JPWO2019112011A1 - Foam - Google Patents

Foam Download PDF

Info

Publication number
JPWO2019112011A1
JPWO2019112011A1 JP2019558282A JP2019558282A JPWO2019112011A1 JP WO2019112011 A1 JPWO2019112011 A1 JP WO2019112011A1 JP 2019558282 A JP2019558282 A JP 2019558282A JP 2019558282 A JP2019558282 A JP 2019558282A JP WO2019112011 A1 JPWO2019112011 A1 JP WO2019112011A1
Authority
JP
Japan
Prior art keywords
foam
mass
kneaded product
content
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019558282A
Other languages
Japanese (ja)
Other versions
JP7327164B2 (en
Inventor
基久 清水
基久 清水
幸周 和田
幸周 和田
萩原 昌彦
昌彦 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2019112011A1 publication Critical patent/JPWO2019112011A1/en
Application granted granted Critical
Publication of JP7327164B2 publication Critical patent/JP7327164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

本発明の発泡体は、セルロース繊維とポリプロピレンとを含み、前記セルロース繊維の含有量が10質量%以上65質量%以下の範囲内にあって、密度が80kg/m3以下である。The foam of the present invention contains cellulose fibers and polypropylene, and the content of the cellulose fibers is in the range of 10% by mass or more and 65% by mass or less, and the density is 80 kg / m3 or less.

Description

本発明は、セルロース繊維とポリプロピレンとを含む発泡体に関する。
本願は、2017年12月6日に、日本に出願された特願2017−234423号、特願2017−234424号および特願2017−234425号に基づき、優先権を主張し、その内容をここに援用する。
The present invention relates to a foam containing cellulose fibers and polypropylene.
The present application claims priority based on Japanese Patent Application No. 2017-234423, Japanese Patent Application No. 2017-234424 and Japanese Patent Application No. 2017-234425 filed in Japan on December 6, 2017, and the contents thereof are described here. Invite.

発泡体は、物理的な衝撃に対する緩衝性と断熱性とに優れるため、断熱材、緩衝材、包装材などの様々な用途に用いられている。近年、発泡体の材料として、セルロース繊維とポリプロピレンとを含む組成物が注目されている。
例えば、特許文献1には、紙成分と熱可塑性樹脂と水とを押出機に供給し、押出機内で加熱混練し、水の蒸気圧で発泡して得られた発泡体が記載されている。また、特許文献1には、古紙を破砕機で破砕した1辺の長さが約3mmから5mmの破砕物を紙成分として用い、熱可塑性樹脂としてパウダー状のポリプロピレンホモポリマーを用いて製造した密度0.085g/cm(85kg/m)の発泡体が記載されている。
The foam has excellent cushioning and heat insulating properties against physical impact, and is therefore used in various applications such as heat insulating materials, cushioning materials, and packaging materials. In recent years, a composition containing cellulose fibers and polypropylene has attracted attention as a material for foams.
For example, Patent Document 1 describes a foam obtained by supplying a paper component, a thermoplastic resin, and water to an extruder, heating and kneading the mixture in the extruder, and foaming with the vapor pressure of water. Further, in Patent Document 1, a crushed product obtained by crushing used paper with a crusher and having a side length of about 3 mm to 5 mm is used as a paper component, and a powdery polypropylene homopolymer is used as a thermoplastic resin. A foam of 0.085 g / cm 3 (85 kg / m 3 ) is described.

特開2000−273800号公報Japanese Unexamined Patent Publication No. 2000-273800

しかしながら、従来のセルロース繊維を含む発泡体は、断熱材として用いた場合に十分な断熱性が得られず、断熱性を向上させることが要求されていた。
本発明は、上記事情に鑑みてなされたものであり、セルロース繊維を含み、断熱材として使用した場合に十分な断熱性が得られる発泡体を提供することを課題とする。
However, the conventional foam containing cellulose fibers does not have sufficient heat insulating properties when used as a heat insulating material, and is required to improve the heat insulating properties.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a foam containing cellulose fibers and having sufficient heat insulating properties when used as a heat insulating material.

本発明は、上記の課題を解決するために、以下の構成を採用する。
[1]セルロース繊維とポリプロピレンとを含み、前記セルロース繊維の含有量が10質量%以上65質量%以下の範囲内にあって、密度が80kg/m以下であることを特徴とする発泡体。
[2]複数個の粒状発泡体粒子が紐状に連結した形状もしくはストランド状である前記[1]に記載の発泡体。
The present invention employs the following configuration in order to solve the above problems.
[1] A foam containing cellulose fibers and polypropylene, wherein the content of the cellulose fibers is in the range of 10% by mass or more and 65% by mass or less, and the density is 80 kg / m 3 or less.
[2] The foam according to the above [1], which has a shape in which a plurality of granular foam particles are connected in a string shape or a strand shape.

[3]前記セルロース繊維と前記ポリプロピレンとからなり、密度が70kg/m以下である上記[1]に記載の発泡体。[3] The foam according to the above [1], which comprises the cellulose fiber and the polypropylene and has a density of 70 kg / m 3 or less.

[4]さらに、樹脂添加剤を含み、前記樹脂添加剤が、ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリエーテル系樹脂、ポリイミド系樹脂、エラストマー系樹脂、含イオウ系樹脂、フェノール系樹脂およびエポキシ系樹脂からなる群より選ばれる少なくとも1種であり、前記樹脂添加剤の含有量が0.1質量%以上30質量%以下の範囲内にあり、前記ポリプロピレンの含有量が5質量%以上である前記[1]に記載の発泡体。
[5]密度が70kg/m以下である前記[4]に記載の発泡体。
[4] Further, a resin additive is contained, and the resin additive is a vinyl resin, a polystyrene resin, a polyester resin, a polyamide resin, an acrylic resin, a polyether resin, a polyimide resin, an elastomer resin, It is at least one selected from the group consisting of sulfur-containing resins, phenol-based resins, and epoxy-based resins, and the content of the resin additive is in the range of 0.1% by mass or more and 30% by mass or less, and the polypropylene. The foam according to the above [1], which has a content of 5% by mass or more.
[5] The foam according to the above [4], which has a density of 70 kg / m 3 or less.

[6]さらに、ポリウレタンを含み、前記ポリウレタンの含有量が1質量%以上20質量%未満の範囲内にあって、前記ポリプロピレンの含有量が15質量%以上89質量%以下の範囲内にある前記[1]に記載の発泡体。 [6] Further, the polyurethane is contained, and the content of the polyurethane is in the range of 1% by mass or more and less than 20% by mass, and the content of the polypropylene is in the range of 15% by mass or more and 89% by mass or less. The foam according to [1].

本発明によれば、セルロース繊維を含み、断熱材として使用した場合に十分な断熱性が得られる発泡体を提供することが可能となる。 According to the present invention, it is possible to provide a foam containing cellulose fibers and having sufficient heat insulating properties when used as a heat insulating material.

以下、本発明の発泡体の実施形態について説明する。
本実施形態の発泡体は、セルロース繊維とポリプロピレンとを含む。セルロース繊維の含有量は、10質量%以上65質量%以下の範囲内にある。
Hereinafter, embodiments of the foam of the present invention will be described.
The foam of the present embodiment contains cellulose fibers and polypropylene. The content of the cellulose fiber is in the range of 10% by mass or more and 65% by mass or less.

(セルロース繊維)
本実施形態の発泡体に含まれるセルロース繊維の材料としては、針葉樹、広葉樹等の木本系の繊維、非木本系の繊維、ジン皮繊維、バクテリア由来の繊維などから選ばれる1種または2種以上を用いることができる。具体的には、例えば、上記材料の機械パルプ(MP;機械パルプ、GP;砕木パルプ、RGP;リファイナーグランドパルプ、TMP;サーモメカニカルパルプ、CTMP;ケミサーモメカニカルパルプ等)、化学パルプ(KP;クラフトパルプ、SP;サルファイドパルプ、AP;アルカリパルプ等)、リサイクルパルプ(古紙や端材等のリサイクル紙、段ボール)などを用いることができる。
(Cellulose fiber)
As the material of the cellulose fiber contained in the foam of the present embodiment, one or 2 selected from wood-based fibers such as coniferous trees and hardwoods, non-wood-based fibers, ginseng fibers, and bacterial-derived fibers. More than a seed can be used. Specifically, for example, mechanical pulp (MP; mechanical pulp, GP; crushed wood pulp, RGP; refiner ground pulp, TMP; thermomechanical pulp, CTMP; chemithermomechanical pulp, etc.), chemical pulp (KP; craft) of the above materials. Pulp, SP; sulfide pulp, AP; alkaline pulp, etc.), recycled pulp (recycled paper such as used paper and scraps, cardboard) and the like can be used.

セルロース繊維の材料として用いられる針葉樹の例としては、アカマツ、クロマツ、エゾマツ、カラマツ、ラーチ、ラジアータパイン、ロングリーフパイン、ショートリーフパイン、スラッシュパイン、ロブロリーパイン、ホワイトスプルース、ブラックスプルース、モミ、ダグラスファー、バルサムファー、スギ、ヒノキ等が挙げられる。広葉樹の例としては、ブナ、ナラ、カシ、ユーカリ、ポプラ等が挙げられる。非木本系の繊維の例としては、リンター、綿、稲わら、麦わら、アブラヤシ空果房(EFB)、竹、サトウキビバガス、麻、大麻、マニラ麻、亜麻、葦等が挙げられる。ジン皮繊維の例としては、楮、三椏等が挙げられる。バクテリア由来の繊維の例としては、バクテリアセルロース等が挙げられる。 Examples of conifers used as materials for cellulose fibers include red pine, black pine, spruce, larch, larch, radiata pine, long leaf pine, short leaf pine, slash pine, loblory pine, white spruce, black spruce, fir, douglas. Examples include fur, balsam fur, spruce, and cypress. Examples of hardwoods include beech, oak, oak, eucalyptus, poplar and the like. Examples of non-wooden fibers include linter, cotton, rice straw, straw, oil palm empty fruit bunch (EFB), bamboo, sugar cane bagasse, hemp, cane, Manila hemp, flax, reeds and the like. Examples of gin skin fibers include mulberry and mitsumata. Examples of bacterial-derived fibers include bacterial cellulose and the like.

本実施形態の発泡体に含まれるセルロース繊維は、紙を解繊および/または粉砕したものを用いることが好ましく、古紙を解繊したものを用いることが好ましい。紙を解繊する方法としては、特に限定されるものではなく、例えば、石臼式摩砕機、叩解機、シュレッダー、コーンクラッシャー、ロールクラッシャー、カッターミル、自生粉砕機、スタンプミル、乳鉢、らいかい機、ローラーミル、リングミル、ジェットミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、ビーズミル、アトライターなどの粉砕機を用いることができる。粉砕機としては、例えば、増幸産業株式会社製の石臼式摩砕機(商品名:マスコロイダー)、相川鉄工株式会社製の叩解機(商品名:RFシングルリファイナー)、サンワサプライ株式会社製のハンドシュレッダー(商品名:PSD−12)などが挙げられる。 As the cellulose fiber contained in the foam of the present embodiment, it is preferable to use a defibrated and / or crushed paper, and it is preferable to use a defibrated waste paper. The method for defibrating paper is not particularly limited, and for example, a stone mill type grinder, a beating machine, a shredder, a cone crusher, a roll crusher, a cutter mill, a self-made crusher, a stamp mill, a mortar, and a mortar. , Roller mill, ring mill, jet mill, hammer mill, pin mill, rotary mill, vibration mill, planetary mill, bead mill, attritor and other crushers can be used. Examples of the crusher include a stone mill type crusher manufactured by Masuko Sangyo Co., Ltd. (trade name: Mascoroider), a beating machine manufactured by Aikawa Iron Works Co., Ltd. (trade name: RF single refiner), and a hand shredder manufactured by Sanwa Supply Co., Ltd. Product name: PSD-12) and the like.

発泡体の材料として使用するセルロース繊維としては、後述する測定方法により測定した平均粒径が10μm〜5mmであるものを用いることが好ましく、20μm〜3mmであるものを用いることがより好ましい。セルロース繊維の平均粒径が10μm以上であると、破砕に必要なエネルギーが少なくて済むため、環境への負荷が少なく、製造コストも少なくて済み、好ましい。セルロース繊維の平均粒径が5mm以下であると、高倍率発泡が可能となり、低密度の発泡体が得られるため、好ましい。 As the cellulose fiber used as the material of the foam, it is preferable to use one having an average particle size of 10 μm to 5 mm, and more preferably 20 μm to 3 mm, as measured by the measuring method described later. When the average particle size of the cellulose fibers is 10 μm or more, the energy required for crushing is small, so that the burden on the environment is small and the manufacturing cost is low, which is preferable. When the average particle size of the cellulose fibers is 5 mm or less, high-magnification foaming is possible and a low-density foam is obtained, which is preferable.

「セルロース繊維の平均粒径の測定方法」
本実施形態において発泡体の材料として使用するセルロース繊維の平均粒径は、以下に示す方法1または方法2を用いて測定した値であることを意味する。本実施形態では、セルロース繊維の平均粒径に応じて方法1または方法2を用いる。測定したセルロース繊維の平均粒径が、方法1と方法2の両方の範囲内である場合、2つの方法のうち1以上の方法を用いればよい。
"Measuring method of average particle size of cellulose fibers"
It means that the average particle size of the cellulose fibers used as the material of the foam in the present embodiment is a value measured by using Method 1 or Method 2 shown below. In this embodiment, method 1 or method 2 is used depending on the average particle size of the cellulose fibers. When the average particle size of the measured cellulose fibers is within the range of both method 1 and method 2, one or more of the two methods may be used.

(方法1:粒径が0.01μm〜3000μmの範囲内にあるセルロース繊維)
分散媒としてのイオン交換水に試料のセルロース繊維を分散させた分散液を調製する。次に、分散液に対し、前処理として超音波浴槽中で30分間超音波を照射する。その後、分散液中の試料について、以下に示す測定装置を用いて以下に示す測定条件で粒径測定を行う。
粒径測定は、分散液を測定装置のセルに入れ、測定装置内で1分間超音波を照射した後に行う。また、予め分散媒を単独で測定装置のセルに入れ、ブランクとして粒径測定を行う。
各分散液について2回測定を行って平均値を算出し、これを試料の平均粒径とする。
(Method 1: Cellulose fibers having a particle size in the range of 0.01 μm to 3000 μm)
A dispersion liquid in which the cellulose fibers of the sample are dispersed in ion-exchanged water as a dispersion medium is prepared. Next, the dispersion liquid is irradiated with ultrasonic waves for 30 minutes in an ultrasonic bathtub as a pretreatment. Then, the particle size of the sample in the dispersion is measured using the measuring device shown below under the measuring conditions shown below.
The particle size is measured after the dispersion is placed in the cell of the measuring device and irradiated with ultrasonic waves for 1 minute in the measuring device. In addition, the dispersion medium is placed alone in the cell of the measuring device in advance, and the particle size is measured as a blank.
Each dispersion is measured twice to calculate an average value, which is used as the average particle size of the sample.

測定装置;レーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製、商品名:LA−950V2)
測定条件;測定ユニット:湿式
測定モード:マニュアルフロー式セル測定
粒子径基準:体積基準
屈折率:1.50−0.00i(試料屈折率)/1.33−0.00i(分散媒屈折率)
Measuring device: Laser diffraction / scattering type particle size distribution measuring device (manufactured by HORIBA, Ltd., trade name: LA-950V2)
Measurement conditions; Measurement unit: Wet
Measurement mode: Manual flow cell measurement
Particle size standard: Volume standard
Refractive index: 1.50-0.00i (sample refractive index) /1.33-0.00i (dispersion medium refractive index)

(方法2:粒径が3000μm以上の長尺繊維を含むセルロース繊維)
試料のセルロース繊維を縦60mm、横80mmの紙面上に均一分散させ、任意の3ヶ所の画像を撮影する。次いで、それぞれの画像について100個以上のセルロース繊維の長さを、それぞれ顕微鏡用デジタルカメラシステム(GOKOインター株式会社製、Macromax)、計測ソフト(GOKOインター株式会社製、GOKO Measure)にて計測する。セルロース繊維の長さは、繊維の形状に沿って計測する。ただし、セルロース繊維が集合した形状のものは、最も長い部分を計測する。このようにして計測したセルロース繊維の長さを円相当径として粒度分布(ヒストグラム)を求め、体積平均径(MV)を算出する。体積平均径(MV)は、株式会社堀場製作所製の商品名:LA−950V2の付属ソフト(HORIBA NEXTGEN Project LA−950 for Windows Ver7.02)によって算出する。体積平均径(MV)は、次式で表される。
MV=Σ(vd)/Σv
(式中のdは、粒度分布のヒストグラムの区間代表値を示し、vは各区間に含まれる粒子全体に対する体積(繊維長を円相当径とした場合の球の体積)の頻度を示す。区間代表値は、区間下限値と区間上限値の積の平方根を示す。)
(Method 2: Cellulose fibers containing long fibers having a particle size of 3000 μm or more)
The cellulose fibers of the sample are uniformly dispersed on a paper surface having a length of 60 mm and a width of 80 mm, and images of arbitrary three places are taken. Next, the lengths of 100 or more cellulose fibers for each image are measured by a digital camera system for a microscope (made by GOKO Inter Co., Ltd., Macromax) and measurement software (manufactured by GOKO Inter Co., Ltd., GOKO Measure). The length of the cellulose fiber is measured along the shape of the fiber. However, in the case of a shape in which cellulose fibers are aggregated, the longest part is measured. The particle size distribution (histogram) is obtained with the length of the cellulose fibers measured in this way as the equivalent diameter of the circle, and the volume mean diameter (MV) is calculated. The volume mean diameter (MV) is calculated by the attached software (HORIBA NEXTGEN Project LA-950 for Windows Ver7.02) of the trade name: LA-950V2 manufactured by HORIBA, Ltd. The volume mean diameter (MV) is expressed by the following equation.
MV = Σ (vd) / Σv
(D in the equation indicates the interval representative value of the histogram of the particle size distribution, and v indicates the frequency of the volume (the volume of the sphere when the fiber length is the equivalent diameter of the circle) with respect to the entire particles included in each interval. The representative value indicates the square root of the product of the section lower limit value and the section upper limit value.)

本実施形態の発泡体は、セルロース繊維の含有量が10質量%以上65質量%以下の範囲内にある。セルロース繊維の含有量が10質量%以上であると、密度が低い発泡体が得られやすい。また、セルロース繊維の含有量が65質量%以下であると、ポリプロピレンの含有量を十分に確保することができ、発泡体の強度が不足することがない。
なお、発泡体中のセルロース繊維およびポリプロピレンの含有量は、発泡体の材料として使用したセルロース繊維およびポリプロピレンの含有量の割合と同じとみなすことができる。
The foam of the present embodiment has a cellulose fiber content in the range of 10% by mass or more and 65% by mass or less. When the content of the cellulose fibers is 10% by mass or more, a foam having a low density can be easily obtained. Further, when the content of the cellulose fiber is 65% by mass or less, the content of polypropylene can be sufficiently secured, and the strength of the foam is not insufficient.
The content of cellulose fiber and polypropylene in the foam can be regarded as the same as the ratio of the content of cellulose fiber and polypropylene used as the material of the foam.

(ポリプロピレン)
発泡体の材料として使用するポリプロピレンとしては、例えば、MFR(メルトフローレート、温度:230℃、荷重:2.16kg)が0.1g/10分以上100g/10分以下の範囲内にあるものを用いることが好ましい。ポリプロピレンは1種を単独で使用してもよいし、MRFなどの特性が異なる2種以上のポリプロピレンを併用してもよい。例えば、MFR(温度:230℃、荷重:2.16kg)が0.1g/10分以上20g/10分以下の範囲にある低MFRのポリプロピレンと、その低MFRのポリプロピレンよりもMFR(温度:230℃、荷重:2.16kg)が高い高MFRのポリプロピレンの2種を併用してもよい。特性の異なる2種以上のポリプロピレンを組合せて用いることによって、発泡体の密度および熱伝導率が所望の範囲となるように調整できる。
(polypropylene)
As the polypropylene used as the material of the foam, for example, polypropylene having an MFR (melt flow rate, temperature: 230 ° C., load: 2.16 kg) in the range of 0.1 g / 10 minutes or more and 100 g / 10 minutes or less is used. It is preferable to use it. One type of polypropylene may be used alone, or two or more types of polypropylene having different characteristics such as MRF may be used in combination. For example, low MFR polypropylene having an MFR (temperature: 230 ° C., load: 2.16 kg) in the range of 0.1 g / 10 minutes or more and 20 g / 10 minutes or less, and MFR (temperature: 230) than the low MFR polypropylene. Two types of polypropylene having a high MFR of high ° C. and a load of 2.16 kg) may be used in combination. By using two or more types of polypropylene having different characteristics in combination, the density and thermal conductivity of the foam can be adjusted to be in a desired range.

材料として用いるポリプロピレンの形状は、ペレット状もしくは粉末状であることが好ましい。ペレット状のポリプロピレンは、例えば、球状、半球状、アーモンド状、円柱状、角柱状、板状、フレーク状などの定形性を有するものである。粉末状のポリプロピレンは、上記のペレット状のポリプロピレンを粉砕して、粉状にしたものである。粉末状のポリプロピレンは、粒子径が2mm以下であることが好ましい。 The shape of polypropylene used as a material is preferably pellet or powder. Pellet-shaped polypropylene has morphological properties such as spherical, hemispherical, almond-shaped, columnar, prismatic, plate-shaped, and flake-shaped. The powdered polypropylene is obtained by crushing the above pelletized polypropylene into a powder. The powdered polypropylene preferably has a particle size of 2 mm or less.

本実施形態の発泡体の形状は、複数個の粒状発泡体粒子が紐状に連結した形状もしくはストランド状であることが好ましい。数珠状の発泡体を構成する粒状発泡体粒子は、球状であることが好ましい。ただし、粒状発泡体粒子は真球である必要はなく、楕円球状であってもよいし、表面に凹凸を有していてもよい。本実施形態の発泡体は種々のサイズに切断、加工して利用することができる。例えば、数珠状の発泡体の場合は、個々の粒状発泡体粒子に分割して利用してもよい。また、ストランド状の発泡体の場合は、切断して粒状の粒状発泡体粒子として利用してもよいし、複数個のストランド状の発泡体を一つに束ねた状態で融着させて一体化させて利用してもよい。 The shape of the foam of the present embodiment is preferably a shape in which a plurality of granular foam particles are connected in a string shape or a strand shape. The granular foam particles constituting the beaded foam are preferably spherical. However, the granular foam particles do not have to be true spheres, and may be elliptical spheres or have irregularities on the surface. The foam of the present embodiment can be used by cutting and processing into various sizes. For example, in the case of a beaded foam, it may be divided into individual granular foam particles for use. Further, in the case of a strand-shaped foam, it may be cut and used as granular granular foam particles, or a plurality of strand-shaped foams may be fused and integrated in a bundled state. You may let me use it.

本実施形態の発泡体は、セルロース繊維とポリプロピレンの2成分の組成物から構成されていてもよいし、セルロース繊維やポリプロピレン以外のその他の成分を含む組成物から構成されていてもよい。その他の成分としては、難燃剤、繊維系強化材、発泡助材などが挙げられる。以下、本実施形態の発泡体の組成について説明する。 The foam of the present embodiment may be composed of a composition of two components of cellulose fiber and polypropylene, or may be composed of a composition containing other components other than cellulose fiber and polypropylene. Examples of other components include flame retardants, fiber-based reinforcing materials, foaming aids, and the like. Hereinafter, the composition of the foam of the present embodiment will be described.

[第1実施形態]
第1実施形態の発泡体は、前記のセルロース繊維と前記のポリプロピレンとからなる。すなわち、第1実施形態の発泡体は、セルロース繊維の含有量が10質量%以上65質量%以下の範囲内にあり、残部がポリプロピレンである。セルロース繊維の含有量は15質量%以上60質量%以下の範囲内にあることが好ましい。
[First Embodiment]
The foam of the first embodiment comprises the above-mentioned cellulose fiber and the above-mentioned polypropylene. That is, the foam of the first embodiment has a cellulose fiber content in the range of 10% by mass or more and 65% by mass or less, and the balance is polypropylene. The content of the cellulose fiber is preferably in the range of 15% by mass or more and 60% by mass or less.

第1実施形態の発泡体は、10質量%以上65質量%以下のセルロース繊維と35質量%以上90質量%以下のポリプロピレンとからなる密度70kg/m以下の発泡体とすることにより、断熱材として使用した場合に十分な断熱性が得られるとの知見に基づいて完成されたものである。The foam of the first embodiment is a heat insulating material by forming a foam having a density of 70 kg / m 3 or less composed of 10% by mass or more and 65% by mass or less of cellulose fibers and 35% by mass or more and 90% by mass or less of polypropylene. It was completed based on the finding that sufficient heat insulating properties can be obtained when used as.

第1実施形態の発泡体は、密度が70kg/m以下であり、66kg/m以下であることが好ましい。発泡体の密度が70kg/mを超えると、断熱材として用いた場合に十分な断熱性が得られない場合がある。一方、発泡体の密度が低くなりすぎると、発泡体の強度が不足して、用途が限定されてしまう場合がある。このため、発泡体の密度は10kg/m以上であることが好ましく、15kg/m以上であることがより好ましい。The foam of the first embodiment has a density of 70 kg / m 3 or less, and preferably 66 kg / m 3 or less. If the density of the foam exceeds 70 kg / m 3 , sufficient heat insulating properties may not be obtained when used as a heat insulating material. On the other hand, if the density of the foam is too low, the strength of the foam may be insufficient and the application may be limited. Therefore, the density of the foam is preferably 10 kg / m 3 or more, and more preferably 15 kg / m 3 or more.

次に、第1実施形態の発泡体の製造方法について説明する。
第1実施形態の発泡体の製造方法は、セルロース繊維とポリプロピレンとを混練して、セルロース繊維を10質量%以上65質量%以下の範囲内で含有する第1混練物を生成させる工程(第1混練物生成工程)と、第1混練物と水とを混練して第2混練物を生成させる工程(第2混練物生成工程)と、前記第2混練物の水分を蒸発させて発泡体を生成させる工程(発泡体生成工程)と、を含む。
Next, the method for producing the foam of the first embodiment will be described.
The method for producing a foam of the first embodiment is a step of kneading cellulose fibers and polypropylene to produce a first kneaded product containing cellulose fibers in a range of 10% by mass or more and 65% by mass or less (first). (Kneaded product forming step), a step of kneading the first kneaded product and water to produce a second kneaded product (second kneaded product forming step), and evaporating the water content of the second kneaded product to form a foam. Includes a step of producing (foam generation step).

第1混練物生成工程において、セルロース繊維とポリプロピレンとを混練する混練装置としては、連続式混練機及びバッチ式混練機を用いることができる。連続式混練機の例としては、単軸混練機、二軸混練機が挙げられる。バッチ式混練機の例としては、バンバリーミキサー、加圧式ニーダーが挙げられる。 As a kneading device for kneading cellulose fibers and polypropylene in the first kneaded product producing step, a continuous kneader or a batch kneader can be used. Examples of the continuous kneader include a single-screw kneader and a twin-screw kneader. Examples of batch kneaders include a Banbury mixer and a pressurized kneader.

第1混練物生成工程において混練するセルロース繊維とポリプロピレンとは密度が大きく異なるため、混練装置に投入する前に、予めセルロース繊維とポリプロピレンとを混合して混合物とすることが好ましい。セルロース繊維とポリプロピレンの混合物として混練装置に投入することによって、短時間で均一な組成を有する第1混練物が得られる。 Since the densities of the cellulose fibers and polypropylene to be kneaded in the first kneading product forming step are significantly different, it is preferable to mix the cellulose fibers and polypropylene in advance to obtain a mixture before putting them into the kneading apparatus. By putting it into a kneading apparatus as a mixture of cellulose fibers and polypropylene, a first kneaded product having a uniform composition can be obtained in a short time.

第2混練物生成工程において、第1混練物と水とを混練する混練装置としては、連続式混練機を用いることが好ましい。連続式混練機の例としては、単軸混練機、二軸混練機が挙げられる。連続式混練機は、シリンダー部の途中に水を導入するための水導入手段を有することが好ましい。 In the second kneaded product forming step, it is preferable to use a continuous kneader as a kneading device for kneading the first kneaded product and water. Examples of the continuous kneader include a single-screw kneader and a twin-screw kneader. The continuous kneader preferably has a water introduction means for introducing water in the middle of the cylinder portion.

連続式混練機のシリンダー部の温度およびダイ部の温度、スクリュー回転数、連続式混練機への水の供給速度などの混練条件は、セルロース繊維とポリプロピレンの含有量、材質および形状、目的とする発泡体の密度範囲などに応じて適宜決定できる。 The kneading conditions such as the temperature of the cylinder part and the temperature of the die part of the continuous kneader, the screw rotation speed, and the water supply speed to the continuous kneader are the contents, materials and shapes of cellulose fibers and polypropylene, and the purpose. It can be appropriately determined according to the density range of the foam and the like.

第1混練物生成工程と第2混練物生成工程は、連続的に行ってもよい。例えば、混練装置として連続式混練機を用い、連続式混練機にポリプロピレンとセルロース繊維とを投入して第1混練物を生成させ、次いで、連続式混練機に水を供給して、第1混練物と水とを混練して第2混練物を生成させてもよい。このように第1混練物生成工程と第2混練物生成工程とを連続的に行うことによって、比較的短時間で組成の均一な第2混練物が得られる。 The first kneaded product forming step and the second kneaded product forming step may be continuously performed. For example, a continuous kneader is used as a kneading device, polypropylene and cellulose fibers are put into the continuous kneader to generate a first kneaded product, and then water is supplied to the continuous kneader to perform the first kneading. A second kneaded product may be produced by kneading the product and water. By continuously performing the first kneaded product forming step and the second kneaded product forming step in this way, a second kneaded product having a uniform composition can be obtained in a relatively short time.

発泡体生成工程では、連続混練機のダイ部から押し出された第2混練物の水分を蒸発させて発泡体を生成させる。第2混練物の水分の蒸発は大気下で行うことができる。通常は、連続混練機のダイ部から押し出されるとともに第2混練物の水分が蒸発し、第1実施形態の発泡体が生成する。生成した発泡体は、必要に応じて、使用用途に応じた長さに切断してもよい。 In the foam formation step, the moisture of the second kneaded product extruded from the die portion of the continuous kneader is evaporated to generate foam. The water content of the second kneaded product can be evaporated in the atmosphere. Normally, the foam is extruded from the die portion of the continuous kneader and the water content of the second kneaded product evaporates to produce the foam of the first embodiment. The produced foam may be cut to a length suitable for the intended use, if necessary.

以上に述べた第1実施形態の発泡体は、10質量%以上65質量%以下のセルロース繊維と35質量%以上のポリプロピレンとからなる密度70kg/m以下の発泡体である。このため、熱伝導率が低く、断熱材として使用した場合に十分な断熱性が得られる。
また、本実施形態の発泡体の製造方法によれば、セルロース繊維を10質量%以上65質量%以下の範囲内で含有する第1混練物と水とを混練して得た第2混練物の水分を蒸発させて発泡体を生成させるので、発泡量の大きい発泡体が得られる。
The foam of the first embodiment described above is a foam having a density of 70 kg / m 3 or less, which is composed of 10% by mass or more and 65% by mass or less of cellulose fibers and 35% by mass or more of polypropylene. Therefore, the thermal conductivity is low, and sufficient heat insulating properties can be obtained when used as a heat insulating material.
Further, according to the method for producing a foam of the present embodiment, a second kneaded product obtained by kneading water with a first kneaded product containing cellulose fibers in a range of 10% by mass or more and 65% by mass or less. Since the water is evaporated to produce a foam, a foam having a large amount of foam can be obtained.

[第2実施形態]
第2実施形態の発泡体は、前記のセルロース繊維と前記のポリプロピレンと樹脂添加剤とを含む。
[Second Embodiment]
The foam of the second embodiment contains the cellulose fiber, the polypropylene, and the resin additive.

第2実施形態の発泡体は、セルロース繊維とポリプロピレンと特定の樹脂添加剤とを、特定の含有量で含む発泡体とすることにより、密度が低く、断熱材として使用した場合に十分な断熱性が得られるとの知見に基づいて完成されたものである。 The foam of the second embodiment has a low density by forming a foam containing cellulose fibers, polypropylene, and a specific resin additive in a specific content, and has sufficient heat insulating properties when used as a heat insulating material. It was completed based on the knowledge that

樹脂添加剤は、ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリエーテル系樹脂、ポリイミド系樹脂、エラストマー系樹脂、含イオウ系樹脂、フェノール系樹脂およびエポキシ系樹脂からなる群より選ばれる少なくとも1種である。 Resin additives include vinyl resin, polystyrene resin, polyester resin, polyamide resin, acrylic resin, polyether resin, polyimide resin, elastomer resin, sulfur-containing resin, phenol resin and epoxy resin. At least one species selected from the group consisting of.

樹脂添加剤として用いられるビニル系樹脂としては、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリビニルアルコール(PVA)、エチレン・酢酸ビニル共重合体(EVA)、三フッ化塩化エチレン(PCTFE)、四フッ化エチレン(PTFE)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、四フッ化エチレン・パーフルオロアルコキシエチレン共重合体(PFA)、四フッ化エチレン・エチレン共重合体(ETFE)、フッ化ビニリデン(PVDF)、ポリエチレン(PE)等が挙げられる。
ビニル系樹脂は、式(1)で表される重合単位を有する樹脂であり、重量平均分子量が10,000〜200,000,000であることが好ましい。なお、式(1)における繰り返し単位である[CR(R)−CR(R)]と[CR(R)−CR(R)]の配列順序には、特に制限はない。したがって、式(1)は、ランダム共重合体、ブロック共重合体、交互共重合体のいずれを含むものであってもよい。
Vinyl-based resins used as resin additives include polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polyvinyl alcohol (PVA), ethylene / vinyl acetate copolymer (EVA), and ethylene trifluoride (PCTFE). ), Ethylene tetrafluoride (PTFE), ethylene tetrafluoride / propylene hexafluoride copolymer (FEP), ethylene tetrafluoride / perfluoroalkoxyethylene copolymer (PFA), ethylene tetrafluoride / ethylene copolymer weight Examples thereof include coalescence (ETFE), vinylidene fluoride (PVDF), polyethylene (PE) and the like.
The vinyl-based resin is a resin having a polymerization unit represented by the formula (1), and preferably has a weight average molecular weight of 10,000 to 200,000,000. The arrangement order of [CR 1 (R 2 ) -CR 3 (R 4 )] and [CR 5 (R 6 ) -CR 7 (R 8 )], which are the repeating units in the formula (1), is particularly limited. There is no. Therefore, the formula (1) may include any of a random copolymer, a block copolymer, and an alternating copolymer.

Figure 2019112011
Figure 2019112011

式(1)中、R、R、R、R4、、R、R、およびRは、それぞれ独立に、水素原子、ハロゲン原子、水酸基(−OH)、アセチルオキシ基(−OCOCH)、トリフルオロメチル基(−CF)、トリフルオロメトキシ基(−OCF)、炭素数1〜10の直鎖または環状のアルキル基から選ばれるいずれか1つの基である。R、R、R、R、R、R、R、およびRは、全て異なる基であってもよいし、一部または全部が同じ基であってもよい。lは、40〜100モル%である。mは、0〜60モル%である。In formula (1), R 1 , R 2 , R 3 , R 4, R 5 , R 6 , R 7 , and R 8 are independently hydrogen atom, halogen atom, hydroxyl group (-OH), and acetyloxy. It is any one group selected from a group (-OCOCH 3 ), a trifluoromethyl group (-CF 3 ), a trifluoromethoxy group (-OCF 3 ), and a linear or cyclic alkyl group having 1 to 10 carbon atoms. .. R 1, R 2, R 3 , R 4, R 5, R 6, R 7, and R 8 may be all different groups, some or all may be the same group. l is 40 to 100 mol%. m is 0 to 60 mol%.

ポリスチレン系樹脂としては、ポリスチレン(PS)、スチレン・アクリロニトリル共重合体(AS)、スチレン・ブタジエン・アクリロニトリル共重合体(ABS)等が挙げられる。
ポリスチレン系樹脂は、式(2)で表される重合単位を有する樹脂であり、重量平均分子量が2,000〜4,000,000であることが好ましい。なお、式(2)における繰り返し単位の配列順序には、特に制限はない。したがって、式(2)は、ランダム共重合体、ブロック共重合体、交互共重合体のいずれを含むものであってもよい。
Examples of the polystyrene-based resin include polystyrene (PS), styrene-acrylonitrile copolymer (AS), and styrene-butadiene-acrylonitrile copolymer (ABS).
The polystyrene-based resin is a resin having a polymerization unit represented by the formula (2), and preferably has a weight average molecular weight of 2,000 to 4,000,000. The order of arrangement of the repeating units in the equation (2) is not particularly limited. Therefore, the formula (2) may include any of a random copolymer, a block copolymer, and an alternating copolymer.

Figure 2019112011
Figure 2019112011

式(2)中、Phはフェニル基を示す。xは、0〜95モル%である。yは、0〜95モル%である。zは、5〜100モル%である。 In formula (2), Ph represents a phenyl group. x is 0 to 95 mol%. y is 0 to 95 mol%. z is 5 to 100 mol%.

ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等が挙げられる。
ポリエステル系樹脂は、式(3)で表される樹脂であることが好ましく、重量平均分子量が1,000〜1,000,000であることが好ましい。
Examples of the polyester-based resin include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT).
The polyester-based resin is preferably a resin represented by the formula (3), and preferably has a weight average molecular weight of 1,000 to 1,000,000.

Figure 2019112011
Figure 2019112011

式(3)中、pは、1または2である。rは、2〜10,000である。 In formula (3), p is 1 or 2. r is 2 to 10,000.

ポリアミド系樹脂としては、例えば、ナイロン6、ナイロン6,6、ナイロン12等が挙げられる。
ポリアミド系樹脂は、式(4)または式(5)で表される樹脂であることが好ましく、重量平均分子量が500〜5,000,000であることが好ましい。
Examples of the polyamide resin include nylon 6, nylon 6, 6, nylon 12, and the like.
The polyamide-based resin is preferably a resin represented by the formula (4) or the formula (5), and preferably has a weight average molecular weight of 500 to 5,000,000.

Figure 2019112011
Figure 2019112011

式(4)中、qは、4〜10である。sは、2〜30,000である。 In formula (4), q is 4 to 10. s is 2 to 30,000.

Figure 2019112011
Figure 2019112011

式(5)中、gは、2〜5である。hは、2〜10である。tは、2〜30,000である。 In formula (5), g is 2-5. h is 2 to 10. t is 2 to 30,000.

アクリル系樹脂としては、例えば、ポリメチルメタクリレート(PMMA)、メタクリル酸メチル・スチレン共重合体(MS)等が挙げられる。
アクリル系樹脂は、式(6)で表される重合単位を有する樹脂であり、重量平均分子量が1,000〜3,000,000であることが好ましい。なお、式(6)における繰り返し単位の配列順序には、特に制限はない。したがって、式(6)は、ランダム共重合体、ブロック共重合体、交互共重合体のいずれを含むものであってもよい。
Examples of the acrylic resin include polymethylmethacrylate (PMMA), methyl methacrylate / styrene copolymer (MS) and the like.
The acrylic resin is a resin having a polymerization unit represented by the formula (6), and preferably has a weight average molecular weight of 1,000 to 3,000,000. The order of arrangement of the repeating units in the equation (6) is not particularly limited. Therefore, the formula (6) may include any of a random copolymer, a block copolymer, and an alternating copolymer.

Figure 2019112011
Figure 2019112011

式(6)中、Rは、水素原子、炭素数1〜5のアルキル基から選ばれるいずれか1つの基である。Phは、フェニル基を示す。iは、5〜100モル%である。uは、0〜95モル%である。In formula (6), R 9 is any one group selected from a hydrogen atom and an alkyl group having 1 to 5 carbon atoms. Ph represents a phenyl group. i is 5 to 100 mol%. u is 0 to 95 mol%.

ポリエーテル系樹脂としては、例えば、ポリアセタール(POM)、ポリフェニレンエーテル(PPE)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルサルフォン(PES)等が挙げられる。
ポリエーテル系樹脂としては、式(7)で表される重合単位を有する樹脂であることが好ましく、重量平均分子量が500〜2,000,000であることが好ましい。
式(7)で表される重合単位において、置換基としては、カルボニルフェニル基、フェニル基、スルホニルフェニル基などが挙げられる。
Examples of the polyether resin include polyacetal (POM), polyphenylene ether (PPE), polyetherketone (PEK), polyetheretherketone (PEEK), polyethersulfone (PES), and the like.
The polyether resin is preferably a resin having a polymerization unit represented by the formula (7), and preferably has a weight average molecular weight of 500 to 2,000,000.
In the polymerization unit represented by the formula (7), examples of the substituent include a carbonylphenyl group, a phenyl group, a sulfonylphenyl group and the like.

Figure 2019112011
Figure 2019112011

式(7)中、Aは、−CH−、または1つ以上の置換基を有してもよいフェニレン基(−C−)である。Wherein (7), A is, -CH 2 -, or one or more substituents which may phenylene group having a (-C 6 H 4 -) is.

ポリイミド系樹脂としては、式(8)で表される樹脂であることが好ましく、重量平均分子量が1,000〜9,000,000であることが好ましい。 The polyimide-based resin is preferably a resin represented by the formula (8), and preferably has a weight average molecular weight of 1,000 to 9,000,000.

Figure 2019112011
Figure 2019112011

式(8)中、Arは下記式(9)または下記式(10)で示される基である。R10は下記式(11)〜下記式(15)で示されるいずれかの基である。wは、1〜30,000である。In the formula (8), Ar is a group represented by the following formula (9) or the following formula (10). R 10 is any group represented by the following formulas (11) to (15). w is 1 to 30,000.

Figure 2019112011
Figure 2019112011

エラストマー系樹脂としては、例えば、ポリカーボネート(PC)等が挙げられる。
含イオウ系樹脂としては、例えば、ポリサルフォン(PSF)、ポリフェニレンサルファイド(PPS)等が挙げられる。
フェノール系樹脂としては、例えば、ノボラック樹脂やレゾール樹脂などが挙げられる。
エポキシ系樹脂としては、例えば、ビスフェノールAとエピクロルヒドリンとの共重合体などが挙げられる。
Examples of the elastomer resin include polycarbonate (PC) and the like.
Examples of the sulfur-containing resin include polysulfone (PSF) and polyphenylene sulfide (PPS).
Examples of the phenolic resin include novolak resin and resole resin.
Examples of the epoxy resin include a copolymer of bisphenol A and epichlorohydrin.

本実施形態の発泡体に含まれる樹脂添加剤は、上記樹脂を複数混合したポリマーアロイ、ポリマーブレンドでもよい。
樹脂添加剤としては、上記の中でも、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリビニルアルコール(PVA)、エチレン・酢酸ビニル共重合体(EVA)、ポリエチレン(PE)、ポリスチレン(PS)、スチレン・アクリロニトリル共重合体(AS)、スチレン・ブタジエン・アクリロニトリル共重合体(ABS)、ポリメチルメタクリレート(PMMA)、メタクリル酸メチル・スチレン共重合体(MS)から選ばれる少なくとも1種を用いることが好ましい。
The resin additive contained in the foam of the present embodiment may be a polymer alloy or a polymer blend in which a plurality of the above resins are mixed.
Among the above, the resin additives include polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polyvinyl alcohol (PVA), ethylene / vinyl acetate copolymer (EVA), polyethylene (PE), and polystyrene (PS). , At least one selected from styrene / acrylonitrile copolymer (AS), styrene / butadiene / acrylonitrile copolymer (ABS), polyvinylidene methacrylate (PMMA), and methyl methacrylate / styrene copolymer (MS). Is preferable.

特に、樹脂添加剤として、ポリスチレン(PS)、スチレン・アクリロニトリル共重合体(AS)、スチレン・ブタジエン・アクリロニトリル共重合体(ABS)から選ばれる少なくとも1種を用いることが好ましい。樹脂添加剤として、これらの樹脂を用いることで、より密度の低い発泡体が得られる。 In particular, it is preferable to use at least one selected from polystyrene (PS), styrene-acrylonitrile copolymer (AS), and styrene-butadiene-acrylonitrile copolymer (ABS) as the resin additive. By using these resins as the resin additive, a foam having a lower density can be obtained.

第2実施形態の発泡体は、セルロース繊維とポリプロピレンと樹脂添加剤のみで形成されていてもよいし、必要に応じて、その他の成分を含有していてもよい。
その他の成分としては、例えば、難燃剤、繊維系強化材、発泡助材などが挙げられる。
その他の成分の含有量は、発泡体全体量に対する含有量として、例えば、0.1質量%以上30質量%以下の範囲内とすることができる。
The foam of the second embodiment may be formed only of cellulose fibers, polypropylene, and a resin additive, or may contain other components, if necessary.
Examples of other components include flame retardants, fiber-based reinforcing materials, foaming aids, and the like.
The content of the other components can be, for example, in the range of 0.1% by mass or more and 30% by mass or less as the content with respect to the total amount of the foam.

第2実施形態の発泡体は、セルロース繊維の含有量が10質量%以上65質量%以下であり、樹脂添加剤の含有量が0.1質量%以上30質量%以下であり、ポリプロピレンの含有量が5質量%以上である。 The foam of the second embodiment has a cellulose fiber content of 10% by mass or more and 65% by mass or less, a resin additive content of 0.1% by mass or more and 30% by mass or less, and a polypropylene content. Is 5% by mass or more.

セルロース繊維の含有量は、10質量%以上65質量%以下であり、30質量%以上60質量%以下であることが好ましい。セルロース繊維の含有量が10質量%以上であると、密度の低い発泡体得られる。また、セルロース繊維の含有量が65質量%以下であると、樹脂添加剤およびポリプロピレンの含有量を十分に確保することができ、発泡体の強度が不足することがない。 The content of the cellulose fiber is preferably 10% by mass or more and 65% by mass or less, and preferably 30% by mass or more and 60% by mass or less. When the content of the cellulose fibers is 10% by mass or more, a foam having a low density can be obtained. Further, when the content of the cellulose fiber is 65% by mass or less, the content of the resin additive and polypropylene can be sufficiently secured, and the strength of the foam is not insufficient.

樹脂添加剤の含有量は、0.1質量%以上30質量%以下であり、1質量%以上4質量%以下であることが好ましい。樹脂添加剤の含有量が0.1質量%以上であると、樹脂添加剤を含有することによる発泡倍率の向上効果が十分に得られる。また、樹脂添加剤の含有量が30質量%以下であると、セルロース繊維およびポリプロピレンの含有量を十分に確保でき、樹脂添加剤の含有量が多すぎることによる悪影響が生じない。 The content of the resin additive is 0.1% by mass or more and 30% by mass or less, and preferably 1% by mass or more and 4% by mass or less. When the content of the resin additive is 0.1% by mass or more, the effect of improving the foaming ratio by containing the resin additive can be sufficiently obtained. Further, when the content of the resin additive is 30% by mass or less, the content of the cellulose fiber and polypropylene can be sufficiently secured, and the adverse effect due to the excessive content of the resin additive does not occur.

ポリプロピレンの含有量は、5質量%以上であり、20質量%以上であることが好ましい。ポリプロピレンの含有量が5質量%以上であると、十分な強度を有する発泡体が得られる。
なお、発泡体中のセルロース繊維、樹脂添加剤およびポリプロピレンの含有量は、発泡体の材料として使用したセルロース繊維、樹脂添加剤およびポリプロピレンの含有量の割合と同じとみなすことができる。
The content of polypropylene is 5% by mass or more, preferably 20% by mass or more. When the polypropylene content is 5% by mass or more, a foam having sufficient strength can be obtained.
The content of cellulose fiber, resin additive and polypropylene in the foam can be regarded as the same as the ratio of the content of cellulose fiber, resin additive and polypropylene used as the material of the foam.

第2実施形態の発泡体は、密度が70kg/m以下であることが好ましく、66kg/m以下であることがより好ましい。発泡体の密度が70kg/m以下であると、断熱材として好適である。一方、発泡体の密度が低くなりすぎると、発泡体の強度が不足して、用途が限定されてしまう場合がある。このため、発泡体の密度は10kg/m以上であることが好ましく、15kg/m以上であることがより好ましい。The foam of the second embodiment preferably has a density of 70 kg / m 3 or less, and more preferably 66 kg / m 3 or less. When the density of the foam is 70 kg / m 3 or less, it is suitable as a heat insulating material. On the other hand, if the density of the foam is too low, the strength of the foam may be insufficient and the application may be limited. Therefore, the density of the foam is preferably 10 kg / m 3 or more, and more preferably 15 kg / m 3 or more.

<発泡体の製造方法>
次に、本実施形態の発泡体の製造方法について説明する。
本実施形態の発泡体の製造方法は、セルロース繊維と樹脂添加剤とポリプロピレンとを混練して、セルロース繊維を10質量%以上65質量%以下、樹脂添加剤を0.1質量%以上30質量%以下、ポリプロピレンを5質量%以上含有する第1混練物を生成させる工程(第1混練物生成工程)と、第1混練物と水とを混練して第2混練物を生成させる工程(第2混練物生成工程)と、前記第2混練物の水分を蒸発させて発泡体を生成させる工程(発泡体生成工程)と、を含む。
<Manufacturing method of foam>
Next, the method for producing the foam of the present embodiment will be described.
In the method for producing a foam of the present embodiment, cellulose fibers, a resin additive and polypropylene are kneaded, and the cellulose fibers are 10% by mass or more and 65% by mass or less, and the resin additive is 0.1% by mass or more and 30% by mass or more. Hereinafter, a step of producing a first kneaded product containing 5% by mass or more of polypropylene (first kneaded product producing step) and a step of kneading the first kneaded product and water to produce a second kneaded product (second). It includes a step of producing a kneaded product) and a step of evaporating the water content of the second kneaded product to produce a foam (foam product producing step).

(第1混練物生成工程)
第1混練物生成工程において、セルロース繊維とポリプロピレンと樹脂添加剤とを混練する混練装置としては、連続式混練機及びバッチ式混練機を用いることができる。連続式混練機の例としては、単軸混練機、二軸混練機が挙げられる。バッチ式混練機の例としては、バンバリーミキサー、加圧式ニーダーが挙げられる。
(1st kneaded product forming step)
As a kneading device for kneading cellulose fibers, polypropylene, and a resin additive in the first kneaded product forming step, a continuous kneader or a batch kneader can be used. Examples of the continuous kneader include a single-screw kneader and a twin-screw kneader. Examples of batch kneaders include a Banbury mixer and a pressurized kneader.

第1混練物生成工程において混練するセルロース繊維とポリプロピレンと樹脂添加剤とは密度が大きく異なるため、混練装置に投入する前に、予めセルロース繊維とポリプロピレンと樹脂添加剤とを混合して混合物とすることが好ましい。セルロース繊維とポリプロピレンと樹脂添加剤の混合物として混練装置に投入することによって、短時間で均一な組成を有する第1混練物が得られる。
本実施形態の発泡体として、その他の成分を含有するものを製造する場合、第1混練物生成工程において、セルロース繊維とポリプロピレンと樹脂添加剤とともに、その他の成分を混練装置に投入し、その他の成分を含む第1混練物を製造する。
Since the densities of the cellulose fibers, polypropylene, and the resin additive to be kneaded in the first kneaded product forming step are significantly different, the cellulose fibers, polypropylene, and the resin additive are mixed in advance to prepare a mixture before being put into the kneading apparatus. Is preferable. By putting it into a kneading apparatus as a mixture of cellulose fibers, polypropylene and a resin additive, a first kneaded product having a uniform composition can be obtained in a short time.
In the case of producing a foam containing other components as the foam of the present embodiment, in the first kneading product forming step, the other components are put into the kneading apparatus together with the cellulose fibers, polypropylene and the resin additive, and other components are added. The first kneaded product containing the ingredients is produced.

(第2混練物生成工程)
第2混練物生成工程において、第1混練物と水とを混練する混練装置としては、連続式混練機を用いることが好ましい。連続式混練機の例、シリンダー部の温度およびダイ部の温度、スクリュー回転数、連続式混練機への水の供給速度などの混練条件は、上述の第1実施形態の発泡体の製造方法の場合と同じである。また、上述の第1実施形態の発泡体の製造方法の場合と同様に、第1混練物生成工程と第2混練物生成工程は、連続的に行ってもよい。例えば、混練装置として連続式混練機を用い、連続式混練機にポリプロピレンとセルロース繊維と樹脂添加剤と、必要に応じて含有されるその他の成分とを投入して第1混練物を生成させ、次いで、連続式混練機に水を供給して、第1混練物と水とを混練して第2混練物を生成させてもよい。
(Second kneaded product production step)
In the second kneaded product forming step, it is preferable to use a continuous kneader as a kneading device for kneading the first kneaded product and water. The kneading conditions such as the example of the continuous kneader, the temperature of the cylinder portion and the temperature of the die portion, the screw rotation speed, and the water supply speed to the continuous kneader are the same as those of the foam manufacturing method of the first embodiment described above. Same as the case. Further, as in the case of the foam manufacturing method of the first embodiment described above, the first kneaded product producing step and the second kneaded product producing step may be continuously performed. For example, a continuous kneader is used as a kneading device, and polypropylene, cellulose fibers, a resin additive, and other components contained as necessary are added to the continuous kneader to generate a first kneaded product. Next, water may be supplied to the continuous kneader to knead the first kneaded product and water to produce a second kneaded product.

(発泡体生成工程)
発泡体生成工程では、連続混練機のダイ部から押し出された第2混練物の水分を蒸発させて発泡体を生成させる。第2混練物の水分の蒸発は大気下で行うことができる。通常は、連続混練機のダイ部から押し出されるとともに第2混練物の水分が蒸発し、第2実施形態の発泡体が生成する。生成した発泡体は、必要に応じて、使用用途に応じた長さに切断してもよい。
(Foam formation process)
In the foam formation step, the moisture of the second kneaded product extruded from the die portion of the continuous kneader is evaporated to generate foam. The water content of the second kneaded product can be evaporated in the atmosphere. Normally, the foam is extruded from the die portion of the continuous kneader and the water content of the second kneaded product evaporates to produce the foam of the second embodiment. The produced foam may be cut to a length suitable for the intended use, if necessary.

以上に述べた第2実施形態の発泡体は、10質量%以上65質量%以下のセルロース繊維と、0.1質量%以上30質量%以下の樹脂添加剤と、5質量%以上のポリプロピレンを含み、樹脂添加剤が、ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリエーテル系樹脂、ポリイミド系樹脂、エラストマー系樹脂、含イオウ系樹脂、フェノール系樹脂、エポキシ系樹脂から選ばれる少なくとも1種である。このため、熱伝導率が低く、断熱材として使用した場合に十分な断熱性が得られる。
また、本実施形態の発泡体の製造方法によれば、セルロース繊維とポリプロピレンと特定の樹脂添加剤とを特定の含有量で含む第1混練物と水とを混練して得た第2混練物の水分を蒸発させて発泡体を生成させるので、発泡量の大きい発泡体が得られる。
The foam of the second embodiment described above contains 10% by mass or more and 65% by mass or less of cellulose fibers, 0.1% by mass or more and 30% by mass or less of a resin additive, and 5% by mass or more of polypropylene. , Resin additives are vinyl resin, polystyrene resin, polyester resin, polyamide resin, acrylic resin, polyether resin, polyimide resin, elastomer resin, sulfur-containing resin, phenol resin, epoxy resin. At least one selected from resins. Therefore, the thermal conductivity is low, and sufficient heat insulating properties can be obtained when used as a heat insulating material.
Further, according to the method for producing a foam of the present embodiment, a second kneaded product obtained by kneading a first kneaded product containing cellulose fibers, polypropylene and a specific resin additive in a specific content and water. Since the water content of the above is evaporated to generate a foam, a foam having a large amount of foam can be obtained.

[第3実施形態]
第3実施形態の発泡体は、前記のセルロース繊維と前記のポリプロピレンとポリウレタンとを含む。セルロース繊維の含有量は10質量%以上65質量%以下の範囲内、ポリウレタンの含有量は1質量%以上20質量%未満の範囲内、ポリプロピレンの含有量は15質量%以上89質量%以下の範囲内とされている。さらに、本実施形態の発泡体の形状は、複数個の粒状発泡体粒子が紐状に連結した形状もしくはストランド状とされている。
[Third Embodiment]
The foam of the third embodiment contains the cellulose fiber and the polypropylene and polyurethane. The content of cellulose fibers is in the range of 10% by mass or more and 65% by mass or less, the content of polyurethane is in the range of 1% by mass or more and less than 20% by mass, and the content of polypropylene is in the range of 15% by mass or more and 89% by mass or less. It is said to be inside. Further, the shape of the foam of the present embodiment is a shape in which a plurality of granular foam particles are connected in a string shape or a strand shape.

第3実施形態の発泡体は、セルロース繊維とポリウレタンとポリプロピレンとを所定の量で含む混練物に、水を加えて発泡させることによって、低密度でありながらも、高い強度を有する発泡体を得ることが可能となるとの知見に基づいて完成されたものである。 The foam of the third embodiment is obtained by adding water to a kneaded product containing cellulose fibers, polyurethane and polypropylene in a predetermined amount and foaming the foam to obtain a foam having high strength while having a low density. It was completed based on the knowledge that it will be possible.

ポリウレタンは、発泡体の強度を向上させるとともに、発泡体の発泡量を向上させる機能を有する。ポリウレタンとしては、ポリエステル系ウレタン、ポリエーテル系ウレタン、ポリカーボネート系ウレタンなどのウレタン樹脂を用いることができる。 Polyurethane has a function of improving the strength of the foam and the amount of foam of the foam. As the polyurethane, urethane resins such as polyester urethane, polyether urethane, and polycarbonate urethane can be used.

ポリウレタンは、水溶性あるいは水に対する親和性が高いものあることが好ましい。水に対する親和性が高いポリウレタンは、発泡体の製造時に、発泡剤である水と共に発泡体の材料全体に分散されるので、発泡体の強度が均一になりやすくなる。発泡体の製造時に用いるポリウレタンは、ポリウレタン溶液あるいはポリウレタンの水性分散体(水性ポリウレタンディスパージョン)であることが好ましい。また、ポリウレタンは、分解温度が190℃以上であることが好ましい。分解温度が190℃以上であると、発泡体の製造時に、ポリウレタンが分解、揮発しにくくなる。 The polyurethane is preferably water-soluble or has a high affinity for water. Polyurethane, which has a high affinity for water, is dispersed in the entire material of the foam together with water as a foaming agent during the production of the foam, so that the strength of the foam tends to be uniform. The polyurethane used in the production of the foam is preferably a polyurethane solution or an aqueous dispersion of polyurethane (aqueous polyurethane dispersion). Further, polyurethane preferably has a decomposition temperature of 190 ° C. or higher. When the decomposition temperature is 190 ° C. or higher, the polyurethane is less likely to be decomposed and volatilized during the production of the foam.

ポリウレタンの含有量が少なくなりすぎると、ポリウレタンによる上記の効果を得ることが困難となるおそれがある。一方、ポリウレタンの含有量が多くなりすぎると、相対的にセルロース繊維やポリプロピレンの含有量が少なくなり、却って発泡量が低下し、物理的な衝撃に対する緩衝性や断熱性が低下するおそれがある。
以上の理由から、第3実施形態の発泡体は、ポリウレタンの含有量を1質量%以上20質量%未満の範囲内と設定している。ポリウレタンの含有量は、3質量%以上15質量%以下の範囲内にあることが好ましい。
If the content of polyurethane is too low, it may be difficult to obtain the above effects of polyurethane. On the other hand, if the content of polyurethane is too high, the content of cellulose fibers and polypropylene may be relatively low, the amount of foaming may be lowered, and the cushioning property against physical impact and the heat insulating property may be lowered.
For the above reasons, the foam of the third embodiment has a polyurethane content of 1% by mass or more and less than 20% by mass. The content of polyurethane is preferably in the range of 3% by mass or more and 15% by mass or less.

また、発泡体の密度が高くなりすぎると、発泡体の気孔量が相対的に少なくなり、物理的な衝撃に対する緩衝性や断熱性が低下するおそれがある。このため、第3実施形態の発泡体の密度は80kg/m以下にあり、70kg/m以下にあることがより好ましい。一方、発泡体の密度が低くなりすぎると、発泡体の強度が低下するおそれがある。このため、発泡体の密度は10kg/m以上であることが好ましく、15kg/m以上であることがより好ましい。Further, if the density of the foam is too high, the amount of pores in the foam becomes relatively small, and there is a possibility that the cushioning property and the heat insulating property against physical impact are lowered. Therefore, the density of the foam of the third embodiment is 80 kg / m 3 or less, and more preferably 70 kg / m 3 or less. On the other hand, if the density of the foam is too low, the strength of the foam may decrease. Therefore, the density of the foam is preferably 10 kg / m 3 or more, and more preferably 15 kg / m 3 or more.

第3実施形態の発泡体は、セルロース繊維とポリプロピレンとポリウレタンのみで形成されていてもよいし、必要に応じて、その他の成分を含有していてもよい。
その他の成分としては、例えば、有機系難燃剤、無機系難燃剤、酸化防止剤、発泡助剤などが挙げられる。その他の成分の含有量は、発泡体全体量に対する含有量として、例えば、0.1質量%以上30質量%以下の範囲内とすることができる。なお、その他の成分を含む場合、発泡体全体量に対するポリウレタンとポリポロピレンの合計含有量は35質量%以上であることが好ましく、40質量%以上であることがより好ましい。
The foam of the third embodiment may be formed only of cellulose fibers, polypropylene and polyurethane, or may contain other components if necessary.
Examples of other components include organic flame retardants, inorganic flame retardants, antioxidants, foaming aids and the like. The content of the other components can be, for example, in the range of 0.1% by mass or more and 30% by mass or less as the content with respect to the total amount of the foam. When other components are contained, the total content of polyurethane and polypolopylene with respect to the total amount of the foam is preferably 35% by mass or more, and more preferably 40% by mass or more.

次に、第3実施形態の発泡体の製造方法について説明する。
本実施形態の発泡体の製造方法は、セルロース繊維(例えば、古紙セルロース繊維)と、ポリプロピレン(例えば、ペレット状もしくは粉末状のポリプロピレン)と、ポリウレタン(例えば、ポリウレタン溶液あるいはポリウレタンの水性分散体)とを混練して、第1混練物を生成させる工程(第1混練物生成工程)と、第1混練物と水とを混練して第2混練物を生成させる工程(第2混練物生成工程)と、前記第2混練物の水分を蒸発させて発泡体を生成させる工程(発泡体生成工程)と、を含む。第1混練物は、セルロース繊維の含有量が10質量%以上65質量%以下の範囲内、ポリウレタンの含有量が1質量%以上20質量%未満の範囲内、ポリプロピレンの含有量が15質量%以上89質量%以下の範囲内にあることが好ましい。なお、第1混練物のポリウレタンの含有量が1質量%以上10質量%以下の範囲内にあると、発泡体生成工程において、数珠状の発泡体が生成しやすくなる。
Next, the method for producing the foam of the third embodiment will be described.
The method for producing the foam of the present embodiment includes cellulose fibers (for example, used paper cellulose fibers), polypropylene (for example, pellet-shaped or powdered polypropylene), and polyurethane (for example, a polyurethane solution or an aqueous dispersion of polyurethane). A step of kneading the first kneaded product to produce a first kneaded product (first kneaded product producing step) and a step of kneading the first kneaded product and water to produce a second kneaded product (second kneaded product producing step). And a step of evaporating the water content of the second kneaded product to produce a foam (foam generation step). The first kneaded product has a cellulose fiber content of 10% by mass or more and 65% by mass or less, a polyurethane content of 1% by mass or more and less than 20% by mass, and a polypropylene content of 15% by mass or more. It is preferably in the range of 89% by mass or less. When the polyurethane content of the first kneaded product is in the range of 1% by mass or more and 10% by mass or less, beads-shaped foams are likely to be produced in the foam generation step.

(第1混練物生成工程)
第1混練物生成工程において、セルロース繊維とポリウレタンとポリプロピレンとを混練する混練装置としては、連続式混練機及びバッチ式混練機を用いることができる。連続式混練機の例としては、単軸混練機、二軸混練機が挙げられる。バッチ式混練機の例としては、バンバリーミキサー、加圧式ニーダーが挙げられる。
(1st kneaded product forming step)
As a kneading device for kneading cellulose fibers, polyurethane, and polypropylene in the first kneaded product forming step, a continuous kneader or a batch kneader can be used. Examples of the continuous kneader include a single-screw kneader and a twin-screw kneader. Examples of batch kneaders include a Banbury mixer and a pressurized kneader.

第1混練物生成工程において混練するセルロース繊維とポリプロピレンとポリウレタンとは密度が大きく異なるため、混練装置に投入する前に、予めセルロース繊維とポリウレタンとポリプロピレンとを混合して混合物とすることが好ましい。セルロース繊維とポリウレタンとポリプロピレンの混合物として混練装置に投入することによって、短時間で均一な組成を有する第1混練物が得られる。
本実施形態の発泡体として、その他の成分を含有するものを製造する場合、第1混練物生成工程において、セルロース繊維とポリウレタンとポリプロピレンと共に、その他の成分を混練装置に投入し、その他の成分を含む第1混練物を製造する。
Since the densities of the cellulose fibers, polypropylene and polypropylene to be kneaded in the first kneaded product forming step are significantly different, it is preferable to mix the cellulose fibers, polyurethane and polypropylene in advance to prepare a mixture before putting them into the kneading apparatus. By putting it into a kneading apparatus as a mixture of cellulose fibers, polyurethane and polypropylene, a first kneaded product having a uniform composition can be obtained in a short time.
In the case of producing a foam containing other components as the foam of the present embodiment, in the first kneading product forming step, the other components are put into the kneading device together with the cellulose fibers, polyurethane and polypropylene, and the other components are added. The first kneaded product containing the mixture is produced.

(第2混練物生成工程)
第2混練物生成工程において、第1混練物と水とを混練する混練装置としては、連続式混練機を用いることが好ましい。連続式混練機の例、シリンダー部の温度およびダイ部の温度、スクリュー回転数、連続式混練機への水の供給速度などの混練条件は、上述の第1実施形態の発泡体の製造方法の場合と同じである。また、上述の第1実施形態の発泡体の製造方法の場合と同様に、第1混練物生成工程と第2混練物生成工程は、連続的に行ってもよい。例えば、混練装置として連続式混練機を用い、連続式混練機にポリプロピレンとセルロース繊維とポリウレタンと、必要に応じて含有されるその他の成分とを投入して第1混練物を生成させ、次いで、連続式混練機に水を供給して、第1混練物と水とを混練して第2混練物を生成させてもよい。
(Second kneaded product production step)
In the second kneaded product forming step, it is preferable to use a continuous kneader as a kneading device for kneading the first kneaded product and water. The kneading conditions such as the example of the continuous kneader, the temperature of the cylinder portion and the temperature of the die portion, the screw rotation speed, and the water supply speed to the continuous kneader are the same as those of the foam manufacturing method of the first embodiment described above. Same as the case. Further, as in the case of the foam manufacturing method of the first embodiment described above, the first kneaded product producing step and the second kneaded product producing step may be continuously performed. For example, a continuous kneader is used as a kneading device, and polypropylene, cellulose fibers, polyurethane, and other components contained as necessary are added to the continuous kneader to generate a first kneaded product, and then a first kneaded product is produced. Water may be supplied to the continuous kneader to knead the first kneaded product and water to produce a second kneaded product.

(発泡体生成工程)
発泡体生成工程では、連続混練機のダイ部から押し出された第2混練物の水分を蒸発させて発泡体を生成させる。第2混練物の水分の蒸発は大気下で行うことができる。通常は、連続混練機のダイ部から押し出されるとともに第2混練物の水分が蒸発し、第3実施形態の発泡体が生成する。生成した発泡体は、自然冷却等の冷却によって硬化した後、使用用途に応じた長さに切断され、断熱材、緩衝材、包装材などに利用される。
(Foam formation process)
In the foam formation step, the moisture of the second kneaded product extruded from the die portion of the continuous kneader is evaporated to generate foam. The water content of the second kneaded product can be evaporated in the atmosphere. Normally, the foam is extruded from the die portion of the continuous kneader and the water content of the second kneaded product evaporates to produce the foam of the third embodiment. The generated foam is cured by cooling such as natural cooling, then cut to a length suitable for the intended use, and used as a heat insulating material, a cushioning material, a packaging material, and the like.

以上のような構成とされた第3実施形態の発泡体は、セルロース繊維の含有量が10質量%以上65質量%以下の範囲内、ポリウレタンの含有量が1質量%以上20質量%未満の範囲内、ポリプロピレンの含有量が15質量%以上89質量%以下の範囲内にあるので、低密度でありながらも、高い強度を有する。また、第3実施形態の発泡体は、密度を80kg/m以下と低密度であるので、物理的な衝撃に対する緩衝性や断熱性が向上する。The foam of the third embodiment having the above configuration has a cellulose fiber content of 10% by mass or more and 65% by mass or less, and a polyurethane content of 1% by mass or more and less than 20% by mass. Among them, since the content of polypropylene is in the range of 15% by mass or more and 89% by mass or less, it has high strength while having a low density. Further, since the foam of the third embodiment has a low density of 80 kg / m 3 or less, the cushioning property and the heat insulating property against physical impact are improved.

以上に述べた本実施形態の発泡体は、セルロース繊維とポリプロピレンとを含み、セルロース繊維の含有量が10質量%以上65質量%以下の範囲内にあって、密度が80kg/m以下と低密度であるので気孔量が多い。このため、十分な断熱性が得ることができ、断熱材、緩衝材、包装材として有利に利用することができる。
また、本実施形態の発泡体の形状は、複数個の粒状発泡体粒子が紐状に連結した形状(数珠状)もしくはストランド状とすることによって、種々の形状に切断、加工して利用することができる。
The foam of the present embodiment described above contains cellulose fibers and polypropylene, the content of the cellulose fibers is in the range of 10% by mass or more and 65% by mass or less, and the density is as low as 80 kg / m 3 or less. Since it is a density, it has a large amount of pores. Therefore, sufficient heat insulating properties can be obtained, and it can be advantageously used as a heat insulating material, a cushioning material, and a packaging material.
Further, the shape of the foam of the present embodiment is to be cut and processed into various shapes by forming a shape in which a plurality of granular foam particles are connected in a string shape (bead shape) or a strand shape. Can be done.

(ポリプロピレン)
A1(ペレット状ポリプロピレン):日本ポリプロ株式会社製、ウェイマックス(登録商標)MFX6、MFR(温度:230℃、荷重:2.16kg):2.5g/10分
A2(ペレット状ポリプロピレン):日本ポリプロ株式会社製、ノバテック(登録商標)、MG03BD、MFR(温度:230℃、荷重:2.16kg):30g/10分
A3(ペレット状ポリプロピレン):株式会社プライムポリマー社製、プライムポリプロ(登録商標)、J106G、MFR(メルトフローレート、温度:230℃、荷重:2.16kg)15g/10分
A4(ペレット状ポリプロピレン):日本ポリプロ社製、ウェイマックス(登録商標)MFX8、MFR(メルトフローレート、温度:230℃、荷重:2.16kg)1.1g/10分
(polypropylene)
A1 (pellet polypropylene): manufactured by Japan Polypropylene Corporation, Waymax (registered trademark) MFX6, MFR (temperature: 230 ° C, load: 2.16 kg): 2.5 g / 10 minutes A2 (pellet polypropylene): Japan Polypropylene Made by Novatec Co., Ltd., MG03BD, MFR (Temperature: 230 ° C., Load: 2.16 kg): 30 g / 10 minutes A3 (Pellet polypropylene): Made by Prime Polymer Co., Ltd., Prime Polypropylene (registered trademark) , J106G, MFR (melt flow rate, temperature: 230 ° C, load: 2.16 kg) 15 g / 10 minutes A4 (pellet polypropylene): Made by Japan Polypropylene Corporation, Waymax (registered trademark) MFX8, MFR (melt flow rate, Temperature: 230 ° C, load: 2.16 kg) 1.1 g / 10 minutes

B1a(粉末状ポリプロピレン):A1(ペレット状ポリプロピレン)を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕し、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒子を回収して得たもの。
B1b(粉末状ポリプロピレン):A1(ペレット状ポリプロピレン)を、中型カッターミル型粉砕機を用いて粉砕して得たもの。
B2(粉末状ポリプロピレン):A2(ペレット状ポリプロピレン)を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕し、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒子を回収して得たもの。
B3(粉末状ポリプロピレン):A3(ペレット状ポリプロピレン)を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕し、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒子を回収して得たもの。
B4a(粉末状ポリプロピレン):A4(ペレット状ポリプロピレン)を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕し、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒子を回収して得たもの。
B4b(粉末状ポリプロピレン):A4(ペレット状ポリプロピレン)を、中型カッターミル型粉砕機を用いて粉砕して得たもの。
B1a (powdered polypropylene): A1 (pellet polypropylene) is pulverized using a blender (Warling, Extreme Mill MX-1200XTS), and a sieve (opening 2.0 mm, wire diameter 0.9 mm) is used. Obtained by classifying and collecting the particles under the sieve.
B1b (powdered polypropylene): A1 (pelletized polypropylene) obtained by crushing it with a medium-sized cutter mill type crusher.
B2 (powdered polypropylene): A2 (pelletized polypropylene) is pulverized using a blender (Warling, Extreme Mill MX-1200XTS), and a sieve (opening 2.0 mm, wire diameter 0.9 mm) is used. Obtained by classifying and collecting the particles under the sieve.
B3 (powdered polypropylene): A3 (pellet polypropylene) is pulverized using a blender (Warling, Extreme Mill MX-1200XTS), and a sieve (opening 2.0 mm, wire diameter 0.9 mm) is used. Obtained by classifying and collecting the particles under the sieve.
B4a (powdered polypropylene): A4 (pellet polypropylene) is pulverized using a blender (Warling, Extreme Mill MX-1200XTS), and a sieve (opening 2.0 mm, wire diameter 0.9 mm) is used. Obtained by classifying and collecting the particles under the sieve.
B4b (powdered polypropylene): A4 (pellet-like polypropylene) obtained by crushing it with a medium-sized cutter mill type crusher.

(セルロース繊維)
C1(古紙セルロース繊維粒子):古紙を粉砕機(株式会社増幸産業製、マスコロイダー(石臼式摩砕機))を用いて解繊して得たもの。平均粒径:160μm(上記方法1を用いて分散液を2回測定した結果の平均値)
C2(粗粉砕古紙セルロース繊維粒子):セルロースファイバー(株式会社兼久製、商品名:comfibe(添加剤なし))平均粒径:6.3mm(上記方法2により測定)
(Cellulose fiber)
C1 (waste paper cellulose fiber particles): Used paper is defibrated using a crusher (Masukoroider (stone mill type grinder) manufactured by Masuyuki Sangyo Co., Ltd.). Average particle size: 160 μm (average value of the results of measuring the dispersion liquid twice using the above method 1)
C2 (coarse crushed waste paper cellulose fiber particles): Cellulose fiber (manufactured by Kanehisa Co., Ltd., trade name: comfibe (without additives)) Average particle size: 6.3 mm (measured by the above method 2)

C3(古紙破砕物):古紙を下記方法3により切断して得たもの。平均粒径:3mm〜5mm
(方法3)
シュレッダー(サンワサプライ株式会社製(商品名:PSD−12))を用いて、古紙を幅4mmの長紙片とし、得られた長紙片を長さ方向に略直交する方向に切断して略正方形とした。目標とする正方形(縦4mm、横4mm)の±1mmを平均粒径の範囲とした。
C3 (crushed waste paper): Obtained by cutting waste paper by the following method 3. Average particle size: 3mm-5mm
(Method 3)
Using a shredder (manufactured by Sanwa Supply Co., Ltd. (trade name: PSD-12)), used paper was cut into long paper pieces with a width of 4 mm, and the obtained long paper pieces were cut in a direction substantially orthogonal to the length direction to form a substantially square shape. .. The average particle size range was ± 1 mm of the target square (length 4 mm, width 4 mm).

C4(古紙セルロース繊維粒子):古紙を粉砕機(株式会社増幸産業製、マスコロイダー(石臼式摩砕機))を用いて解繊して得たもの。平均粒径:81μm(上記方法1を用いて分散液を2回測定した結果の平均値)
C5(結晶性セルロース粒子):Avicel PH101 Cat NO.14204
C6(アブラヤシ空果房(EFB)セルロース繊維粒子):クラフトパルプ化したアブラヤシ空果房セルロース(EFB)を粉砕機(株式会社増幸産業製、マスコロイダー(石臼式摩砕機))を用いて解繊して得たもの。平均粒径:123μm(上記方法1を用いて分散液を2回測定した結果の平均値)
C7(古紙セルロース繊維粒子):古紙を粉砕機(カッティング式小型粉砕機)を用いて解繊して得たもの。平均粒径:79μm(上記方法1を用いて分散液を2回測定した結果の平均値)
C8(古紙セルロース繊維粒子):C7(古紙セルロース繊維粒子)のうち目開き40μmの篩いを通過したもの。平均粒径:39μm(上記方法1を用いて分散液を2回測定した結果の平均値)
C4 (waste paper cellulose fiber particles): Used paper is defibrated using a crusher (Masukoroider (stone mill type grinder) manufactured by Masuyuki Sangyo Co., Ltd.). Average particle size: 81 μm (average value of the results of measuring the dispersion liquid twice using the above method 1)
C5 (Crystallinity Cellulose Particles): Avicel PH101 Cat NO. 14204
C6 (Oil palm empty fruit bunch (EFB) cellulose fiber particles): Kraft pulped oil palm empty fruit bunch cellulose (EFB) is crushed using a crusher (Masuko Sangyo Co., Ltd., Mascoroider (stone mill type grinder)). What I got. Average particle size: 123 μm (average value of the results of measuring the dispersion liquid twice using the above method 1)
C7 (waste paper cellulose fiber particles): obtained by defibrating used paper using a crusher (cutting type small crusher). Average particle size: 79 μm (average value of the results of measuring the dispersion liquid twice using the above method 1)
C8 (waste paper cellulose fiber particles): C7 (waste paper cellulose fiber particles) that have passed through a sieve having an opening of 40 μm. Average particle size: 39 μm (average value of the results of measuring the dispersion liquid twice using the above method 1)

C9(古紙セルロース繊維粒子):C7(古紙セルロース繊維粒子)のうち目開き100μmの篩いを通過して、目開き40μmの篩上に残ったもの。平均粒径:77μm(上記方法1を用いて分散液を2回測定した結果の平均値)
C10(古紙セルロース繊維粒子):C7(古紙セルロース繊維粒子)のうち目開き150μmの篩いを通過して、目開き100μmの篩上に残ったもの。平均粒径:108μm(上記方法1を用いて分散液を2回測定した結果の平均値)
C11(古紙セルロース繊維粒子):無印刷古紙を粉砕機(カッティング式小型粉砕機)を用いて解繊して得たもの。平均粒径:84μm(上記方法1を用いて分散液を2回測定した結果の平均値)
C9 (waste paper cellulose fiber particles): C7 (waste paper cellulose fiber particles) that have passed through a sieve with a mesh size of 100 μm and remain on a sieve with a mesh size of 40 μm. Average particle size: 77 μm (average value of the results of measuring the dispersion liquid twice using the above method 1)
C10 (waste paper cellulose fiber particles): C7 (waste paper cellulose fiber particles) that have passed through a sieve with an opening of 150 μm and remain on a sieve with an opening of 100 μm. Average particle size: 108 μm (average value of the results of measuring the dispersion liquid twice using the above method 1)
C11 (waste paper cellulose fiber particles): A product obtained by defibrating unprinted waste paper using a crusher (cutting type small crusher). Average particle size: 84 μm (average value of the results of measuring the dispersion liquid twice using the above method 1)

(樹脂添加剤)
D1(ABS樹脂):アクリロニトリル、ブタジエン、スチレン共重樹脂(電気化学工業社製、DENKA(登録商標)、GR−2000)をブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕し、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒子を回収して得たもの。
D2(PE):ポリエチレン(宇部丸善ポリエチレン株式会社製、商品名:UM8510)
(Resin additive)
D1 (ABS resin): Acrylonitrile, butadiene, styrene co-weighted resin (manufactured by Denki Kagaku Kogyo Co., Ltd., DENKA (registered trademark), GR-2000) is pulverized using a blender (manufactured by Waring Co., Ltd., Extreme Mill MX-1200XTS). A product obtained by classifying using a sieve (opening 2.0 mm, wire diameter 0.9 mm) and collecting the particles under the sieve.
D2 (PE): Polyethylene (manufactured by Ube Maruzen Polyethylene Co., Ltd., product name: UM8510)

D3(PC樹脂):ペレット状ポリカーボネート樹脂(台北出光株式会社製、商品名:タフロン IR2200)をブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕し、篩(目開き710μm、線径0.35mm)を用いて分級し、篩下の粒子を回収したもの。
D4(PMMA樹脂):ペレット状ポリメチルメタクリレート樹脂(旭化成株式会社製、商品名:デルペット 60N99140)をブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕し、篩(目開き850μm、線径0.50mm)を用いて分級し、篩下の粒子を回収したもの。
D3 (PC resin): Pellet-shaped polycarbonate resin (manufactured by Taipei Idemitsu Co., Ltd., trade name: Tafflon IR2200) is crushed using a blender (manufactured by Waring, Extreme Mill MX-1200XTS), and sieved (opening 710 μm, wire diameter). The particles were classified using 0.35 mm) and the particles under the sieve were collected.
D4 (PMMA resin): Pellet-shaped polymethylmethacrylate resin (manufactured by Asahi Kasei Corporation, trade name: Delpet 60N99140) is pulverized using a blender (manufactured by Waring, Extreme Mill MX-1200XTS), and sieved (opening 850 μm,). Classified using a wire diameter of 0.50 mm), and the particles under the sieve were collected.

D5(PS樹脂):ポリスチレン樹脂(PSジャパン株式会社製 SGP10)をブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕し、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒子を回収して得たもの。
D6(エチレン−α−オレフィン コポリマー樹脂):エチレン−α−オレフィン コポリマー樹脂(株式会社プライムポリマー製 エボリュー(登録商標)SP1022)をブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕し、篩(目開き1.4mm、線径0.7mm)を用いて分級し、篩下の粒子を回収して得たもの。
D5 (PS resin): Polystyrene resin (SGP10 manufactured by PS Japan Corporation) is pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.), and a sieve (opening 2.0 mm, wire diameter 0.9 mm) is formed. Obtained by classifying using and collecting the particles under the sieve.
D6 (Ethylene-α-olefin copolymer resin): Ethylene-α-olefin copolymer resin (Evolu (registered trademark) SP1022 manufactured by Prime Polymer Co., Ltd.) was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). A product obtained by classifying using a sieve (opening 1.4 mm, wire diameter 0.7 mm) and collecting the particles under the sieve.

(ポリウレタン)
E1(水性ポリウレタンディスパージョン):宇部興産株式会社製、ETERNACOLL(登録商標)UW−1005E、ポリウレタン濃度30質量%の水分散体。
(Polyurethane)
E1 (Aqueous Polyurethane Dispersion): ETERNAL COLL (registered trademark) UW-1005E, manufactured by Ube Industries, Ltd., an aqueous dispersion having a polyurethane concentration of 30% by mass.

(その他)
F1:リン酸エステル系難燃剤(大八化学工業株式会社製、SR2550)
F2:ホウ酸(シグマアルドリッチ社製、03-2900-5-500G-J)を粉砕機(株式会社増幸産業製、マスコロイダー(石臼式摩砕機))を用いて解繊して得たもの。平均粒径:128μm(平均粒径は、下記の方法を用いて測定した。)
F3:四ホウ酸ナトリウム(シグマアルドリッチ社製、28-2010-5-500G-J)を粉砕機(株式会社増幸産業製、マスコロイダー(石臼式摩砕機))を用いて解繊して得たもの。平均粒径:412μm(平均粒径は、下記の方法を用いて測定した。)
(Other)
F1: Phosphate ester flame retardant (manufactured by Daihachi Chemical Industry Co., Ltd., SR2550)
F2: Boric acid (manufactured by Sigma-Aldrich, 03-2900-5-500G-J) defibrated using a crusher (Masukoroider, manufactured by Masuko Sangyo Co., Ltd.). Average particle size: 128 μm (The average particle size was measured using the following method).
F3: Obtained by defibrating sodium tetraborate (manufactured by Sigma-Aldrich, 28-2010-5-500G-J) using a crusher (manufactured by Masuyuki Sangyo Co., Ltd., mass colloider (stone mill type grinder)). thing. Average particle size: 412 μm (The average particle size was measured using the following method).

(ホウ酸及び四ホウ酸ナトリウムの平均粒径の測定方法)
ホウ酸及び四ホウ酸ナトリウムは、イオン交換水に溶解する可能性があるため、下記測定装置を用いて以下に示す乾式測定条件で粒径測定を行う。粒径測定は2回測定を行って平均値を算出し、これを試料の平均粒径とする。
(Measuring method of average particle size of boric acid and sodium tetraborate)
Since boric acid and sodium tetraborate may dissolve in ion-exchanged water, the particle size is measured using the following measuring device under the dry measurement conditions shown below. The particle size is measured twice, an average value is calculated, and this is used as the average particle size of the sample.

測定装置;レーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製、商品名:LA−950V2)
測定条件;測定ユニット:乾式
測定モード:ワンショットモード
圧縮空気:0.3MPa
粒子径基準:体積基準
屈折率:1.50−0.00i(試料屈折率)
Measuring device: Laser diffraction / scattering type particle size distribution measuring device (manufactured by HORIBA, Ltd., trade name: LA-950V2)
Measurement conditions; Measurement unit: Dry type
Measurement mode: One-shot mode
Compressed air: 0.3MPa
Particle size standard: Volume standard
Refractive index: 1.50-0.00i (sample refractive index)

[実施例I−1]
A1(ペレット状ポリプロピレン)105gとC1(古紙セルロース繊維粒子)45gを秤量した。秤量したA1とC1とを30個の容器に分取し、各容器ごとに分取したA1とC1とを混合して原料混合物を得た。得られた原料混合物は、A1含有量が70質量%、C1含有量が30質量%である。
[Example I-1]
105 g of A1 (pellet-shaped polypropylene) and 45 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed A1 and C1 were separated into 30 containers, and the separated A1 and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has an A1 content of 70% by mass and a C1 content of 30% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:180℃、シリンダー温度X1/X2/X3/X4:180℃/180℃/180℃/180℃(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数90rpmの条件で混練した後、直径3mmのダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture is put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), die part temperature Y1: 180 ° C., cylinder temperature X1 / X2 / X3 / X4: 180 ° C./180 ° C./180 ° C. / 180 ° C. (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part), after kneading under the condition of screw rotation speed of 90 rpm, extrude from the tip of the die with a diameter of 3 mm and string. A pre-kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 2.0 mm, wire diameter 0.9 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−1で混練した。このとき、シリンダーのX3部とX4部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX4部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading condition I-1. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X3 part and the X4 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X4 part of the cylinder. Two kneaded products were produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−2]
B1a(粉末状ポリプロピレン)105gと、C1(古紙セルロース繊維粒子)45gを秤量した。秤量したB1aとC1とを30個の容器に分取し、各容器ごとに分取したB1aとC1とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が70質量%、C1含有量が30質量%である。
[Example I-2]
105 g of B1a (powdered polypropylene) and 45 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed B1a and C1 were separated into 30 containers, and the separated B1a and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 70% by mass and a C1 content of 30% by mass.

得られた原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−1で混練した。このとき、シリンダーのX3部とX4部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX1部〜X3部の間で生成した第1混練物を、シリンダーのX4部で水と混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading condition I-1. At this time, cold water (5 ° C.) is supplied from between the X3 part and the X4 part of the cylinder into the cylinder at a rate of 2 mL / min to produce the first kneaded product produced between the X1 part and the X3 part of the cylinder. , X4 part of the cylinder was kneaded with water to produce a second kneaded product. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−3]
B1a(粉末状ポリプロピレン)101gと、B2(粉末状ポリプロピレン)4.5gと、C1(古紙セルロース繊維粒子)45gを秤量した。秤量したB1aとB2とC1とを30個の容器に分取し、各容器ごとに分取したB1aとB2とC1とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が67質量%、B2含有量が3質量%、C1含有量が30質量%である。
[Example I-3]
101 g of B1a (powdered polypropylene), 4.5 g of B2 (powdered polypropylene), and 45 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed B1a, B2 and C1 were separated into 30 containers, and the separated B1a, B2 and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 67% by mass, a B2 content of 3% by mass, and a C1 content of 30% by mass.

得られた原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−2で混練した。このとき、シリンダーのX3部とX4部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX1部〜X3部の間で生成した第1混練物を、シリンダーのX4部で水と混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions I-2. At this time, cold water (5 ° C.) is supplied from between the X3 part and the X4 part of the cylinder into the cylinder at a rate of 2 mL / min to produce the first kneaded product produced between the X1 part and the X3 part of the cylinder. , X4 part of the cylinder was kneaded with water to produce a second kneaded product. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−4]
C1(古紙セルロース繊維粒子)に代えて、C2(粗粉砕古紙セルロース繊維粒子)を用いたこと以外は実施例I−3と同様にして、断面が円形のストランド状の発泡体を得た。
[Example I-4]
A strand-shaped foam having a circular cross section was obtained in the same manner as in Example I-3 except that C2 (coarse crushed waste paper cellulose fiber particles) was used instead of C1 (waste paper cellulose fiber particles).

[実施例I−5]
B1a(粉末状ポリプロピレン)67.5gと、C1(古紙セルロース繊維粒子)82.5gを秤量した。秤量したB1aとC1とを30個の容器に分取し、各容器ごとに分取したB1aとC1とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が45質量%、C1含有量が55質量%である。
上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、実施例I−1と同様にして紐状前駆混練体(第1混練物)を得た。
[Example I-5]
67.5 g of B1a (powdered polypropylene) and 82.5 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed B1a and C1 were separated into 30 containers, and the separated B1a and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 45% by mass and a C1 content of 55% by mass.
The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) to obtain a string-shaped precursor kneaded product (first kneaded product) in the same manner as in Example I-1.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き850μm、線径500μm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 850 μm, wire diameter 500 μm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−3で混練した。このとき、シリンダーのX3部とX4部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX4部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions I-3. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X3 part and the X4 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X4 part of the cylinder. Two kneaded products were produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−6]
B1a(粉末状ポリプロピレン)105gと、C4(古紙セルロース繊維粒子)45gを秤量した。秤量したB1aとC4とを30個の容器に分取し、各容器ごとに分取したB1aとC4とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が70質量%、C4含有量が30質量%である。
[Example I-6]
105 g of B1a (powdered polypropylene) and 45 g of C4 (waste paper cellulose fiber particles) were weighed. The weighed B1a and C4 were separated into 30 containers, and the separated B1a and C4 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 70% by mass and a C4 content of 30% by mass.

得られた原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−1で混練した。このとき、シリンダーのX3部とX4部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX1部〜X3部の間で生成した第一混練物を、シリンダーのX4部で水と混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading condition I-1. At this time, cold water (5 ° C.) is supplied from between the X3 part and the X4 part of the cylinder into the cylinder at a rate of 2 mL / min to produce the first kneaded product produced between the X1 part and the X3 part of the cylinder. , X4 part of the cylinder was kneaded with water to produce a second kneaded product. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−7]
B4a(粉末状ポリプロピレン)140gと、C1(古紙セルロース繊維粒子)60gを秤量した。秤量したB4aとC1とを30個の容器に分取し、各容器ごとに分取したB4aとC1とを混合して原料混合物を得た。得られた原料混合物は、B4a含有量が70質量%、C1含有量が30質量%である。
[Example I-7]
140 g of B4a (powdered polypropylene) and 60 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed B4a and C1 were separated into 30 containers, and the separated B4a and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B4a content of 70% by mass and a C1 content of 30% by mass.

得られた原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−5で混練した。このとき、シリンダーのX3部とX4部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX1部〜X3部の間で生成した第一混練物を、シリンダーのX4部で水と混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions I-5. At this time, cold water (5 ° C.) is supplied from between the X3 part and the X4 part of the cylinder into the cylinder at a rate of 2 mL / min to produce the first kneaded product produced between the X1 part and the X3 part of the cylinder. , X4 part of the cylinder was kneaded with water to produce a second kneaded product. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−8]
B1a(粉末状ポリプロピレン)140gと、C5(結晶性セルロース粒子)60gを秤量した。秤量したB1aとC5とを30個の容器に分取し、各容器ごとに分取したB1aとC5とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が70質量%、C5含有量が30質量%である。
[Example I-8]
140 g of B1a (powdered polypropylene) and 60 g of C5 (crystalline cellulose particles) were weighed. The weighed B1a and C5 were separated into 30 containers, and the separated B1a and C5 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 70% by mass and a C5 content of 30% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:165℃、シリンダー温度X1/X2/X3/X4:165℃/165℃/165℃/165℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数250rpmの条件で混練した後、直径3mmのダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), and the die part temperature was Y1: 165 ° C., the cylinder temperature was X1 / X2 / X3 / X4: 165 ° C./165 ° C./165 ° C. After kneading under the conditions of / 165 ° C./ (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part) and the screw rotation speed of 250 rpm, the mixture is extruded from the tip of the die having a diameter of 3 mm. A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 2.0 mm, wire diameter 0.9 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−3で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions I-3. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−9]
B1a(粉末状ポリプロピレン)140gと、C6(古紙セルロース繊維粒子)60gを秤量した。秤量したB1aとC6とを30個の容器に分取し、各容器ごとに分取したB1aとC6とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が70質量%、C6含有量が30質量%である。
得られた原料混合物を用いたこと以外は、実施例I−8と同様にして、粒状第1混練物を得た。
[Example I-9]
140 g of B1a (powdered polypropylene) and 60 g of C6 (waste paper cellulose fiber particles) were weighed. The weighed B1a and C6 were separated into 30 containers, and the separated B1a and C6 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 70% by mass and a C6 content of 30% by mass.
A granular first kneaded product was obtained in the same manner as in Example I-8, except that the obtained raw material mixture was used.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−5で混練した。このとき、シリンダーのX3部とX4部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX4部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions I-5. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X3 part and the X4 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X4 part of the cylinder. Two kneaded products were produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−10]
B1a(粉末状ポリプロピレン)50gと、C1(古紙セルロース繊維粒子)50gを秤量した。秤量したB1aとC1とを30個の容器に分取し、各容器ごとに分取したB1aとC1とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が50質量%、C1含有量が50質量%である。
[Example I-10]
50 g of B1a (powdered polypropylene) and 50 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed B1a and C1 were separated into 30 containers, and the separated B1a and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 50% by mass and a C1 content of 50% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:168℃、シリンダー温度X1/X2/X3/X4:170℃/180℃/180℃/170℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数250rpmの条件で混練した後、直径3mmのダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), die part temperature Y1: 168 ° C., cylinder temperature X1 / X2 / X3 / X4: 170 ° C./180 ° C./180 ° C. After kneading under the conditions of / 170 ° C / (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part) and the screw rotation speed of 250 rpm, the mixture is extruded from the tip of the die having a diameter of 3 mm. A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 2.0 mm, wire diameter 0.9 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−1で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading condition I-1. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−11]
B1a(粉末状ポリプロピレン)47gと、B2(粉末状ポリプロピレン)3gと、C1(古紙セルロース繊維粒子)50gを秤量した。秤量したB1aとB2とC1とを30個の容器に分取し、各容器ごとに分取したB1aとB2とC1とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が47質量%、B2含有量が3質量%、C1含有量が50質量%である。
得られた原料混合物を用いたこと以外は、実施例I−10と同様にして、断面が円形のストランド状の発泡体を得た。
[Example I-11]
47 g of B1a (powdered polypropylene), 3 g of B2 (powdered polypropylene), and 50 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed B1a, B2 and C1 were separated into 30 containers, and the separated B1a, B2 and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 47% by mass, a B2 content of 3% by mass, and a C1 content of 50% by mass.
A strand-shaped foam having a circular cross section was obtained in the same manner as in Example I-10 except that the obtained raw material mixture was used.

[実施例I−12]
B1a(粉末状ポリプロピレン)268gと、B2(粉末状ポリプロピレン)12gと、C1(古紙セルロース繊維粒子)120gを秤量した。秤量したB1aとB2とC1とを30個の容器に分取し、各容器ごとに分取したB1aとB2とC1とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が67質量%、B2含有量が3質量%、C1含有量が30質量%である。
得られた原料混合物を用いたこと以外は、実施例I−10と同様にして、粒状第1混練物を得た。
[Example I-12]
268 g of B1a (powdered polypropylene), 12 g of B2 (powdered polypropylene), and 120 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed B1a, B2 and C1 were separated into 30 containers, and the separated B1a, B2 and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 67% by mass, a B2 content of 3% by mass, and a C1 content of 30% by mass.
A granular first kneaded product was obtained in the same manner as in Example I-10, except that the obtained raw material mixture was used.

得られた粒状第1混練物を、先端ダイスを直径3mm1つ孔から直径2mm10孔に変更した2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−5で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を8mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径2mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体10本を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG, manufactured by Technobel Co., Ltd.) in which the tip die was changed from one hole with a diameter of 3 mm to a hole with a diameter of 2 mm and 10 holes, and the kneading condition I-5 was as follows. Kneaded. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 8 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 2 mm, and water was evaporated from the second kneaded product to obtain 10 strand-shaped foams having a circular cross section.

[実施例I−13]
B1b(粉末状ポリプロピレン)47gと、B2(粉末状ポリプロピレン)3gと、C7(古紙セルロース繊維粒子)50gを秤量した。秤量したB1bとB2とC7とを30個の容器に分取し、各容器ごとに分取したB1bとB2とC7とを混合して原料混合物を得た。得られた原料混合物は、B1b含有量が47質量%、B2含有量が3質量%、C7含有量が50質量%である。
[Example I-13]
47 g of B1b (powdered polypropylene), 3 g of B2 (powdered polypropylene), and 50 g of C7 (waste paper cellulose fiber particles) were weighed. The weighed B1b, B2 and C7 were separated into 30 containers, and the separated B1b, B2 and C7 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B1b content of 47% by mass, a B2 content of 3% by mass, and a C7 content of 50% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:168℃、シリンダー温度X1/X2/X3/X4:170℃/170℃/170℃/170℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数250rpmの条件で混練した後、直径3mmのダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), the die part temperature was Y1: 168 ° C, and the cylinder temperature was X1 / X2 / X3 / X4: 170 ° C / 170 ° C / 170 ° C. After kneading under the conditions of / 170 ° C / (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part) and the screw rotation speed of 250 rpm, the mixture is extruded from the tip of the die having a diameter of 3 mm. A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−1で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading condition I-1. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−14]
B4b(粉末状ポリプロピレン)70.5gと、B2(粉末状ポリプロピレン)4.5gと、C7(古紙セルロース繊維粒子)75gを秤量した。秤量したB4bとB2とC7とを30個の容器に分取し、各容器ごとに分取したB4bとB2とC7とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、B2含有量が3質量%、C7含有量が50質量%である。
[Example I-14]
70.5 g of B4b (powdered polypropylene), 4.5 g of B2 (powdered polypropylene), and 75 g of C7 (waste paper cellulose fiber particles) were weighed. The weighed B4b, B2 and C7 were separated into 30 containers, and the separated B4b, B2 and C7 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a B2 content of 3% by mass, and a C7 content of 50% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:168℃、シリンダー温度X1/X2/X3/X4:170℃/175℃/175℃/170℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数250rpmの条件で混練した後、直径3mmのダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), die part temperature Y1: 168 ° C., cylinder temperature X1 / X2 / X3 / X4: 170 ° C./175 ° C./175 ° C. After kneading under the conditions of / 170 ° C / (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part) and the screw rotation speed of 250 rpm, the mixture is extruded from the tip of the die having a diameter of 3 mm. A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 2.0 mm, wire diameter 0.9 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−6で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions I-6. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−15]
B1b(粉末状ポリプロピレン)70.5gと、B2(粉末状ポリプロピレン)4.5gと、C11(古紙セルロース繊維粒子)75gを秤量した。秤量したB1bとB2とC11とを30個の容器に分取し、各容器ごとに分取したB1bとB2とC11とを混合して原料混合物を得た。得られた原料混合物は、B1b含有量が47質量%、B2含有量が3質量%、C11含有量が50質量%である。
得られた原料混合物を用いたこと以外は、実施例I−13と同様にして、粒状第1混練物を得た。
[Example I-15]
70.5 g of B1b (powdered polypropylene), 4.5 g of B2 (powdered polypropylene), and 75 g of C11 (waste paper cellulose fiber particles) were weighed. The weighed B1b, B2 and C11 were separated into 30 containers, and the separated B1b, B2 and C11 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B1b content of 47% by mass, a B2 content of 3% by mass, and a C11 content of 50% by mass.
A granular first kneaded product was obtained in the same manner as in Example I-13, except that the obtained raw material mixture was used.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−7で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions I-7. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−16]
B4b(粉末状ポリプロピレン)70.5gと、B2(粉末状ポリプロピレン)4.5gと、C11(古紙セルロース繊維粒子)75gを秤量した。秤量したB4bとB2とC11とを30個の容器に分取し、各容器ごとに分取したB4bとB2とC11とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、B2含有量が3質量%、C11含有量が50質量%である。
得られた原料混合物を用いたこと以外は、実施例I−14と同様にして、粒状第1混練物を得た。
[Example I-16]
70.5 g of B4b (powdered polypropylene), 4.5 g of B2 (powdered polypropylene), and 75 g of C11 (waste paper cellulose fiber particles) were weighed. The weighed B4b, B2 and C11 were separated into 30 containers, and the separated B4b, B2 and C11 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a B2 content of 3% by mass, and a C11 content of 50% by mass.
A granular first kneaded product was obtained in the same manner as in Example I-14, except that the obtained raw material mixture was used.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−6で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions I-6. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−17]
B4b(粉末状ポリプロピレン)90gと、C11(古紙セルロース繊維粒子)45gと、F1(リン酸エステル系難燃剤)15gを秤量した。秤量したB4bとC11とF1を30個の容器に分取し、各容器ごとに分取したB4bとC11とF1を混合して原料混合物を得た。得られた原料混合物は、B4b含有量が60質量%、C11含有量が30質量%、F1含有量が10質量%である。
[Example I-17]
90 g of B4b (powdered polypropylene), 45 g of C11 (waste paper cellulose fiber particles), and 15 g of F1 (phosphate ester flame retardant) were weighed. The weighed B4b, C11 and F1 were separated into 30 containers, and the separated B4b, C11 and F1 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 60% by mass, a C11 content of 30% by mass, and an F1 content of 10% by mass.

得られた原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−8で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX1部〜X2部の間で生成した第一混練物を、シリンダーのX3部で水と混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions I-8. At this time, cold water (5 ° C.) is supplied from between the X2 part and the X3 part of the cylinder into the cylinder at a rate of 2 mL / min to produce the first kneaded product produced between the X1 part and the X2 part of the cylinder. , The X3 part of the cylinder was kneaded with water to produce a second kneaded product. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例I−18]
B4b(粉末状ポリプロピレン)50gと、C7(古紙セルロース繊維粒子)50gを秤量した。秤量したB4bとC7とを30個の容器に分取し、各容器ごとに分取したB4bとC7とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が50質量%、C7含有量が50質量%である。
得られた原料混合物を用いたこと以外は、実施例I−10と同様にして、断面が円形のストランド状の発泡体を得た。
[Example I-18]
50 g of B4b (powdered polypropylene) and 50 g of C7 (waste paper cellulose fiber particles) were weighed. The weighed B4b and C7 were separated into 30 containers, and the separated B4b and C7 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 50% by mass and a C7 content of 50% by mass.
A strand-shaped foam having a circular cross section was obtained in the same manner as in Example I-10 except that the obtained raw material mixture was used.

[比較例I−1]
C1(古紙セルロース繊維粒子)に代えて、C2(粗粉砕古紙セルロース繊維粒子)を用い、混練条件I−1に代えて、下記の混練条件I−5で混練したこと以外は実施例I−2と同様にして、発泡体を得た。
[Comparative Example I-1]
Example I-2 except that C2 (coarse crushed waste paper cellulose fiber particles) was used instead of C1 (waste paper cellulose fiber particles) and kneaded under the following kneading condition I-5 instead of kneading condition I-1. A foam was obtained in the same manner as above.

[比較例I−2]
B1a(粉末状ポリプロピレン)67.5gと、C1(古紙セルロース繊維粒子)82.5gを秤量した。秤量したB1aとC1とを30個の容器に分取し、各容器ごとに分取したB1aとC1とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が45質量%、C1含有量が55質量%である。
[Comparative Example I-2]
67.5 g of B1a (powdered polypropylene) and 82.5 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed B1a and C1 were separated into 30 containers, and the separated B1a and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 45% by mass and a C1 content of 55% by mass.

得られた原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件I−3で混練した。このとき、シリンダーのX3部とX4部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX1部〜X3部の間で生成した第1混練物を、シリンダーのX4部で水と混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて発泡体を得た。 The obtained raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions I-3. At this time, cold water (5 ° C.) is supplied from between the X3 part and the X4 part of the cylinder into the cylinder at a rate of 2 mL / min to produce the first kneaded product produced between the X1 part and the X3 part of the cylinder. , X4 part of the cylinder was kneaded with water to produce a second kneaded product. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a foam.

[比較例I−3]
混練条件I−3に代えて、下記の混練条件I−4で混練し、冷水(5℃)を1mL/minの速度で供給したこと以外は、比較例I−2と同様にして発泡体を製造しようとしたが、混練中にスクリューが停止し、発泡体が得られなかった。
[Comparative Example I-3]
The foam was kneaded under the following kneading condition I-4 instead of the kneading condition I-3, and the foam was prepared in the same manner as in Comparative Example I-2, except that cold water (5 ° C.) was supplied at a rate of 1 mL / min. I tried to manufacture it, but the screw stopped during kneading and no foam was obtained.

[比較例I−4]
C1(古紙セルロース繊維粒子)に代えて、C2(粗粉砕古紙セルロース繊維粒子)を用いたこと以外は比較例I−2と同様にして発泡体を得た。
[Comparative Example I-4]
A foam was obtained in the same manner as in Comparative Example I-2 except that C2 (coarse crushed waste paper cellulose fiber particles) was used instead of C1 (waste paper cellulose fiber particles).

[比較例I−5]
C1(古紙セルロース繊維粒子)に代えて、C2(粗粉砕古紙セルロース繊維粒子)を用いたこと以外は比較例I−3と同様にして、発泡体を得た。
[Comparative Example I-5]
A foam was obtained in the same manner as in Comparative Example I-3 except that C2 (coarse crushed waste paper cellulose fiber particles) was used instead of C1 (waste paper cellulose fiber particles).

[比較例I−6]
C2(粗粉砕古紙セルロース繊維粒子)に代えて、C3(古紙破砕物)を用い、混練条件I−1に代えて、下記の混練条件I−5で混練したこと以外は実施例I−2と同様にして、発泡体を得た。
[Comparative Example I-6]
Example I-2, except that C3 (crushed waste paper) was used instead of C2 (crusose fiber particles of coarsely crushed waste paper) and kneaded under the following kneading condition I-5 instead of kneading condition I-1. In the same manner, a foam was obtained.

[比較例I−7]
B1a(粉末状ポリプロピレン)に代えて、B3(粉末状ポリプロピレン)を用いたこと以外は実施例I−2と同様にして、発泡体を得た。
[Comparative Example I-7]
A foam was obtained in the same manner as in Example I-2 except that B3 (powdered polypropylene) was used instead of B1a (powdered polypropylene).

[比較例I−8]
B1a(粉末状ポリプロピレン)45gと、C1(古紙セルロース繊維粒子)105gを秤量した。秤量したB1aとC1とを30個の容器に分取し、各容器ごとに分取したB1aとC1とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が30質量%、C1含有量が70質量%である。
得られた原料混合物を用いたこと以外は、実施例I−1と同様にして、断面が円形のストランド状の発泡体を得た。
[Comparative Example I-8]
45 g of B1a (powdered polypropylene) and 105 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed B1a and C1 were separated into 30 containers, and the separated B1a and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 30% by mass and a C1 content of 70% by mass.
A strand-shaped foam having a circular cross section was obtained in the same manner as in Example I-1 except that the obtained raw material mixture was used.

[比較例I−9]
B1a(粉末状ポリプロピレン)143gと、C1(古紙セルロース繊維粒子)7.5gとを用いて、B1a含有量が95質量%、C1含有量が5質量%である原料混合物を得たこと以外は、比較例I−8と同様にして、断面が円形のストランド状の発泡体を得た。
[Comparative Example I-9]
A raw material mixture having a B1a content of 95% by mass and a C1 content of 5% by mass was obtained using 143 g of B1a (powdered polypropylene) and 7.5 g of C1 (waste paper cellulose fiber particles). A strand-shaped foam having a circular cross section was obtained in the same manner as in Comparative Example I-8.

[比較例I−10]
B1a(粉末状ポリプロピレン)10gと、B2(粉末状ポリプロピレン)40gと、C1(古紙セルロース繊維粒子)50gを秤量した。秤量したB1aとB2とC1とを30個の容器に分取し、各容器ごとに分取したB1aとB2とC1とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が10質量%、B2含有量が40質量%、C1含有量が50質量%である。
得られた原料混合物を用いたこと以外は、実施例I−10と同様にして、断面が円形のストランド状の発泡体を得た。
[Comparative Example I-10]
10 g of B1a (powdered polypropylene), 40 g of B2 (powdered polypropylene), and 50 g of C1 (waste paper cellulose fiber particles) were weighed. The weighed B1a, B2 and C1 were separated into 30 containers, and the separated B1a, B2 and C1 were mixed in each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 10% by mass, a B2 content of 40% by mass, and a C1 content of 50% by mass.
A strand-shaped foam having a circular cross section was obtained in the same manner as in Example I-10 except that the obtained raw material mixture was used.

(混練条件I−1)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/170℃、スクリュー回転数60rpm
(混練条件I−2)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/170℃、スクリュー回転数350rpm
(混練条件I−3)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/170℃、スクリュー回転数90rpm
(混練条件I−4)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/160℃/140℃、スクリュー回転数30rpm
(混練条件I−5)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/170℃、スクリュー回転数250rpm
(混練条件I−6)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/175℃/175℃/170℃、スクリュー回転数60rpm
(混練条件I−7)
ダイ部温度Y1:163℃、シリンダー部温度X1/X2/X3/X4:170℃/170℃/170℃/166℃、スクリュー回転数60rpm
(混練条件I−8)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/170℃/170℃/170℃、スクリュー回転数150rpm
(Kneading condition I-1)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 170 ° C, screw rotation speed 60 rpm
(Kneading condition I-2)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 170 ° C, screw rotation speed 350 rpm
(Kneading condition I-3)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 170 ° C, screw rotation speed 90 rpm
(Kneading condition I-4)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 160 ° C / 140 ° C, screw rotation speed 30 rpm
(Kneading condition I-5)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 170 ° C, screw rotation speed 250 rpm
(Kneading condition I-6)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 175 ° C / 175 ° C / 170 ° C, screw rotation speed 60 rpm
(Kneading condition I-7)
Die temperature Y1: 163 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 170 ° C / 170 ° C / 166 ° C, screw rotation speed 60 rpm
(Kneading condition I-8)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 170 ° C / 170 ° C / 170 ° C, screw rotation speed 150 rpm

[評価]
得られた発泡体の密度と熱伝導率を、下記の方法により測定した。その結果を、原料混合物の組成と共に表1に示す。
[Evaluation]
The density and thermal conductivity of the obtained foam were measured by the following methods. The results are shown in Table 1 together with the composition of the raw material mixture.

(発泡体の密度の測定方法)
ストランド状の発泡体を押出方向に対して垂直に、剃刀(GEM、62−0167)を用いて切断し、長さ7〜8cmの略円柱状の密度測定用の試験サンプルを、各発泡体毎にそれぞれ3本作製した。3本の試験サンプルの重量及び体積をそれぞれ測定し、下記式(1)によって各試験サンプルの密度ρ(kg/m)を求めた。得られた3本の試験サンプルの密度の平均値を算出し、発泡体の密度とした。試験サンプルの質量M(kg)は大気下で測定し、試験サンプルの体積V(m)は水中置換法によって測定した。
ρ=M/V ・・・(1)
M:試験サンプルの質量(kg)、V:試験サンプルの体積(m
(Measuring method of foam density)
A strand-shaped foam is cut perpendicular to the extrusion direction using a razor (GEM, 62-0167), and a test sample for density measurement of a substantially columnar columnar length of 7 to 8 cm is prepared for each foam. Three of each were prepared. The weight and volume of each of the three test samples were measured, and the density ρ (kg / m 3 ) of each test sample was determined by the following formula (1). The average value of the densities of the three obtained test samples was calculated and used as the density of the foam. The mass M (kg) of the test sample was measured in the atmosphere, and the volume V (m 3 ) of the test sample was measured by the underwater substitution method.
ρ = M / V ・ ・ ・ (1)
M: Mass of test sample (kg), V: Volume of test sample (m 3 )

(発泡体の熱伝導率の測定方法)
発泡体の熱伝導率は、迅速熱伝導率計(京都電子工業社製、QTM−500)を用いて測定した。迅速熱伝導率計のプローブには、ニードル型プローブ(京都電子工業社製、PD−N0)を使用した。
ストランド状の発泡体を押出方向に対して垂直に、剃刀(GEM、62−0167)を用いて切断して、長さ7〜8cmの略円柱状の試験サンプルを、各発泡体毎にそれぞれ3本作製した。試験サンプルを、室温23℃、相対湿度55%の恒温恒湿環境下で12時間静置した。その後、その恒温恒湿環境下で、試験サンプルの切断面の中心からニードル型プローブを略35mm挿入し、熱伝導率を測定した。また、ポリスチレンからなるリファレンスサンプルについて、試験サンプルと同様に熱伝導率を測定した。
(Measuring method of thermal conductivity of foam)
The thermal conductivity of the foam was measured using a rapid thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.). A needle-type probe (PD-N0, manufactured by Kyoto Electronics Industry Co., Ltd.) was used as the probe of the rapid thermal conductivity meter.
The strand-shaped foam is cut perpendicular to the extrusion direction using a razor (GEM, 62-0167), and a substantially columnar test sample having a length of 7 to 8 cm is prepared, 3 for each foam. This was prepared. The test sample was allowed to stand for 12 hours in a constant temperature and humidity environment at room temperature of 23 ° C. and relative humidity of 55%. Then, in the constant temperature and humidity environment, a needle type probe was inserted approximately 35 mm from the center of the cut surface of the test sample, and the thermal conductivity was measured. In addition, the thermal conductivity of the polystyrene reference sample was measured in the same manner as the test sample.

そして、発泡体の熱伝導率λ(W/mK)を、下記式(2)よって算出した。
λ=λS−(λR1−λR0)・・・(2)
λS:試験サンプルの熱伝導率の測定値(W/mK)、λR0:リファレンスサンプルの熱伝導率の既定値(W/mK)、λR1:リファレンスサンプルの熱伝導率の測定値(W/mK)
表1に、3つの試験サンプルを作製して測定した熱伝導率の平均値を示す。
Then, the thermal conductivity λ (W / mK) of the foam was calculated by the following formula (2).
λ = λS− (λR1-λR0) ・ ・ ・ (2)
λS: Measured value of thermal conductivity of test sample (W / mK), λR0: Default value of thermal conductivity of reference sample (W / mK), λR1: Measured value of thermal conductivity of reference sample (W / mK)
Table 1 shows the average value of the thermal conductivity measured by preparing three test samples.

Figure 2019112011
Figure 2019112011

なお、比較例I−2、I−4、I−5の発泡体の形状は、ストランド状ではなく、長さの短いものであった。このため、比較例I−2、I−4、I−5の発泡体からは、熱伝導率を測定するための測定サンプルを採取できなかった。また、比較例I−2、I−4、I−5の発泡体に直接、ニードル型プローブを所定の長さ分(約35mm)挿入することもできなかった。このため、比較例I−2、I−4、I−5の発泡体の熱伝導率は、測定できなかった。また、比較例I−2、I−4、I−5の発泡体から採取した密度を測定するための測定サンプルは、長さが短く形がいびつであったが、密度の測定は可能であった。
また、比較例I−7、I−10の発泡体は、発泡量が少なく、乾燥スパゲティーのような細く硬い状態であった。このため、比較例I−7、I−10の発泡体にニードル型プローブを挿入することができず、熱伝導率を測定できなかった。
The foams of Comparative Examples I-2, I-4, and I-5 had a short length rather than a strand shape. Therefore, a measurement sample for measuring the thermal conductivity could not be collected from the foams of Comparative Examples I-2, I-4, and I-5. Further, it was not possible to directly insert the needle type probe into the foam of Comparative Examples I-2, I-4, and I-5 for a predetermined length (about 35 mm). Therefore, the thermal conductivity of the foams of Comparative Examples I-2, I-4, and I-5 could not be measured. Further, the measurement sample for measuring the density collected from the foams of Comparative Examples I-2, I-4, and I-5 had a short length and a distorted shape, but the density could be measured. It was.
Further, the foams of Comparative Examples I-7 and I-10 had a small amount of foaming and were in a thin and hard state like dry spaghetti. Therefore, the needle-type probe could not be inserted into the foams of Comparative Examples I-7 and I-10, and the thermal conductivity could not be measured.

表1に示すように、実施例I−1〜I−18の発泡体は、密度が80kg/m以下で、熱伝導率が40×10−3W/mK以下であり、低いものであった。特に、実施例I−1〜I−17の発泡体は、密度が70kg/m以下で、密度低いものであった。
これに対し、比較例I−1、I−2、I−4〜I−10の発泡体は、密度が80kg/m超であった。
セルロース繊維としてセルロース繊維粒子(C1)を用いた実施例I−2では、セルロース繊維の含有量が同じであり、セルロース繊維として古紙破砕物(C3)を用いた比較例I−6と比較して、密度が低かった。
As shown in Table 1, the foams of Examples I-1 to I-18 have a density of 80 kg / m 3 or less and a thermal conductivity of 40 × 10 -3 W / mK or less, which are low. It was. In particular, the foams of Examples I-1 to I-17 had a density of 70 kg / m 3 or less, which was low.
On the other hand, the foams of Comparative Examples I-1, I-2, I-4 to I-10 had a density of more than 80 kg / m 3 .
In Example I-2 in which cellulose fiber particles (C1) were used as the cellulose fibers, the content of the cellulose fibers was the same, and compared with Comparative Example I-6 in which the waste paper crushed product (C3) was used as the cellulose fibers. , The density was low.

[実施例II−1]
B1a(粉末状ポリプロピレン)101gと、C1(古紙セルロース繊維粒子)45g、D1(ABS樹脂)4.5gとを秤量した。秤量したB1aとC1とD1とを30個の容器に分取し、各容器ごとに分取したB1aとC1とD1とを混合して原料混合物を得た。得られた原料混合物は、B1a含有量が67質量%、C1含有量が30量%、D1含有量が3質量%である。
[Example II-1]
101 g of B1a (powdered polypropylene), 45 g of C1 (waste paper cellulose fiber particles), and 4.5 g of D1 (ABS resin) were weighed. The weighed B1a, C1 and D1 were separated into 30 containers, and the separated B1a, C1 and D1 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 67% by mass, a C1 content of 30% by mass, and a D1 content of 3% by mass.

得られた原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件II−1で混練した。このとき、シリンダーのX3部とX4部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX1部〜X3部の間で生成した第1混練物を、シリンダーのX4部で水と混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions II-1. At this time, cold water (5 ° C.) is supplied from between the X3 part and the X4 part of the cylinder into the cylinder at a rate of 2 mL / min to produce the first kneaded product produced between the X1 part and the X3 part of the cylinder. , X4 part of the cylinder was kneaded with water to produce a second kneaded product. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例II−2]
C1(古紙セルロース繊維粒子)に代えて、C2(粗粉砕古紙セルロース繊維粒子)を用い、混練条件II−1に代えて、下記の混練条件II−2で混練したこと以外は実施例II−1と同様にして、断面が円形のストランド状の発泡体を得た。
[Example II-2]
Example II-1 except that C2 (coarse crushed waste paper cellulose fiber particles) was used instead of C1 (waste paper cellulose fiber particles) and kneaded under the following kneading condition II-2 instead of kneading condition II-1. In the same manner as above, a strand-shaped foam having a circular cross section was obtained.

[実施例II−3]
D1(ABS樹脂)に代えて、D2(PE)を用いたこと以外は実施例II−1と同様にして、断面が円形のストランド状の発泡体を得た。
[Example II-3]
A strand-shaped foam having a circular cross section was obtained in the same manner as in Example II-1 except that D2 (PE) was used instead of D1 (ABS resin).

[実施例II−4]
B4b(粉末状ポリプロピレン)70.5gと、C7(古紙セルロース繊維粒子)75gと、D3(PC樹脂)4.5gとを秤量した。秤量したB4bとC7とD3とを30個の容器に分取し、各容器ごとに分取したB4bとC7とD3とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、C7含有量が50質量%、D3含有量が3質量%である。
[Example II-4]
70.5 g of B4b (powdered polypropylene), 75 g of C7 (waste paper cellulose fiber particles), and 4.5 g of D3 (PC resin) were weighed. The weighed B4b, C7 and D3 were separated into 30 containers, and the separated B4b, C7 and D3 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a C7 content of 50% by mass, and a D3 content of 3% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:168℃、シリンダー温度X1/X2/X3/X4:170℃/180℃/180℃/170℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数250rpmの条件で混練した後、直径3mmのダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), die part temperature Y1: 168 ° C., cylinder temperature X1 / X2 / X3 / X4: 170 ° C./180 ° C./180 ° C. After kneading under the conditions of / 170 ° C / (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part) and the screw rotation speed of 250 rpm, the mixture is extruded from the tip of the die having a diameter of 3 mm. A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 2.0 mm, wire diameter 0.9 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件II−3で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions II-3. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例II−5]
B4b(粉末状ポリプロピレン)70.5gと、C7(古紙セルロース繊維粒子)75gと、D4(PMMA樹脂)4.5gとを秤量した。秤量したB4bとC7とD4とを30個の容器に分取し、各容器ごとに分取したB4bとC7とD4とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、C7含有量が50質量%、D4含有量が3質量%である。
[Example II-5]
70.5 g of B4b (powdered polypropylene), 75 g of C7 (waste paper cellulose fiber particles), and 4.5 g of D4 (PMMA resin) were weighed. The weighed B4b, C7 and D4 were separated into 30 containers, and the separated B4b, C7 and D4 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a C7 content of 50% by mass, and a D4 content of 3% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:170℃、シリンダー温度X1/X2/X3/X4:170℃/180℃/180℃/170℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数250rpmの条件で混練した後、直径3mmのダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), die part temperature Y1: 170 ° C., cylinder temperature X1 / X2 / X3 / X4: 170 ° C./180 ° C./180 ° C. After kneading under the conditions of / 170 ° C / (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part) and the screw rotation speed of 250 rpm, the mixture is extruded from the tip of the die having a diameter of 3 mm. A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 2.0 mm, wire diameter 0.9 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件II−3で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions II-3. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例II−6]
B4b(粉末状ポリプロピレン)70.5gと、C8(古紙セルロース繊維粒子)75gと、D3(ポリカーボネート樹脂)4.5gとを秤量した。秤量したB4bとC8とD3とを30個の容器に分取し、各容器ごとに分取したB4bとC8とD3とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、C8含有量が50質量%、D3含有量が3質量%である。
[Example II-6]
70.5 g of B4b (powdered polypropylene), 75 g of C8 (waste paper cellulose fiber particles), and 4.5 g of D3 (polycarbonate resin) were weighed. The weighed B4b, C8 and D3 were separated into 30 containers, and the separated B4b, C8 and D3 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a C8 content of 50% by mass, and a D3 content of 3% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:172℃、シリンダー温度X1/X2/X3/X4:170℃/180℃/180℃/172℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数250rpmの条件で混練した後、直径3mmのダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), the die part temperature was Y1: 172 ° C, and the cylinder temperature was X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C. After kneading under the conditions of / 172 ° C / (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part) and the screw rotation speed of 250 rpm, the mixture is extruded from the tip of the die having a diameter of 3 mm. A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 2.0 mm, wire diameter 0.9 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件II−4で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions II-4. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例II−7]
B4b(粉末状ポリプロピレン)70.5gと、C9(古紙セルロース繊維粒子)75gと、D3(ポリカーボネート樹脂)4.5gとを秤量した。秤量したB4bとC9とD3とを30個の容器に分取し、各容器ごとに分取したB4bとC9とD3とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、C9含有量が50質量%、D3含有量が3質量%である。
得られた原料混合物を用いたこと以外は、実施例II−6と同様にして、断面が円形のストランド状の発泡体を得た。
[Example II-7]
70.5 g of B4b (powdered polypropylene), 75 g of C9 (waste paper cellulose fiber particles), and 4.5 g of D3 (polycarbonate resin) were weighed. The weighed B4b, C9 and D3 were separated into 30 containers, and the separated B4b, C9 and D3 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a C9 content of 50% by mass, and a D3 content of 3% by mass.
A strand-shaped foam having a circular cross section was obtained in the same manner as in Example II-6 except that the obtained raw material mixture was used.

[実施例II−8]
B4b(粉末状ポリプロピレン)70.5gと、C10(古紙セルロース繊維粒子)75gと、D3(ポリカーボネート樹脂)4.5gとを秤量した。秤量したB4bとC10とD3とを30個の容器に分取し、各容器ごとに分取したB4bとC10とD3とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、C10含有量が50質量%、D3含有量が3質量%である。
得られた原料混合物を用いたこと以外は、実施例II−6と同様にして、断面が円形のストランド状の発泡体を得た。
[Example II-8]
70.5 g of B4b (powdered polypropylene), 75 g of C10 (waste paper cellulose fiber particles), and 4.5 g of D3 (polycarbonate resin) were weighed. The weighed B4b, C10 and D3 were separated into 30 containers, and the separated B4b, C10 and D3 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a C10 content of 50% by mass, and a D3 content of 3% by mass.
A strand-shaped foam having a circular cross section was obtained in the same manner as in Example II-6 except that the obtained raw material mixture was used.

[実施例II−9]
B4b(粉末状ポリプロピレン)188gと、C11(古紙セルロース繊維粒子)200gと、D3(ポリカーボネート樹脂)12gとを秤量した。秤量したB4bとC11とD3とを30個の容器に分取し、各容器ごとに分取したB4bとC11とD3とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、C11含有量が50質量%、D3含有量が3質量%である。
[Example II-9]
188 g of B4b (powdered polypropylene), 200 g of C11 (waste paper cellulose fiber particles), and 12 g of D3 (polycarbonate resin) were weighed. The weighed B4b, C11 and D3 were separated into 30 containers, and the separated B4b, C11 and D3 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a C11 content of 50% by mass, and a D3 content of 3% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:172℃、シリンダー温度X1/X2/X3/X4:170℃/180℃/180℃/172℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数250rpmの条件で混練した後、直径2mm7孔のダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), the die part temperature was Y1: 172 ° C, and the cylinder temperature was X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C. / 172 ° C / (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part), after kneading under the condition of screw rotation speed 250 rpm, extruded from the tip of the die with a diameter of 2 mm and 7 holes. , A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 2.0 mm, wire diameter 0.9 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、直径2mm7孔の先端ダイスを備えた2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件II−5で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を6mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径2mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体7本を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG, manufactured by Technobel Co., Ltd.) equipped with a tip die having a diameter of 2 mm and 7 holes, and kneaded under the following kneading conditions II-5. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 6 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 2 mm, and water was evaporated from the second kneaded product to obtain seven strand-shaped foams having a circular cross section.

[実施例II−10]
B4b(粉末状ポリプロピレン)212gと、C6(古紙セルロース繊維粒子)225gと、D3(ポリカーボネート樹脂)13.5gとを秤量した。秤量したB4bとC6とD3とを30個の容器に分取し、各容器ごとに分取したB4bとC6とD3とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、C6含有量が50質量%、D3含有量が3質量%である。
[Example II-10]
212 g of B4b (powdered polypropylene), 225 g of C6 (waste paper cellulose fiber particles), and 13.5 g of D3 (polycarbonate resin) were weighed. The weighed B4b, C6 and D3 were separated into 30 containers, and the separated B4b, C6 and D3 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a C6 content of 50% by mass, and a D3 content of 3% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:166℃、シリンダー温度X1/X2/X3/X4:175℃/175℃/175℃/168℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数250rpmの条件で混練した後、直径2mm7孔のダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), die part temperature Y1: 166 ° C, cylinder temperature X1 / X2 / X3 / X4: 175 ° C / 175 ° C / 175 ° C. / 168 ° C / (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part), after kneading under the condition of screw rotation speed 250 rpm, extruded from the tip of the die with a diameter of 2 mm and 7 holes. , A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き2.0mm、線径0.9mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 2.0 mm, wire diameter 0.9 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、直径2mm7孔の先端ダイスを備えた2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件II−5で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を6mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径2mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体7本を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG, manufactured by Technobel Co., Ltd.) equipped with a tip die having a diameter of 2 mm and 7 holes, and kneaded under the following kneading conditions II-5. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 6 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 2 mm, and water was evaporated from the second kneaded product to obtain seven strand-shaped foams having a circular cross section.

[実施例II−11]
B1a(粉末状ポリプロピレン)64gと、C1(古紙セルロース繊維粒子)102gと、D3(ポリカーボネート樹脂)6gとF2(ホウ酸)14gと、F3(四ホウ酸ナトリウム)14gとを秤量した。秤量したB1aとC1とD3とF2とF3とを30個の容器に分取し、各容器ごとに分取したB1aとC1とD3とF2とF3を混合して原料混合物を得た。得られた原料混合物は、B1a含有量が32質量%、C1含有量が51質量%、D3含有量が3質量%、F2含有量が7質量%、F3含有量が7質量%である。
[Example II-11]
64 g of B1a (powdered polypropylene), 102 g of C1 (waste paper cellulose fiber particles), 6 g of D3 (polycarbonate resin), 14 g of F2 (boric acid), and 14 g of F3 (sodium tetraborate) were weighed. The weighed B1a, C1, D3, F2 and F3 were separated into 30 containers, and the separated B1a, C1, D3, F2 and F3 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B1a content of 32% by mass, a C1 content of 51% by mass, a D3 content of 3% by mass, an F2 content of 7% by mass, and an F3 content of 7% by mass.

得られた原料混合物を用いたこと以外は、実施例II−6と同様にして、粒状第1混練物を得た。 A granular first kneaded product was obtained in the same manner as in Example II-6 except that the obtained raw material mixture was used.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件II−6で混練した。このとき、シリンダーのX3部とX4部の間からシリンダー内に、冷水(5℃)を3mL/minの速度で供給して、シリンダーのX4部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions II-6. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X3 part and the X4 part of the cylinder at a rate of 3 mL / min, and the first kneaded product and water are kneaded in the X4 part of the cylinder. Two kneaded products were produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例II−12]
B4b(粉末状ポリプロピレン)94.0gと、C7(古紙セルロース繊維粒子)100gと、D5(PS樹脂)6.0gとを秤量した。秤量したB4bとC7とD5とを30個の容器に分取し、各容器ごとに分取したB4bとC7とD5とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、C7含有量が50質量%、D5含有量が3質量%である。
[Example II-12]
94.0 g of B4b (powdered polypropylene), 100 g of C7 (waste paper cellulose fiber particles), and 6.0 g of D5 (PS resin) were weighed. The weighed B4b, C7 and D5 were separated into 30 containers, and the separated B4b, C7 and D5 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a C7 content of 50% by mass, and a D5 content of 3% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:168℃、シリンダー温度X1/X2/X3/X4:170℃/180℃/180℃/170℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数60rpmの条件で混練した後、直径3mmのダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), die part temperature Y1: 168 ° C., cylinder temperature X1 / X2 / X3 / X4: 170 ° C./180 ° C./180 ° C. After kneading under the conditions of / 170 ° C / (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part) and the screw rotation speed of 60 rpm, the mixture is extruded from the tip of the die having a diameter of 3 mm. A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き1.4mm、線径0.7mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 1.4 mm, wire diameter 0.7 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件II−3で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions II-3. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

[実施例II−13]
B4b(粉末状ポリプロピレン)94.0gと、C7(古紙セルロース繊維粒子)100gと、D6(エチレン−α−オレフィン コポリマー樹脂)6.0gとを秤量した。秤量したB4bとC7とD6とを30個の容器に分取し、各容器ごとに分取したB4bとC7とD6とを混合して原料混合物を得た。得られた原料混合物は、B4b含有量が47質量%、C7含有量が50質量%、D6含有量が3質量%である。
[Example II-13]
94.0 g of B4b (powdered polypropylene), 100 g of C7 (waste paper cellulose fiber particles), and 6.0 g of D6 (ethylene-α-olefin copolymer resin) were weighed. The weighed B4b, C7 and D6 were separated into 30 containers, and the separated B4b, C7 and D6 were mixed for each container to obtain a raw material mixture. The obtained raw material mixture has a B4b content of 47% by mass, a C7 content of 50% by mass, and a D6 content of 3% by mass.

上記の原料混合物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、ダイ部温度Y1:168℃、シリンダー温度X1/X2/X3/X4:170℃/180℃/180℃/170℃/(X1〜X4は、シリンダー部の原料混合物の導入部からダイ部までの各部の温度である)、スクリュー回転数60rpmの条件で混練した後、直径3mmのダイ先端部より押出し、紐状前駆混練体(第1混練物)を得た。 The above raw material mixture was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.), die part temperature Y1: 168 ° C., cylinder temperature X1 / X2 / X3 / X4: 170 ° C./180 ° C./180 ° C. After kneading under the conditions of / 170 ° C / (X1 to X4 are the temperatures of each part from the introduction part of the raw material mixture in the cylinder part to the die part) and the screw rotation speed of 60 rpm, the mixture is extruded from the tip of the die having a diameter of 3 mm. A string-shaped precursor kneaded product (first kneaded product) was obtained.

得られた第1混練体を適切な長さに切断した。得られた切断物を、ブレンダー(ワーリング社製、エクストリームミル MX−1200XTS)を用いて粉砕した。得られた粉砕物から、篩(目開き1.4mm、線径0.7mm)を用いて分級し、篩下の粒状第1混練物を回収した。 The obtained first kneaded product was cut to an appropriate length. The obtained cut piece was pulverized using a blender (Extreme Mill MX-1200XTS manufactured by Waring Co., Ltd.). The obtained pulverized product was classified using a sieve (opening 1.4 mm, wire diameter 0.7 mm), and the granular first kneaded product under the sieve was recovered.

得られた粒状第1混練物を、2軸混練押出機(テクノベル社製、KZW15−30MG)に投入し、下記の混練条件II−3で混練した。このとき、シリンダーのX2部とX3部の間からシリンダー内に、冷水(5℃)を2mL/minの速度で供給して、シリンダーのX3部で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて断面が円形のストランド状の発泡体を得た。 The obtained granular first kneaded product was put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) and kneaded under the following kneading conditions II-3. At this time, cold water (5 ° C.) is supplied into the cylinder from between the X2 part and the X3 part of the cylinder at a rate of 2 mL / min, and the first kneaded product and water are kneaded in the X3 part of the cylinder. 2 A kneaded product was produced. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a strand-shaped foam having a circular cross section.

(混練条件II−1)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/170℃、スクリュー回転数250rpm
(混練条件II−2)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/170℃、スクリュー回転数150rpm
(混練条件II−3)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/170℃、スクリュー回転数60rpm
(混練条件II−4)
ダイ部温度Y1:172℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/172℃、スクリュー回転数60rpm
(混練条件II−5)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:175℃/175℃/175℃/168℃、スクリュー回転数150rpm
(混練条件II−6)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/170℃、スクリュー回転数90rpm
(Kneading condition II-1)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 170 ° C, screw rotation speed 250 rpm
(Kneading condition II-2)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 170 ° C, screw rotation speed 150 rpm
(Kneading condition II-3)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 170 ° C, screw rotation speed 60 rpm
(Kneading condition II-4)
Die temperature Y1: 172 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 172 ° C, screw rotation speed 60 rpm
(Kneading condition II-5)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 175 ° C / 175 ° C / 175 ° C / 168 ° C, screw rotation speed 150 rpm
(Kneading condition II-6)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 170 ° C, screw rotation speed 90 rpm

[評価]
得られた発泡体の密度と熱伝導率を、前記の方法により測定した。その結果を、原料混合物の組成と共に表2に示す。
[Evaluation]
The density and thermal conductivity of the obtained foam were measured by the above method. The results are shown in Table 2 together with the composition of the raw material mixture.

Figure 2019112011
Figure 2019112011

表2に示すように、樹脂添加剤を含む実施例II−1〜II−13の発泡体は、密度が70kg/m以下であり、熱伝導率が40×10−3W/mK以下であり、低いものであった。As shown in Table 2, the foams of Examples II-1 to II-13 containing the resin additive have a density of 70 kg / m 3 or less and a thermal conductivity of 40 × 10 -3 W / mK or less. Yes, it was low.

[実施例III−1]
B1a(粉末状ポリプロピレン)103.5gと、C1(古紙セルロース繊維)45gと、E1(水性ポリウレタンディスパージョン)5.0g(ポリウレタンとして1.5g)を秤量した。秤量したB1aとC1とE1とを30個の容器に分取し、各容器ごとに分取したB1aとC1とE1とを混合して原料混合物を得た。得られた原料混合物の組成は、B1a含有量が69質量%、C1含有量が30質量%、E1含有量が1質量%である。
[Example III-1]
B1a (powdered polypropylene) 103.5 g, C1 (waste paper cellulose fiber) 45 g, and E1 (aqueous polyurethane dispersion) 5.0 g (1.5 g as polyurethane) were weighed. The weighed B1a, C1 and E1 were separated into 30 containers, and the separated B1a, C1 and E1 were mixed in each container to obtain a raw material mixture. The composition of the obtained raw material mixture has a B1a content of 69% by mass, a C1 content of 30% by mass, and an E1 content of 1% by mass.

得られた原料混合物を、シリンダー部の原料混合物の導入部からダイ部までがX1〜X4の4つのエリアに分割されている2軸混練押出機(株式会社テクノベル製、KZW15−30MG)に投入し、下記の混練条件III−1で混練した。このとき、シリンダー部のX3とX4の間からシリンダー部内に、冷水(5℃)を2mL/minの速度で供給して、シリンダー部のX1〜X3の間で第1混練物を生成させ、シリンダー部のX4で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて発泡体を得た。得られた発泡体は、複数個の粒状発泡体粒子が紐状に連結した数珠状であった。 The obtained raw material mixture is put into a twin-screw kneading extruder (KZW15-30MG manufactured by Technobel Co., Ltd.) in which the part from the introduction part of the raw material mixture in the cylinder part to the die part is divided into four areas X1 to X4. , Kneaded under the following kneading conditions III-1. At this time, cold water (5 ° C.) is supplied from between X3 and X4 of the cylinder portion into the cylinder portion at a rate of 2 mL / min to generate a first kneaded product between X1 to X3 of the cylinder portion to generate the cylinder. The first kneaded product and water were kneaded in part X4 to produce a second kneaded product. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a foam. The obtained foam was in the shape of beads in which a plurality of granular foam particles were connected in a string shape.

[実施例III−2]
原料混合物として、B1a(粉末状ポリプロピレン)90gと、C1(古紙セルロース繊維)45gと、E1(水性ポリウレタンディスパージョン)50g(ポリウレタンとして15g)を秤量したこと以外は、実施例III−1と同様にして発泡体を製造した。得られた発泡体は、複数個の粒状発泡体粒子が紐状に連結した数珠状であった。なお、原料混合物の組成は、B1a含有量が60質量%、C1含有量が30質量%、E1含有量が10質量%である。
[Example III-2]
As a raw material mixture, 90 g of B1a (powdered polypropylene), 45 g of C1 (waste paper cellulose fiber), and 50 g of E1 (aqueous polyurethane dispersion) (15 g as polyurethane) were weighed in the same manner as in Example III-1. The foam was produced. The obtained foam was in the shape of beads in which a plurality of granular foam particles were connected in a string shape. The composition of the raw material mixture is such that the B1a content is 60% by mass, the C1 content is 30% by mass, and the E1 content is 10% by mass.

[実施例III−3]
原料混合物として、B1a(粉末状ポリプロピレン)82.5gと、C1(古紙セルロース繊維)45gと、E1(水性ポリウレタンディスパージョン)75g(ポリウレタンとして22.5g)を秤量したこと以外は、実施例III−1と同様にして発泡体を製造した。得られた発泡体は、断面が円形のストランド状であった。なお、原料混合物の組成は、B1a含有量が55質量%、C1含有量が30質量%、E1含有量が15質量%である。
[Example III-3]
Examples III-, except that 82.5 g of B1a (powdered polypropylene), 45 g of C1 (waste paper cellulose fiber), and 75 g of E1 (aqueous polyurethane dispersion) (22.5 g as polyurethane) were weighed as the raw material mixture. A foam was produced in the same manner as in 1. The obtained foam had a strand shape with a circular cross section. The composition of the raw material mixture is such that the B1a content is 55% by mass, the C1 content is 30% by mass, and the E1 content is 15% by mass.

[実施例III−4]
B1a(粉末状ポリプロピレン)85.5gと、B2(粉末状ポリプロピレン)4.5gと、C1(古紙セルロース繊維)45gと、E1(水性ポリウレタンディスパージョン)50g(ポリウレタンとして15g)を秤量し、実施例III−1と同様に混合して原料混合物を得た。得られた原料混合物の組成は、B1a含有量が57質量%、B2含有量が3重量%、C1含有量が30質量%、E1含有量が10質量%である。
[Example III-4]
Examples of B1a (powdered polypropylene) 85.5 g, B2 (powdered polypropylene) 4.5 g, C1 (waste paper cellulose fiber) 45 g, and E1 (aqueous polyurethane dispersion) 50 g (15 g as polyurethane) were weighed. The raw material mixture was obtained by mixing in the same manner as in III-1. The composition of the obtained raw material mixture is 57% by mass of B1a content, 3% by mass of B2 content, 30% by mass of C1 content, and 10% by mass of E1 content.

得られた原料混合物を、2軸混練押出機(株式会社テクノベル製、KZW15−30MG)に投入し、下記の混練条件III−2で混練した。このとき、シリンダー部のX3とX4の間からシリンダー部内に、冷水(5℃)を5mL/minの速度で供給して、シリンダー部のX1〜X3の間で第1混練物を生成させ、シリンダー部のX4で第1混練物と水とを混練して第2混練物を生成させた。生成した第2混練物を、直径3mmのダイ先端部より押出し、第2混練物から水分を蒸発させて発泡体を得た。得られた発泡体は、複数個の粒状発泡体粒子が紐状に連結した数珠状であった。 The obtained raw material mixture was put into a twin-screw kneading extruder (manufactured by Technobel Co., Ltd., KZW15-30MG) and kneaded under the following kneading conditions III-2. At this time, cold water (5 ° C.) is supplied from between X3 and X4 of the cylinder portion into the cylinder portion at a rate of 5 mL / min to generate a first kneaded product between X1 to X3 of the cylinder portion. The first kneaded product and water were kneaded in part X4 to produce a second kneaded product. The produced second kneaded product was extruded from the tip of a die having a diameter of 3 mm, and water was evaporated from the second kneaded product to obtain a foam. The obtained foam was in the shape of beads in which a plurality of granular foam particles were connected in a string shape.

[比較例III−1]
原料混合物として、B1a(粉末状ポリプロピレン)75gと、C1(古紙セルロース繊維)45gと、E1(水性ポリウレタンディスパージョン)100g(ポリウレタンとして30g)を秤量し、実施例III−1と同様に混合して得た混合物を用いたこと以外は、実施例III−1と同様にして発泡体を製造した。得られた発泡体は、瘤状に膨れた凸部を複数有する不定形状であった。なお、原料混合物の組成は、B1a含有量が50質量%、C1含有量が30質量%、E1含有量が20質量%である。
[Comparative Example III-1]
As a raw material mixture, 75 g of B1a (powdered polypropylene), 45 g of C1 (waste paper cellulose fiber), and 100 g of E1 (aqueous polyurethane dispersion) (30 g as polyurethane) were weighed and mixed in the same manner as in Example III-1. A foam was produced in the same manner as in Example III-1 except that the obtained mixture was used. The obtained foam had an indefinite shape having a plurality of bump-shaped bulging protrusions. The composition of the raw material mixture is such that the B1a content is 50% by mass, the C1 content is 30% by mass, and the E1 content is 20% by mass.

(混練条件III−1)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/170℃、スクリュー回転数60rpm
(混練条件III−2)
ダイ部温度Y1:168℃、シリンダー部温度X1/X2/X3/X4:170℃/180℃/180℃/170℃、スクリュー回転数350rpm
(Kneading condition III-1)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 170 ° C, screw rotation speed 60 rpm
(Kneading condition III-2)
Die temperature Y1: 168 ° C, cylinder temperature X1 / X2 / X3 / X4: 170 ° C / 180 ° C / 180 ° C / 170 ° C, screw rotation speed 350 rpm

[評価]
得られた発泡体の密度と引張破断比エネルギーを測定した。発泡体の密度は前記の方法により測定した。発泡体の引張破断比エネルギーは下記の方法により測定した。その結果を、原料混合物の組成と共に表3に示す。また、実施例I−2で作成した発泡体についても引張破断比エネルギーを測定した。その結果を表3に示す。
[Evaluation]
The density and tensile specific energy of the foam obtained were measured. The density of the foam was measured by the above method. The tensile breaking specific energy of the foam was measured by the following method. The results are shown in Table 3 together with the composition of the raw material mixture. In addition, the tensile breakthrough specific energy was also measured for the foam prepared in Example I-2. The results are shown in Table 3.

(発泡体の引張破断比エネルギーの測定方法)
発泡体の引張破断エネルギーは、万能試験機(株式会社島津製作所製、EZ−LX)を用いて測定した。ストランド状の試験サンプルは円柱状に、数珠状の試験サンプルは粒状発泡体粒子の連結部をそれぞれ長さ8cmに切断して、試験サンプルを各3本作製した。試験サンプルを、万能試験機の治具の間(治具間距離5cm)に取り付けて引張試験を行って、応力―ひずみ曲線を作成した。得られた応力―ひずみ曲線下の面積値から万能試験機付属の解析ソフト(Trapezium X Ver 1.4.0)を用いて、引張破断エネルギーU(Nm)を求めた。
引張破断比エネルギーUs(Nm/g)は、下記式(3)によって算出した。なお、表3には、3つの試験サンプルを作製して測定した引張破断比エネルギーの平均値を記載した。
Us=U/Mi・・・(3)
Mi:治具の間(治具間距離5cm)に取り付けられた試験サンプル質量(g)、U:引張破断エネルギー(Nm)
(Measuring method of tensile breakthrough specific energy of foam)
The tensile breaking energy of the foam was measured using a universal testing machine (manufactured by Shimadzu Corporation, EZ-LX). Three test samples were prepared by cutting the strand-shaped test sample into a columnar shape and the bead-shaped test sample by cutting the connecting portion of the granular foam particles to a length of 8 cm. The test sample was attached between the jigs of the universal testing machine (distance between jigs 5 cm) and a tensile test was performed to create a stress-strain curve. From the obtained area values under the stress-strain curve, the tensile breaking energy U (Nm) was determined using the analysis software (Trapezium X Ver 1.4.0) attached to the universal testing machine.
The tensile breaking specific energy Us (Nm / g) was calculated by the following formula (3). In addition, Table 3 shows the average value of the tensile breakthrough specific energies measured by preparing three test samples.
Us = U / Mi ... (3)
Mi: Mass of test sample attached between jigs (distance between jigs 5 cm), U: Tensile breaking energy (Nm)

Figure 2019112011
Figure 2019112011

ポリウレタンを本発明の範囲で含む実施例III−1〜III−4の発泡体は、ポリウレタンを含まない実施例I−2の発泡体と比較して、引張破断比エネルギーが高くなることが確認された。また、ポリウレタンを本発明の範囲よりも多く含む比較例III−1の発泡体は、引張破断比エネルギーが大きく低下した。これは、ポリウレタンを大きく含むことによって発泡体の密度が高くなりすぎたためであると考えられる。 It was confirmed that the foams of Examples III-1 to III-4 containing polyurethane within the scope of the present invention have a higher tensile specific energy at break than the foams of Example I-2 containing no polyurethane. It was. In addition, the foam of Comparative Example III-1 containing more polyurethane than the range of the present invention had a significantly reduced tensile breakthrough specific energy. It is considered that this is because the density of the foam becomes too high due to the large amount of polyurethane.

本発明の発泡体は、断熱材、緩衝材、包装材として有利に利用することができる。 The foam of the present invention can be advantageously used as a heat insulating material, a cushioning material, and a packaging material.

Claims (6)

セルロース繊維とポリプロピレンとを含み、
前記セルロース繊維の含有量が10質量%以上65質量%以下の範囲内にあって、
密度が80kg/m以下であることを特徴とする発泡体。
Contains cellulose fibers and polypropylene
The content of the cellulose fiber is in the range of 10% by mass or more and 65% by mass or less.
A foam having a density of 80 kg / m 3 or less.
複数個の粒状発泡体粒子が紐状に連結した形状もしくはストランド状である請求項1に記載の発泡体。 The foam according to claim 1, wherein a plurality of granular foam particles are connected in a string shape or in a strand shape. 前記セルロース繊維と前記ポリプロピレンとからなり、
密度が70kg/m以下である請求項1に記載の発泡体。
It is composed of the cellulose fiber and the polypropylene.
The foam according to claim 1, which has a density of 70 kg / m 3 or less.
さらに、樹脂添加剤を含み、
前記樹脂添加剤が、ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリエーテル系樹脂、ポリイミド系樹脂、エラストマー系樹脂、含イオウ系樹脂、フェノール系樹脂およびエポキシ系樹脂からなる群より選ばれる少なくとも1種であり、
前記樹脂添加剤の含有量が0.1質量%以上30質量%以下であり、
前記ポリプロピレンの含有量が5質量%以上である請求項1に記載の発泡体。
In addition, it contains a resin additive and
The resin additives are vinyl-based resin, polystyrene-based resin, polyester-based resin, polyamide-based resin, acrylic-based resin, polyether resin, polyimide-based resin, elastomer-based resin, sulfur-containing resin, phenol-based resin, and epoxy-based resin. At least one selected from the group consisting of resins,
The content of the resin additive is 0.1% by mass or more and 30% by mass or less.
The foam according to claim 1, wherein the polypropylene content is 5% by mass or more.
密度が70kg/m以下である請求項4に記載の発泡体。The foam according to claim 4, which has a density of 70 kg / m 3 or less. さらに、ポリウレタンを含み、
前記ポリウレタンの含有量が1質量%以上20質量%未満の範囲内にあって、
前記ポリプロピレンの含有量が15質量%以上89質量%以下の範囲内にある請求項1に記載の発泡体。
In addition, it contains polyurethane
The content of the polyurethane is in the range of 1% by mass or more and less than 20% by mass.
The foam according to claim 1, wherein the polypropylene content is in the range of 15% by mass or more and 89% by mass or less.
JP2019558282A 2017-12-06 2018-12-06 foam Active JP7327164B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2017234424 2017-12-06
JP2017234425 2017-12-06
JP2017234423 2017-12-06
JP2017234425 2017-12-06
JP2017234424 2017-12-06
JP2017234423 2017-12-06
PCT/JP2018/044936 WO2019112011A1 (en) 2017-12-06 2018-12-06 Foam

Publications (2)

Publication Number Publication Date
JPWO2019112011A1 true JPWO2019112011A1 (en) 2020-12-10
JP7327164B2 JP7327164B2 (en) 2023-08-16

Family

ID=66751434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019558282A Active JP7327164B2 (en) 2017-12-06 2018-12-06 foam

Country Status (2)

Country Link
JP (1) JP7327164B2 (en)
WO (1) WO2019112011A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3978215A1 (en) * 2020-09-30 2022-04-06 Evonik Operations GmbH Production of complex foam moulds with class-a capable surfaces

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866641A (en) * 1996-06-22 1999-02-02 Wood Composite Technologies Inc Process for the production of lightweight cellular composites of wood waste and thermoplastic polymers
JP2007056176A (en) * 2005-08-26 2007-03-08 Daicel Polymer Ltd Fiber reinforced foamable resin composition and foamed molding therefrom
JP2008297479A (en) * 2007-06-01 2008-12-11 Daicel Polymer Ltd Method for producing cellulose fiber-containing thermoplastic resin composition
JP2011213966A (en) * 2010-04-02 2011-10-27 Kankyo Keiei Sogo Kenkyusho:Kk Foamed product and method for producing the same
JP2012116905A (en) * 2010-11-30 2012-06-21 Oji Paper Co Ltd Method for producing composite porous sheet of microfibrous cellulose
JP2014005416A (en) * 2012-06-27 2014-01-16 Fukuvi Chem Ind Co Ltd Highly-functional foamed molding and method for producing the same
WO2014084165A1 (en) * 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
CN104725690A (en) * 2015-03-20 2015-06-24 李孟平 Preparation method of heat-insulating foamed filling material for sandwich room boards
JP2015124307A (en) * 2013-12-26 2015-07-06 フクビ化学工業株式会社 Foamed product containing wood flour
JP2016089071A (en) * 2014-11-06 2016-05-23 フクビ化学工業株式会社 Production method of foamed molded article
WO2016136881A1 (en) * 2015-02-26 2016-09-01 株式会社日本製鋼所 Method for manufacturing microporous film and microporous film
JP2017088730A (en) * 2015-11-10 2017-05-25 矢崎総業株式会社 Polypropylene resin foamed sheet, and laminate and wire harness using thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024790A (en) * 2016-08-10 2018-02-15 日本山村硝子株式会社 Cellulose-containing thermoplastic resin foamed molding, method for producing cellulose-containing thermoplastic resin foamed molding and laminate molding thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866641A (en) * 1996-06-22 1999-02-02 Wood Composite Technologies Inc Process for the production of lightweight cellular composites of wood waste and thermoplastic polymers
JP2007056176A (en) * 2005-08-26 2007-03-08 Daicel Polymer Ltd Fiber reinforced foamable resin composition and foamed molding therefrom
JP2008297479A (en) * 2007-06-01 2008-12-11 Daicel Polymer Ltd Method for producing cellulose fiber-containing thermoplastic resin composition
JP2011213966A (en) * 2010-04-02 2011-10-27 Kankyo Keiei Sogo Kenkyusho:Kk Foamed product and method for producing the same
JP2012116905A (en) * 2010-11-30 2012-06-21 Oji Paper Co Ltd Method for producing composite porous sheet of microfibrous cellulose
JP2014005416A (en) * 2012-06-27 2014-01-16 Fukuvi Chem Ind Co Ltd Highly-functional foamed molding and method for producing the same
WO2014084165A1 (en) * 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
JP2015124307A (en) * 2013-12-26 2015-07-06 フクビ化学工業株式会社 Foamed product containing wood flour
JP2016089071A (en) * 2014-11-06 2016-05-23 フクビ化学工業株式会社 Production method of foamed molded article
WO2016136881A1 (en) * 2015-02-26 2016-09-01 株式会社日本製鋼所 Method for manufacturing microporous film and microporous film
CN104725690A (en) * 2015-03-20 2015-06-24 李孟平 Preparation method of heat-insulating foamed filling material for sandwich room boards
JP2017088730A (en) * 2015-11-10 2017-05-25 矢崎総業株式会社 Polypropylene resin foamed sheet, and laminate and wire harness using thereof

Also Published As

Publication number Publication date
JP7327164B2 (en) 2023-08-16
WO2019112011A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6902514B2 (en) Cellulose-aluminum-dispersed polyethylene resin composite, pellets and molded products using this, and methods for manufacturing these
JP6979983B2 (en) Cellulose-aluminum-dispersed polyethylene resin composite, pellets and molded bodies using this, and methods for manufacturing them.
CN109196056A (en) Cellulose composite material comprising wood pulp
Abbott et al. Starch as a replacement for urea-formaldehyde in medium density fibreboard
Atuanya et al. Potential of using recycled low-density polyethylene in wood composites board
JP7327164B2 (en) foam
JP2013540913A (en) Cellulose fiber composition
JP2015508115A (en) Method for producing composite polymer
Lashgari et al. A study on some properties of polypropylene based nanocomposites made using almond shell flour and organoclay.
EP3674048A1 (en) Cellulose fiber dispersion polyethylene resin composite, molded body and pellets using same, manufacturing method for these, and recycling method for polyethylene thin film fragments with adhered cellulose fibers
EP2780419B1 (en) A composite product, a method for manufacturing a composite product and its use, a material component and a final product
JP5656174B2 (en) Antistatic agent for polymer composite material and antistatic member
Tian et al. Morphology and physical properties of composite foams based on low‐density polyethylene and ground tire rubber
US20240199852A1 (en) Composite powder and method for manufacturing same
JP2020097679A (en) Method for producing cellulose composite powder
EP3134894B1 (en) An acoustic product composed of composite material
CN112119127B (en) Resin composition
EP2780420B1 (en) A composite product, a method for manufacturing a composite product and its use and a final product
JP2019199563A (en) Resin composition
JP7087660B2 (en) Foam
Nasser et al. The Performance and Properties of Wood–Polypropylene Panels as Affected by Wood Aqueous Extraction
JP2020152879A (en) Method for producing cellulosic resin composite
Tavana et al. Renewable starch/polyvinyl alcohol nanocomposite foams reinforced by cellulose nanofibers isolated from carrot residues using a chemo-mechanical process
JP5280771B2 (en) Permeable mold-forming composition for pulp mold
El-Shekeil et al. Research Article Optimization of Blending Parameters and Fiber Size of Kenaf-Bast-Fiber-Reinforced the Thermoplastic Polyurethane Composites by Taguchi Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R150 Certificate of patent or registration of utility model

Ref document number: 7327164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150