JPWO2019103057A1 - Abnormal tissue detector - Google Patents

Abnormal tissue detector Download PDF

Info

Publication number
JPWO2019103057A1
JPWO2019103057A1 JP2019555344A JP2019555344A JPWO2019103057A1 JP WO2019103057 A1 JPWO2019103057 A1 JP WO2019103057A1 JP 2019555344 A JP2019555344 A JP 2019555344A JP 2019555344 A JP2019555344 A JP 2019555344A JP WO2019103057 A1 JPWO2019103057 A1 JP WO2019103057A1
Authority
JP
Japan
Prior art keywords
signal
antenna
abnormal tissue
reference signal
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019555344A
Other languages
Japanese (ja)
Other versions
JP6849980B2 (en
Inventor
公麿 吉川
公麿 吉川
航 宋
航 宋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Hiroshima University NUC
Original Assignee
Shimadzu Corp
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Hiroshima University NUC filed Critical Shimadzu Corp
Publication of JPWO2019103057A1 publication Critical patent/JPWO2019103057A1/en
Application granted granted Critical
Publication of JP6849980B2 publication Critical patent/JP6849980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/02Investigating the presence of flaws

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electromagnetism (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】検査部位の異常組織を高精度に検出できる異常組織検出装置を提供することを目的とする。【解決手段】異常組織検出装置は、複数の受信信号IS_nのそれぞれと、複数の受信信号IS_nのそれぞれを重み係数によって重み付け加算することにより生成される基準信号SSとを比較することにより、異常組織からの反射波の成分を検出する。ここで、複数の受信信号IS_nのそれぞれに対する重み係数は、重み付けを均一にした場合に比べて、複数の受信信号IS_nのそれぞれと基準信号SSとの、送信アンテナから受信アンテナへの直接波の成分を含む区間における信号強度の差の合計が小さくなるように決定される。【選択図】図6PROBLEM TO BE SOLVED: To provide an abnormal tissue detecting device capable of highly accurately detecting an abnormal tissue at an inspection site. An abnormal tissue detecting apparatus compares each of a plurality of received signals IS_n with a reference signal SS generated by weighting and adding each of the plurality of received signals IS_n by a weighting factor, thereby obtaining an abnormal tissue. The component of the reflected wave from is detected. Here, the weighting coefficient for each of the plurality of reception signals IS_n is a component of a direct wave from the transmission antenna to the reception antenna between each of the plurality of reception signals IS_n and the reference signal SS, as compared with the case where the weighting is made uniform. Is determined so that the sum of the differences in the signal strength in the section including is small. [Selection diagram] Fig. 6

Description

本発明は、異常組織検出装置に関する。 The present invention relates to an abnormal tissue detecting device.

従来、被検者の検査部位にマイクロ波を放射し、受信アンテナにより検出されたマイクロ波の受信信号を信号処理することにより、検査部位中の異常組織からの反射波の成分を抽出し、検査部位中の異常組織の分布を推定する異常組織検出装置が提案されている(例えば、特許文献1)。 Conventionally, by radiating a microwave to the examination site of the subject and processing the received signal of the microwave detected by the receiving antenna, the component of the reflected wave from the abnormal tissue in the examination site is extracted, and the examination is performed. An abnormal tissue detection device that estimates the distribution of abnormal tissue in a site has been proposed (for example, Patent Document 1).

特開2014−131199号公報JP, 2014-131199, A

本発明は、検査部位の異常組織を高精度に検出できる異常組織検出装置を提供することを目的とする。 It is an object of the present invention to provide an abnormal tissue detecting device that can detect abnormal tissue at an inspection site with high accuracy.

一実施形態に係る異常組織検出装置は、マイクロ波を被検者の検査部位に向けて送信する複数の送信アンテナと、前記複数の送信アンテナのいずれかが送信し、当該送信アンテナからの直接波の成分と前記検査部位の異常組織からの反射波の成分を含むマイクロ波を受信する複数の受信アンテナと、送信アンテナ及び受信アンテナの距離が同一、かつ、前記送信アンテナ及び前記受信アンテナと前記検査部位の異常組織との相対位置関係が異なる状態において前記受信アンテナが受信した複数の信号を合成して基準信号を生成する基準信号生成手段と、前記複数の信号のそれぞれと前記基準信号生成手段が生成する前記基準信号とを比較することにより、前記複数の信号のそれぞれに含まれる前記検査部位の異常組織からの反射波の成分を推定する推定手段とを有し、前記基準信号生成手段は、前記複数の信号を合成することにより前記基準信号を生成し、重み係数を、重み付けを均一にした場合に比べて、前記複数の信号のそれぞれと前記基準信号との、直接波の成分を含む区間における信号強度の差の合計が小さくなるように決定することを特徴とする。 An abnormal tissue detection apparatus according to an embodiment, a plurality of transmission antennas for transmitting microwaves toward the examination site of the subject, and any one of the plurality of transmission antennas transmits, direct wave from the transmission antenna. And a plurality of receiving antennas that receive microwaves including a component of a reflected wave from the abnormal tissue of the inspection site, the transmitting antenna and the receiving antenna have the same distance, and the transmitting antenna, the receiving antenna, and the inspection Reference signal generating means for generating a reference signal by synthesizing a plurality of signals received by the receiving antenna in a state where the relative positional relationship with the abnormal tissue of the part is different, and each of the plurality of signals and the reference signal generating means. By comparing with the reference signal to be generated, having an estimating means for estimating the component of the reflected wave from the abnormal tissue of the examination site contained in each of the plurality of signals, the reference signal generating means, The reference signal is generated by synthesizing the plurality of signals, and the weighting coefficient is compared with a case where the weighting is made uniform, a section including a direct wave component of each of the plurality of signals and the reference signal. It is characterized in that it is determined so that the sum of the differences in the signal intensities in 1 is reduced.

ここで、「同一」とは、厳密に同一であることのみを示すものではなく、略同一であることも含む。例えば、送信アンテナと受信アンテナをそれぞれ複数備える異常組織検出装置において、送信アンテナと受信アンテナの組み合わせを変更しながら複数の信号を受信する場合、送信アンテナと受信アンテナの取り付け誤差等の影響により、送信アンテナと受信アンテナ間の距離が組み合わせ毎にわずかに異なることが考えられるが、このような場合についても、「同一」の範囲に含まれる。 Here, "identical" does not only mean that they are exactly the same, but also that they are substantially the same. For example, in an abnormal tissue detection device having a plurality of transmitting antennas and receiving antennas, when receiving a plurality of signals while changing the combination of the transmitting antennas and the receiving antennas, the transmission error may occur due to the mounting error of the transmitting antennas and the receiving antennas. It is conceivable that the distance between the antenna and the receiving antenna may be slightly different for each combination, and such a case is also included in the “same” range.

本発明に係る異常組織検出装置によれば、検査部位の異常組織を高精度に検出することができる。 According to the abnormal tissue detecting device of the present invention, it is possible to detect the abnormal tissue at the inspection site with high accuracy.

(A)は、実施の形態に係る異常組織検出装置の外観を示す斜視図であり、(B)は、実施の形態に係る異常組織検出装置の構成を示す分解斜視図である。(A) is a perspective view showing an appearance of an abnormal tissue detecting device according to an embodiment, and (B) is an exploded perspective view showing a configuration of an abnormal tissue detecting device according to an embodiment. (A)は、アンテナアレイの構成を示す側面図であり、(B)は、アンテナアレイの構成を示す上面図である。(A) is a side view showing the configuration of the antenna array, and (B) is a top view showing the configuration of the antenna array. 異常組織検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of an abnormal tissue detection apparatus. 送信部から出力されるインパルス信号の一例を示すグラフである。It is a graph which shows an example of the impulse signal output from a transmission part. (A)は、異常組織検出時の送受信アンテナ及び乳房を示す模式図であり、(B)は、異常組織の検出原理を示す模式図であり、(C)は、受信信号を示す模式図である。(A) is a schematic diagram showing a transmitting/receiving antenna and a breast at the time of detecting abnormal tissue, (B) is a schematic diagram showing a principle of detecting abnormal tissue, and (C) is a schematic diagram showing a received signal. is there. 異常組織検出処理のフローチャートである。It is a flow chart of abnormal tissue detection processing. 平均化を用いた雑音信号の除去方法を示す概念図である。It is a conceptual diagram which shows the removal method of the noise signal using averaging. 重みを用いた基準信号の算出方法を示す概念図である。It is a conceptual diagram which shows the calculation method of the reference signal using a weight. (A)は、Tikhonov正則化を用いて基準信号を算出した場合の差分信号の例を示すグラフであり、(B)は、平均化を用いて基準信号を算出した場合の差分信号の例を示すグラフである。(A) is a graph showing an example of a differential signal when a reference signal is calculated using Tikhonov regularization, and (B) is an example of a differential signal when a reference signal is calculated using averaging. It is a graph shown. (A)は、60個の受信信号で、Tikhonov正則化を適用した場合の1回転分の差分信号の例を示す図であり、(B)は、60個の受信信号で、Tikhonov正則化を適用しない場合の1回転分の差分信号の例を示す図である。(A) is a figure which shows an example of the differential signal for 1 rotation when Tikhonov regularization is applied to 60 received signals, (B) is 60 received signals, and Tikhonov regularization is carried out. It is a figure which shows the example of the difference signal for 1 rotation when not applying. Tikhonov正則化を適用したWienerフィルタを用いて算出した重みと、Tikhonov正則化を適用しないWienerフィルタを用いて算出した重みの例を示すグラフである。6 is a graph showing an example of weights calculated using a Wiener filter to which Tikhonov regularization is applied and weights calculated using a Wiener filter to which Tikhonov regularization is not applied. (A)は、60個の受信信号で、Tikhonov正則化を適用した場合の共焦点画像の例を示す図であり、(B)は、60個の受信信号で、Tikhonov正則化を適用しない場合の共焦点画像の例を示す図である。(A) is a figure which shows the example of a confocal image when Tikhonov regularization is applied to 60 received signals, (B) is a case where Tikhonov regularization is not applied to 60 received signals. It is a figure which shows the example of the confocal image of. (A)は、40個の受信信号で、Tikhonov正則化を適用した場合の1回転分の差分信号の例を示す図であり、(B)は、40個の受信信号で、Tikhonov正則化を適用しない場合の1回転分の差分信号の例を示す図である。(A) is a figure which shows the example of the difference signal for 1 rotation when Tikhonov regularization is applied to 40 received signals, (B) is 40 received signals, and Tikhonov regularization is carried out. It is a figure which shows the example of the difference signal for 1 rotation when not applying. (A)は、40個の受信信号で、Tikhonov正則化を適用した場合の共焦点画像の例を示す図であり、(B)は、40個の受信信号で、Tikhonov正則化を適用しない場合の共焦点画像の例を示す図である。(A) is a figure which shows the example of a confocal image when Tikhonov regularization is applied to 40 received signals, (B) is a case where Tikhonov regularization is not applied to 40 received signals. It is a figure which shows the example of the confocal image of. 異常組織検出装置の変形例を示す斜視図である。It is a perspective view showing a modification of an abnormal tissue detecting device.

以下、本発明の実施の形態に係る異常組織検出装置について、乳癌を検出する異常組織検出装置を例に、図面を参照して詳細に説明する。 Hereinafter, an abnormal tissue detection device according to an embodiment of the present invention will be described in detail with reference to the drawings, using an abnormal tissue detection device for detecting breast cancer as an example.

図1(A)、(B)に示すように、本実施の形態に係る異常組織検出装置1は、筐体57及びアンテナ部3等を含む回転部9と、固定基台31と、駆動部33と、ハンドル51と、を備える。 As shown in FIGS. 1(A) and 1(B), the abnormal tissue detecting apparatus 1 according to the present embodiment includes a rotating unit 9 including a housing 57 and an antenna unit 3, a fixed base 31, and a drive unit. 33 and a handle 51.

固定基台31には、回転部9を回転させるための駆動部33が固定されている。駆動部33は、例えばステッピングモータである。駆動部33の回転部は、蓋52に固定されている。これにより、異常組織検出装置1は、蓋52、筐体57、アンテナ部3等を含む回転部9を回転可能に支持する。また、固定基台31の上部には、ハンドル51が取り付けられている。検査を行う者は、ハンドル51を保持し、回転部9を被検者の検査部位である乳房に当接させて検査する。 A drive unit 33 for rotating the rotating unit 9 is fixed to the fixed base 31. The drive unit 33 is, for example, a stepping motor. The rotating part of the drive part 33 is fixed to the lid 52. As a result, the abnormal tissue detection device 1 rotatably supports the rotating unit 9 including the lid 52, the housing 57, the antenna unit 3, and the like. A handle 51 is attached to the upper part of the fixed base 31. An examiner holds the handle 51 and brings the rotating unit 9 into contact with the breast, which is the examination site of the subject, to perform the examination.

回転部9は、蓋52、制御基板55、高周波基板56、筐体57、アンテナ部3、アンテナカバー41、スリーブ42を備える。 The rotating unit 9 includes a lid 52, a control board 55, a high frequency board 56, a housing 57, an antenna unit 3, an antenna cover 41, and a sleeve 42.

アンテナ部3は、アンテナベース37、アンテナ取付部39、アンテナアレイ38を備える。アンテナベース37は、アンテナ取付部39を筐体57に固定させるための取付け部材である。 The antenna section 3 includes an antenna base 37, an antenna mounting section 39, and an antenna array 38. The antenna base 37 is a mounting member for fixing the antenna mounting portion 39 to the housing 57.

アンテナ取付部39には、マイクロ波の無線信号を送受信するアンテナからなるアンテナアレイ38が取り付けられる。アンテナ取付部39は、アンテナベース37に固定されている。アンテナ取付部39は、例えば樹脂製であり、中心部分はドーム型に形成されている。 An antenna array 38 including antennas for transmitting and receiving microwave radio signals is attached to the antenna attachment portion 39. The antenna mounting portion 39 is fixed to the antenna base 37. The antenna mounting portion 39 is made of resin, for example, and the central portion is formed in a dome shape.

アンテナアレイ38は、送信アンテナSA1〜SA8及び受信アンテナRA1〜RA8で構成される。アンテナアレイ38を構成する各アンテナは、アンテナ取付部39の下面、すなわち後述するアンテナカバー41のドーム型部分と対向する面に取り付けられている。また、各アンテナと後述のスイッチ部2とを接続する配線等はアンテナ取付部39の上面側(筐体57の内部側)に配置されている。図2(A)、(B)に示すように、送信アンテナSA1〜SA8、受信アンテナRA1〜RA8は、アンテナ取付部39の中心部から、半径方向に直線状に配置され、4つのアンテナ列A1〜A4からなるアンテナアレイ38を構成している。 The antenna array 38 is composed of transmitting antennas SA1 to SA8 and receiving antennas RA1 to RA8. Each of the antennas forming the antenna array 38 is attached to the lower surface of the antenna attachment portion 39, that is, the surface of the antenna cover 41 that faces the dome-shaped portion. Further, wiring and the like for connecting each antenna and the switch unit 2 described later are arranged on the upper surface side of the antenna mounting portion 39 (inside the housing 57). As shown in FIGS. 2A and 2B, the transmitting antennas SA1 to SA8 and the receiving antennas RA1 to RA8 are arranged linearly in the radial direction from the center of the antenna mounting portion 39, and four antenna rows A1 are provided. A to A4 form an antenna array 38.

アンテナカバー41は、アンテナ取付部39の外面を覆うように配置され、被検者の体に接する。アンテナカバー41は、スリーブ42を介して筐体57にねじ止め固定されている。アンテナカバー41の中心部分は、アンテナ取付部39と同心のドーム型に形成されており、検査部位である乳房に密着させ易い形状となっている。また、被検者の乳房の大きさに適したものを選択できるように、予め大きさの異なる複数のアンテナ取付部39及びアンテナカバー41を準備してもよい。 The antenna cover 41 is arranged so as to cover the outer surface of the antenna mounting portion 39 and contacts the body of the subject. The antenna cover 41 is screwed and fixed to the housing 57 via the sleeve 42. The central portion of the antenna cover 41 is formed in a dome shape that is concentric with the antenna mounting portion 39, and has a shape that makes it easy to make close contact with the breast that is the examination site. Further, a plurality of antenna mounting portions 39 and antenna covers 41 having different sizes may be prepared in advance so that one suitable for the size of the breast of the subject can be selected.

アンテナ取付部39とアンテナカバー41との間には、ワセリン、無水グリセリン等、被検者の体の誘電率及びアンテナカバー41の誘電率に近い誘電率の誘電体が充填されている。これにより、アンテナ取付部39とアンテナカバー41との間における不要輻射の発生を抑制することができるので、異常組織の検出精度を向上させることが可能となる。 A space between the antenna mounting portion 39 and the antenna cover 41 is filled with a dielectric material having a dielectric constant close to that of the body of the subject and the antenna cover 41, such as petrolatum or anhydrous glycerin. As a result, it is possible to suppress the generation of unnecessary radiation between the antenna mounting portion 39 and the antenna cover 41, so that it is possible to improve the detection accuracy of abnormal tissue.

制御基板55は、図3のブロック図に示す制御部14、記憶部15、駆動制御部34の各機能を実現するハードウエア回路が実装されたプリント配線板であり、筐体57内に固定されている。 The control board 55 is a printed wiring board on which hardware circuits for realizing the functions of the control unit 14, the storage unit 15, and the drive control unit 34 shown in the block diagram of FIG. 3 are mounted, and is fixed in the housing 57. ing.

駆動制御部34は、駆動部33であるステッピングモータの回転を制御するモータドライバである。図3に示すように、駆動制御部34は、制御部14からの制御信号に従って、駆動部33を回転させることにより、アンテナアレイ38を含むアンテナ部3を回転させる。 The drive control unit 34 is a motor driver that controls the rotation of the stepping motor that is the drive unit 33. As shown in FIG. 3, the drive control unit 34 rotates the drive unit 33 in accordance with a control signal from the control unit 14 to rotate the antenna unit 3 including the antenna array 38.

制御部14は、信号処理部の一部であり、CPU、メモリ、外部記憶装置、入出力I/O、水晶発振器等を備えるコンピュータ(情報処理装置)である。水晶発振器が発生するクロック信号に従って、CPUが、外部記憶装置にインストールされメモリに読み込まれたプログラムを実行して、外部記憶装置へのデータの書き込み/読み出しや入出力I/Oを介して外部機器と送受信を行うことにより、制御部14の機能が実現される。 The control unit 14 is a part of the signal processing unit, and is a computer (information processing device) including a CPU, a memory, an external storage device, an input/output I/O, a crystal oscillator, and the like. According to the clock signal generated by the crystal oscillator, the CPU executes the program installed in the external storage device and read into the memory, and writes/reads data to/from the external storage device or external device via input/output I/O. The function of the control unit 14 is realized by performing transmission and reception with.

記憶部15は、信号処理部の一部であり、フラッシュメモリ、ハードディスク等の不揮発性メモリである。図3に示すように、制御部14は、受信部12から受信した受信信号RSを記憶部15へ送信し、記憶させる。また、制御部14は、記憶部15に記憶させた受信信号RSを読み出して、基準信号SSの算出、差分信号DS_nの算出による目的信号の抽出等の信号処理を行う。 The storage unit 15 is a part of the signal processing unit, and is a nonvolatile memory such as a flash memory or a hard disk. As illustrated in FIG. 3, the control unit 14 transmits the reception signal RS received from the reception unit 12 to the storage unit 15 and stores the reception signal RS. The control unit 14 also reads the received signal RS stored in the storage unit 15 and performs signal processing such as calculation of the reference signal SS and extraction of a target signal by calculation of the difference signal DS_n.

図3に示すように、制御部14は、プログラムの実行により、送信信号TSを出力させるタイミングを示すタイミング信号を送信部11に出力するとともに、CMOSスイッチ17の制御信号CS1を出力する。制御部14は、CMOSスイッチ19の制御信号CS2を出力するとともに、受信部12から受信信号RSの波形データを入力する。 As shown in FIG. 3, the control unit 14 outputs a timing signal indicating the timing of outputting the transmission signal TS to the transmission unit 11 and a control signal CS1 of the CMOS switch 17 by executing the program. The control unit 14 outputs the control signal CS2 of the CMOS switch 19 and inputs the waveform data of the reception signal RS from the reception unit 12.

高周波基板56は、図3のブロック図に示す送信部11、受信部12、スイッチ部2の各機能を実現するハードウエア回路が実装されたプリント配線板であり、筐体57内に固定されている。 The high frequency board 56 is a printed wiring board on which a hardware circuit that realizes the functions of the transmitter 11, the receiver 12, and the switch 2 shown in the block diagram of FIG. 3 is mounted, and is fixed in the housing 57. There is.

送信部11は、制御部14から入力されたタイミング信号に従って、例えば、図4に示すインパルス状の電気信号である送信信号TSを出力するハードウエア回路である。図4に示すように、この電気信号のレベルは、短時間で正の値から負の値に変動するインパルス信号である。 The transmission unit 11 is a hardware circuit that outputs, for example, a transmission signal TS that is an impulse-shaped electric signal shown in FIG. 4 according to a timing signal input from the control unit 14. As shown in FIG. 4, the level of this electric signal is an impulse signal that changes from a positive value to a negative value in a short time.

スイッチ部2は、送信アンテナSA1〜SA8のうちマイクロ波のインパルス信号を送信する送信アンテナを選択するCMOSスイッチ17と、受信アンテナRA1〜RA8のうち異常組織によって反射された散乱信号を受信する受信アンテナを選択するCMOSスイッチ19とを備える。 The switch unit 2 includes a CMOS switch 17 that selects a transmission antenna that transmits a microwave impulse signal among the transmission antennas SA1 to SA8, and a reception antenna that receives a scattered signal reflected by an abnormal tissue among the reception antennas RA1 to RA8. And a CMOS switch 19 for selecting.

CMOSスイッチ17は、入力端から送信信号TSを入力する。CMOSスイッチ17は、制御信号CS1に従って、入力した送信信号TSを出力するアンテナを、複数の送信アンテナSA1、SA2、…、SA8のいずれかに切り替える。 The CMOS switch 17 inputs the transmission signal TS from the input end. The CMOS switch 17 switches the antenna that outputs the input transmission signal TS to one of the plurality of transmission antennas SA1, SA2,..., SA8 according to the control signal CS1.

受信部12は、CMOSスイッチ19から入力した受信信号RSを制御部14に出力するハードウエア回路である。すなわち、信号処理部である制御部14に、受信信号RSを受信信号IS_nとして入力させる入力部である。制御部14は、入力した受信信号IS_nに基づいて、信号処理を行って、異常組織CAを検出する。 The reception unit 12 is a hardware circuit that outputs the reception signal RS input from the CMOS switch 19 to the control unit 14. That is, it is an input unit for inputting the reception signal RS as the reception signal IS_n to the control unit 14 which is a signal processing unit. The control unit 14 performs signal processing based on the input received signal IS_n to detect the abnormal tissue CA.

図3の例に示すように、制御信号CS1により、送信アンテナSA2が選択された場合、CMOSスイッチ17は、送信信号TSを送信アンテナSA2に出力するように切り変わる。制御信号CS2により、受信アンテナRA2が選択された場合には、CMOSスイッチ19は、受信アンテナRA2で受信された受信信号RSを受信部12に出力するように切り変わる。この場合、送信アンテナSA2、受信アンテナRA2の組み合わせでマイクロ波のインパルス信号MWの送信及び反射信号RWの受信が行われる。送信アンテナSA2から出力される信号は、より多くの周波数成分を含む意味でインパルス信号であることが望ましいが、単一の周波数成分からなる正弦波でも、複数の周波数成分を含むスロープ波形であっても良い。 As shown in the example of FIG. 3, when the transmission antenna SA2 is selected by the control signal CS1, the CMOS switch 17 switches to output the transmission signal TS to the transmission antenna SA2. When the receiving antenna RA2 is selected by the control signal CS2, the CMOS switch 19 switches to output the receiving signal RS received by the receiving antenna RA2 to the receiving unit 12. In this case, the transmission antenna SA2 and the reception antenna RA2 are combined to transmit the microwave impulse signal MW and receive the reflection signal RW. The signal output from the transmitting antenna SA2 is preferably an impulse signal in the sense that it contains more frequency components, but even a sine wave consisting of a single frequency component is a slope waveform containing multiple frequency components. Is also good.

制御部14は、制御信号CS1、CS2によりCMOSスイッチ17、19を制御して、送信アンテナSA1〜SA8及び受信アンテナRA1〜RA8の組み合わせを切り替えながら、送信信号TSをCMOSスイッチ17に出力させる。また、制御部14は、受信アンテナRA1〜RA8から出力された受信信号RSを、CMOSスイッチ19を介して入力し、入力した電気信号に対する信号処理を行う信号処理部として動作する。 The control unit 14 controls the CMOS switches 17 and 19 with the control signals CS1 and CS2 to output the transmission signal TS to the CMOS switch 17 while switching the combination of the transmission antennas SA1 to SA8 and the reception antennas RA1 to RA8. In addition, the control unit 14 operates as a signal processing unit that inputs the reception signal RS output from the reception antennas RA1 to RA8 via the CMOS switch 19 and performs signal processing on the input electric signal.

次に、異常組織検出装置1における、無線信号を使った異常組織検出の基本動作について説明する。本実施の形態に係る異常組織検出装置1は、インパルス状のマイクロ波の無線信号の送受信を行い、その送受信結果に基づいて、異常組織、すなわち乳癌を検出する。 Next, the basic operation of the abnormal tissue detection device 1 for detecting abnormal tissue using a wireless signal will be described. The abnormal tissue detection device 1 according to the present embodiment transmits and receives an impulse-shaped microwave radio signal, and detects an abnormal tissue, that is, breast cancer, based on the transmission and reception result.

図5(A)、(B)に示すように、異常組織検出装置1は、回転部9、すなわち送信アンテナSA1及び受信アンテナRA1を含むアンテナ部3の回転角度θを初期角度θ1(angle1)として、送信アンテナSA1からマイクロ波のインパルス信号MWを放射する。一般に、癌組織等の異常組織CAは、通常の生体組織に比して、5〜10倍程度の高い誘電率を有することが知られている。したがって、異常組織CAが存在する場合には、誘電率の異なる領域の界面、即ち、異常組織CAの表面で、マイクロ波が反射され、受信アンテナRA1で受信される(以下、反射波という)。 As shown in FIGS. 5A and 5B, in the abnormal tissue detecting device 1, the rotation angle θ of the rotating unit 9, that is, the antenna unit 3 including the transmitting antenna SA1 and the receiving antenna RA1 is set as an initial angle θ1 (angle1). , A microwave impulse signal MW is radiated from the transmitting antenna SA1. It is generally known that an abnormal tissue CA such as a cancer tissue has a dielectric constant that is about 5 to 10 times higher than that of a normal living tissue. Therefore, when the abnormal tissue CA exists, the microwave is reflected by the interface of the regions having different dielectric constants, that is, the surface of the abnormal tissue CA, and is received by the receiving antenna RA1 (hereinafter, referred to as a reflected wave).

ここで、マイクロ波のインパルス信号MWを放射してから受信アンテナRA1が反射波を受信するまでの時間をT1[s]とすると、T1・c(c:生体中の光の速度)が、マイクロ波のインパルス信号MWの行程距離となる。 Here, when the time from radiating the microwave impulse signal MW to receiving the reflected wave by the receiving antenna RA1 is T1 [s], T1·c (c: speed of light in living body) is It is the stroke distance of the wave impulse signal MW.

従って、異常組織CAは、回転角度θ1における、送信アンテナSA1と受信アンテナRA1を焦点とし、送信アンテナSA1と受信アンテナRA1からの距離の和がT1・cとなる楕円E1上に位置することになる。 Therefore, the abnormal tissue CA is located on the ellipse E1 with the transmission antenna SA1 and the reception antenna RA1 as the focal points at the rotation angle θ1 and the sum of the distances from the transmission antenna SA1 and the reception antenna RA1 is T1·c. ..

続いて、駆動制御部34は、送信アンテナSA1、受信アンテナRA1を含む回転部9を回転させ、回転角度θをθ2(angle2)とする。そして、異常組織検出装置1は、送信アンテナSA1からマイクロ波のインパルス信号MWを放射し、受信アンテナRA1で受信する。マイクロ波のインパルス信号MWを放射してから受信アンテナRA1が反射波を受信するまでの時間をT2[s]とすると、T2・cがマイクロ波のインパルス信号MWの行程距離となる。 Subsequently, the drive control unit 34 rotates the rotating unit 9 including the transmitting antenna SA1 and the receiving antenna RA1, and sets the rotation angle θ to θ2 (angle2). Then, the abnormal tissue detection device 1 radiates the microwave impulse signal MW from the transmission antenna SA1 and receives it by the reception antenna RA1. If the time from the radiation of the microwave impulse signal MW to the reception of the reflected wave by the receiving antenna RA1 is T2 [s], then T2·c is the stroke distance of the microwave impulse signal MW.

従って、異常組織CAは、回転角度θ2における、送信アンテナSA1と受信アンテナRA1を焦点とし、送信アンテナSA1と受信アンテナRA1からの距離の和がT2・cとなる楕円E2上に位置することになる。 Therefore, the abnormal tissue CA is located on the ellipse E2 having the transmitting antenna SA1 and the receiving antenna RA1 as the focal points and the sum of the distances from the transmitting antenna SA1 and the receiving antenna RA1 being T2·c at the rotation angle θ2. ..

送信アンテナSA1、受信アンテナRA1を順次回転させながら、同様の処理を行い、複数の楕円E1〜EN(Nは自然数、E3以下については不図示)の交点を求めることにより、異常組織CAの位置を求めることができる。 The same process is performed while sequentially rotating the transmitting antenna SA1 and the receiving antenna RA1, and the position of the abnormal tissue CA is determined by obtaining the intersections of a plurality of ellipses E1 to EN (N is a natural number, E3 and below are not shown). You can ask.

さらに、インパルス信号MWを送信するアンテナを送信アンテナSA2に切り換えて、送信アンテナSA2からマイクロ波を放射し、これを受信アンテナRA2で受信して、同様の処理を行う。以後、送信アンテナを順次切り換えながら、マイクロ波を放射し、受信アンテナで反射波を受信し、同様の処理を行うことにより、異常組織CAの位置をより正確に特定することが可能となる。 Further, the antenna transmitting the impulse signal MW is switched to the transmitting antenna SA2, the transmitting antenna SA2 radiates a microwave, the receiving antenna RA2 receives the microwave, and the same processing is performed. After that, the microwaves are radiated while the transmission antennas are sequentially switched, the reflected waves are received by the reception antennas, and the same processing is performed, whereby the position of the abnormal tissue CA can be specified more accurately.

なお、上述の例では、理解を容易にするため、2次元で説明したが、実際は、3次元で上述の処理を行うことになる。 In the above example, the description is made in two dimensions for easy understanding, but in reality, the above processing is performed in three dimensions.

しかしながら、実際には、受信アンテナRA1が受信する信号は、反射波の成分以外の成分を含む。すなわち、受信アンテナRA1が受信する信号は、直接波の成分や量子ノイズの成分を含む。ここで、直接波とは、異常組織CAの有無に関わらず、送信アンテナSA1から放射されたマイクロ波が、最も近い経路を伝搬して、受信アンテナRA1に到達する波である。従って、受信アンテナRA1が実際に受信する信号は、異常組織CAが存在する場合は、直接波と反射波の合成波の成分を含み、異常組織CAが存在しない場合は、直接波の成分のみを含むこととなる。 However, in reality, the signal received by the receiving antenna RA1 includes a component other than the reflected wave component. That is, the signal received by the receiving antenna RA1 includes a direct wave component and a quantum noise component. Here, the direct wave is a wave in which the microwave radiated from the transmitting antenna SA1 propagates through the closest path and reaches the receiving antenna RA1 regardless of the presence or absence of the abnormal tissue CA. Therefore, the signal actually received by the receiving antenna RA1 includes the component of the combined wave of the direct wave and the reflected wave when the abnormal tissue CA exists, and only the component of the direct wave when the abnormal tissue CA does not exist. Will be included.

直接波は、反射波に比して信号強度が高く、かつ伝搬時間が短い。この性質の違いを利用して、合成波から直接波の成分やその他の雑音信号の成分を抑制し、又は、反射波の成分を強調することにより、反射波の伝搬時間を正確に推定する必要がある。 The direct wave has a higher signal strength and a shorter propagation time than the reflected wave. It is necessary to accurately estimate the propagation time of the reflected wave by suppressing the direct wave component and other noise signal components from the composite wave or emphasizing the reflected wave component by utilizing this difference in properties. There is.

この点、送信アンテナSA1及び受信アンテナRA1の間の距離が一定であれば、回転角度θや送信アンテナ−受信アンテナの組み合わせが異なっても、直接波の成分は一定であるが、反射波の成分は、これらアンテナと異常組織CAとの相対的な位置関係により種々変化する。従って、送信アンテナ及び受信アンテナの間の距離が同一で、かつ、アンテナと異常組織CAとの相対位置が異なると想定される位置関係で測定された受信信号を単純平均することにより、受信信号ごとに異なる信号成分である量子ノイズの成分や反射波の成分は相殺されて相対的に小さくなり、各受信信号で共通する成分である直接波の成分は強調されて相対的に大きくなるため、直接波の成分を推定することができる(以下、基準信号という)。その後、各受信信号から推定された直接波である基準信号を減算することにより、相対的に反射波の強調された信号を生成することができる。 In this respect, if the distance between the transmitting antenna SA1 and the receiving antenna RA1 is constant, the component of the direct wave is constant but the component of the reflected wave is constant even if the rotation angle θ and the combination of the transmitting antenna and the receiving antenna are different. Varies depending on the relative positional relationship between these antennas and the abnormal tissue CA. Therefore, by simply averaging the received signals measured in a positional relationship in which the distance between the transmitting antenna and the receiving antenna is the same and the relative positions of the antenna and the abnormal tissue CA are different, each received signal is calculated. Since the components of the quantum noise and the component of the reflected wave that are different signal components are canceled out and become relatively small, the component of the direct wave that is a component common to each received signal is emphasized and becomes relatively large, The wave component can be estimated (hereinafter referred to as a reference signal). Then, by subtracting the reference signal, which is the estimated direct wave, from each received signal, it is possible to generate a signal in which the reflected wave is relatively emphasized.

しかしながら、検証の結果、送信アンテナと受信アンテナとの相対距離が一定であっても、回転角度θや送信アンテナ−受信アンテナの組み合わせが異なった場合に、直接波の成分が必ずしも一定にならないことが確認された。例えば、送信アンテナと受信アンテナは、理想的な点光源、点観測源で構成することはできないため、直接波のパスは、ある程度の断面積を有する。直接波のパス内に異常組織CAが存在する場合としない場合とで、異常組織CAの表面での反射の有無が異なる。異常組織CAの表面でマイクロ波が反射される場合は、反射された分だけエネルギを損失するので、直接波の強度は、反射されない場合と比べて相対的に弱くなる。また、その他、送信アンテナ及び受信アンテナの取り付け誤差や回転誤差等の機械的な誤差、検査部位の形状や検査部位内部の組織分布の違い等の種々の原因により、直接波の強度及び伝搬速度が異なる。これらの原因による直接波の強度及び伝搬速度の違いは、各受信信号における直接波の成分にわずかな違いをもたらす。そして、これら受信信号を単純平均した場合は、直接波の成分が歪んだ基準信号が得られる。従って、このような基準信号を各受信信号から減算した場合は、直接波の成分が理想通りに減算されず、歪の成分が残存する。たとえ残存する歪の成分が直接波の成分に比べて微弱であっても、反射波の成分の強度は直接波の成分に比べて微弱であることから、減算後の結果において反射波の成分を誤って特定してしまう可能性がある。 However, as a result of the verification, even if the relative distance between the transmitting antenna and the receiving antenna is constant, the component of the direct wave is not always constant when the rotation angle θ or the combination of the transmitting antenna and the receiving antenna is different. confirmed. For example, since the transmitting antenna and the receiving antenna cannot be configured by ideal point light sources and point observation sources, the direct wave path has a certain cross-sectional area. The presence or absence of reflection on the surface of the abnormal tissue CA differs depending on whether the abnormal tissue CA exists in the path of the direct wave or not. When the microwave is reflected on the surface of the abnormal tissue CA, energy is lost by the reflected amount, so that the intensity of the direct wave becomes relatively weaker than that when the microwave is not reflected. In addition, due to various causes such as mechanical error such as mounting error and rotation error of transmitting antenna and receiving antenna, difference in shape of examination site and difference in tissue distribution inside examination site, direct wave intensity and propagation velocity are different. The difference in the intensity and propagation velocity of the direct wave due to these causes brings about a slight difference in the component of the direct wave in each received signal. Then, when these received signals are simply averaged, a reference signal in which the component of the direct wave is distorted is obtained. Therefore, when such a reference signal is subtracted from each received signal, the direct wave component is not subtracted as ideal, and the distortion component remains. Even if the residual distortion component is weaker than the direct wave component, the intensity of the reflected wave component is weaker than the direct wave component, so the reflected wave component is There is a possibility of accidentally specifying it.

そこで、本実施の形態においては、各受信信号に対して重み付け加算を実行することにより基準信号を取得する。ここで、重み付け加算に用いられる重み係数は、重み付けを均一にした場合と比して、基準信号と各受信信号との、直接波の成分を含む区間における信号強度の差の合計が小さくなるように決定される。言い換えれば、取得される基準信号の信号値が、各受信信号の直接波の成分の信号値に対してより一致するように決定される。本実施の形態においては、一例として、Tikhonov正則化を適用したWienerフィルタにより重み係数を決定する方法について説明する。 Therefore, in the present embodiment, the reference signal is acquired by performing weighted addition on each received signal. Here, the weighting coefficient used for weighting addition is such that the total difference in signal strength between the reference signal and each received signal in the section including the component of the direct wave is smaller than that in the case where the weighting is made uniform. Is decided. In other words, the signal value of the acquired reference signal is determined so as to match the signal value of the direct wave component of each received signal more closely. In the present embodiment, as an example, a method of determining a weighting coefficient by a Wiener filter to which Tikhonov regularization is applied will be described.

以下、説明を簡単にするために、図7に示すように、受信信号IS_nにおける直接波の成分を含む区間を第1の区間、反射波の成分を含む区間を第2の区間と呼ぶ。制御部14は、まず、受信信号IS_nに対して第1の区間及び第2の区間を設定する。ここで、第1の区間の設定については、種々の方法が適用され得る。例えば、送信アンテナSA1と受信アンテナRA1の間の距離及び、送信アンテナSA1から放射するインパルス信号の強度及び、検査部位のおおよその減衰係数は既知であるため、送信アンテナSA1がインパルス信号を放射してから、受信アンテナRA1に到達した直接波が減衰するまでのおおよその時間幅を算出することができ、この時間幅を受信信号IS_nにおける第1の区間として設定すればよい。その他にも、前もって検査部位を模したファントムに対して送信アンテナSA1からのインパルス信号の放射と受信アンテナRA1による信号の受信を行うことで、送信アンテナSA1がインパルス信号を放射してから、受信アンテナRA1に到達した直接波が減衰するまでの時間幅を取得し、記憶部15に記憶しておく方法が考えられる。この場合、実際に、被検者の検査部位に対して送信アンテナSA1からのインパルス信号の放射と受信アンテナRA1による信号の受信を行う際、記憶部15に記憶した時間幅を呼び出し、第1の区間として設定することができる。そして、第1の区間以降の時間幅が、第2の区間として設定される。 Hereinafter, for the sake of simplicity of explanation, as shown in FIG. 7, the section including the component of the direct wave in the received signal IS_n is referred to as a first section, and the section including the component of the reflected wave is referred to as a second section. The control unit 14 first sets the first section and the second section for the received signal IS_n. Here, various methods can be applied to the setting of the first section. For example, since the distance between the transmitting antenna SA1 and the receiving antenna RA1, the strength of the impulse signal radiated from the transmitting antenna SA1 and the approximate attenuation coefficient of the examination site are known, the transmitting antenna SA1 radiates the impulse signal. From, it is possible to calculate an approximate time width until the direct wave reaching the reception antenna RA1 is attenuated, and this time width may be set as the first section in the reception signal IS_n. In addition, by radiating an impulse signal from the transmitting antenna SA1 and receiving a signal by the receiving antenna RA1 with respect to a phantom simulating an examination site in advance, the transmitting antenna SA1 radiates the impulse signal and then the receiving antenna. A method is conceivable in which the time width until the direct wave reaching RA1 is attenuated is acquired and stored in the storage unit 15. In this case, when the radiation of the impulse signal from the transmission antenna SA1 and the reception of the signal by the reception antenna RA1 are actually performed on the examination site of the subject, the time width stored in the storage unit 15 is called, and It can be set as a section. Then, the time width after the first section is set as the second section.

次に、図8に示すように、制御部14は、受信信号IS_nの第1の区間のサンプリング値Si(t)(i=1〜n、t=1〜L、L>n、n,Lは自然数)に重み係数wiを掛けて加算することにより、Sdesired(1)〜Sdesired(L)を算出する。ここで、Lは各受信信号の第1の区間におけるサンプリングの個数、nはアンテナ部3の回転角度の最大値に相当する値であり、例えば、アンテナ部3を6°ずつ回転させながら360°にわたって受信信号を取得する場合、n=60(=360/6)である。そして、Sdesired(t)とSi(t)との差が最小となるように、各受信信号IS_nに対応する重み係数wを決定する。 Next, as shown in FIG. 8, the control unit 14 controls the sampling value Si(t) (i=1 to n, t=1 to L, L>n, n, L) of the first section of the reception signal IS_n. Is a natural number) and is multiplied by a weighting factor wi to add Sdesired(1) to Sdesired(L). Here, L is the number of samples in the first section of each received signal, and n is a value corresponding to the maximum value of the rotation angle of the antenna unit 3, and for example, 360° while rotating the antenna unit 3 by 6°. When the received signal is acquired over, n=60 (=360/6). Then, the weight coefficient w corresponding to each received signal IS_n is determined so that the difference between Sdesired(t) and Si(t) is minimized.

以下、各受信信号IS_nの第1の区間の信号に基づいて、Tikhonov正則化を適用したWienerフィルタにより重み係数wを決定する方法について、さらに詳細に説明する。具体的は、以下の式(1)を満たす重み係数wが決定される。 Hereinafter, a method of determining the weight coefficient w by the Wiener filter to which the Tikhonov regularization is applied based on the signal of the first section of each received signal IS_n will be described in more detail. Specifically, the weighting coefficient w that satisfies the following equation (1) is determined.

Figure 2019103057
Figure 2019103057

Figure 2019103057
Figure 2019103057

Figure 2019103057
Figure 2019103057

Figure 2019103057
Figure 2019103057

ここで、bは基準信号ベクトル、Hは受信信号行列、wは重み係数ベクトルである。ここで、重み係数ベクトルwにおける各要素は、基準信号SSの生成の際に各受信信号IS_nに掛ける重み係数wである。また、λは正則化パラメータであり、λ>0の範囲で任意に設定される。λを含む式(1)の第2項の導入により、重み係数ベクトルwの各要素のノルムが過大となることを防止できる。ただし、過大なλを設定すると、重み係数ベクトルwの各要素は1/nに収束するため、単に受信信号IS_nを単純平均して基準信号SSを生成した場合と同様の結果となる。従って、重み係数ベクトルwの各要素のノルムが過大となることを防止しつつ、各受信信号IS_nの直接波の成分の信号値に対してより一致する信号値を有する基準信号が得られるようなλを設定することが望ましい。 Here, b is a reference signal vector, H is a received signal matrix, and w is a weighting coefficient vector. Here, each element in the weighting coefficient vector w is a weighting coefficient w by which each received signal IS_n is multiplied when the reference signal SS is generated. Further, λ is a regularization parameter, and is arbitrarily set within the range of λ>0. By introducing the second term of Expression (1) including λ, it is possible to prevent the norm of each element of the weighting coefficient vector w from becoming excessive. However, if λ is set excessively, each element of the weighting coefficient vector w converges to 1/n, so that the same result as in the case where the received signal IS_n is simply averaged to generate the reference signal SS is obtained. Therefore, while preventing the norm of each element of the weighting coefficient vector w from becoming excessive, it is possible to obtain a reference signal having a signal value that more closely matches the signal value of the component of the direct wave of each received signal IS_n. It is desirable to set λ.

続いて、式(1)の具体的な解法について説明する。式(1)は、以下の式に示す変数x、yを導入することにより、式(5)と変形できる。

Figure 2019103057
Subsequently, a specific solution of the equation (1) will be described. Expression (1) can be transformed into Expression (5) by introducing variables x and y shown in the following expressions.
Figure 2019103057

Figure 2019103057
Figure 2019103057

さらに、式(5)の最小二乗解は、以下の式(6)で与えられる。

Figure 2019103057
Further, the least squares solution of the equation (5) is given by the following equation (6).
Figure 2019103057

したがって、求める重み係数は、以下の式(7)で与えられる。

Figure 2019103057
Therefore, the weighting factor to be obtained is given by the following equation (7).
Figure 2019103057

以上の方法により算出される重み係数wを、制御部14は、対応する受信信号IS_nにおける第1の区間の信号及び第2の区間の信号に掛けて加算することにより、基準信号SSを生成する。さらに、制御部14は、各受信信号IS_nから基準信号SSを減算して差分信号DS_nを算出する。ここで、基準信号SSにおける信号値は、各受信信号IS_nの直接波の成分の信号値に対してより一致するように生成されていることから、差分信号DS_nに含まれる直接波の成分の強度は、反射波の成分の強度と比べて極めて小さいものとなる。従って、例えば、信号強度に対する適当な閾値を設定することにより、差分信号DS_nにおける反射波の成分を正確に抽出することができる。 The control unit 14 multiplies the signal of the first section and the signal of the second section of the corresponding received signal IS_n by the weighting factor w calculated by the above method, and adds the weighted coefficient w to generate the reference signal SS. .. Further, the control unit 14 subtracts the reference signal SS from each reception signal IS_n to calculate the difference signal DS_n. Here, since the signal value of the reference signal SS is generated so as to match the signal value of the component of the direct wave of each reception signal IS_n, the intensity of the component of the direct wave included in the difference signal DS_n. Is much smaller than the intensity of the reflected wave component. Therefore, for example, by setting an appropriate threshold value for the signal strength, the reflected wave component in the differential signal DS_n can be accurately extracted.

なお、受信信号IS_nに対する第1の区間の設定においては、生成される基準信号SSが各受信信号IS_nの直接波の成分に対してより一致するように重み付け加算の重み係数wを算出する意味で、直接波の成分を含み、反射波の成分を含まない区間を受信信号IS_nに対する第1の区間として設定することが望ましい。しかしながら、本発明においては、少なくとも、設定される第1の区間が直接波の成分の一部を含み、第1の区間外に反射波の成分の一部を含むように第1の区間が設定されればよい。このような条件で第1の区間を設定すれば、重み付けを均一の状態で受信信号IS_nを積算して得られる基準信号SSに比べて、各受信信号IS_nの直接波の成分に対してより一致する基準信号SSを得るように重み係数wを決定することができる。 In the setting of the first section for the received signal IS_n, the weighting coefficient w of the weighted addition is calculated so that the generated reference signal SS matches the direct wave component of each received signal IS_n more closely. , It is desirable to set a section including the component of the direct wave but not the component of the reflected wave as the first section for the received signal IS_n. However, in the present invention, the first section is set so that at least the set first section includes a part of the component of the direct wave and the outside of the first section includes a part of the component of the reflected wave. It should be done. If the first section is set under such a condition, compared to the reference signal SS obtained by integrating the received signals IS_n in a uniform weighting state, the received signal IS_n is more matched to the direct wave component. The weighting factor w can be determined to obtain the reference signal SS that

また、上記の実施の形態においては、Tikhonov正則化を適用したWienerフィルタにより重み係数を決定したが、本発明においては、重み付けを均一の状態で受信信号IS_nを積算して得られる基準信号SSに比べて、各受信信号IS_nの直接波の成分に対してより一致する基準信号SSを得るように重み係数wを決定する限りにおいて、種々の演算を適用することができる。 Further, in the above embodiment, the weighting coefficient is determined by the Wiener filter to which Tikhonov regularization is applied, but in the present invention, the weighting is applied to the reference signal SS obtained by integrating the received signals IS_n in a uniform state. In comparison, various calculations can be applied as long as the weighting factor w is determined so as to obtain the reference signal SS that is more consistent with the direct wave component of each received signal IS_n.

次に、本実施の形態に係る異常組織検出装置1における異常組織検出処理、すなわち基準信号SSを用いた信号処理について、図6に示すフローチャートに基づいて説明する。 Next, an abnormal tissue detection process in the abnormal tissue detection device 1 according to the present embodiment, that is, a signal process using the reference signal SS will be described based on the flowchart shown in FIG.

制御部14は、アンテナ部3を含む回転部9の回転角度θを初期回転角(θ=0°)に設定する(ステップS11)。続いて、送信アンテナSA1から送信信号TSを送信させ、受信アンテナRA1に受信信号RSを受信させる(ステップS12)。制御部14は、受信アンテナRA1で受信された受信信号RSを受信信号IS_1として記憶部15に記憶させる(ステップS13)。 The control unit 14 sets the rotation angle θ of the rotating unit 9 including the antenna unit 3 to the initial rotation angle (θ=0°) (step S11). Then, the transmission signal SA is transmitted from the transmission antenna SA1, and the reception signal RS is received by the reception antenna RA1 (step S12). The control unit 14 stores the reception signal RS received by the reception antenna RA1 in the storage unit 15 as the reception signal IS_1 (step S13).

回転部9の回転角度はθ=0°であり、θ<360°なので(ステップS14;NO)、制御部14は、駆動部33を動作させることにより、回転部9を予め設定された角度回転させる(ステップS15)。本実施の形態では、予め設定された角度を6°とし、回転部9は、60回の回転動作で1回転する。回転部9の回転が完了した後、ステップS12に戻って、制御部14は、送信アンテナSA1から送信信号TSを送信させ、受信アンテナRA1に受信信号RSを受信させる。制御部14は、受信信号RSを受信信号IS_2として記憶部15に記憶させる。 Since the rotation angle of the rotation unit 9 is θ=0° and θ<360° (step S14; NO), the control unit 14 operates the drive unit 33 to rotate the rotation unit 9 by a preset angle rotation. (Step S15). In the present embodiment, the preset angle is 6°, and the rotating unit 9 makes one rotation in 60 rotation operations. After the rotation of the rotating unit 9 is completed, the process returns to step S12, and the control unit 14 causes the transmission antenna SA1 to transmit the transmission signal TS and the reception antenna RA1 to receive the reception signal RS. The control unit 14 stores the reception signal RS as the reception signal IS_2 in the storage unit 15.

制御部14は、さらに回転部9を回転させて、送信アンテナSA1と受信アンテナRA1との間で信号を送受信させる。制御部14は、回転角度θが360°に達するまで、上述の回転動作と信号の送受信を繰り返し、60個の受信信号IS_n(n=1〜60)を記憶部15に記憶させる。 The control unit 14 further rotates the rotating unit 9 to transmit/receive a signal between the transmitting antenna SA1 and the receiving antenna RA1. The control unit 14 repeats the above-described rotation operation and signal transmission/reception until the rotation angle θ reaches 360°, and stores 60 reception signals IS_n (n=1 to 60) in the storage unit 15.

回転角度θが360°に達し、受信信号IS_nの受信が完了すると(ステップS14;YES)、入力された受信信号IS_nの信号処理が開始される。制御部14は、記憶部15から受信信号IS_nを読み込む(ステップS16)。 When the rotation angle θ reaches 360° and the reception of the reception signal IS_n is completed (step S14; YES), the signal processing of the input reception signal IS_n is started. The control unit 14 reads the reception signal IS_n from the storage unit 15 (step S16).

制御部14は、受信信号IS_nに対して第1の区間及び第2の区間を設定し、各受信信号IS_nの第1の区間の信号に基づいて、Tikhonov正則化を適用したWienerフィルタにより重み係数wを決定する(ステップS17)。続いて、決定した重み係数wを、対応する受信信号IS_nにおける第1の区間の信号及び第2の区間の信号に掛けて加算することにより、基準信号SSを生成する(ステップS18)。制御部14は、さらに、各受信信号IS_nから基準信号SSを減算して差分信号DS_nを算出する(ステップS19)。そして、差分信号DS_nにおける反射波の成分を抽出し、抽出した反射波の成分に基づいて、検査部位における異常組織CAの位置を検出して(ステップS20)、信号処理を終了する。 The control unit 14 sets the first section and the second section for the received signal IS_n, and based on the signal of the first section of each received signal IS_n, the weighting coefficient is applied by the Wiener filter to which Tikhonov regularization is applied. w is determined (step S17). Then, the reference signal SS is generated by multiplying the determined weight coefficient w by the signal of the first section and the signal of the second section in the corresponding received signal IS_n and adding them (step S18). The control unit 14 further subtracts the reference signal SS from each reception signal IS_n to calculate the difference signal DS_n (step S19). Then, the component of the reflected wave in the differential signal DS_n is extracted, the position of the abnormal tissue CA at the inspection site is detected based on the extracted component of the reflected wave (step S20), and the signal processing ends.

上述の信号処理の結果の一例を図9(A)、(B)に示す。図9(A)は、回転部9の回転角度が126°の時の受信信号IS_n、本発明の方法により算出した基準信号SS及び受信信号IS_nから基準信号SSを減算した差分信号DS_nを示している。また、図9(B)は、受信信号IS_n、重み付けを均一の状態で受信信号IS_nを積算して基準信号SSとした場合の基準信号SS及び受信信号IS_nから基準信号SSを減算した差分信号DS_nを示している。これより、本発明の方法の適用によって、差分信号DS_nにおける直接波の成分が、反射波の成分と比べて、十分に小さく抑えられていることが分かる。 An example of the result of the above signal processing is shown in FIGS. 9(A) and 9(B). FIG. 9A shows the received signal IS_n when the rotation angle of the rotating unit 9 is 126°, the reference signal SS calculated by the method of the present invention, and the difference signal DS_n obtained by subtracting the reference signal SS from the received signal IS_n. There is. In addition, FIG. 9B illustrates a received signal IS_n, a reference signal SS when the received signals IS_n are integrated in a uniform weighting state to form a reference signal SS, and a difference signal DS_n obtained by subtracting the reference signal SS from the received signal IS_n. Is shown. From this, it can be seen that the direct wave component in the differential signal DS_n is suppressed sufficiently smaller than the reflected wave component by applying the method of the present invention.

図10(A)は、回転部9の回転角度が0°から360°までの各位置での差分信号DS_nを算出した1回転分の結果を示している。図10(B)は、以下の式(8)で示すTikhonov正則化を適用しないWienerフィルタを、受信信号IS_nの第1の区間に適用することで決定した重み係数wを用いて差分信号DS_nを算出した場合の1回転分の結果を示している。 FIG. 10A shows a result of one rotation in which the differential signal DS_n is calculated at each position where the rotation angle of the rotating unit 9 is from 0° to 360°. FIG. 10B shows the difference signal DS_n by using the weighting factor w determined by applying the Wiener filter that does not apply the Tikhonov regularization shown in the following Expression (8) to the first section of the received signal IS_n. The result for one rotation when calculated is shown.

Figure 2019103057
Figure 2019103057

図10(B)に示すTikhonov正則化を用いない場合に比べて、図10(A)に示すTikhonov正則化を適用した本発明の信号処理方法では、第2の区間のノイズが低減されていることがわかる。これは、図11に示すように、Tikhonov正則化した場合の重み係数wが、Tikhonov正則化しなかった場合の重み係数wに比べて小さく抑えられているためである。 In the signal processing method of the present invention to which the Tikhonov regularization shown in FIG. 10(A) is applied, the noise in the second section is reduced as compared with the case where the Tikhonov regularization shown in FIG. 10(B) is not used. I understand. This is because, as shown in FIG. 11, the weighting coefficient w when the Tikhonov regularization is performed is suppressed to be smaller than the weighting coefficient w when the Tikhonov regularization is not performed.

図12(A)、(B)は、上述の図10(A)、(B)の結果を共焦点画像として示したものである。図12(A)に示すTikhonov正則化した場合のSCR(Signal to Clutter Ratio)は5.025dBであり、図12(B)に示すTikhonov正則化しなかった場合のSCR=0.69dBに比べて大きく、S/N比が大きくなっていることがわかる。 12A and 12B show the results of FIGS. 10A and 10B described above as confocal images. The SCR (Signal to Clutter Ratio) in the case of Tikhonov regularization shown in FIG. 12(A) is 5.025 dB, which is larger than the SCR=0.69 dB in the case of not performing Tikhonov regularization shown in FIG. 12(B). , The S/N ratio is increasing.

図13(A)は、n=40、すなわち回転部9を9°刻みで回転させて受信信号IS_nを作成した場合の、Tikhonov正則化を用いて算出した差分信号DS_nを示している。また、図13(B)は、n=40で受信信号IS_nを作成し、Tikhonov正則化を適用しないWienerフィルタを用いて算出した差分信号DS_nを示している。また、図14(A)、(B)は、n=40の場合の差分信号DS_nに基づく共焦点画像を示している。 FIG. 13A shows a differential signal DS_n calculated using Tikhonov regularization when n=40, that is, when the rotating unit 9 is rotated in 9° steps to create the received signal IS_n. Further, FIG. 13B shows the differential signal DS_n calculated by using the Wiener filter that creates the received signal IS_n with n=40 and does not apply the Tikhonov regularization. 14A and 14B show confocal images based on the difference signal DS_n when n=40.

図13(A)、(B)及び図14(A)、(B)に示す結果から、Tikhonov正則化しなかった場合に比べて、本発明に係るTikhonov正則化を適用したWienerフィルタを用いた場合で、S/N比が大きくなっており、目的信号を明確に検出できていることがわかる。したがって、本発明に係る信号処理方法は、受信信号IS_nの数が少ない場合でも有効に雑音信号を低減できることがわかる。 From the results shown in FIGS. 13(A), (B) and FIGS. 14(A), (B), when the Wiener filter to which the Tikhonov regularization according to the present invention is applied is used, as compared with the case where the Tikhonov regularization is not performed. Thus, it can be seen that the S/N ratio is large and the target signal can be clearly detected. Therefore, it is understood that the signal processing method according to the present invention can effectively reduce the noise signal even when the number of received signals IS_n is small.

以上、詳細に説明したように、本実施の形態によれば、Tikhonov正則化を適用したWienerフィルタによって重み係数wを算出するので、重み係数wのノルムが過大となることを防止することができる。これにより、雑音信号を適切に除去するとともに、差分信号のS/N比を向上させて、目的信号を明確に抽出することができる。 As described above in detail, according to the present embodiment, since the weighting factor w is calculated by the Wiener filter to which Tikhonov regularization is applied, it is possible to prevent the norm of the weighting factor w from becoming excessive. .. This makes it possible to appropriately remove the noise signal, improve the S/N ratio of the differential signal, and clearly extract the target signal.

以上、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 As described above, various embodiments and modifications of the present invention are possible without departing from the broad spirit and scope of the present invention. Further, the above-described embodiments are for explaining the present invention, and do not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the scope of the claims. Various modifications made within the scope of the claims and the scope of the invention equivalent thereto are considered to be within the scope of the present invention.

本実施の形態では、送信アンテナSA1及び受信アンテナRA1の相対位置関係を維持しつつ、これらのアンテナを検査部位の周囲で回転させ、その間に複数の受信信号IS_nを取得するものとしたが、これに限られない。本発明においては、送信アンテナ及び受信アンテナの距離が同一、かつ、送信アンテナ及び受信アンテナと検査部位の異常組織との相対位置関係が異なる状態において、複数の信号を取得しさえすればよい。例えば、複数のアンテナが配置されたアンテナアレイを備えた異常組織検出装置において、アンテナ間の距離が同じになるような複数の組み合わせを決定し、各々の組み合わせにおいて、一方のアンテナから検査部位にむけてマイクロ波を放射し、他方のアンテナで検査部位における異常組織からの反射波を含む信号を受信する構成であってもよい。 In the present embodiment, while maintaining the relative positional relationship between the transmitting antenna SA1 and the receiving antenna RA1, these antennas are rotated around the inspection site, and a plurality of received signals IS_n are acquired in the meantime. Not limited to In the present invention, it is only necessary to acquire a plurality of signals in the state where the distance between the transmitting antenna and the receiving antenna is the same and the relative positional relationship between the transmitting antenna and the receiving antenna and the abnormal tissue in the examination region is different. For example, in an abnormal tissue detection apparatus including an antenna array in which a plurality of antennas are arranged, a plurality of combinations are determined so that the distances between the antennas are the same, and in each combination, one antenna is directed to the examination site. The microwave may be radiated by the other antenna, and the other antenna may receive the signal including the reflected wave from the abnormal tissue at the examination site.

また、本実施の形態に係る入力部は、受信部12であることとしたが、これに限られない。例えば、予め取得された受信信号IS_nを記憶するハードディスク、フラッシュメモリ等の外部記憶装置であってもよい。 Further, although the input unit according to the present embodiment is the receiving unit 12, the input unit is not limited to this. For example, it may be an external storage device such as a hard disk or a flash memory that stores the reception signal IS_n acquired in advance.

また、本実施の形態では、アンテナカバー41を筐体57に固定し、アンテナ取付部39とともに回転させることとしたが、これに限られない。例えば、図15に示すように、固定基台31とハンドル51との間に取り付けられた固定プレート44に、スリーブ42を介してアンテナカバー41を接続することとしてもよい。これにより、アンテナベース37に固定されたアンテナ取付部39が回転しても、固定プレート44に接続されたアンテナカバー41は回転しないように構成される。したがって、検査の際、被検者に接触しているアンテナカバー41が回転しないので、検査時の被検者の身体的負担を軽減することができる。 Further, in the present embodiment, the antenna cover 41 is fixed to the housing 57 and is rotated together with the antenna mounting portion 39, but the present invention is not limited to this. For example, as shown in FIG. 15, the antenna cover 41 may be connected to the fixed plate 44 attached between the fixed base 31 and the handle 51 via the sleeve 42. Thereby, even if the antenna mounting portion 39 fixed to the antenna base 37 rotates, the antenna cover 41 connected to the fixed plate 44 does not rotate. Therefore, during the inspection, the antenna cover 41 that is in contact with the subject does not rotate, and the physical burden on the subject during the inspection can be reduced.

本実施の形態に係る異常組織検出装置は、マイクロ波を被検者の検査部位に向けて送信する複数の送信アンテナと、前記複数の送信アンテナのいずれかが送信し、当該送信アンテナからの直接波の成分と前記検査部位の異常組織からの反射波の成分を含むマイクロ波を受信する複数の受信アンテナと、送信アンテナ及び受信アンテナの距離が同一、かつ、前記送信アンテナ及び前記受信アンテナと前記検査部位の異常組織との相対位置関係が異なる状態において前記受信アンテナが受信した複数の信号を合成して基準信号を生成する基準信号生成手段と、前記複数の信号のそれぞれと前記基準信号生成手段が生成する前記基準信号とを比較することにより、前記複数の信号のそれぞれに含まれる前記検査部位の異常組織からの反射波の成分を推定する推定手段とを有し、前記基準信号生成手段は、前記複数の信号を合成することにより前記基準信号を生成し、重み係数を、重み付けを均一にした場合に比べて、前記複数の信号のそれぞれと前記基準信号との、直接波の成分を含む区間における信号強度の差の合計が小さくなるように決定することを特徴とする。 Abnormal tissue detection apparatus according to the present embodiment, a plurality of transmission antennas for transmitting microwaves toward the examination site of the subject, and any one of the plurality of transmission antennas, direct from the transmission antenna. A plurality of receiving antennas for receiving microwaves including a component of a wave and a component of a reflected wave from the abnormal tissue of the inspection site, the transmitting antenna and the receiving antenna have the same distance, and the transmitting antenna and the receiving antenna Reference signal generating means for generating a reference signal by synthesizing a plurality of signals received by the receiving antenna in a state where the relative positional relationship with the abnormal tissue of the inspection site is different, and each of the plurality of signals and the reference signal generating means. By comparing with the reference signal generated by, by estimating means for estimating the component of the reflected wave from the abnormal tissue of the examination site contained in each of the plurality of signals, the reference signal generating means, , The reference signal is generated by synthesizing the plurality of signals, and a weighting coefficient includes a direct wave component of each of the plurality of signals and the reference signal, as compared with the case where the weighting is made uniform. It is characterized in that the determination is made so that the sum of the differences in the signal strength in the section becomes small.

上記の異常組織検出装置は、重み付けを均一にした場合に比べて、複数の信号のそれぞれと基準信号との、直接波の成分を含む区間における信号強度の差の合計が小さくなるように決定される重み係数を用いて基準信号を生成し、複数の信号と基準信号とを比較することから、複数の信号のそれぞれに含まれる異常組織からの反射波の成分を正確に抽出し、検査部位の異常組織を高精度に検出することができる。 The above-mentioned abnormal tissue detection device is determined so that the sum of the signal strength differences between the plurality of signals and the reference signal in the section including the component of the direct wave becomes smaller than that in the case where the weighting is made uniform. A reference signal is generated using a weighting factor that compares the reference signal with a plurality of signals, so that the component of the reflected wave from the abnormal tissue included in each of the plurality of signals is accurately extracted, and the Abnormal tissue can be detected with high accuracy.

また、上記の異常組織検出装置は、送信アンテナと受信アンテナを相対位置を維持したまま前記検査部位の周囲を回転させる回転制御手段を備え、前記基準信号生成手段は、前記回転制御手段が前記送信アンテナと前記受信アンテナを回転する間に、当該受信アンテナが、異なる回転角度において受信した複数の信号に基づいて、基準信号を生成してもよい。これにより、回転制御手段が送信アンテナと受信アンテナを検査部位の周囲で回転する間に取得される複数の信号のそれぞれに含まれる異常組織からの反射波の成分を正確に抽出し、検査部位の異常組織を高精度に検出することができる。 Further, the abnormal tissue detection apparatus includes rotation control means for rotating the transmission antenna and the reception antenna around the inspection region while maintaining the relative positions, and the reference signal generation means is configured to transmit the rotation control means to transmit the reference signal. While rotating the antenna and the receiving antenna, the receiving antenna may generate a reference signal based on a plurality of signals received at different rotation angles. Thereby, the rotation control means accurately extracts the component of the reflected wave from the abnormal tissue included in each of the plurality of signals acquired while rotating the transmitting antenna and the receiving antenna around the examination site, Abnormal tissue can be detected with high accuracy.

また、前記基準信号生成手段は、前記回転制御手段が、一対の送信アンテナと受信アンテナが前記検査部位の周囲を回転する間に、当該受信アンテナが受信する前記複数の信号に基づいて前記基準信号を生成してもよい。これにより、一対の送信アンテナと受信アンテナが検査部位の周囲を回転する間に取得される複数の信号のそれぞれに含まれる異常組織からの反射波の成分を正確に抽出し、検査部位の異常組織を高精度に検出することができる。 Further, the reference signal generation means is configured such that the rotation control means, based on the plurality of signals received by the reception antenna while the pair of transmission antennas and reception antennas rotate around the inspection region, the reference signal. May be generated. As a result, the component of the reflected wave from the abnormal tissue contained in each of the plurality of signals acquired while the pair of the transmitting antenna and the receiving antenna rotates around the examination site is accurately extracted, and the abnormal tissue of the examination site is extracted. Can be detected with high accuracy.

また、前記複数の信号のそれぞれは、直接波の成分を含む第1の区間と、反射波の成分を含む第2の区間とを有し、前記基準信号生成手段は、前記複数の信号のそれぞれにおける前記第1の区間の信号に基づいて前記重み係数を決定し、前記複数の信号のそれぞれにおける前記第1の区間の信号及び前記第2の区間の信号に対して重み付け加算を行うことで前記基準信号を生成してもよい。この場合、第1の区間の信号に基づいて重み係数を決定することによって、複数の信号のそれぞれと基準信号とを比較する際、複数の信号のそれぞれにおける直接波の成分が、反射波の成分に比して小さくなるような重み係数が決定される。これにより、複数の信号のそれぞれに含まれる異常組織からの反射波の成分をより正確に抽出し、検査部位の異常組織を高精度に検出することができる。 In addition, each of the plurality of signals has a first section including a component of a direct wave and a second section including a component of a reflected wave, and the reference signal generating unit includes each of the plurality of signals. By determining the weighting factor based on the signal of the first section in the above, and performing weighted addition on the signal of the first section and the signal of the second section in each of the plurality of signals. A reference signal may be generated. In this case, by determining the weighting coefficient based on the signal in the first section, when comparing each of the plurality of signals with the reference signal, the component of the direct wave in each of the plurality of signals is the component of the reflected wave. A weighting coefficient that is smaller than As a result, the component of the reflected wave from the abnormal tissue included in each of the plurality of signals can be more accurately extracted, and the abnormal tissue at the inspection site can be detected with high accuracy.

また、前記基準信号生成手段は、前記複数の信号のそれぞれにおける前記第1の区間の信号に基づいて、Tikhonov正則化を適用したWienerフィルタにより前記重み係数を決定してもよい。この場合、Tikhonov正則化の適用により、決定される重み係数のノルムが過大になることを防止でき、複数の信号のそれぞれと基準信号との比較により取得される信号のS/N比を向上させることができる。 Further, the reference signal generation means may determine the weighting coefficient by a Wiener filter to which Tikhonov regularization is applied, based on the signal in the first section in each of the plurality of signals. In this case, the application of Tikhonov regularization can prevent the norm of the determined weighting factors from becoming excessive and improve the S/N ratio of the signal obtained by comparing each of the plurality of signals with the reference signal. be able to.

また、前記検査部位は、乳房であり、前記異常組織は、前記乳房に含まれる癌であってもよい。これにより、抽出した反射波の成分に基づき、乳房に含まれる乳癌を検出することができる。 Further, the inspection site may be a breast, and the abnormal tissue may be cancer contained in the breast. Thereby, the breast cancer contained in the breast can be detected based on the extracted reflected wave component.

本発明は、乳癌センサなどに用いられるアンテナ装置に好適である。また、本発明は、乳癌センサに限らず、他の腫瘍等、生体内の誘電率の異なる領域の検出・判別に応用可能である。また、生体に関わらず、周囲と誘電率が異なる検出対象の検出・判別に応用可能である。 The present invention is suitable for an antenna device used for a breast cancer sensor or the like. Further, the present invention is not limited to a breast cancer sensor, and can be applied to detection/discrimination of other regions such as tumors having different dielectric constants in a living body. Further, it can be applied to the detection/discrimination of a detection target having a different dielectric constant from the surroundings regardless of the living body.

1 異常組織検出装置、2 スイッチ部、3 アンテナ部、9 回転部、11 送信部、12 受信部、14 制御部、15 記憶部、17,19 CMOSスイッチ、31 固定基台、33 駆動部、34 駆動制御部、37 アンテナベース、38 アンテナアレイ、39 アンテナ取付部、41 アンテナカバー、42 スリーブ、44 固定プレート、51 ハンドル、52 蓋、55 制御基板、56 高周波基板、57 筐体、SA1〜SA8 送信アンテナ、RA1〜RA8 受信アンテナ、A1〜A4 アンテナ列、CA 異常組織、L インダクタ、E,E 楕円、SS 基準信号、TS 送信信号、RS 受信信号、MW インパルス信号、RW 反射信号、CS1,CS2 制御信号1 Abnormal Tissue Detecting Device, 2 Switch Part, 3 Antenna Part, 9 Rotating Part, 11 Transmitting Part, 12 Receiving Part, 14 Control Part, 15 Storage Part, 17, 19 CMOS Switch, 31 Fixed Base, 33 Driving Part, 34 Drive control section, 37 antenna base, 38 antenna array, 39 antenna mounting section, 41 antenna cover, 42 sleeve, 44 fixing plate, 51 handle, 52 lid, 55 control board, 56 high frequency board, 57 housing, SA1 to SA8 transmission Antenna, RA1 to RA8 reception antenna, A1 to A4 antenna array, CA abnormal tissue, L inductor, E 1 , E 2 ellipse, SS reference signal, TS transmission signal, RS reception signal, MW impulse signal, RW reflection signal, CS1, CS2 control signal

Claims (6)

マイクロ波を被検者の検査部位に向けて送信する複数の送信アンテナと、
前記複数の送信アンテナのいずれかが送信し、当該送信アンテナからの直接波の成分と前記検査部位の異常組織からの反射波の成分を含むマイクロ波を受信する複数の受信アンテナと、
送信アンテナ及び受信アンテナの距離が同一、かつ、前記送信アンテナ及び前記受信アンテナと前記検査部位の異常組織との相対位置関係が異なる状態において前記受信アンテナが受信した複数の信号を合成して基準信号を生成する基準信号生成手段と、
前記複数の信号のそれぞれと前記基準信号生成手段が生成する前記基準信号とを比較することにより、前記複数の信号のそれぞれに含まれる前記検査部位の異常組織からの反射波の成分を推定する推定手段とを有し、
前記基準信号生成手段は、前記複数の信号を合成することにより前記基準信号を生成し、重み係数を、重み付けを均一にした場合に比べて、前記複数の信号のそれぞれと前記基準信号との、直接波の成分を含む区間における信号強度の差の合計が小さくなるように決定することを特徴とする、異常組織検出装置。
A plurality of transmitting antennas for transmitting microwaves toward the examination site of the subject;
A plurality of receiving antennas that transmit any one of the plurality of transmitting antennas and receive microwaves that include a component of a direct wave from the transmitting antenna and a component of a reflected wave from the abnormal tissue of the inspection site,
A reference signal obtained by synthesizing a plurality of signals received by the receiving antenna in a state in which the transmitting antenna and the receiving antenna have the same distance and the relative positional relationship between the transmitting antenna and the receiving antenna and the abnormal tissue in the examination region is different. A reference signal generating means for generating
Estimating to estimate the component of the reflected wave from the abnormal tissue of the examination site included in each of the plurality of signals by comparing each of the plurality of signals with the reference signal generated by the reference signal generating means And means,
The reference signal generation means generates the reference signal by combining the plurality of signals, and a weighting coefficient, as compared with a case where the weighting is made uniform, each of the plurality of signals and the reference signal, An abnormal tissue detecting device, characterized in that it is determined so that a total of signal intensity differences in a section including a component of a direct wave becomes small.
請求項1に記載の異常組織検出装置において、
送信アンテナと受信アンテナを相対位置を維持したまま前記検査部位の周囲を回転させる回転制御手段を備え、
前記基準信号生成手段は、前記回転制御手段が前記送信アンテナと前記受信アンテナを回転する間に、当該受信アンテナが、異なる回転角度において受信した複数の信号に基づいて、基準信号を生成することを特徴とする、異常組織検出装置。
The abnormal tissue detecting device according to claim 1,
A rotation control means for rotating the periphery of the inspection site while maintaining the relative positions of the transmission antenna and the reception antenna,
The reference signal generation means may generate a reference signal based on a plurality of signals received by the reception antenna at different rotation angles while the rotation control means rotates the transmission antenna and the reception antenna. A device for detecting abnormal tissue, which is characterized.
前記基準信号生成手段は、前記回転制御手段が、一対の送信アンテナと受信アンテナが前記検査部位の周囲を回転する間に、当該受信アンテナが受信する前記複数の信号に基づいて前記基準信号を生成することを特徴とする、請求項2に記載の異常組織検出装置。 The reference signal generation unit generates the reference signal based on the plurality of signals received by the reception antenna while the rotation control unit rotates a pair of the transmission antenna and the reception antenna around the inspection region. The abnormal tissue detecting device according to claim 2, wherein 前記複数の信号のそれぞれは、直接波の成分を含む第1の区間と、反射波の成分を含む第2の区間とを有し、
前記基準信号生成手段は、前記複数の信号のそれぞれにおける前記第1の区間の信号に基づいて前記重み係数を決定し、
前記複数の信号のそれぞれにおける前記第1の区間の信号及び前記第2の区間の信号に対して重み付け加算を行うことで前記基準信号を生成することを特徴とする請求項1乃至3のいずれか一項に記載の異常組織検出装置。
Each of the plurality of signals has a first section including a component of a direct wave and a second section including a component of a reflected wave,
The reference signal generation means determines the weighting factor based on a signal of the first section in each of the plurality of signals,
The reference signal is generated by performing weighted addition on the signal in the first section and the signal in the second section in each of the plurality of signals. The abnormal tissue detection device according to one item.
前記基準信号生成手段は、前記複数の信号のそれぞれにおける前記第1の区間の信号に基づいて、Tikhonov正則化を適用したWienerフィルタにより前記重み係数を決定することを特徴とする請求項4に記載の異常組織検出装置。 The said reference signal production|generation means determines the said weighting coefficient by the Wiener filter to which Tikhonov regularization was applied based on the signal of the said 1st area in each of the said several signal. Abnormal tissue detection device. 前記検査部位は、乳房であり、
前記異常組織は、前記乳房に含まれる癌であることを特徴とする請求項1乃至5のいずれか一項に記載の異常組織検出装置。
The examination site is a breast,
The abnormal tissue detecting apparatus according to claim 1, wherein the abnormal tissue is a cancer contained in the breast.
JP2019555344A 2017-11-27 2018-11-21 Abnormal tissue detection device Active JP6849980B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017226586 2017-11-27
JP2017226586 2017-11-27
PCT/JP2018/043059 WO2019103057A1 (en) 2017-11-27 2018-11-21 Abnormal tissue detection device

Publications (2)

Publication Number Publication Date
JPWO2019103057A1 true JPWO2019103057A1 (en) 2020-06-18
JP6849980B2 JP6849980B2 (en) 2021-03-31

Family

ID=66630659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019555344A Active JP6849980B2 (en) 2017-11-27 2018-11-21 Abnormal tissue detection device

Country Status (2)

Country Link
JP (1) JP6849980B2 (en)
WO (1) WO2019103057A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275258A (en) * 1985-09-30 1987-04-07 Hitachi Medical Corp Motor controller for mechanical scan type ultrasonic probe
JPH09509737A (en) * 1993-11-24 1997-09-30 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. A method for detecting inhomogeneities that are wholly or partially hidden by microwave radiation
US20120289827A1 (en) * 2008-05-06 2012-11-15 Ultrawave Labs, Inc. Multi-Modality Ultrasound and Radio Frequency Methodology for Imaging Tissue
JP2013029527A (en) * 2005-02-09 2013-02-07 Univ Bristol Methods and apparatus for measuring internal structure of object
JP2013176697A (en) * 2013-06-26 2013-09-09 Canon Inc Ultrasonic diagnostic apparatus and control method of the same
CN103300826A (en) * 2013-06-06 2013-09-18 天津大学 Imaging method for early breast tumor ultra wide band microwave detection
US20140276031A1 (en) * 2013-03-14 2014-09-18 Vayyar Imaging Ltd. Microwave imaging resilient to background and skin clutter
WO2017073757A1 (en) * 2015-10-29 2017-05-04 国立大学法人広島大学 Detecting device, signal processing method and program
JP2017113222A (en) * 2015-12-24 2017-06-29 国立大学法人広島大学 Abnormal tissue detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275258A (en) * 1985-09-30 1987-04-07 Hitachi Medical Corp Motor controller for mechanical scan type ultrasonic probe
JPH09509737A (en) * 1993-11-24 1997-09-30 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. A method for detecting inhomogeneities that are wholly or partially hidden by microwave radiation
JP2013029527A (en) * 2005-02-09 2013-02-07 Univ Bristol Methods and apparatus for measuring internal structure of object
US20120289827A1 (en) * 2008-05-06 2012-11-15 Ultrawave Labs, Inc. Multi-Modality Ultrasound and Radio Frequency Methodology for Imaging Tissue
US20140276031A1 (en) * 2013-03-14 2014-09-18 Vayyar Imaging Ltd. Microwave imaging resilient to background and skin clutter
CN103300826A (en) * 2013-06-06 2013-09-18 天津大学 Imaging method for early breast tumor ultra wide band microwave detection
JP2013176697A (en) * 2013-06-26 2013-09-09 Canon Inc Ultrasonic diagnostic apparatus and control method of the same
WO2017073757A1 (en) * 2015-10-29 2017-05-04 国立大学法人広島大学 Detecting device, signal processing method and program
JP2017113222A (en) * 2015-12-24 2017-06-29 国立大学法人広島大学 Abnormal tissue detector

Also Published As

Publication number Publication date
WO2019103057A1 (en) 2019-05-31
JP6849980B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
US11860262B2 (en) System and methods for three dimensional modeling of an object using a radio frequency device
US20210353149A1 (en) Apparatus and process for medical imaging
JP2021502839A5 (en)
Zamani et al. Boundary estimation of imaged object in microwave medical imaging using antenna resonant frequency shift
US8574158B2 (en) Time of flight estimation method using beamforming for acoustic tomography
JP2013113603A (en) Microwave imaging system and imaging processing method
JP2020503080A (en) System and method combining microwave and ultrasound images
JP6849980B2 (en) Abnormal tissue detection device
US20220237939A1 (en) Ultrasonic imaging device and method for image acquisition in the ultrasonic device
Sarafianou et al. Towards enhancing skin reflection removal and image focusing using a 3-D breast surface reconstruction algorithm
US10371813B2 (en) Systems and methods for using time of flight measurements for imaging target objects
WO2007115200A2 (en) Method and system for adaptive and robust detection
JP7105471B2 (en) Abnormal tissue detector
EP4021284A1 (en) Method and system for determining at least one parameter of interest of a material
US10416094B2 (en) Characterization of dielectric slabs attached to the body using focused millimeter waves
JP2023097742A (en) Abnormal tissue detection method, abnormal tissue detection device and program
JP6685520B2 (en) Detecting device, signal processing method and program
KR101672699B1 (en) Tomography apparaus and method for geometric calibration thereof
CN113925528B (en) Doppler imaging method and ultrasonic equipment
JP5606294B2 (en) Anechoic chamber
JPWO2022054160A5 (en)
WO2017115592A1 (en) Ultrasonic testing device, ultrasonic testing method, and ultrasonic testing program
KR101645346B1 (en) Tomography apparaus and method for geometric calibration thereof
Williams et al. Robust approach to skin location estimation for radar-based breast imaging systems
WO2021026478A1 (en) Method and system for identifying a material of interest

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210225

R150 Certificate of patent or registration of utility model

Ref document number: 6849980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S634 Written request for registration of reclamation of nationality

Free format text: JAPANESE INTERMEDIATE CODE: R313634