a nucleating agent. When the content of TiO 2 is low, the LAS-based crystals become coarse and the chemical durability tends to be lowered. On the other hand, when the content of TiO 2 is large, the color tone becomes brown and it becomes difficult to secure an opal-like appearance. Therefore, the content of TiO 2 is preferably 1 to 6%, more preferably 1 to 5%, and even more preferably 1 to 4%.

ZrOは、核形成剤として作用する成分である。ZrOの含有量が多くなると、成形や徐冷時にガラスが失透し易くなる。よって、ZrOの含有量は、好ましくは0〜4%、より好ましくは0〜3%、更に好ましくは1〜3%、特に好ましくは2〜3%である。ZrO 2 is a component that acts as a nucleating agent. When the content of ZrO 2 is large, the glass tends to be devitrified during molding or slow cooling. Therefore, the content of ZrO 2 is preferably 0 to 4%, more preferably 0 to 3%, still more preferably 1 to 3%, and particularly preferably 2 to 3%.

TiOとZrOの合量は、好ましくは2〜6.9%、より好ましくは3〜6.5%、更に好ましくは3.5〜5.5%である。TiOとZrOの合量が少なくなると、LAS系結晶が粗大になって、化学的耐久性が低下し易くなる。一方、TiOとZrOの合量が多くなると、ガラスバッチの溶解性が低下し易くなり、また色調が褐色になって、オパール調の外観を確保し難くなる。The total amount of TiO 2 and ZrO 2 is preferably 2 to 6.9%, more preferably 3 to 6.5%, and even more preferably 3.5 to 5.5%. When the total amount of TiO 2 and ZrO 2 is small, the LAS-based crystals become coarse and the chemical durability tends to decrease. On the other hand, when the total amount of TiO 2 and ZrO 2 is large, the solubility of the glass batch tends to decrease, and the color tone becomes brown, making it difficult to secure an opal-like appearance.

は、ZrOの難溶解性を著しく改善する成分である。Pの含有量が多くなると、ガラスが分相し易くなる。よって、Pの含有量は、好ましくは0〜5%、より好ましくは0〜3%、更に好ましくは0〜2%である。P 2 O 5 is a component that significantly improves the poor solubility of ZrO 2 . As the content of P 2 O 5 increases, the glass becomes easier to separate. Therefore, the content of P 2 O 5 is preferably 0 to 5%, more preferably 0 to 3%, and even more preferably 0 to 2%.

NaOとKOは、ガラスバッチの溶解性を高める成分である。しかし、NaOとKOの含有量が多くなると、化学的耐久性が大幅に低下する虞がある。また結晶性が低下したり、熱膨張係数が高くなり過ぎる。よって、NaOとKOの含有量は、それぞれ0〜4%、特に0〜3%が好ましい。Na 2 O and K 2 O are components that enhance the solubility of glass batches. However, if the contents of Na 2 O and K 2 O are high, the chemical durability may be significantly reduced. In addition, the crystallinity is lowered and the coefficient of thermal expansion becomes too high. Therefore, the contents of Na 2 O and K 2 O are preferably 0 to 4%, particularly preferably 0 to 3%, respectively.

上記成分以外にも、CaO、PbO等の成分を各々2%まで添加してもよい。これらの成分を添加すると、溶解性、清澄性、均質性等を高めることができる。更に清澄性を高めるために、SnO、Cl、SO、Feの1種又は2種以上を合量で0.5%まで添加してもよい。In addition to the above components, components such as CaO and PbO may be added up to 2% each. Addition of these components can enhance solubility, clarity, homogeneity and the like. In order to further enhance the clarity, one or more of SnO 2 , Cl, SO 3 , and Fe 2 O 3 may be added up to 0.5% in total.

LAS系結晶化ガラス板の透明性が高い場合、その裏面(調理器の内部側の面)に光沢の強い装飾膜を形成すると、照明等の光が反射して眩しくなり易い。一方、本発明に係るLAS系結晶化ガラス板は、オパール調で半透明の外観を有するため、光沢の強い装飾膜(例えばTiN膜)を形成しても、その内部で反射光が程良く散乱して、柔らかい色合いを有する高級感のある外観を得ることができる。つまり本発明に係るLAS系結晶化ガラス板は、正反射光を適度に抑制する防眩効果を有するため、光沢の強い装飾膜を適用することが可能である。その結果、デザインバリエーションが大幅に拡大されて、従来よりも外観意匠性を高めることができる。 When the LAS-based crystallized glass plate is highly transparent, if a highly glossy decorative film is formed on the back surface (the inner surface of the cooker), light such as lighting is reflected and the glass plate tends to be dazzled. On the other hand, since the LAS-based crystallized glass plate according to the present invention has an opal-like and translucent appearance, even if a decorative film having a strong gloss (for example, a TiN film) is formed, the reflected light is appropriately scattered inside the film. Therefore, it is possible to obtain a high-class appearance having a soft hue. That is, since the LAS-based crystallized glass plate according to the present invention has an antiglare effect that appropriately suppresses specularly reflected light, it is possible to apply a decorative film having a strong gloss. As a result, the design variation is greatly expanded, and the appearance design can be improved more than before.

装飾膜としては、Ti、Nb、W及びMoからなる群より選ばれた1種の金属の窒化物、Si、Ti、Al、Nb、W、Mo、Sn、Cr、Pt及びAuからなる群より選ばれた1種の金属、ステンレス、ハステロイ、インコネル及びニクロムからなる群より選ばれた1種の合金、ステンレス、ハステロイ、インコネル及びニクロムからなる群より選ばれた1種の合金の窒化物を含む膜が好適である。特にTiNからなる遮光膜は、膜中の窒素含有量を変化させると、窒素の少ない順に、銀色、金色、赤黒色、黒色と無段階的に外観が変化するため、所望の色調を得易く好ましい。 The decorative film is composed of a nitride of one metal selected from the group consisting of Ti, Nb, W and Mo, and a group consisting of Si, Ti, Al, Nb, W, Mo, Sn, Cr, Pt and Au. Includes a nitride of one alloy selected from the group consisting of one selected metal, stainless steel, Hastelloy, Inconel and Nichrome, and one alloy selected from the group consisting of stainless steel, Hastelloy, Inconel and Nichrome. A membrane is suitable. In particular, a light-shielding film made of TiN is preferable because when the nitrogen content in the film is changed, the appearance changes steplessly in ascending order of nitrogen content, such as silver, gold, reddish black, and black. ..

また、遮光膜の酸化や変質を防止するために、遮光膜に加えて、酸化防止膜を形成することも可能である。酸化防止膜は、Si、Ti、Al、Nb、W、Mo、Ta及びSnからなる群より選ばれた1種又は2種以上の金属の窒化物、又はSi、Al及びTiからなる群より選ばれた1種の金属の酸化物を含む膜が好適であり、遮光膜の上層に形成したり、LAS系結晶化ガラス板と遮光膜との間に形成したりすることができる。 Further, in order to prevent oxidation and alteration of the light-shielding film, it is possible to form an antioxidant film in addition to the light-shielding film. The antioxidant film is selected from the nitride of one or more metals selected from the group consisting of Si, Ti, Al, Nb, W, Mo, Ta and Sn, or the group consisting of Si, Al and Ti. A film containing an oxide of one of the above metals is suitable, and can be formed on the upper layer of the light-shielding film or can be formed between the LAS-based crystallized glass plate and the light-shielding film.

本発明のLAS系結晶化ガラス板は、平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体が析出したLAS系結晶化ガラス板であって、板厚3.0mm換算で、JIS Z8729に準拠したL表示系の明度値Lが30〜80であることを特徴とする。なお、本発明のLAS系結晶化ガラス板の技術的特徴は、本発明のLAS系結晶化ガラス板の製造方法の説明欄に記載済みであるため、ここでは、その詳細な説明を省略する。The LAS-based crystallized glass plate of the present invention is a LAS-based crystallized glass plate in which a β-spodium solid solution having an average crystal grain size of 100 to 1000 nm is precipitated, and conforms to JIS Z8729 in terms of plate thickness of 3.0 mm. It is characterized in that the brightness value L * of the L * a * b * display system is 30 to 80. Since the technical features of the LAS-based crystallized glass plate of the present invention have already been described in the explanation column of the method for producing the LAS-based crystallized glass plate of the present invention, detailed description thereof will be omitted here.

以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described based on examples. The following examples are merely examples. The present invention is not limited to the following examples.

表1は、本発明の実施例(試料No.1〜3)と比較例(試料No.4、5)を示している。 Table 1 shows Examples (Samples Nos. 1 to 3) and Comparative Examples (Samples Nos. 4 and 5) of the present invention.

Figure 2019117122
Figure 2019117122

まず、組成が、質量%で、SiO 65.6%、Al 22.2%、LiO 3.7%、MgO 0.7%、BaO 1.2%、TiO 2.0%、ZrO 2.2%、P 1.4%、NaO 0.4%、KO 0.3%、SnO 0.3%の組成になるように、ガラス原料を調合し、ガラスバッチを作製した。次に、白金ルツボを用いて、ガラスバッチを1600℃で23時間溶融し、更に1650℃に昇温し1時間溶融した。その後、カーボン台上に流し出した上で、成形ローラーで5mm厚に成形した後、700℃の徐冷炉で炉冷した。First, the composition is SiO 2 65.6%, Al 2 O 3 22.2%, Li 2 O 3.7%, MgO 0.7%, BaO 1.2%, TiO 2 2.0 in mass%. %, ZrO 2 2.2%, P 2 O 5 1.4%, Na 2 O 0.4%, K 2 O 0.3%, SnO 2 0.3%. It was mixed and a glass batch was prepared. Next, using a platinum crucible, the glass batch was melted at 1600 ° C. for 23 hours, further heated to 1650 ° C. and melted for 1 hour. Then, it was poured onto a carbon table, molded to a thickness of 5 mm with a molding roller, and then cooled in a slow cooling furnace at 700 ° C.

続いて、得られた結晶性ガラス板について、表中の昇温速度で、室温から表中の最高熱処理温度まで昇温した後、表中の保持時間で保持することによって、結晶化ガラス板を作製した。また各試料の主結晶相、平均結晶粒径、結晶化度、平均線熱膨張係数、L表示系の明度値L、平均透過率、拡散反射率、外観及び防眩性を評価した。その結果を表中に示す。Subsequently, the obtained crystalline glass plate was heated from room temperature to the maximum heat treatment temperature in the table at the heating rate in the table, and then held for the holding time in the table to obtain the crystallized glass plate. Made. In addition, the main crystal phase of each sample, average crystal grain size, crystallinity, average linear thermal expansion coefficient, L * a * b * brightness value of the display system L * , average transmittance, diffuse reflectance, appearance and antiglare. Was evaluated. The results are shown in the table.

主結晶相と結晶化度は、リガク製RINT−2100を用いて、粉末法によるX線回折により評価した。なお、表中の「β−S」はβ−スポジュメン固溶体、「β−Q」はβ−石英固溶体を意味している。また平均結晶粒径は、結晶化ガラス板の一部を電子顕微鏡で観察して求めたものであり、具体的には最表面から深さ1mmの範囲、深さ1mmから深さ1.5mmの範囲、深さ1.5mmから深さ2mmの範囲について、1cmの観察箇所をそれぞれ2か所抽出し、それらの結晶粒径を平均化した値である。平均透過率と拡散反射率は、株式会社島津製作所社製分光光度計UV−3100を用いて測定した値である。L表示系の明度値Lは、JIS Z8729に準拠した方法で測定した値である。平均透過率、拡散反射率及びL表示系の明度値Lの測定試料として、肉厚3.0mmの鏡面研磨品を用いた。また、拡散反射率については、入射角度を8°に設定し、全反射率を測定した。平均線熱膨張係数は、30〜750℃の温度範囲において、差動検出式相対膨張計で測定した値である。外観は、目視観察で評価した。具体的には、各試料を黒い背景上に置いた時、青白い散乱光が観察され、且つ透過光が黄色に観察される場合をオパール調として評価した。防眩性は、各試料の片面に膜厚0.5μmのTiN膜をスパッタ法によって成膜し、TiN膜を形成していない側の面を40Wランプで照らした時、反射光の直視により眩しさを感じなかった場合を「良好」、眩しさを感じた場合を「不良」として評価したものである。The main crystal phase and crystallinity were evaluated by X-ray diffraction by the powder method using RINT-2100 manufactured by Rigaku. In the table, "β-S" means a β-spodium solid solution, and "β-Q" means a β-quartz solid solution. The average crystal grain size was obtained by observing a part of the crystallized glass plate with an electron microscope. Specifically, the average crystal grain size is in the range of 1 mm from the outermost surface and 1 mm to 1.5 mm in depth. It is a value obtained by extracting two observation points of 1 cm 2 each in a range of 1.5 mm to a depth of 2 mm and averaging their crystal grain sizes. The average transmittance and the diffuse reflectance are values measured using a spectrophotometer UV-3100 manufactured by Shimadzu Corporation. The brightness value L * of the L * a * b * display system is a value measured by a method conforming to JIS Z8729. A mirror-polished product with a wall thickness of 3.0 mm was used as a measurement sample for the average transmittance, the diffuse reflectance, and the brightness value L * of the L * a * b * display system. As for the diffuse reflectance, the incident angle was set to 8 ° and the total reflectance was measured. The average coefficient of linear thermal expansion is a value measured by a differential detection type relative expansion meter in a temperature range of 30 to 750 ° C. The appearance was evaluated by visual observation. Specifically, when each sample was placed on a black background, a case where pale scattered light was observed and transmitted light was observed in yellow was evaluated as an opal tone. The anti-glare property is that when a TiN film having a film thickness of 0.5 μm is formed on one side of each sample by a sputtering method and the side surface on which the TiN film is not formed is illuminated with a 40 W lamp, it is dazzled by direct viewing of reflected light. The case where no feeling of glare was felt was evaluated as "good", and the case where the feeling of glare was felt was evaluated as "bad".

表1から明らかなように、試料No.1〜3は、昇温速度が400〜800℃/時間、最高熱処理温度が1130℃、保持時間が5〜30分間、主結晶相がβ−スポジュメン固溶体であり、平均結晶粒径が400〜900nm、明度値Lが30.8〜51.5、波長400〜800nmにおける平均透過率が12.5〜26.3%、波長800〜1500nmにおける平均透過率が57.9〜74.8%、熱膨張係数が+11×10−7/℃、外観がオパール調、防眩性が良好であった。よって、試料No.1〜3は、明るい光沢を有しながら、目立ち過ぎないことに加えて、生産コストが低いと考えられる。As is clear from Table 1, the sample No. Nos. 1 to 3 have a heating rate of 400 to 800 ° C./hour, a maximum heat treatment temperature of 1130 ° C., a holding time of 5 to 30 minutes, a main crystal phase of β-spodium solid solution, and an average crystal grain size of 400 to 900 nm. The brightness value L * is 30.8 to 51.5, the average transmittance at a wavelength of 400 to 800 nm is 12.5 to 26.3%, and the average transmittance at a wavelength of 800 to 1500 nm is 57.9 to 74.8%. The coefficient of thermal expansion was +11 × 10-7 / ° C, the appearance was opal-like, and the antiglare property was good. Therefore, the sample No. It is considered that Nos. 1 to 3 have a bright luster, are not too conspicuous, and have a low production cost.

一方、試料No.4は、昇温速度が低いため、平均結晶粒径が1200nmになり、外観が白色不透明になった。また試料No.5は、昇温速度と最高熱処理温度が低いため、主結晶としてβ-石英固溶体が析出し、平均結晶粒径が70nmになり、透明性が高く、防眩性が不良であった。 On the other hand, sample No. In No. 4, since the temperature rising rate was low, the average crystal grain size was 1200 nm, and the appearance became white and opaque. In addition, sample No. In No. 5, since the temperature rising rate and the maximum heat treatment temperature were low, a β-quartz solid solution was precipitated as the main crystal, the average crystal grain size was 70 nm, the transparency was high, and the antiglare property was poor.

表2は、本発明の実施例(試料No.6〜16)を示している。 Table 2 shows examples (Sample Nos. 6 to 16) of the present invention.

Figure 2019117122
Figure 2019117122

まず、組成が、質量%で、SiO 65.6%、Al 22.2%、LiO 3.7%、MgO 0.7%、BaO 1.2%、TiO 2.0%、ZrO 2.2%、P 1.4%、NaO 0.4%、KO 0.3%、SnO 0.3%の組成になるように、ガラス原料を調合し、ガラスバッチを作製した。次に、白金ルツボを用いて、ガラスバッチを1600℃で23時間溶融し、更に1650℃に昇温し1時間溶融した。その後、カーボン台上に流し出した上で、成形ローラーで5mm厚に成形した後、700℃の徐冷炉で炉冷した。First, the composition is SiO 2 65.6%, Al 2 O 3 22.2%, Li 2 O 3.7%, MgO 0.7%, BaO 1.2%, TiO 2 2.0 in mass%. %, ZrO 2 2.2%, P 2 O 5 1.4%, Na 2 O 0.4%, K 2 O 0.3%, SnO 2 0.3%. It was mixed and a glass batch was prepared. Next, using a platinum crucible, the glass batch was melted at 1600 ° C. for 23 hours, further heated to 1650 ° C. and melted for 1 hour. Then, it was poured onto a carbon table, molded to a thickness of 5 mm with a molding roller, and then cooled in a slow cooling furnace at 700 ° C.

続いて、得られた結晶性ガラス板について、室温から600℃/時間の昇温速度で昇温して、表中の第一核形成工程の熱処理温度において表中の保持時間で保持した後、600℃/時間の昇温速度で昇温して、第二核形成工程の熱処理温度において表中の保持時間で保持した。その後、降温させることなく、表中の昇温速度で、第二核形成工程の熱処理温度から表中の最高熱処理温度まで昇温した後、表中の保持時間で保持することによって、結晶化ガラス板を作製した。また各試料の主結晶相、平均結晶粒径、結晶化度、平均線熱膨張係数、L表示系の明度値L、平均透過率、拡散反射率、外観及び防眩性を評価した。その結果を表中に示す。Subsequently, the obtained crystalline glass plate was heated from room temperature at a heating rate of 600 ° C./hour, and held at the heat treatment temperature of the first nucleation step in the table for the holding time in the table. The temperature was raised at a heating rate of 600 ° C./hour, and the temperature was maintained at the heat treatment temperature in the second nucleation step for the holding time shown in the table. Then, without lowering the temperature, the temperature is raised from the heat treatment temperature in the second nucleation step to the maximum heat treatment temperature in the table at the rate of temperature rise in the table, and then the glass is held for the holding time in the table to crystallize the glass. A board was made. In addition, the main crystal phase of each sample, average crystal grain size, crystallinity, average linear thermal expansion coefficient, L * a * b * brightness value of the display system L * , average transmittance, diffuse reflectance, appearance and antiglare. Was evaluated. The results are shown in the table.

主結晶相と結晶化度は、リガク製RINT−2100を用いて、粉末法によるX線回折により評価した。また平均結晶粒径は、結晶化ガラス板の一部を電子顕微鏡で観察して求めたものである。平均透過率と拡散反射率は、株式会社島津製作所社製分光光度計UV−3100を用いて測定した値である。L表示系の明度値Lは、JIS Z8729に準拠した方法で測定した値である。平均透過率、拡散反射率及びL表示系の明度値Lの測定試料として、肉厚3.0mmの鏡面研磨品を用いた。また、拡散反射率については、入射角度を8°に設定し、全反射率を測定した。平均線熱膨張係数は、30〜750℃の温度範囲において、差動検出式相対膨張計で測定した値である。外観は、目視観察で評価した。具体的には、各試料を黒い背景上に置いた時、青白い散乱光が観察され、且つ透過光が黄色に観察される場合をオパール調として評価した。防眩性は、各試料の片面に膜厚0.5μmのTiN膜をスパッタ法によって成膜し、TiN膜を形成していない側の面を40Wランプで照らした時、反射光の直視により眩しさを感じなかった場合を「良好」、眩しさを感じた場合を「不良」として評価したものである。The main crystal phase and crystallinity were evaluated by X-ray diffraction by the powder method using RINT-2100 manufactured by Rigaku. The average crystal grain size was obtained by observing a part of the crystallized glass plate with an electron microscope. The average transmittance and the diffuse reflectance are values measured using a spectrophotometer UV-3100 manufactured by Shimadzu Corporation. The brightness value L * of the L * a * b * display system is a value measured by a method conforming to JIS Z8729. A mirror-polished product with a wall thickness of 3.0 mm was used as a measurement sample for the average transmittance, the diffuse reflectance, and the brightness value L * of the L * a * b * display system. As for the diffuse reflectance, the incident angle was set to 8 ° and the total reflectance was measured. The average coefficient of linear thermal expansion is a value measured by a differential detection type relative expansion meter in a temperature range of 30 to 750 ° C. The appearance was evaluated by visual observation. Specifically, when each sample was placed on a black background, a case where pale scattered light was observed and transmitted light was observed in yellow was evaluated as an opal tone. The anti-glare property is that when a TiN film having a film thickness of 0.5 μm is formed on one side of each sample by a sputtering method and the side surface on which the TiN film is not formed is illuminated with a 40 W lamp, it is dazzled by direct viewing of reflected light. The case where no feeling of glare was felt was evaluated as "good", and the case where the feeling of glare was felt was evaluated as "bad".

表2から明らかなように、試料No.6〜16は、主結晶相がβ−スポジュメン固溶体であり、平均結晶粒径が200〜800nm、明度値Lが36.9〜72.8、外観がオパール調、防眩性が良好であった。よって、試料No.6〜16は、明るい光沢を有しながら、目立ち過ぎないことに加えて、生産コストが低いと考えられる。As is clear from Table 2, the sample No. In Nos. 6 to 16, the main crystal phase is a β-spojumen solid solution, the average crystal grain size is 200 to 800 nm, the brightness value L * is 36.9 to 72.8, the appearance is opal-like, and the antiglare property is good. It was. Therefore, the sample No. 6 to 16 have a bright luster, are not too conspicuous, and are considered to have a low production cost.

本発明に係るLAS系結晶化ガラス板は、明るい色合いを有し、また装飾膜を裏側に形成した場合でも装飾膜が目立ち過ぎず、しかも製造コストが低いため、赤外線加熱調理器や電磁加熱調理器のトッププレートとして好適であり、またガス調理器のトッププレートにも好適である。更に、本発明に係るLAS系結晶化ガラス板は、各種のインジケータの光を通すため、調理器用トッププレート以外のセンサー部品にも使用することができる。 The LAS-based crystallized glass plate according to the present invention has a bright color, and even when the decorative film is formed on the back side, the decorative film is not too conspicuous and the manufacturing cost is low. Therefore, an infrared heating cooker or electromagnetic heating cooking is performed. It is suitable as a top plate of a vessel, and is also suitable as a top plate of a gas cooker. Further, since the LAS-based crystallized glass plate according to the present invention allows light of various indicators to pass through, it can be used for sensor parts other than the top plate for cookers.

Claims (16)

主結晶相としてβ−スポジュメン固溶体を含むLAS系結晶化ガラス板の製造方法において、
結晶性ガラス板を用意する工程と、
300〜900℃/時間の昇温速度で900℃超となる最高熱処理温度まで結晶性ガラス板を昇温すると共に、平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体を析出させて、LAS系結晶化ガラス板を得る工程と、を有することを特徴とするLAS系結晶化ガラス板の製造方法。
In the method for producing a LAS-based crystallized glass plate containing a β-spodium solid solution as the main crystal phase,
The process of preparing a crystalline glass plate and
The crystalline glass plate is heated to a maximum heat treatment temperature of over 900 ° C. at a heating rate of 300 to 900 ° C./hour, and a β-spojumen solid solution having an average crystal grain size of 100 to 1000 nm is precipitated to LAS. A method for producing a LAS-based crystallized glass plate, which comprises a step of obtaining a system-based crystallized glass plate.
(最高熱処理温度±10℃)における保持時間が60分間未満であることを特徴とする請求項1に記載のLAS系結晶化ガラス板の製造方法。 The method for producing a LAS-based crystallized glass plate according to claim 1, wherein the holding time at (maximum heat treatment temperature ± 10 ° C.) is less than 60 minutes. 平均結晶粒径が150〜900nmとなるβ−スポジュメン固溶体を析出させることを特徴とする請求項1又は2に記載のLAS系結晶化ガラス板の製造方法。 The method for producing a LAS-based crystallized glass plate according to claim 1 or 2, wherein a β-spodium solid solution having an average crystal grain size of 150 to 900 nm is precipitated. 板厚3.0mm換算で、JIS Z8729に準拠したL表示系の明度値Lが30〜80となるLAS系結晶化ガラス板を得ることを特徴とする請求項1〜3の何れかに記載のLAS系結晶化ガラス板の製造方法。Claims 1 to 3 characterized by obtaining a LAS-based crystallized glass plate having an L * a * b * display system brightness value L * of 30 to 80 in accordance with JIS Z8729 in terms of plate thickness of 3.0 mm. The method for producing a LAS-based crystallized glass plate according to any one of. 板厚3.0mm換算で、波長400〜800nmにおける平均透過率が10〜50%になるLAS系結晶化ガラス板を得ることを特徴とする請求項1〜4の何れかに記載のLAS系結晶化ガラス板の製造方法。 The LAS-based crystal according to any one of claims 1 to 4, wherein a LAS-based crystallized glass plate having an average transmittance of 10 to 50% at a wavelength of 400 to 800 nm is obtained in terms of a plate thickness of 3.0 mm. A method for manufacturing a glass-ceramic plate. 板厚3.0mm換算で、波長800〜1500nmにおける平均透過率が50%以上になるLAS系結晶化ガラス板を得ることを特徴とする請求項1〜5の何れかに記載のLAS系結晶化ガラス板の製造方法。 The LAS-based crystallization according to any one of claims 1 to 5, wherein a LAS-based crystallized glass plate having an average transmittance of 50% or more at a wavelength of 800 to 1500 nm is obtained in terms of a plate thickness of 3.0 mm. How to manufacture a glass plate. 30〜750℃における平均線熱膨張係数が−10×10−7〜+30×10−7/℃になるLAS系結晶化ガラス板を得ることを特徴とする請求項1〜6の何れかに記載のLAS系結晶化ガラス板の製造方法。The invention according to any one of claims 1 to 6, wherein a LAS-based crystallized glass plate having an average coefficient of linear thermal expansion at 30 to 750 ° C. of −10 × 10 −7 to + 30 × 10 −7 / ° C. is obtained. A method for manufacturing a LAS-based crystallized glass plate. LAS系結晶化ガラス板中のZnOの含有量が2質量%未満であることを特徴とする請求項1〜7の何れかに記載のLAS系結晶化ガラス板の製造方法。 The method for producing a LAS-based crystallized glass plate according to any one of claims 1 to 7, wherein the content of ZnO in the LAS-based crystallized glass plate is less than 2% by mass. LAS系結晶化ガラス板が、組成として、質量%で、SiO 55〜75%、Al 15〜30%、LiO 2〜6%、MgO 0〜3%、BaO 0〜5%、ZnO 0〜2%未満、TiO 1〜6%、ZrO 0〜4%、P 0〜5%、NaO 0〜4%、KO 0〜4%を含有することを特徴とする請求項1〜8の何れかに記載のLAS系結晶化ガラス板の製造方法。LAS-type crystallized glass plate, a composition, in mass%, SiO 2 55~75%, Al 2 O 3 15~30%, Li 2 O 2~6%, 0~3% MgO, BaO 0~5% , ZnO less than 0~2%, TiO 2 1~6%, ZrO 2 0~4%, P 2 O 5 0~5%, Na 2 O 0~4%, that it contains K 2 O 0 to 4% The method for producing a LAS-based crystallized glass plate according to any one of claims 1 to 8. LAS系結晶化ガラス板を調理器用トッププレートに用いることを特徴とする請求項1〜9の何れかに記載のLAS系結晶化ガラス板の製造方法。 The method for producing a LAS-based crystallized glass plate according to any one of claims 1 to 9, wherein the LAS-based crystallized glass plate is used as a top plate for a cooker. 平均結晶粒径が100〜1000nmとなるβ−スポジュメン固溶体が析出したLAS系結晶化ガラス板であって、板厚3.0mm換算で、JIS Z8729に準拠したL表示系の明度値Lが30〜80であることを特徴とするLAS系結晶化ガラス板。A LAS-based crystallized glass plate in which a β-spodium solid solution having an average crystal grain size of 100 to 1000 nm is precipitated, and the brightness of the L * a * b * display system conforming to JIS Z8729 in terms of plate thickness of 3.0 mm. A LAS-based crystallized glass plate having a value L * of 30 to 80. 板厚3.0mm換算で、波長400〜800nmにおける平均透過率が10〜50%であることを特徴とする請求項11に記載のLAS系結晶化ガラス板。 The LAS-based crystallized glass plate according to claim 11, wherein the average transmittance at a wavelength of 400 to 800 nm is 10 to 50% in terms of a plate thickness of 3.0 mm. 板厚3.0mm換算で、波長800〜1500nmにおける平均透過率が50%以上であることを特徴とする請求項11又は12に記載のLAS系結晶化ガラス板。 The LAS-based crystallized glass plate according to claim 11 or 12, wherein the average transmittance at a wavelength of 800 to 1500 nm is 50% or more in terms of a plate thickness of 3.0 mm. 30〜750℃における平均線熱膨張係数が−10×10−7〜+30×10−7/℃であことを特徴とする請求項11〜13の何れかに記載のLAS系結晶化ガラス板。The LAS-based crystallized glass plate according to any one of claims 11 to 13, wherein the average linear thermal expansion coefficient at 30 to 750 ° C. is −10 × 10 −7 to + 30 × 10 −7 / ° C. 組成として、質量%で、SiO 55〜75%、Al 15〜30%、LiO 2〜6%、MgO 0〜3%、BaO 0〜5%、ZnO 0〜2%未満、TiO 1〜6%、ZrO 0〜4%、P 0〜5%、NaO 0〜4%、KO 0〜4%を含有することを特徴とする請求項11〜14の何れかに記載のLAS系結晶化ガラス板。As a composition, in terms of mass%, SiO 2 55 to 75%, Al 2 O 3 15 to 30%, Li 2 O 2 to 6%, MgO 0 to 3%, BaO 0 to 5%, ZnO less than 0 to 2%, TiO 2 1~6%, ZrO 2 0~4 %, P 2 O 5 0~5%, Na 2 O 0~4%, claim, characterized in that it contains K 2 O 0~4% 11~ The LAS-based crystallized glass plate according to any one of 14. 組成として、質量%で、SiO 60〜70%、Al 20超〜30%、LiO 3〜5%、MgO 0〜1%、BaO 1〜2%、ZnO 0〜0.4%未満、TiO 1〜4%、ZrO 2〜3%、P 0〜2%、NaO 0〜4%、KO 0〜4%を含有することを特徴とする請求項11〜15の何れかに記載のLAS系結晶化ガラス板。As a composition, in mass%, SiO 2 60 to 70%, Al 2 O 3 over 20 to 30%, Li 2 O 3 to 5%, MgO 0 to 1%, BaO 1 to 2%, ZnO 0 to 0.4. % less, TiO 2 1~4%, ZrO 2 2~3%, P 2 O 5 0~2%, Na 2 O 0~4%, claims, characterized in that it contains K 2 O 0 to 4% Item 2. The LAS-based crystallized glass plate according to any one of Items 11 to 15.
JP2019559646A 2017-12-15 2018-12-11 Manufacturing method of LAS-based crystallized glass plate and LAS-based crystallized glass plate Pending JPWO2019117122A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017240182 2017-12-15
JP2017240182 2017-12-15
PCT/JP2018/045446 WO2019117122A1 (en) 2017-12-15 2018-12-11 Las-based crystallized glass plate production method and las-based crystallized glass plate

Publications (1)

Publication Number Publication Date
JPWO2019117122A1 true JPWO2019117122A1 (en) 2020-10-22

Family

ID=66820839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019559646A Pending JPWO2019117122A1 (en) 2017-12-15 2018-12-11 Manufacturing method of LAS-based crystallized glass plate and LAS-based crystallized glass plate

Country Status (2)

Country Link
JP (1) JPWO2019117122A1 (en)
WO (1) WO2019117122A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122035A1 (en) 2021-08-25 2023-03-02 Schott Ag Crystallizable lithium aluminum silicate glass and glass ceramics produced therefrom, as well as methods for producing the glass ceramics and use of the glass ceramics

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037906A (en) * 2003-06-25 2005-02-10 Nippon Electric Glass Co Ltd Reflection mirror and its manufacturing method
JP4315075B2 (en) * 2003-07-30 2009-08-19 日本電気硝子株式会社 Top plate for cooker and method for manufacturing the same
DE102004024583A1 (en) * 2004-05-12 2005-12-08 Schott Ag Translucent or opaque cooking surface consisting of a colorable glass ceramic and its use
ES2629328T3 (en) * 2006-03-31 2017-08-08 Eurokera Vitroceramic materials of beta-espodumena and process for the manufacture of the same
US8664130B2 (en) * 2012-04-13 2014-03-04 Corning Incorporated White, opaque β-spodumene/rutile glass-ceramic articles and methods for making the same
US9701574B2 (en) * 2013-10-09 2017-07-11 Corning Incorporated Crack-resistant glass-ceramic articles and methods for making the same
DE102016208300B3 (en) * 2016-05-13 2017-08-03 Schott Ag Crystallizable lithium aluminum silicate glass and transparent glass ceramic produced therefrom, and also methods for producing the glass and the glass ceramic and use of the glass ceramic
JP2018180331A (en) * 2017-04-14 2018-11-15 日本電気硝子株式会社 Transparent screen and graphic display device using the same

Also Published As

Publication number Publication date
WO2019117122A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US11267748B2 (en) Transparent coloured lithium aluminium silicate glass ceramic and process for production and use of the glass ceramic
US10160685B2 (en) Non-opaque arsenic-free beta-spodumene glass ceramic exhibiting brown-grey coloration
US11365889B2 (en) Fitout articles and articles of equipment for kitchens or laboratories with a lighting element
JP5889297B2 (en) Transparent or transparent colored lithium aluminum silicate glass-ceramic material having a suitable coefficient of thermal expansion and use thereof
CN104411647B (en) The manufacturing method of glass ceramics with predetermined transmissivity
US9156727B2 (en) Transparent, dyed cooktop
KR102661700B1 (en) Fitout articles and articles of equipment for kitchens or laboratories with a display device
JP4315075B2 (en) Top plate for cooker and method for manufacturing the same
JP4120793B2 (en) Cooker top plate
JP2668075B2 (en) Transparent crystallized glass
CN104619661B (en) Glass ceramics and preparation method thereof
WO2010090208A1 (en) Crystallized glass and top plate for cooking device comprising same
JPH05193983A (en) Transparent glass and glass goods
JPWO2019117122A1 (en) Manufacturing method of LAS-based crystallized glass plate and LAS-based crystallized glass plate
JP5182102B2 (en) Cooker top plate
CN113321421A (en) Lithium aluminosilicate glass, glass ceramic made therefrom, method for producing same and use thereof
US20230100027A1 (en) Crystallizable lithium aluminum silicate glass and glass ceramic produced therefrom
KR101657922B1 (en) - - glass-ceramic of lithium aluminosilicate type containing a solid solution of -spodumene
JP2008185233A (en) Top plate for cooker
JP2021138604A (en) Crystallizable lithium aluminosilicate glass and glass ceramic produced therefrom and method for producing glass and glass ceramic and use of the glass ceramic