JPWO2019087829A1 - Methods for assessing the effects of candidate substances on biological activity, biodegradable particles, kits, and systems for assessing the effects of candidate substances on biological activity. - Google Patents

Methods for assessing the effects of candidate substances on biological activity, biodegradable particles, kits, and systems for assessing the effects of candidate substances on biological activity. Download PDF

Info

Publication number
JPWO2019087829A1
JPWO2019087829A1 JP2019551101A JP2019551101A JPWO2019087829A1 JP WO2019087829 A1 JPWO2019087829 A1 JP WO2019087829A1 JP 2019551101 A JP2019551101 A JP 2019551101A JP 2019551101 A JP2019551101 A JP 2019551101A JP WO2019087829 A1 JPWO2019087829 A1 JP WO2019087829A1
Authority
JP
Japan
Prior art keywords
signal
substance
particles
cells
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019551101A
Other languages
Japanese (ja)
Other versions
JP7328654B2 (en
Inventor
智惠 乾
智惠 乾
望月 誠
誠 望月
奈津実 平山
奈津実 平山
前澤 明弘
明弘 前澤
田畑 泰彦
泰彦 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2019087829A1 publication Critical patent/JPWO2019087829A1/en
Application granted granted Critical
Publication of JP7328654B2 publication Critical patent/JP7328654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本発明は、細胞の活性を経時的に測定して、候補物質が生体の活性に与える影響を評価する方法を提供することを目的とする。上記目的を達成するための本発明は、候補物質が生体の活性に与える影響を評価する方法である。本発明の方法は、信号物質を含有する生分解性粒子を取り込んだ生細胞に、前記候補物質を投与する工程と、前記投与する工程の前後を通じて、前記信号物質からの信号を経時的に検出する工程と、を含む。An object of the present invention is to provide a method for evaluating the effect of a candidate substance on the activity of a living body by measuring the activity of cells over time. The present invention for achieving the above object is a method for evaluating the influence of a candidate substance on the activity of a living body. In the method of the present invention, a signal from the signal substance is detected over time through a step of administering the candidate substance and before and after the step of administering the candidate substance to living cells incorporating biodegradable particles containing the signal substance. Including the process of

Description

本発明は、候補物質が生体の活性に与える影響を評価する方法、生分解性粒子、キット、および候補物質が生体の活性に与える影響を評価するシステムに関する。 The present invention relates to a method for evaluating the effect of a candidate substance on the activity of a living body, biodegradable particles, a kit, and a system for evaluating the effect of a candidate substance on the activity of a living body.

創薬研究開発などにおいては、薬の候補となる新規な化合物について、その治療効果のみならず、副作用の有無なども評価される。たとえば、ある生体に投与された化合物が副作用を有するときは、当該生体の活性(代謝速度など)は低下するが、投与された化合物が副作用を有さないときは当該生体の活性は低下しない。これらの結果から、投与された後の生体の活性が低下した化合物は、副作用を有するものと評価される。 In drug discovery research and development, not only the therapeutic effect of a new compound that is a candidate for a drug but also the presence or absence of side effects are evaluated. For example, when a compound administered to a living body has side effects, the activity of the living body (metabolism rate, etc.) decreases, but when the administered compound has no side effects, the activity of the living body does not decrease. From these results, the compound in which the activity of the living body is reduced after administration is evaluated to have side effects.

上記生体の活性は、たとえば、生体の活性に与える影響を測定したい化合物(以下、単に「候補物質」ともいう。)を投与したマウスから採取した血清、血漿または尿などに含まれる代謝産物(たとえば、グリコーゲンなど)の量を測定して、評価される。この方法によれば、代謝を司る肝細胞の活性を測定して、上記候補物質が生体の活性に与える影響を評価することになる。 The activity of the living body is, for example, a metabolite (for example,) contained in serum, plasma, urine, etc. collected from a mouse to which a compound (hereinafter, also simply referred to as “candidate substance”) whose effect on the activity of the living body is to be measured is administered. , Glycogen, etc.) is measured and evaluated. According to this method, the activity of hepatocytes that control metabolism is measured to evaluate the effect of the candidate substance on the activity of a living body.

一方で、磁性体を含有する粒子を細胞に取り込ませて、当該細胞を核磁気共鳴画像法(MRI)で測定する方法が知られている。たとえば、特許文献1には、磁性体としてのFeを含有する、特定のリン脂質から構成された膜を有するリポソームを取り込んだ血管平滑筋細胞を用いて、動脈硬化巣や経皮的冠動脈形成術(PTCA)後の血管の再狭窄部を造影する方法が記載されている。On the other hand, there is known a method in which particles containing a magnetic substance are incorporated into a cell and the cell is measured by magnetic resonance imaging (MRI). For example, Patent Document 1 uses vascular smooth muscle cells incorporating a liposome having a membrane composed of a specific phospholipid and containing Fe 3 O 4 as a magnetic substance to form an atherosclerotic lesion or percutaneous coronation. A method of imaging the restenosis of a blood vessel after coronary angioplasty (PTCA) is described.

特開2006−335745号公報Japanese Unexamined Patent Publication No. 2006-335745

ある候補物質に副作用があるか否かを評価するためには、当該候補物質を投与した細胞の活性を経時的に観察することが望ましい。しかし、細胞の活性を経時的に観察できる方法は今まで知られていなかった。そのため、通常は、マウスなどの生体に候補物質を投与して、投与後の当該生体から採取した血清、血漿または尿などに含まれる代謝産物(たとえば、グリコーゲンなど)の量から、肝細胞の活性を測定することで、候補物質が生体の活性に与える影響が評価されていた。 In order to evaluate whether or not a candidate substance has side effects, it is desirable to observe the activity of cells to which the candidate substance has been administered over time. However, no method has been known so far that the activity of cells can be observed over time. Therefore, usually, the activity of hepatocytes is determined by the amount of metabolites (for example, glycogen) contained in serum, plasma, urine, etc. collected from the living body after administration of the candidate substance to a living body such as a mouse. The effect of the candidate substance on the activity of the living body was evaluated by measuring.

しかし、グリコーゲンなどの代謝産物は、肝細胞以外にも筋組織の細胞などからも産出される。そのため、上記方法では、肝細胞の活性を正確に測定することができない。 However, metabolites such as glycogen are produced not only by hepatocytes but also by cells of muscle tissue. Therefore, the above method cannot accurately measure the activity of hepatocytes.

そのため、肝細胞などの特定の細胞の活性のみを直接に観察できる方法の開発が望まれている。たとえば、本発明者らは、特許文献1に記載のリポソームを取り込ませた細胞に、候補物質を投与し、当該細胞をMRIで測定すれば、候補物質を投与した細胞の活性を経時的に観察できるのではないかと期待した。しかし、上記リポソームを取り込ませた細胞からは、経時的なMRI測定ができなかった。 Therefore, it is desired to develop a method capable of directly observing only the activity of specific cells such as hepatocytes. For example, the present inventors administer a candidate substance to a cell into which the liposome described in Patent Document 1 has been incorporated, and measure the cell by MRI to observe the activity of the cell to which the candidate substance has been administered over time. I expected it to be possible. However, MRI measurement over time could not be performed from the cells incorporating the liposomes.

本発明は、前記課題に鑑みてなされたものであり、細胞の活性を経時的に測定して候補物質が生体の活性に与える影響を評価する方法、ならびに当該方法に用いる生分解性粒子、当該粒子と生細胞とを含むキット、および当該方法に用いるシステムを提供することを、その目的とする。 The present invention has been made in view of the above problems, and is a method for evaluating the effect of a candidate substance on the activity of a living body by measuring the activity of cells over time, and biodegradable particles used in the method. It is an object of the present invention to provide a kit containing particles and living cells, and a system used in the method.

本発明の課題は、以下の手段によって解決される。
[1]候補物質が生体の活性に与える影響を評価する方法において、信号物質を含有する生分解性粒子を取り込んだ生細胞に、前記候補物質を投与する工程と、前記投与する工程の前後を通じて、前記信号物質からの信号を経時的に検出する工程と、を含む評価方法。
[2]前記信号物質は磁性体である、[1]に記載の評価方法。
[3]前記生分解性粒子は、徐放性を有する、[1]または[2]に記載の評価方法。
[4]前記生分解性粒子は、ハイドロゲル粒子である、[1]〜[3]のいずれかに記載の評価方法。
[5]前記生細胞は、肝細胞である、[1]〜[4]のいずれかに記載の評価方法。
[6]前記生分解性粒子は、平均粒子径が10nm以上2.0μm以下の粒子である、[1]〜[5]のいずれかに記載の評価方法。
[7]前記信号物質は、平均粒子径が0.5nm以上50nm以下の粒子である、[1]〜[6]のいずれかに記載の評価方法。
[8]前記生分解性粒子は、前記信号物質を粒子内に内包する、[1]〜[7]のいずれかに記載の評価方法。
[9]前記信号物質は、Feを含む、[1]〜[8]のいずれかに記載の評価方法。
[10]前記投与する工程の後、所定時間が経過した後における前記信号の信号強度と、前記投与する工程がなかったとして予測される、前記所定時間が経過した後における前記信号の信号強度と、の強度差を算出し、前記強度差から、前記候補物質が前記生細胞に与える影響の大きさを定量する工程をさらに含む、[1]〜[9]のいずれかに記載の評価方法。
[11]前記信号の検出は、前記投与する工程の前後を通じての、生体に移植した前記生細胞からの信号の検出である、[1]〜[10]のいずれかに記載の評価方法。
[12][1]〜[11]のいずれかに記載の評価方法に用いられる、信号物質を含有する生分解性粒子。
[13][12]に記載の生分解性粒子と、生細胞と、を含むキット。
[14]候補物質が生体の活性に与える影響を評価するシステムにおいて、信号物質を含有する生分解性粒子を取り込んだ生細胞であって、前記候補物質を投与された生細胞からの信号を、前記候補物質の投与の前後を通じて経時的に検出する、検出部を有する評価システム。
[15]さらに、前記候補物質を投与される前の複数の時点において、前記信号物質を含有する生分解性粒子を取り込んだ生細胞から前記検出部が検出した前記信号の強度から、前記信号強度の減衰の度合いを予測する予測部と、前記候補物質を投与した後の時点において前記検出部が前記生細胞から検出した前記信号の強度と、前記予測部が予測した前記信号の強度と、の強度差を算出する算出部と、を有する、[14]に記載の評価システム。
The subject of the present invention is solved by the following means.
[1] In a method for evaluating the effect of a candidate substance on the activity of a living body, through a step of administering the candidate substance to living cells incorporating biodegradable particles containing a signal substance and before and after the step of administering the candidate substance. , An evaluation method including a step of detecting a signal from the signal substance over time.
[2] The evaluation method according to [1], wherein the signal substance is a magnetic substance.
[3] The evaluation method according to [1] or [2], wherein the biodegradable particles have a sustained release property.
[4] The evaluation method according to any one of [1] to [3], wherein the biodegradable particles are hydrogel particles.
[5] The evaluation method according to any one of [1] to [4], wherein the living cell is a hepatocyte.
[6] The evaluation method according to any one of [1] to [5], wherein the biodegradable particles are particles having an average particle diameter of 10 nm or more and 2.0 μm or less.
[7] The evaluation method according to any one of [1] to [6], wherein the signal substance is particles having an average particle diameter of 0.5 nm or more and 50 nm or less.
[8] The evaluation method according to any one of [1] to [7], wherein the biodegradable particles contain the signal substance in the particles.
[9] The evaluation method according to any one of [1] to [8], wherein the signal substance contains Fe 3 O 4 .
[10] The signal strength of the signal after a predetermined time has elapsed after the administration step, and the signal strength of the signal after the predetermined time has elapsed, which is predicted that there was no administration step. The evaluation method according to any one of [1] to [9], further comprising a step of calculating the intensity difference between the above and quantifying the magnitude of the effect of the candidate substance on the living cells from the intensity difference.
[11] The evaluation method according to any one of [1] to [10], wherein the detection of the signal is the detection of the signal from the living cells transplanted into a living body before and after the administration step.
[12] Biodegradable particles containing a signal substance used in the evaluation method according to any one of [1] to [11].
[13] A kit containing the biodegradable particles according to [12] and living cells.
[14] In a system for evaluating the effect of a candidate substance on the activity of a living body, a signal from a living cell that has taken in biodegradable particles containing a signal substance and has been administered with the candidate substance is displayed. An evaluation system having a detection unit that detects over time before and after administration of the candidate substance.
[15] Further, the signal intensity is determined from the signal intensity detected by the detection unit from the living cells that have taken in the biodegradable particles containing the signal substance at a plurality of time points before the candidate substance is administered. The intensity of the signal detected by the detection unit from the living cells at the time after the administration of the candidate substance, and the intensity of the signal predicted by the prediction unit. The evaluation system according to [14], which comprises a calculation unit for calculating a strength difference.

本発明によれば、細胞の活性を経時的に測定して候補物質が生体の活性に与える影響を評価する方法、ならびに当該方法に用いる生分解性粒子、当該粒子と生細胞とを含むキット、および当該方法に用いるシステムが提供される。 According to the present invention, a method for evaluating the effect of a candidate substance on the activity of a living body by measuring the activity of cells over time, biodegradable particles used in the method, and a kit containing the particles and living cells. And the system used for the method is provided.

図1は、複合粒子からの信号強度の経時的な変化を模式的に示すグラフである。FIG. 1 is a graph schematically showing a change in signal intensity from a composite particle with time. 図2は、候補物質を投与する前後における複合粒子からの信号強度の経時的な変化を模式的に示すグラフである。FIG. 2 is a graph schematically showing the change over time in the signal intensity from the composite particles before and after administration of the candidate substance. 図3Aは、候補物質の投与前における、複合粒子を取り込ませた生細胞からの信号強度をプロットして得られる模式的なグラフであり、図3Bは、候補物質が生体の活性に与える影響を評価すべき時点P2における信号強度S1を予測する様子を示す模式的なグラフであり、図3Cは、時点P2で信号強度S2が実際に得られる様子を示す模式的なグラフであり、図3Dは、時点P2における予測された信号強度S1および実際に得られた信号強度S2から、候補物質が生体の活性に与える影響を定量的に評価する様子を示す模式的なグラフである。FIG. 3A is a schematic graph obtained by plotting the signal intensity from living cells incorporating composite particles before administration of the candidate substance, and FIG. 3B shows the effect of the candidate substance on the activity of the living body. FIG. 3C is a schematic graph showing how the signal strength S1 is predicted at the time point P2 to be evaluated, FIG. 3C is a schematic graph showing how the signal strength S2 is actually obtained at the time point P2, and FIG. 3D is a schematic graph. , Is a schematic graph showing how the effect of the candidate substance on the activity of the living body is quantitatively evaluated from the predicted signal strength S1 at the time point P2 and the actually obtained signal strength S2. 図4は、本発明の一実施形態に係る候補物質が生体の活性に与える影響を評価するシステムの構成を模式的に示すブロック図である。FIG. 4 is a block diagram schematically showing a configuration of a system for evaluating the influence of a candidate substance according to an embodiment of the present invention on the activity of a living body. 図5Aは、実施例において、複合粒子を移植したマウスに候補物質である乳酸鉄を投与したときに得られた信号強度をプロットして得られるグラフであり、図5Bは、実施例において、複合粒子を移植したマウスに候補物質である亜硫酸ナトリウムを投与したときに得られた信号強度をプロットして得られるグラフであり、図5Cは、実施例において、複合粒子を移植したマウスに候補物質であるカフェインを投与したときに得られた信号強度をプロットして得られるグラフである。FIG. 5A is a graph obtained by plotting the signal intensity obtained when iron lactate, which is a candidate substance, is administered to mice transplanted with composite particles in an example, and FIG. 5B is a graph obtained by plotting the signal intensity obtained when iron lactate, which is a candidate substance, is administered. It is a graph obtained by plotting the signal intensity obtained when sodium sulfite which is a candidate substance is administered to a mouse transplanted with particles, and FIG. 5C is a candidate substance in a mouse transplanted with composite particles in the example. It is a graph obtained by plotting the signal intensity obtained when a certain caffeine is administered. 図6Aは、実施例において、複合粒子を培養する培地に候補物質である乳酸鉄を添加したときに得られた信号強度をプロットして得られるグラフであり、図6Bは、実施例において、複合粒子を培養する培地に候補物質である亜硫酸ナトリウムを添加したときに得られた信号強度をプロットして得られるグラフであり、図6Cは、実施例において、複合粒子を培養する培地に候補物質であるカフェインを添加したときに得られた信号強度をプロットして得られるグラフである。FIG. 6A is a graph obtained by plotting the signal intensity obtained when iron lactate, which is a candidate substance, is added to the medium for culturing the composite particles in the example, and FIG. 6B is a graph obtained by plotting the signal intensity obtained when the candidate substance iron lactate is added. It is a graph obtained by plotting the signal intensity obtained when sodium sulfite which is a candidate substance is added to the medium for culturing particles, and FIG. 6C shows the candidate substance for the medium for culturing composite particles in the example. It is a graph obtained by plotting the signal intensity obtained when a certain caffeine is added.

本発明者らは、鋭意検討を行った結果、特許文献1に記載のようなリポソームは細胞に取り込まれた後に分解されやすく、当該リポソームに含有させた磁性体もすぐに細胞から排出されてしまうため、経時的なMRI測定ができないことを見出した。 As a result of diligent studies, the present inventors have found that liposomes as described in Patent Document 1 are easily decomposed after being taken up by cells, and the magnetic substance contained in the liposomes is immediately discharged from the cells. Therefore, it was found that MRI measurement over time cannot be performed.

これに対し、生分解性粒子に磁性体などの信号物質を含有させ、当該信号物質を含有する粒子を細胞に取り込ませれば、当該生分解性粒子が分解されるまでの間、上記信号物質からの信号を受信して当該細胞の活性を経時的に測定することが可能となる。 On the other hand, if the biodegradable particles contain a signal substance such as a magnetic substance and the particles containing the signal substance are taken into cells, the signal substance is used until the biodegradable particles are decomposed. It becomes possible to receive the signal of the above and measure the activity of the cell over time.

上記信号物質を含有させた生分解性粒子(以下、単に「複合粒子」ともいう。)100を生細胞に取り込ませたとき、当該細胞が生分解性粒子を取り込んでからの経過時間を横軸に、当該生細胞から検出される信号強度を縦軸にとると、図1に示すように、信号強度は時間とともに減衰する。これは、当該細胞が分泌する酵素によって細胞に取り込まれた生分解性粒子110が徐々に分解され、信号物質120が生分解性粒子110から徐放されて細胞内で溶解されたり細胞から放出されたりすることにより、細胞中の信号物質120の量が時間の経過とともに漸減するためである。 When the biodegradable particles (hereinafter, also simply referred to as “composite particles”) 100 containing the above signal substance are taken up by living cells, the horizontal axis is the elapsed time from the time when the cells take up the biodegradable particles. When the signal strength detected from the living cells is taken on the vertical axis, the signal strength decreases with time, as shown in FIG. This is because the biodegradable particles 110 taken up by the cells by the enzyme secreted by the cells are gradually decomposed, and the signal substance 120 is slowly released from the biodegradable particles 110 and dissolved in the cells or released from the cells. This is because the amount of the signal substance 120 in the cell gradually decreases with the passage of time.

このとき、任意に定めた時点P1で上記複合粒子100を取り込ませた生細胞に候補物質を投与すると、当該候補物質が生体の活性(代謝速度など)に与える影響の有無によってグラフの形状が変化する。たとえば、当該候補物質が細胞の活性を低下させないか、または低下させる度合いが小さい場合は、当該生細胞による酵素の分泌量は変わらないため、生分解性粒子110は分解され続けて、P1より後でも信号強度は同様の割合で減衰し続ける(図2の破線)。一方で、当該候補物質が細胞の活性を低下させる場合は、当該生細胞による酵素の分泌量が減少するため生分解性粒子110はもはや分解されにくく、P1より後で信号強度の減衰の度合いは低下する(信号強度の傾きがより水平に近くなる)か、または信号強度は減衰しなくなる(図2の実線)。 At this time, when the candidate substance is administered to the living cells that have taken up the composite particles 100 at an arbitrarily determined time point P1, the shape of the graph changes depending on whether or not the candidate substance has an effect on the activity (metabolism rate, etc.) of the living body. To do. For example, if the candidate substance does not reduce the activity of the cell or the degree of the reduction is small, the amount of the enzyme secreted by the living cell does not change, so that the biodegradable particle 110 continues to be decomposed after P1. However, the signal strength continues to decay at the same rate (broken line in FIG. 2). On the other hand, when the candidate substance reduces the activity of the cell, the biodegradable particle 110 is no longer decomposed because the amount of enzyme secreted by the living cell is reduced, and the degree of signal intensity attenuation after P1 is high. Either it decreases (the slope of the signal strength becomes closer to horizontal), or the signal strength does not attenuate (solid line in FIG. 2).

このように、複合粒子100を取り込ませた生細胞における、候補物質の投与(P1)前後での信号物質120からの信号強度の減衰の度合いの変化を測定することによって、当該候補物質が生体の活性に与える影響を評価することができる。 In this way, by measuring the change in the degree of attenuation of the signal intensity from the signal substance 120 before and after administration of the candidate substance (P1) in the living cells incorporating the composite particles 100, the candidate substance is a living body. The effect on activity can be evaluated.

たとえば、図3Aに示すように、候補物質の投与前における、複合粒子100を取り込ませた生細胞からの信号強度をプロットしていく。このプロットから算出される信号強度の減衰の度合いが続くものと仮定して、図3Bに示すように、候補物質を投与した後の時点であって、候補物質が生体の活性に与える影響を評価すべき任意に定めた時点P2における信号強度S1を予測する。一方で、時点P1で候補物質を投与すると、図3Cに示すように、実際に得られる信号強度は減衰の度合いが変化して、時点P2では信号強度S2が実際に得られる。そして、図3Dに示すように、この予測される信号強度S1と、実際に得られる信号強度S2と、の強度差(S2−S1)を求めれば、候補物質が生体の活性に与える影響を定量的に評価することも可能である。 For example, as shown in FIG. 3A, the signal intensity from the living cells incorporating the composite particle 100 before administration of the candidate substance is plotted. Assuming that the degree of signal intensity attenuation calculated from this plot continues, as shown in FIG. 3B, the effect of the candidate substance on the activity of the living body is evaluated at the time point after the administration of the candidate substance. The signal strength S1 at an arbitrarily determined time point P2 to be used is predicted. On the other hand, when the candidate substance is administered at the time point P1, as shown in FIG. 3C, the degree of attenuation of the signal strength actually obtained changes, and the signal strength S2 is actually obtained at the time point P2. Then, as shown in FIG. 3D, if the intensity difference (S2-S1) between the predicted signal intensity S1 and the actually obtained signal intensity S2 is obtained, the effect of the candidate substance on the activity of the living body is quantified. It is also possible to evaluate in a targeted manner.

なお、複合粒子100を取り込ませた直後は、生細胞からの信号強度の減衰の度合いが安定しないことがあるため、時点P2における信号強度S1の予測(図3B)は、複合粒子100の取り込み後しばらく時間をおいて上記減衰の度合いが安定してから測定した信号強度をもとに行うことが好ましい。 Immediately after the composite particles 100 are taken in, the degree of attenuation of the signal strength from the living cells may not be stable. Therefore, the prediction of the signal strength S1 at the time point P2 (FIG. 3B) is made after the composite particles 100 are taken in. It is preferable to perform the measurement based on the signal strength measured after the degree of attenuation has stabilized after a while.

なお、上記時点P2における信号強度S1は、以前に同一条件で測定して得られた、候補物質の投与前における信号強度の減衰の度合いなどを用いて、予測された値であってもよい。 The signal intensity S1 at the time point P2 may be a value predicted by using the degree of attenuation of the signal intensity before administration of the candidate substance, which was previously measured under the same conditions.

また、このとき、条件を同一にして測定した、上記定量化された影響を比較することで、異なる物質間での生体の活性に与える影響の差や、同一の物質の投与量による生体の活性に与える影響の差などを、比較して評価することも可能である。 In addition, at this time, by comparing the above-mentioned quantified effects measured under the same conditions, the difference in the effects on the activity of the living body between different substances and the activity of the living body due to the dose of the same substance It is also possible to compare and evaluate the difference in the effect on.

なお、上述の説明では、信号強度の減衰の度合いが低下する(信号強度の傾きがより水平に近くなる)ことを測定して、候補物質が細胞の活性を低下させるか否か、および低下させる程度、を評価する方法を示したが、同様に、信号強度の減衰の度合いが高まる(信号強度の傾きがより垂直に近くなる)ことを測定して、候補物質が細胞の活性を高めるか否か、および高める程度、を評価することも、当然に可能である。 In the above description, it is measured that the degree of signal intensity attenuation decreases (the slope of the signal intensity becomes closer to horizontal), and whether or not the candidate substance reduces the cell activity, and decreases it. We have shown a method to evaluate the degree, but similarly, whether or not the candidate substance enhances the activity of the cell by measuring that the degree of attenuation of the signal strength increases (the slope of the signal strength becomes closer to vertical). Of course, it is also possible to evaluate the degree of enhancement.

1.複合粒子
1−1.信号物質
上記信号は、生細胞内に上記信号物質が存在することを確認できる信号であればよい。上記信号の例には、磁場(磁化量)、X線、ガンマ線および蛍光などの電磁波、ならびに、超音波および光音響信号などの音響波などが含まれる。
1. 1. Composite particles 1-1. Signal substance The signal may be any signal that can confirm the presence of the signal substance in the living cell. Examples of the above signals include magnetic fields (magnetization amount), electromagnetic waves such as X-rays, gamma rays and fluorescence, and acoustic waves such as ultrasonic waves and photoacoustic signals.

上記信号物質は、上記信号を検出することにより生細胞内に存在することを確認でき、かつ生細胞内での分解および生細胞からの排出などによって上記生細胞内に残留しない物質であればよい。上記信号物質の例には、MRI用の造影剤、X線撮像用の造影剤、ポジトロン断層撮像法(PET)用の造影剤、蛍光撮像用の造影剤、超音波撮像用の気泡、および光音響撮像用の造影剤などの公知の造影剤が含まれる。 The signal substance may be a substance that can be confirmed to exist in the living cell by detecting the signal and does not remain in the living cell due to decomposition in the living cell and excretion from the living cell. .. Examples of the above-mentioned signal substances include a contrast agent for MRI, a contrast agent for X-ray imaging, a contrast agent for positron emission tomography (PET), a contrast agent for fluorescence imaging, bubbles for ultrasonic imaging, and light. Includes known contrast agents such as contrast agents for acoustic imaging.

MRI用の造影剤の例には、ガドリニウム(Gd)ならびに酸化鉄(Fe、γ−Feおよびフェライトなど)を含む磁性体が含まれる。 Examples of contrast media for MRI include gadolinium (Gd) and magnetic materials containing iron oxide (Fe 3 O 4 , γ-Fe 2 O 3, etc.).

X線撮像用の造影剤の例には、タングステン、白金、タンタル、イリジウム、金、硫酸バリウム、次炭酸ビスマス、三酸化ビスマス、オキシ塩化ビスマス、メトリザマイド、イオパミドール、イオタラム酸ナトリウム、ヨウ化ナトリウムおよびメグルミンなどが含まれる。 Examples of contrast media for radiography include tungsten, platinum, tantalum, iridium, gold, barium sulfate, bismuth hypocarbonate, bismuth trioxide, bismuth oxychloride, metrizamide, iopamidol, sodium iotalamate, sodium iodide and meglumine. Etc. are included.

蛍光撮像用の造影剤の例には、フルオレセインおよびインドシアニングリーンなどを含む蛍光色素、ならびに緑色蛍光タンパク質(GFP)などの蛍光タンパク質などが含まれる。 Examples of contrast agents for fluorescence imaging include fluorescent dyes such as fluorescein and indocyanine green, and fluorescent proteins such as green fluorescent protein (GFP).

光音響撮像用の造影剤の例には、金ナノ粒子、単層カーボンナノチューブ(SWNT)、インドシアニングリーンおよびメチレンブルーなどが含まれる。 Examples of contrast media for photoacoustic imaging include gold nanoparticles, single-walled carbon nanotubes (SWNTs), indocyanine green and methylene blue.

上記信号物質は、生分解性粒子の表面または内部に存在すればよいが、信号物質をより長い時間細胞内に留める観点からは、信号物質は、生分解性粒子の内部に存在する(生分解性粒子に内包される)ことが好ましい。 The signal substance may be present on the surface or inside the biodegradable particle, but from the viewpoint of keeping the signal substance inside the cell for a longer period of time, the signal substance is present inside the biodegradable particle (biodegradation). It is preferably encapsulated in sex particles).

なお、本明細書において、信号物質が生分解性粒子に内包されるとは、生分解性粒子の平均粒子径をXとして、生分解性粒子の表面から厚み0.01Xの表層部に含まれる信号物質の平均濃度Aと、表層部よりも生分解性粒子の内側に含まれる信号物質の平均濃度Bとの比A/Bが0.25未満であることを意味する。上記表層部および内部における信号物質の平均濃度は、表層部および内部から選択されたそれぞれ10箇所について、X線光電子分光分析によって測定された信号物質の分子濃度を加算平均して得られる値とすることができる。 In the present specification, the inclusion of the signal substance in the biodegradable particles is included in the surface layer portion having a thickness of 0.01 X from the surface of the biodegradable particles, where X is the average particle diameter of the biodegradable particles. This means that the ratio A / B of the average concentration A of the signal substance to the average concentration B of the signal substance contained inside the biodegradable particles rather than the surface layer portion is less than 0.25. The average concentration of the signal substance in the surface layer portion and the inside is a value obtained by adding and averaging the molecular concentrations of the signal substance measured by X-ray photoelectron spectroscopy at 10 points selected from the surface layer portion and the inside. be able to.

これらのうち、より検出が容易であることから、MRI用の造影剤が好ましく、Feがより好ましい。Of these, a contrast agent for MRI is preferable, and Fe 3 O 4 is more preferable because it is easier to detect.

信号物質は、平均粒子径が0.5nm以上50nm以下の粒子であることが好ましい。上記平均粒子径が0.5nm以上であると、1個の信号物質からの検出性が十分に高くなるため、複合粒子に含有させる信号物質の数を減らすことができ、信号物質が導入されることによる細胞への負荷を減らすことができる。上記平均粒子径が50nm以下であると、サイズが大きい信号物質が導入されることによる細胞への負荷を減らすことができる。 The signal substance is preferably particles having an average particle diameter of 0.5 nm or more and 50 nm or less. When the average particle size is 0.5 nm or more, the detectability from one signal substance is sufficiently high, so that the number of signal substances contained in the composite particles can be reduced and the signal substance is introduced. This can reduce the load on the cells. When the average particle size is 50 nm or less, the load on the cells due to the introduction of a signal substance having a large size can be reduced.

検出精度をより高める観点から、信号物質は、複合粒子の全体積に対して1体積%以上95体積%以下の量で含まれることが好ましい。 From the viewpoint of further improving the detection accuracy, the signal substance is preferably contained in an amount of 1% by volume or more and 95% by volume or less with respect to the total volume of the composite particles.

1−2.生分解性粒子
上記生分解性粒子は、細胞内で加水分解されるか、または細胞内で分泌される酵素により分解される材料を含んで形成され、分解されることによって上記信号物質を徐放できる粒子であればよい。なお、リポソームは徐放性を有さないため、上記生分解性粒子には含まれない。
1-2. Biodegradable particles The biodegradable particles are formed containing a material that is hydrolyzed inside the cell or decomposed by an enzyme secreted inside the cell, and the signal substance is slowly released by being decomposed. Any particles that can be produced will do. Since liposomes do not have sustained release properties, they are not included in the above biodegradable particles.

徐放性を有するとは、生分解性粒子が、少なくとも信号を検出する期間は粒子径状を保って信号物質を粒子内に留めておき、かつ、少しずつ分解されていって信号物質を少しずつ放出していくことを意味する。 Sustained release means that the biodegradable particles keep the signal substance in the particles by keeping the particle diameter at least for the period when the signal is detected, and the signal substance is gradually decomposed to reduce the signal substance. It means to release them one by one.

信号物質の徐放性を高める観点からは、上記生分解性粒子は、ハイドロゲル粒子であることが好ましい。ハイドロゲル粒子とは、水を溶媒として形成可能なゲルから形成される粒子を意味する。典型的には、ハイドロゲル粒子は、網目構造を形成する親水性の高分子と、上記網目構造に取り込まれた水とを含む。 From the viewpoint of enhancing the sustained release property of the signal substance, the biodegradable particles are preferably hydrogel particles. Hydrogel particles mean particles formed from a gel that can be formed using water as a solvent. Typically, the hydrogel particles contain a hydrophilic polymer that forms a network structure and water incorporated into the network structure.

ハイドロゲル粒子の例には、キチン、キトサン、ヒアルロン酸、アルギン酸、アガロース、カルボキシメチルセルロース(CMC)、デンプン、およびペクチンなどの多糖類、ゼラチン、コラーゲン、フィブリン、およびアルブミンなどのタンパク質、ポリ−γ−グルタミン酸、ポリ−L−リジン、およびポリアルギニンなどのポリアミノ酸、ならびに、アクリルアミド、シリコーン、ポリビニルアルコール、ポリエチレンオキサイド、およびポリビニルピロリドンなどの合成高分子から形成される粒子が含まれる。 Examples of hydrogel particles include polysaccharides such as chitin, chitosan, hyaluronic acid, alginic acid, agarose, carboxymethyl cellulose (CMC), starch, and pectin, proteins such as gelatin, collagen, fibrin, and albumin, poly-γ-. Includes particles formed from polyamino acids such as glutamate, poly-L-lysine, and polyarginine, as well as synthetic macromolecules such as acrylamide, silicone, polyvinyl alcohol, polyethylene oxide, and polyvinylpyrrolidone.

これらのうち、生細胞自らによって細胞内に取り込まれやすくして、取り込みの際の生細胞の損傷などを抑制可能とする観点からは、多糖類、タンパク質およびポリアミノ酸が好ましく、入手または作製の容易さからは、多糖類およびタンパク質がより好ましく、ゼラチンがさらに好ましい。 Of these, polysaccharides, proteins, and polyamino acids are preferable from the viewpoint of facilitating uptake into the cells by the living cells themselves and suppressing damage to the living cells during uptake, and are easy to obtain or prepare. From the above, polysaccharides and proteins are more preferred, and gelatin is even more preferred.

上記ハイドロゲル粒子がゼラチンから形成されるゼラチン粒子であるとき、上記ゼラチン粒子は、その主成分がゼラチンからなる粒子であり、具体的には、アミノ酸測定装置で分析した際、アミノ酸1000残基の内、グリシンが300以上含まれており、アラニン、プロリン両方を含む粒子である。ゼラチンは、粒子を形成することができればよく、牛骨、牛皮、豚皮、豚腱、魚鱗および魚肉などに由来するコラーゲンを変性して得られる、公知のいかなるゼラチンを用いてもよい。ゼラチンは、以前から食用や医療用に使用されており、体内に摂取しても人体に害を与えることが少ない。また、ゼラチンは生体内で分散消失するため、生体内から除去する必要がないという利点を有する。なお、上記ゼラチン粒子は、細胞内へのゼラチン粒子の取り込みが可能な限りにおいて、ゼラチン以外の成分を含有してもよい。なお、上記ゼラチン以外の成分の量は、体内に摂取したときに人体に与える害が無視できる範囲であることが好ましい。また、上記ゼラチン以外の成分は、生体内に蓄積せず排出されやすい物質からなることが好ましい。 When the hydrogel particles are gelatin particles formed from gelatin, the gelatin particles are particles whose main component is gelatin. Specifically, when analyzed by an amino acid measuring device, 1000 amino acid residues Among them, 300 or more of glycine is contained, and it is a particle containing both alanine and proline. As the gelatin, any known gelatin obtained by denaturing collagen derived from cow bone, cow skin, pig skin, pig tendon, fish scale, fish meat and the like may be used as long as particles can be formed. Gelatin has been used for food and medical purposes for a long time, and even if it is taken into the body, it does not cause any harm to the human body. Further, since gelatin is dispersed and disappears in the living body, it has an advantage that it does not need to be removed from the living body. The gelatin particles may contain a component other than gelatin as long as the gelatin particles can be taken up into the cell. The amount of the component other than gelatin is preferably in a range in which the harm to the human body when ingested into the body can be ignored. In addition, the components other than gelatin are preferably composed of substances that are not accumulated in the living body and are easily excreted.

上記ゼラチン粒子を構成するゼラチンの重量平均分子量は、上記粒子径および膨潤度の条件を満たすゼラチン粒子を形成しやすくする観点から、1000以上100000以下であることが好ましい。上記重量平均分子量は、たとえばパギイ法第10版(2006年)に準じて測定された値とすることができる。 The weight average molecular weight of gelatin constituting the gelatin particles is preferably 1000 or more and 100,000 or less from the viewpoint of facilitating the formation of gelatin particles satisfying the above particle size and swelling degree conditions. The weight average molecular weight can be, for example, a value measured according to the 10th edition of the Paggy method (2006).

ゼラチン粒子を構成するゼラチンは、架橋していてもよい。架橋は、架橋剤による架橋でもよいし、架橋剤を用いずになされる自己架橋でもよい。 The gelatin constituting the gelatin particles may be crosslinked. The cross-linking may be cross-linking with a cross-linking agent or self-cross-linking performed without using a cross-linking agent.

上記架橋剤は、たとえば、水酸基、カルボキシル基、アミノ基、チオール基およびイミダゾール基などと化学結合を作る官能基を複数有する化合物であればよい。このような架橋剤の例には、グルタルアルデヒド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)および1−シクロヘキシル−3−(2−モルホリノエチル)カルボジイミド−メト−p−トルエンスルホナート(CMC)を含む水溶性カルボジイミド、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリグリセロールポリグリシジルエーテルおよびグリセロールポリグリシジルエーテルを含む2以上のエポキシ基を有する化合物、ならびにプロピレンオキサイドが含まれる。これらのうち、反応性をより高める観点からは、グルタルアルデヒドおよびEDCが好ましく、グルタルアルデヒドがより好ましい。 The cross-linking agent may be, for example, a compound having a plurality of functional groups that form a chemical bond with a hydroxyl group, a carboxyl group, an amino group, a thiol group, an imidazole group, or the like. Examples of such cross-linking agents include glutaaldehyde, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide-meth-p. -Compounds with two or more epoxy groups, including water-soluble carbodiimides containing toluene sulfonate (CMC), ethylene glycol diglycidyl ethers, polyethylene glycol diglycidyl ethers, polyglycerol polyglycidyl ethers and glycerol polyglycidyl ethers, and propylene oxide included. Of these, glutaraldehyde and EDC are preferable, and glutaraldehyde is more preferable, from the viewpoint of further enhancing the reactivity.

上記自己架橋の例には、熱の付与または電子線もしくは紫外線の照射による架橋が含まれる。 Examples of the self-crosslinking include cross-linking by applying heat or irradiating with an electron beam or ultraviolet rays.

ハイドロゲル粒子が含有する水の量は特に限定されないが、膨潤処理後において、ハイドロゲル粒子の全質量に対して1質量%以上99質量%以下であることが好ましく、10質量%以上90質量%以下であることがより好ましく、15質量%以上80質量%以下であることがさらに好ましい。 The amount of water contained in the hydrogel particles is not particularly limited, but after the swelling treatment, it is preferably 1% by mass or more and 99% by mass or less with respect to the total mass of the hydrogel particles, and 10% by mass or more and 90% by mass or less. It is more preferably 15% by mass or more and 80% by mass or less.

なお、本明細書において、膨潤処理後の生分解性粒子とは、乾燥時の生分解性粒子を40℃の水中に大気圧下で60分間浸漬して得られる生分解性粒子を意味する。また、本明細書において、乾燥時の生分解性粒子とは、80℃の大気中に24時間静置した後の生分解性粒子を意味する。 In the present specification, the biodegradable particles after the swelling treatment mean biodegradable particles obtained by immersing the biodegradable particles at the time of drying in water at 40 ° C. for 60 minutes at atmospheric pressure. Further, in the present specification, the biodegradable particles at the time of drying mean biodegradable particles after being allowed to stand in the air at 80 ° C. for 24 hours.

生細胞自らによって細胞内に取り込まれやすくして、取り込みの際の生細胞の損傷などを抑制する観点からは、生分解性粒子は、平均粒子径が0.5nm以上5.0μm以下の粒子であることが好ましい。 From the viewpoint of facilitating uptake into cells by the living cells themselves and suppressing damage to the living cells during uptake, biodegradable particles are particles having an average particle diameter of 0.5 nm or more and 5.0 μm or less. It is preferable to have.

平均粒子径が5.0μm以下である生分解性粒子は、生細胞自らの活動による細胞内への取り込みがなされやすい。これは、上記粒子径が5.0μm以下である生分解性粒子は生細胞によって異物と認識されにくく、エンドサイトーシス等の活動により細胞内に取り込まれやすいからと考えられる。上記観点からは、生分解性粒子の粒子径は、3.0μm以下であることが好ましく、2.0μm以下であることがより好ましく、1.5μm以下であることがさらに好ましい。一方で、平均粒子径が0.5nm以上である生分解性粒子は、粒子内により多くの信号物質を担持させやすい。上記観点からは、生分解性粒子の粒子径は、2.0nm以上であることが好ましく、10nm以上であることがより好ましい。特に、生分解性粒子の平均粒子径を10nm以上2.0μm以下とすることで、複合粒子のハンドリング性をよくし、信号物質などの収容量を大きくし、かつ、生細胞自らの活動による細胞内への取り込みをなされやすくすることができる。 Biodegradable particles having an average particle size of 5.0 μm or less are easily taken up into cells by the activity of living cells themselves. It is considered that this is because the biodegradable particles having a particle size of 5.0 μm or less are difficult to be recognized as foreign substances by living cells and are easily taken up into cells by activities such as endocytosis. From the above viewpoint, the particle size of the biodegradable particles is preferably 3.0 μm or less, more preferably 2.0 μm or less, and further preferably 1.5 μm or less. On the other hand, biodegradable particles having an average particle diameter of 0.5 nm or more tend to carry more signal substances in the particles. From the above viewpoint, the particle size of the biodegradable particles is preferably 2.0 nm or more, and more preferably 10 nm or more. In particular, by setting the average particle size of the biodegradable particles to 10 nm or more and 2.0 μm or less, the handling property of the composite particles is improved, the amount of signal substances and the like is increased, and the cells due to the activity of the living cells themselves It can be easily taken into the inside.

また、生分解性粒子のアスペクト比は、1.0以上1.4以下であることが好ましい。上記アスペクト比が1.4以下であると、生分解性粒子は膨潤の前後を通じてより球形に近い形状を保ちやすく、生分解性粒子および生細胞を含む溶液において、生分解性粒子と生細胞とがより均一な形状および大きさの接触面で接しやすくなるため、生分解性粒子間での取り込まれやすさの差が生じにくいと考えられる。そのため、上記アスペクト比を有する易取込性生分解性粒子は、細胞へ取り込まれる生分解性粒子の量、および生分解性粒子を取り込む細胞の量、をより制御しやすいと考えられる。上記易取込性生分解性粒子のアスペクト比は、生分解性粒子の長径を生分解性粒子の短径で除算して求めた値とすることができる。 The aspect ratio of the biodegradable particles is preferably 1.0 or more and 1.4 or less. When the aspect ratio is 1.4 or less, the biodegradable particles tend to maintain a shape closer to a sphere before and after swelling, and in a solution containing the biodegradable particles and the living cells, the biodegradable particles and the living cells It is considered that the difference in the ease of incorporation among the biodegradable particles is unlikely to occur because the particles are more likely to come into contact with each other on the contact surface having a more uniform shape and size. Therefore, it is considered that the easily uptake biodegradable particles having the above aspect ratio can more easily control the amount of biodegradable particles taken up by cells and the amount of cells taking up biodegradable particles. The aspect ratio of the easily incorporated biodegradable particles can be a value obtained by dividing the major axis of the biodegradable particles by the minor axis of the biodegradable particles.

また、生分解性粒子の長径は、2.0μm以下であることが好ましい。長径が2.0μm以下であると、生分解性粒子は膨潤の前後を通じてより小さい粒子径を保ちやすく、生細胞自らの活動によって細胞内に取り込まれやすいと考えられる。上記観点からは、上記長径は、1.8μm以下であることがより好ましく、1.5μm以下であることがさらに好ましい。 The major axis of the biodegradable particles is preferably 2.0 μm or less. When the major axis is 2.0 μm or less, the biodegradable particles are likely to maintain a smaller particle diameter before and after swelling, and are easily taken up into the cells by the activity of the living cells themselves. From the above viewpoint, the major axis is more preferably 1.8 μm or less, and further preferably 1.5 μm or less.

なお、本明細書において、生分解性粒子の粒子径は、生分解性粒子の長径と短径とを加算平均した値とすることができる。また、生分解性粒子の長径、短径、粒子径およびアスペクト比は、走査型電子顕微鏡(SEM)で撮像した画像を解析して得られる、膨潤処理後の生分解性粒子から任意に選択した複数の生分解性粒子(たとえば、20個の生分解性粒子)の長径、短径、粒子径およびアスペクト比を加算平均した値とすることができる。 In the present specification, the particle size of the biodegradable particles can be a value obtained by adding and averaging the major axis and the minor axis of the biodegradable particles. The major axis, minor axis, particle size and aspect ratio of the biodegradable particles were arbitrarily selected from the biodegradable particles after the swelling treatment obtained by analyzing the image captured by the scanning electron microscope (SEM). The major axis, minor axis, particle diameter, and aspect ratio of a plurality of biodegradable particles (for example, 20 biodegradable particles) can be added and averaged.

1−3.複合粒子の製造方法
上記生分解性粒子は、溶融した生分解性粒子の材料を含む液体(以下、単に「材料溶液」ともいう。)の液滴を加熱管または乾燥室の雰囲気中に吐出して乾燥させる方法(気中滴下法)、材料溶液の液滴を疎水性溶媒内に吐出して分散させる方法(液中滴下法)、および、材料溶液をエマルジョン化してゼラチンを含む微小液滴を分散させる方法(液中分散法)等によって、材料溶液を粒子化して、製造することができる。
1-3. Method for producing composite particles The above biodegradable particles discharge droplets of a liquid containing the material of the melted biodegradable particles (hereinafter, also simply referred to as "material solution") into the atmosphere of a heating tube or a drying chamber. Drying method (dropping method in air), dropping droplets of material solution into hydrophobic solvent and dispersing (dropping method in liquid), and emulsifying the material solution to produce fine particles containing gelatin. The material solution can be granulated and produced by a method of dispersing (dispersion method in liquid) or the like.

このとき、信号物質を含ませた材料溶液を、上述の方法などで粒子化することで、信号物質が生分解性粒子に内包された複合粒子を得ることができる。また、上述の方法などで信号物質を含有しない生分解性粒子を製造した後に、信号物質を生分解性粒子に付与して、信号物質が生分解性粒子の表面または内部に含有された複合粒子を得ることもできる。 At this time, by atomizing the material solution containing the signal substance by the above-mentioned method or the like, composite particles in which the signal substance is contained in biodegradable particles can be obtained. Further, after producing biodegradable particles containing no signal substance by the above-mentioned method or the like, the signal substance is applied to the biodegradable particles, and the signal substance is contained in the surface or inside of the biodegradable particles. You can also get.

上記信号物質を含ませた材料溶液は、材料溶液と信号物質とを混合して得てもよいし、材料溶液中で信号物質を合成して、信号物質と溶融した生分解性粒子の材料とを含むスラリーとしてもよい。このとき、上記スラリーに相分離誘起剤を添加して、信号物質が生分解性粒子に内包された複合粒子を得ることができる。上記スラリーに相分離誘起剤を添加する方法によれば、信号物質が材料溶液中で凝集しにくく、かつ、信号物質が生分解性粒子の内部により均一に分散しやすいため、信号物質がより均一に徐放されやすい複合粒子が得られやすく、候補物質が生体の活性に与える影響の評価精度をより高めやすいため好ましい。 The material solution containing the signal substance may be obtained by mixing the material solution and the signal substance, or the signal substance may be synthesized in the material solution to form the signal substance and the material of the molten biodegradable particles. It may be a slurry containing. At this time, a phase separation inducer can be added to the slurry to obtain composite particles in which the signal substance is contained in biodegradable particles. According to the method of adding the phase separation inducer to the slurry, the signal substance is less likely to aggregate in the material solution, and the signal substance is more likely to be more uniformly dispersed inside the biodegradable particles, so that the signal substance is more uniform. It is preferable because it is easy to obtain composite particles that are easily released slowly and it is easy to improve the evaluation accuracy of the influence of the candidate substance on the activity of the living body.

たとえば、信号物質としてFeを担持したゼラチン粒子を製造する場合には、Feの原料となるFeCl・6HOおよびFeCl・4HOと、ゼラチンとを含む水溶液を調製し、そこにアルカリ溶液(たとえば、NaOH、NH、KOHなどの溶液)を添加して溶液のpHを7以上に調整し、Feを合成すれば、材料溶液中にFeが均一に分散したスラリーが得られる。For example, when producing gelatin particles carrying Fe 3 O 4 as a signal substance, and FeCl 3 · 6H 2 O and FeCl 2 · 4H 2 O as a raw material of Fe 3 O 4, an aqueous solution containing gelatin prepared, there alkaline solution (e.g., NaOH, solution such as NH 3, KOH) was added to adjust the pH of the solution to 7 or more, if synthesized Fe 3 O 4, Fe 3 O in the material solution A slurry in which 4 is uniformly dispersed is obtained.

上記得られたスラリーに相分離誘起剤を添加すれば、相分離誘起剤の添加によってゼラチンのコアセルベーションが生じ、Feを内包するゼラチン粒子が形成される。When a phase separation inducer is added to the obtained slurry, the addition of the phase separation inducer causes gelatin core selvation, and gelatin particles containing Fe 3 O 4 are formed.

相分離誘起剤は、生分解性粒子の材料を粒状化することが可能な成分である限り特に限定されない。相分離誘起剤の例には、エタノール、1−プロパノール、2−プロパノール、および1−ブタノールなどを含むアルコール類、ならびにアセトンなどを含む有機溶媒が含まれる。 The phase separation inducer is not particularly limited as long as it is a component capable of granulating the material of biodegradable particles. Examples of phase separation inducers include alcohols including ethanol, 1-propanol, 2-propanol, 1-butanol and the like, and organic solvents including acetone and the like.

また、上記スラリーに相分離誘起剤を添加する方法によれば、スラリー中の生分解性粒子の材料の濃度を調整することで、得られる複合粒子の平均粒子径を調整することができる。つまり、スラリー中の生分解性粒子の材料の濃度が高いほど、得られる複合粒子の平均粒子径は大きくなり、スラリー中の生分解性粒子の材料の濃度が低いほど、得られる複合粒子の平均粒子径は小さくなる傾向がある。 Further, according to the method of adding the phase separation inducer to the slurry, the average particle size of the obtained composite particles can be adjusted by adjusting the concentration of the material of the biodegradable particles in the slurry. That is, the higher the concentration of the biodegradable particle material in the slurry, the larger the average particle size of the obtained composite particles, and the lower the concentration of the biodegradable particle material in the slurry, the average of the obtained composite particles. The particle size tends to be smaller.

また、上記スラリーに相分離誘起剤を添加する方法によれば、スラリー中のゼラチン濃度または相分離誘起剤の添加量などを調製することで、信号物質の分散の均一性を調整できると考えられる。 Further, according to the method of adding the phase separation inducer to the slurry, it is considered that the uniformity of the dispersion of the signal substance can be adjusted by adjusting the gelatin concentration in the slurry or the amount of the phase separation inducer added. ..

たとえば、平均粒子径が200nm以上1000nm以下であり、信号物質が粒子中に均一に分散したゼラチン粒子を製造するためには、スラリー中のゼラチン濃度を0.5mg/ml以上100mg/ml以下とし、相分離誘起剤の添加量を、前記スラリー1ml当たり2ml以上50ml以下とすることが好ましい。 For example, in order to produce gelatin particles having an average particle size of 200 nm or more and 1000 nm or less and a signal substance uniformly dispersed in the particles, the gelatin concentration in the slurry should be 0.5 mg / ml or more and 100 mg / ml or less. The amount of the phase separation inducer added is preferably 2 ml or more and 50 ml or less per 1 ml of the slurry.

また、ゼラチン粒子に担持される信号物質の量は、ゼラチンを粒状化する前のスラリーにおける信号物質の濃度に依存する。スラリーに含まれる信号物質の濃度は、スラリーの全質量に対して1質量%以上30質量%であることが好ましい。 Further, the amount of the signal substance carried on the gelatin particles depends on the concentration of the signal substance in the slurry before the gelatin is granulated. The concentration of the signal substance contained in the slurry is preferably 1% by mass or more and 30% by mass with respect to the total mass of the slurry.

2.生細胞
上記生細胞は、上記生分解性粒子を細胞膜の内側に取り込み、かつ、分解などできる細胞であればよい。
2. 2. Living cell The living cell may be any cell that can take in the biodegradable particles inside the cell membrane and decompose them.

生分解性粒子を細胞膜の内側に取り込むとは、細胞を透過型電子顕微鏡(TEM)で撮像した画像において、生分解性粒子が細胞膜の内側に確認される状態になることを意味する。また、細胞への生分解性粒子の取り込みは、信号物質からの信号が細胞内から検出されることでも、確認することができる。 Incorporating biodegradable particles inside the cell membrane means that the biodegradable particles are confirmed inside the cell membrane in an image obtained by photographing the cells with a transmission electron microscope (TEM). In addition, the uptake of biodegradable particles into cells can also be confirmed by detecting signals from signal substances from inside the cells.

上記生細胞の例には、骨髄、心臓、肺、肝臓、腎臓、膵臓、脾臓、腸管、小腸、心臓弁、皮膚、血管、角膜、眼球、硬膜、骨、気管および耳小骨を含む各種臓器から摘出された生体試料または検体に由来する細胞、市販の株化細胞、ならびに皮膚幹細胞、表皮角化幹細胞、網膜幹細胞、網膜上皮幹細胞、軟骨幹細胞、毛包幹細胞、筋幹細胞、骨前駆細胞、脂肪前駆細胞、造血幹細胞、神経幹細胞、肝幹細胞、膵幹細胞、外胚葉系幹細胞、中胚葉系幹細胞、内胚葉系幹細胞、間葉系幹細胞、ES細胞およびiPS細胞を含む幹細胞ならびにこれらの幹細胞から分化した細胞を含む公知の細胞などが含まれる。 Examples of living cells include bone marrow, heart, lung, liver, kidney, pancreas, spleen, intestinal tract, small intestine, heart valve, skin, blood vessels, cornea, eyeball, hard membrane, bone, trachea and ear follicles. Cells derived from biological samples or specimens removed from, commercially available strained cells, as well as skin stem cells, epidermal keratinized stem cells, retinal stem cells, retinal epithelial stem cells, cartilage stem cells, hair follicle stem cells, muscle stem cells, bone precursor cells, fat Differentiated from progenitor cells, hematopoietic stem cells, neural stem cells, hepatic stem cells, pancreatic stem cells, ectodermal stem cells, mesenchymal stem cells, endometrial stem cells, mesenchymal stem cells, stem cells including ES cells and iPS cells, and these stem cells. Known cells including cells are included.

これらの細胞のうち、代謝活性が高い細胞が好ましく、肝臓に由来するかまたは培養された肝細胞がより好ましい。 Among these cells, cells having high metabolic activity are preferable, and hepatocytes derived from or cultured in the liver are more preferable.

生細胞による生分解性粒子の取り込みは、液体中に生分解性粒子と生細胞とを添加して、エンドサイトーシスによる取り込みなどの生細胞自らの活動によって取り込ませる方法、および外部からの操作によって生細胞に導入する方法によって行うことができる。 The uptake of biodegradable particles by living cells is carried out by adding biodegradable particles and living cells to a liquid and causing them to be taken up by the activities of the living cells themselves such as uptake by endocytosis, and by external manipulation. This can be done by the method of introduction into living cells.

生細胞自らの活動によって生分解性粒子を取り込ませる方法の例には、生分解性粒子と生細胞とを液中で撹拌する方法や、生分解性粒子が含まれる細胞培養液中で生細胞を培養する方法が含まれる。なお、上述した平均粒子径を有する生分解性粒子は、生細胞自らによる取り込み効率が高いため、細胞への取り込みを促進するために他の成分との複合体を形成させる操作は特に必要ない。生細胞の活性の低下を最小限に抑える観点からは、上記のうち、生分解性粒子と生細胞とを液中で混合し培養する方法が好ましい。 Examples of the method of incorporating biodegradable particles by the activity of the living cells themselves include a method of stirring the biodegradable particles and the living cells in a solution, and a living cells in a cell culture medium containing the biodegradable particles. Includes a method of culturing. Since the biodegradable particles having the above-mentioned average particle size have high uptake efficiency by the living cells themselves, there is no particular need for an operation of forming a complex with other components in order to promote the uptake into the cells. From the viewpoint of minimizing the decrease in the activity of living cells, the method of mixing and culturing biodegradable particles and living cells in a liquid is preferable.

外部からの操作によって導入する方法の例には、エレクトロポレーション法およびマイクロインジェクション法が含まれる。 Examples of methods introduced by external manipulation include electroporation and microinjection.

これらのうち、生分解性粒子を導入させる際に生細胞の活性を低下させにくくする観点からは、生細胞自らの活動によって導入する方法が好ましく、上記複合体を形成せずに生細胞に取り込ませる方法がより好ましい。 Of these, from the viewpoint of making it difficult to reduce the activity of living cells when introducing biodegradable particles, the method of introducing by the activity of the living cells themselves is preferable, and the particles are incorporated into the living cells without forming the above complex. The method of making the particles is more preferable.

生分解性粒子および生細胞が添加される液体としては、細胞培養液を用いることができる。上記細胞培養液は、公知の緩衝液または生理食塩水であってもよく、例えば、ハンクス平衡塩溶液(HBSS)、4−(2−hydroxyethyl)−1−piperazineethanesulfonic acid(HEPES)およびその他の公知のリン酸緩衝生理食塩水(PBS)を用いることができる。 As the liquid to which the biodegradable particles and the living cells are added, a cell culture solution can be used. The cell culture solution may be a known buffer solution or physiological saline solution, for example, Hanks Balanced Salt Solution (HBSS), 4- (2-hydroxyethyl) -1-piperazinethethanetic acid (HEPES) and other known cells. Phosphate buffered saline (PBS) can be used.

生細胞の活性を高めて生細胞自らの活動によって生分解性粒子を細胞内に取り込ませやすくする観点からは、上記撹拌時の上記細胞培養液の温度は、15℃以上50℃以下であることが好ましく、35℃以上45℃以下であることがより好ましい。 From the viewpoint of increasing the activity of living cells and facilitating the incorporation of biodegradable particles into the cells by the activity of the living cells themselves, the temperature of the cell culture solution at the time of stirring should be 15 ° C. or higher and 50 ° C. or lower. Is preferable, and more preferably 35 ° C. or higher and 45 ° C. or lower.

生細胞自らの活動によって生分解性粒子を細胞膜の内側へ取り込ませるとき、たとえば、生分解性粒子と上記生細胞とを含む細胞培養液を振とうして、導入を促進してもよい。 When the biodegradable particles are taken into the inside of the cell membrane by the activity of the living cells themselves, for example, the cell culture medium containing the biodegradable particles and the above-mentioned living cells may be shaken to promote the introduction.

生分解性粒子を取り込んだ細胞は、そのまま培養させてもよいし、生分解性粒子を取り込んだ後に生体内に移植してもよい。候補物質が生体の活性に与える影響をより正確に評価したい場合は、生分解性粒子を取り込んだ細胞を生体内に移植して、生体内に定着した当該細胞が含有する信号物質からの信号を検出することが好ましい。たとえば、上記細胞から作製したスフェロイドを、門脈内に留置したカテーテルを通じてマウスに注入すれば、注入されたスフェロイドは、肝細胞索に輸送されて定着する。 The cells that have taken up the biodegradable particles may be cultured as they are, or may be transplanted into a living body after taking in the biodegradable particles. If you want to more accurately evaluate the effect of the candidate substance on the activity of the living body, transplant the cell incorporating the biodegradable particles into the living body and send the signal from the signal substance contained in the cell fixed in the living body. It is preferable to detect it. For example, if a spheroid prepared from the above cells is injected into a mouse through a catheter placed in the portal vein, the injected spheroid is transported to the hepatocyte cord and settled.

生分解性粒子を取り込んだ細胞への候補物質の投与は、上記細胞が候補物質に接触できる限りにおいて特に限定されない。たとえば、上記細胞を含む培地に候補物質を添加してもよいし、上記細胞を移植した生体に、口蓋内、皮下、静脈内、腹腔内、筋肉内、関節内、滑液嚢内、腸内、鞘内、および肝臓内などへの直接投与、ならびに注射および点滴などによる投与などが可能である。 Administration of the candidate substance to the cells incorporating the biodegradable particles is not particularly limited as long as the cells can come into contact with the candidate substance. For example, a candidate substance may be added to a medium containing the above cells, or the living body into which the cells have been transplanted may be treated with intrathecal, subcutaneous, intravenous, intraperitoneal, intramuscular, intraarticular, intrasulous sac, or intestinal. Direct administration into the sheath and the liver, as well as administration by injection and infusion are possible.

3.キット
上記生細胞および上記複合粒子は、これらを含むキットとすることができる。あるいは、上記生細胞、上記生分解性粒子および上記信号物質は、これらを含むキットとすることができる。上記キットは、いずれも、上記生細胞を培養するための培地を含んでもよい。
3. 3. Kit The living cells and the composite particles can be a kit containing them. Alternatively, the living cells, the biodegradable particles and the signaling substance can be a kit containing them. Each of the above kits may contain a medium for culturing the above-mentioned living cells.

4.候補物質が生体の活性に与える影響を評価するシステム
上述した候補物質が生体の活性に与える影響を評価する方法は、図4に示すような、信号物質を含有する生分解性粒子を取り込んだ生細胞であって、上記候補物質を投与された生細胞からの信号を、上記候補物質の投与の前後を通じて経時的に検出する、検出部210を有するシステム200によって、実行することができる。
4. System for evaluating the effect of a candidate substance on the activity of a living body The method for evaluating the effect of a candidate substance on the activity of a living body is as shown in FIG. 4, in which biodegradable particles containing a signal substance are incorporated. It can be performed by a system 200 having a detection unit 210 that detects a signal from a living cell to which the candidate substance has been administered, which is a cell, over time before and after administration of the candidate substance.

検出部210は、上記信号物質からの信号を経時的に検出し、信号強度を経時的に測定できればよく、信号物質の種類に応じて、MRI装置、X線撮像装置、ポジトロン断層撮像装置、蛍光撮像装置、および光音響撮像装置などとすることができる。 The detection unit 210 only needs to be able to detect the signal from the signal substance over time and measure the signal intensity over time, and depending on the type of the signal substance, an MRI apparatus, an X-ray imaging apparatus, a positron tomographic imaging apparatus, and fluorescence. It can be an imaging device, a photoacoustic imaging device, or the like.

上記システムは、上記候補物質を投与される前の複数の時点において、上記信号物質を含有する生分解性粒子を取り込んだ生細胞から検出部210が検出した前記信号の強度から、上記信号強度の減衰の度合いを予測する、予測部220を備えていてもよい。予測部220は、図3Aに示すような、生細胞からの信号強度から、図3Bに示すように、候補物質を投与した後の時点であって、候補物質が生体の活性に与える影響を評価すべき任意に定めた時点P2における信号強度S1を予測することができればよい。 The system is based on the signal intensity detected by the detection unit 210 from the living cells that have taken in the biodegradable particles containing the signal substance at a plurality of time points before the candidate substance is administered. A prediction unit 220 that predicts the degree of attenuation may be provided. As shown in FIG. 3B, the prediction unit 220 evaluates the influence of the candidate substance on the activity of the living body at the time after the administration of the candidate substance from the signal intensity from the living cell as shown in FIG. 3A. It suffices if the signal strength S1 at an arbitrarily determined time point P2 can be predicted.

また、上記システムは、上記候補物質を投与した後の時点において検出部210が上記生細胞から検出した上記信号の強度と、予測部220が予測した上記信号の強度と、の強度差を算出する算出部230を備えていてもよい。算出部230は、図3Cに示すように、時点P2で信号強度S2が実際に得られたとき、図3Dに示すように、予測部220が時点P2における信号強度として予測した信号強度S1と、実際に得られた信号強度S2と、の強度差を求めることができればよい。なお、上記予測した信号強度S1は、事前に同様の条件で実験して得られ、記憶部250に記憶された値を参照して用いてもよい。 In addition, the system calculates the intensity difference between the intensity of the signal detected by the detection unit 210 from the living cells and the intensity of the signal predicted by the prediction unit 220 at the time after the administration of the candidate substance. The calculation unit 230 may be provided. As shown in FIG. 3C, the calculation unit 230 receives the signal strength S1 predicted by the prediction unit 220 as the signal strength at the time point P2 when the signal strength S2 is actually obtained at the time point P2, as shown in FIG. 3D. It suffices if the intensity difference between the actually obtained signal intensity S2 and the signal intensity S2 can be obtained. The predicted signal strength S1 may be obtained by conducting an experiment under the same conditions in advance and may be used with reference to a value stored in the storage unit 250.

また、上記システムは、検出部210が検出した信号強度および算出部230が算出した上記強度差などを表示する表示部240、および、算出部230が算出した上記強度差を記憶する記憶部250などを備えていてもよい。 Further, the system includes a display unit 240 that displays the signal intensity detected by the detection unit 210 and the intensity difference calculated by the calculation unit 230, a storage unit 250 that stores the intensity difference calculated by the calculation unit 230, and the like. May be provided.

予測部220および算出部230の動作は、これらの機能部の機能を実行するためのプログラムを、CPU(Central Processing Unit)260が記憶部250としても機能するROM(Read Only Memory)から読み出してRAM(Random Access Memory)に展開し、展開したプログラムをCPU260が実行することで、制御される。 The operations of the prediction unit 220 and the calculation unit 230 read a program for executing the functions of these functional units from a ROM (Read Only Memory) in which the CPU (Central Processing Unit) 260 also functions as a storage unit 250 and RAM. It is controlled by expanding to (Random Access Memory) and executing the expanded program by the CPU 260.

以下において、本発明の具体的な実施例を説明する。なお、これらの実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, specific examples of the present invention will be described. It should be noted that these examples do not limit the scope of the present invention.

1.複合粒子の作製
(合成条件1)
ゼラチン(新田ゼラチン株式会社製、G−2613P)の濃度が50mg/mlとなるように調製した200mlのゼラチン水溶液を用意し、これに0.835gのFeCl・4HOおよび0.760gのFeCl・6HOを添加した。このゼラチン水溶液に、さらに、40mlの28%NH水溶液を添加して、ゼラチンスラリーを得た。
1. 1. Preparation of composite particles (synthesis condition 1)
Gelatin (Nitta Gelatin Inc., G-2613P) concentration of prepared aqueous gelatin solution 200ml, prepared as a 50 mg / ml, this 0.835g FeCl 2 · 4H 2 O and 0.760g of the FeCl 3 · 6H 2 O was added. Further, 40 ml of a 28% NH 3 aqueous solution was added to this gelatin aqueous solution to obtain a gelatin slurry.

上記ゼラチンスラリーを60℃に加温して、ゼラチンおよび磁性体粒子(信号物質)としてのFeを含む複合粒子を得た。このとき、FeCl・4HOおよびFeCl・6HOの添加量、またはゼラチンスラリーの加温時間を調整して、生分解性粒子または磁性体粒子の平均粒子径が異なる複合粒子からなる複合粒子1〜複合粒子6を製造した。The gelatin slurry was heated to 60 ° C. to obtain composite particles containing gelatin and Fe 3 O 4 as magnetic particles (signal substance). At this time, by adjusting the FeCl 2 · 4H 2 O and FeCl 3 · 6H 2 amount of O, or heating time of gelatin slurry, the average particle size of the biodegradable particles or magnetic particles of different composite particles Composite particles 1 to 6 were produced.

上記ゼラチンをシリコーンおよびポリビニルアルコール(PVA)に変更した以外は同様にして、それぞれ複合粒子10および複合粒子11を製造した。 Composite particles 10 and 11 were produced in the same manner except that the gelatin was changed to silicone and polyvinyl alcohol (PVA), respectively.

(合成条件2)
上記ゼラチンスラリーに対して、相分離誘起剤としてアセトンを添加して、50℃で混合した。その後、0.1mgのグルタルアルデヒドを加え3時間撹拌したのち、1Mのグリシン水溶液を添加した。ゼラチンスラリー中に析出した粒子を回収し、純粋で洗浄して、ゼラチンおよびFe粉末を含む複合粒子を得た。このとき、FeCl・4HOおよびFeCl・6HOの添加量、またはアセトンの添加量を調整して、生分解性粒子または磁性体粒子の平均粒子径が異なる複合粒子からなる複合粒子7〜複合粒子9を製造した。
(Synthesis condition 2)
Acetone was added to the gelatin slurry as a phase separation inducer and mixed at 50 ° C. Then, 0.1 mg of glutaraldehyde was added, and the mixture was stirred for 3 hours, and then a 1 M aqueous solution of glycine was added. The particles precipitated in the gelatin slurry were recovered and washed purely to give composite particles containing gelatin and Fe 3 O 4 powder. At this time, the amount of FeCl 2 · 4H 2 O and FeCl 3 · 6H 2 O, or by adjusting the added amount of acetone, the composite particles having an average particle size of the biodegradable particles or magnetic particles of different composite particles 7 to composite particles 9 were produced.

(平均粒子径の測定)
透過型電子顕微鏡(TEM)を用いて上記作製した複合粒子1〜複合粒子11を撮像し、撮像された画像をMountech社製画像解析式粒度分布ソフトウェアMac−Viewを用いて解析して、任意に選択した20個の複合粒子中に含まれる合計40個の磁性体粒子の短径および長径を求め、これらの短径および長径の平均値を複合粒子が含有する磁性体粒子の平均粒子径とした。
(Measurement of average particle size)
The composite particles 1 to 11 produced above are imaged using a transmission electron microscope (TEM), and the captured images are analyzed using the image analysis type particle size distribution software Mac-View manufactured by Moontech, and optionally. The minor axis and major axis of a total of 40 magnetic particles contained in the selected 20 composite particles were determined, and the average value of these minor axis and major axis was taken as the average particle diameter of the magnetic particle contained in the composite particle. ..

上記合成条件1または合成条件2で複合粒子1〜複合粒子11作製する際に得られたゼラチンスラリーを超純水で希釈し、HORIBA 製ナノ粒子解析装置sz100を用いて、複合粒子1〜複合粒子11に含まれるFe(信号物質)の平均粒子径を測定した。The gelatin slurry obtained when the composite particles 1 to 11 were produced under the above synthesis condition 1 or synthesis condition 2 was diluted with ultrapure water, and the composite particles 1 to composite particles were diluted with the HORIBA nanoparticle analyzer sz100. The average particle size of Fe 3 O 4 (signal substance) contained in 11 was measured.

2.複合粒子の測定
2−1.複合粒子の平均粒子径
nano particle sz−100(株式会社堀場製作所製)を用いて、上記作製し複合粒子1〜複合粒子11に含まれる複合粒子の体積平均粒子径を光子相関法で測定した。
2. 2. Measurement of composite particles 2-1. Average particle size of composite particles Using nano particle sz-100 (manufactured by Horiba Seisakusho Co., Ltd.), the volume average particle size of the composite particles contained in the above-mentioned prepared composite particles 1 to 11 was measured by a photon correlation method.

2−2.磁性体粒子の平均粒子径
透過型電子顕微鏡(TEM)を用いて上記作製した複合粒子1〜複合粒子11を撮像し、撮像された画像をMountech社製画像解析式粒度分布ソフトウェアMac−Viewを用いて解析して、任意に選択した20個の複合粒子中に含まれる合計40個の磁性体粒子の短径および長径を求め、これらの短径および長径の平均値を複合粒子が含有する磁性体粒子の平均粒子径とした。
2-2. Average particle size of magnetic particles The composite particles 1 to 11 produced above are imaged using a transmissive electron microscope (TEM), and the captured images are captured using the image analysis type particle size distribution software Mac-View manufactured by Moontech. To obtain the minor axis and major axis of a total of 40 magnetic particles contained in 20 arbitrarily selected composite particles, and the average value of these minor axis and major axis is the magnetic substance contained in the composite particle. The average particle size of the particles was used.

2−3.磁性体粒子の内包
上記作製した複合粒子1〜複合粒子11を市販のFe染色キットで染色したところ、複合粒子1〜複合粒子11のすべてにおいて、粒子内に磁性体(FeCl)が内包されていることが確認された。
2-3. Encapsulation of Magnetic Particles When the above-produced composite particles 1 to 11 were dyed with a commercially available Fe dyeing kit, all of the composite particles 1 to 11 contained a magnetic substance (FeCl 3 ) in the particles. It was confirmed that there was.

3.細胞内への複合粒子の導入および評価
3−1.細胞内への導入
肝細胞培養キットP−2(マウス)(コスモ・バイオ株式会社製)に含まれる増殖用培地を用いて、マウス由来の肝細胞(NCTC−Clone 1469 (Murine Liver cell line) 、Cell Lines Services社製)を培養した。
3. 3. Introduction and evaluation of composite particles into cells 3-1. Introduction into cells Using the growth medium contained in the hepatocyte culture kit P-2 (mouse) (manufactured by Cosmo Bio Co., Ltd.), mouse-derived hepatocytes (NCTC-Clone 1469 (Murine Liver cell line)), (Manufactured by Cell Lines Services) was cultured.

上記細胞を培養した培地に1mgの複合粒子1〜複合粒子11を加えて、40℃で24時間保管して上記細胞に上記複合粒子を導入し、評価用サンプル1〜評価用サンプル11を得た。 1 mg of composite particles 1 to 11 were added to the medium in which the cells were cultured, and the mixture was stored at 40 ° C. for 24 hours to introduce the composite particles into the cells to obtain evaluation samples 1 to evaluation samples 11. ..

3−2.細胞による取り込みの評価
上記評価用サンプルの一部を取り出し、以下の手順によって、細胞膜の内側に取り込まれた複合粒子が確認できるか否かを観察し、以下の基準によって判定した。
3-2. Evaluation of uptake by cells A part of the above evaluation sample was taken out, and it was observed whether or not the composite particles taken up inside the cell membrane could be confirmed by the following procedure, and the judgment was made according to the following criteria.

(細胞及びFeの染色)
培養した細胞に1%パラホルムアルデヒド1mlを加えて細胞固定化処理を行った。次いで、下記組成のFe染色液1mlを加えてFeを染色した。さらに、下記の濃度に調整した核染色液1mlを加えて細胞を染色した。
(Staining of cells and Fe)
1 ml of 1% paraformaldehyde was added to the cultured cells to perform cell immobilization treatment. Next, 1 ml of an Fe staining solution having the following composition was added to stain Fe. Further, 1 ml of a nuclear staining solution adjusted to the following concentration was added to stain the cells.

(Fe染色液の組成)
下記の2液を同体積混合してFe染色液を調製した。
・20体積% HCL(濃塩酸を5倍希釈したもの)
・10質量% K(Fe(CN))水溶液(100mg/ml)
(Composition of Fe stain)
The following two solutions were mixed in the same volume to prepare an Fe staining solution.
・ 20% by volume HCL (5-fold diluted hydrochloric acid)
10% by mass K 4 (Fe (CN 6 )) aqueous solution (100 mg / ml)

(核染色液の組成)
硫酸アンモニウム5質量部と、Nuclear fast red 0.1質量部とを、蒸留水100質量部に混合して核染色液を調製した。
(Composition of nuclear stain)
5 parts by mass of ammonium sulfate and 0.1 part by mass of Nuclear fast red were mixed with 100 parts by mass of distilled water to prepare a nuclear stain.

(複合粒子を取り込んだ細胞数のカウント)
任意に選択された20個の細胞を光学顕微鏡で観察して、細胞膜の内側に青い染色部位(複合粒子中のFeに由来する)が確認できるか否かを観察し、以下の基準で評価した。
(Counting the number of cells that have taken up composite particles)
Twenty arbitrarily selected cells were observed with an optical microscope to see if a blue staining site (derived from Fe in the composite particles) could be confirmed inside the cell membrane, and evaluated according to the following criteria. ..

◎ 上記20個の細胞のうち、50%以上(10個以上)の細胞で、細胞膜の内側に染色部位が確認された
○ 上記20個の細胞のうち、10%以上50%未満(2個以上10個未満)の細胞で、細胞膜の内側に染色部位が確認された
× 上記20個の細胞のうち、10%未満(2個未満)の細胞で、細胞膜の内側に染色部位が確認されたか、または細胞膜の内側に染色部位が確認される細胞は存在しなかった
◎ Staining sites were confirmed inside the cell membrane in 50% or more (10 or more) of the above 20 cells. ○ 10% or more and less than 50% (2 or more) of the above 20 cells. Staining site was confirmed inside the cell membrane in less than 10 cells) × Staining site was confirmed inside the cell membrane in less than 10% (less than 2) of the above 20 cells Or, there were no cells with confirmed staining sites inside the cell membrane.

表1に、評価用サンプル1〜11について、生分解性粒子の材料、合成条件および平均粒子径、信号物質(Fe)の平均粒子径、磁性体粒子(信号物質)が内包されているか否かの評価結果、ならびに取り込み評価の結果を示す。Table 1 includes materials for biodegradable particles, synthetic conditions and average particle diameter, average particle diameter of signal substance (Fe 3 O 4 ), and magnetic particles (signal substance) for evaluation samples 1 to 11. The evaluation result of whether or not it is present and the result of the uptake evaluation are shown.

Figure 2019087829
Figure 2019087829

表1から明らかなように、生分解性粒子がゼラチンを材料とする粒子であると、細胞自らの活動による複合粒子の取り込みがなされやすかった。また、生分解性粒子の平均粒子径が10nm以上2.0μm以下であると、細胞自らの活動による複合粒子の取り込みがなされやすかった。 As is clear from Table 1, when the biodegradable particles were made of gelatin, the composite particles were easily taken up by the activity of the cells themselves. Further, when the average particle size of the biodegradable particles was 10 nm or more and 2.0 μm or less, the composite particles were easily taken up by the activity of the cells themselves.

4.複合粒子を取り込んだ生細胞のマウスへの導入
4−1.スフェロイドの作製
スフェロイド作成用の容器(PrimeSurface、住友ベークライト株式会社製、「PrimeSurface」は同社の登録商標)を用いて評価用サンプルNo.2に含まれる細胞をさらに培養し、これらのサンプルに含まれる細胞からスフェロイドを作製した。
4. Introduction of live cells incorporating composite particles into mice 4-1. Preparation of spheroids Evaluation sample No. using a container for spheroid preparation (PrimeSurface, manufactured by Sumitomo Bakelite Co., Ltd., "PrimeSurface" is a registered trademark of the same company). The cells contained in 2 were further cultured, and spheroids were prepared from the cells contained in these samples.

4−2.マウスへの導入
門脈内に留置したカテーテルを通じて、上記スフェロイドをマウスに注入した。
4-2. Introduction into mice The above spheroids were injected into mice through a catheter placed in the portal vein.

5.候補物質が生体の活性に与える影響の評価
MRIシステム(実験小動物用 高性能コンパクトMRIシステム Mシリーズ M3、プライムテック株式会社製)を用いて、上記スフェロイドを導入したマウスの、導入部位から測定されるT2値を、導入から1時間後、12時間後、24時間後、36時間後および48時間後に、測定した。
5. Evaluation of the effect of the candidate substance on the activity of the living body Measured from the introduction site of the mouse into which the above spheroid was introduced, using an MRI system (high-performance compact MRI system for experimental small animals M series M3, manufactured by Prime Tech Co., Ltd.). T2 values were measured 1 hour, 12 hours, 24 hours, 36 hours and 48 hours after introduction.

上記48時間後のT2値を測定した直後のマウスに、表2に示す候補物質を静脈からの注射により投与した。候補物質は、いずれも濃度40mg/mlとして、表2に示す量の物質が投与されるよう注射量を調整した。 The candidate substances shown in Table 2 were administered by intravenous injection to the mice immediately after the T2 value was measured 48 hours later. The injection volume of each of the candidate substances was adjusted so that the substances shown in Table 2 were administered at a concentration of 40 mg / ml.

さらに、上記MRIシステムを用いて、候補物質を注入したマウスのT2値を、候補物質の注入から24時間後(スフェロイドの導入から72時間後)および240時間後(スフェロイドの導入から288時間後)に、測定した。 Furthermore, using the above MRI system, the T2 value of the mouse injected with the candidate substance was measured 24 hours after the injection of the candidate substance (72 hours after the introduction of the spheroid) and 240 hours (288 hours after the introduction of the spheroid). I measured it.

表2に、マウスに注入した候補物質の種類、濃度、投与量および注入した試薬量(濃度と投与量との積)、ならびに上記各時点における測定されたT2値を示す。 Table 2 shows the type, concentration, dose and amount of reagent injected (product of concentration and dose) of the candidate substance injected into the mouse, and the T2 value measured at each of the above time points.

Figure 2019087829
Figure 2019087829

6.複合粒子への候補物質の投与
評価用サンプルNo.2に含まれる細胞をプレート上でさらに培養し、表3に示す候補物質を上記プレートにさらに添加した。
6. Administration of candidate substance to composite particles Sample No. for evaluation. The cells contained in 2 were further cultured on the plate, and the candidate substances shown in Table 3 were further added to the plate.

7.候補物質が生体の活性に与える影響の評価
MRIシステム(実験小動物用 高性能コンパクトMRIシステム Mシリーズ M3、プライムテック株式会社製)を用いて、上記複合粒子を取り込ませた細胞から測定されるT2値を、細胞濃度が1×10個程度になった時点から1時間後、12時間後、24時間後、36時間後および48時間後に、測定した。
7. Evaluation of the effect of candidate substances on the activity of living organisms T2 value measured from cells incorporating the above composite particles using an MRI system (high-performance compact MRI system for experimental small animals M series M3, manufactured by Prime Tech Co., Ltd.) and 1 hour after the time when the cell concentration became about 1 × 10 5 cells, 12 hours, 24 hours, 36 hours and after 48 hours it was measured.

上記48時間後のT2値を測定した直後の上記プレートに、表3に示す候補物質を添加した。候補物質は、いずれも濃度1μg/mlとして、表3に示す量の物質が投与されるよう添加量を調整した。 The candidate substances shown in Table 3 were added to the plate immediately after the T2 value was measured after 48 hours. The concentration of each of the candidate substances was set to 1 μg / ml, and the addition amount was adjusted so that the amount of the substance shown in Table 3 was administered.

さらに、上記MRIシステムを用いて、候補物質を添加した後の細胞のT2値を、候補物質の添加から24時間後(細胞濃度が1×10個程度になった時点から72時間後)および240時間後(細胞濃度が1×10個程度になった時点から288時間後)に、測定した。Further, by using the MRI system, the T2 value of the cells after addition of a candidate substance, 24 hours after the addition of the candidate substance (72 hours after the time at which the cell concentration became 1 × 10 5 or so) and The measurement was performed 240 hours later (288 hours after the cell concentration reached about 1 × 10 5 cells).

表3に、上記プレートに注入した候補物質の種類、濃度、投与量および注入した試薬量(濃度と投与量との積)、ならびに上記各時点における測定されたT2値を示す。 Table 3 shows the type, concentration, dose and amount of reagent injected (product of concentration and dose) of the candidate substance injected into the plate, and the T2 value measured at each of the above time points.

Figure 2019087829
Figure 2019087829

図5に、表2に示す試験結果を、横軸を経過時間、縦軸を信号強度として、候補物質ごとにプロットして得られるグラフを示す。図5Aは、試験1〜試験4(候補物質:乳酸鉄)の結果を示すグラフであり、図5Bは、試験5〜試験7(候補物質:亜硫酸ナトリウム)の結果を示すグラフであり、図5Cは、試験8〜試験9(候補物質:カフェイン)の結果を示すグラフである。 FIG. 5 shows a graph obtained by plotting the test results shown in Table 2 for each candidate substance, with the horizontal axis representing the elapsed time and the vertical axis representing the signal intensity. FIG. 5A is a graph showing the results of Tests 1 to 4 (candidate substance: iron lactate), and FIG. 5B is a graph showing the results of Tests 5 to 7 (candidate substance: sodium sulfite), FIG. 5C. Is a graph showing the results of Tests 8 to 9 (candidate substance: caffeine).

図6に、表3に示す試験結果を、横軸を経過時間、縦軸を信号強度として、候補物質ごとにプロットして得られるグラフを示す。図6Aは、試験10〜試験13(候補物質:乳酸鉄)の結果を示すグラフであり、図6Bは、試験14〜試験15(候補物質:亜硫酸ナトリウム)の結果を示すグラフであり、図6Cは、試験16〜試験17(候補物質:カフェイン)の結果を示すグラフである。 FIG. 6 shows a graph obtained by plotting the test results shown in Table 3 for each candidate substance, with the horizontal axis representing the elapsed time and the vertical axis representing the signal intensity. FIG. 6A is a graph showing the results of Test 10 to Test 13 (candidate substance: iron lactate), and FIG. 6B is a graph showing the results of Test 14 to Test 15 (candidate substance: sodium sulfite), FIG. 6C. Is a graph showing the results of Test 16 to Test 17 (candidate substance: caffeine).

図5および図6から、特に候補物質の投与量が多いときに、候補物質の投与後にグラフの減衰の度合いが大きく低下することがわかる(図5Aの試験4、図5Bの試験7、図5Cの試験9、図6Aの試験13,図6Bの試験15、図6Cの試験17)。 From FIGS. 5 and 6, it can be seen that the degree of attenuation of the graph is significantly reduced after the administration of the candidate substance, especially when the dose of the candidate substance is large (Test 4 of FIG. 5A, Test 7 of FIG. 5B, FIG. 5C). 9, test 13 of FIG. 6A, test 15 of FIG. 6B, test 17 of FIG. 6C).

これらの結果から、各候補物質について、細胞の活性が低下するかを推測する投与量を評価することができる。また、これらの結果から、異なる候補物質についても、投与量を同一にすることで、細胞の活性を低下させる程度を候補物質間で比較することが可能であることも理解され得る。 From these results, it is possible to evaluate the dose at which it is estimated whether the cell activity is reduced for each candidate substance. In addition, from these results, it can be understood that it is possible to compare the degree of decrease in cell activity among the candidate substances by making the dose the same for different candidate substances.

本出願は、2017年11月6日出願の日本国出願番号2017−213708号に基づく優先権を主張する出願であり、当該出願の特許請求の範囲、明細書および図面に記載された内容は本出願に援用される。 This application is an application claiming priority based on Japanese application number 2017-21370 filed on November 6, 2017, and the contents described in the claims, specification and drawings of the application are the present. Incorporated in the application.

本発明の方法は、候補物質の投与による生細胞の活性の変化を経時的かつ定量的に測定することができる。そのため、本発明の方法は、新規な医薬候補化合物についての、副作用の評価、無毒性量の定量、および医薬効果の評価などを容易にすることが期待される。 The method of the present invention can quantitatively measure changes in the activity of living cells due to administration of a candidate substance over time. Therefore, the method of the present invention is expected to facilitate the evaluation of side effects, the NOAEL quantification, and the evaluation of pharmaceutical effects of novel drug candidate compounds.

100 複合粒子
110 生分解性粒子
120 信号物質
200 システム
210 検出部
220 予測部
230 算出部
240 表示部
250 記憶部
260 CPU
100 Composite particles 110 Biodegradable particles 120 Signal substances 200 System 210 Detection unit 220 Prediction unit 230 Calculation unit 240 Display unit 250 Storage unit 260 CPU

Claims (15)

候補物質が生体の活性に与える影響を評価する方法において、
信号物質を含有する生分解性粒子を取り込んだ生細胞に、前記候補物質を投与する工程と、
前記投与する工程の前後を通じて、前記信号物質からの信号を経時的に検出する工程と、
を含む評価方法。
In the method of evaluating the effect of a candidate substance on the activity of a living body,
The step of administering the candidate substance to the living cells that have taken in the biodegradable particles containing the signal substance, and
A step of detecting a signal from the signal substance over time before and after the step of administration, and a step of detecting the signal from the signal substance over time.
Evaluation method including.
前記信号物質は磁性体である、請求項1に記載の評価方法。 The evaluation method according to claim 1, wherein the signal substance is a magnetic substance. 前記生分解性粒子は、徐放性を有する、請求項1または2に記載の評価方法。 The evaluation method according to claim 1 or 2, wherein the biodegradable particles have a sustained release property. 前記生分解性粒子は、ハイドロゲル粒子である、請求項1〜3のいずれか1項に記載の評価方法。 The evaluation method according to any one of claims 1 to 3, wherein the biodegradable particles are hydrogel particles. 前記生細胞は、肝細胞である、請求項1〜4のいずれか1項に記載の評価方法。 The evaluation method according to any one of claims 1 to 4, wherein the living cell is a hepatocyte. 前記生分解性粒子は、平均粒子径が10nm以上2.0μm以下の粒子である、請求項1〜5のいずれか1項に記載の評価方法。 The evaluation method according to any one of claims 1 to 5, wherein the biodegradable particles are particles having an average particle diameter of 10 nm or more and 2.0 μm or less. 前記信号物質は、平均粒子径が0.5nm以上50nm以下の粒子である、請求項1〜6のいずれか1項に記載の評価方法。 The evaluation method according to any one of claims 1 to 6, wherein the signal substance is particles having an average particle diameter of 0.5 nm or more and 50 nm or less. 前記生分解性粒子は、前記信号物質を粒子内に内包する、請求項1〜7のいずれか1項に記載の評価方法。 The evaluation method according to any one of claims 1 to 7, wherein the biodegradable particles contain the signal substance in the particles. 前記信号物質は、Feを含む、請求項1〜8のいずれか1項に記載の評価方法。The evaluation method according to any one of claims 1 to 8, wherein the signal substance contains Fe 3 O 4 . 前記投与する工程の後、所定時間が経過した後における前記信号の信号強度と、
前記投与する工程がなかったとして予測される、前記所定時間が経過した後における前記信号の信号強度と、
の強度差を算出し、
前記強度差から、前記候補物質が前記生細胞に与える影響の大きさを定量する工程をさらに含む、
請求項1〜9のいずれか1項に記載の評価方法。
After the step of administration, the signal strength of the signal after a predetermined time has elapsed, and
The signal strength of the signal after the lapse of the predetermined time, which is predicted that the administration step was not performed,
Calculate the strength difference of
Further including a step of quantifying the magnitude of the influence of the candidate substance on the living cells from the strength difference.
The evaluation method according to any one of claims 1 to 9.
前記信号の検出は、前記投与する工程の前後を通じての、生体に移植した前記生細胞からの信号の検出である、請求項1〜10のいずれか1項に記載の評価方法。 The evaluation method according to any one of claims 1 to 10, wherein the detection of the signal is the detection of the signal from the living cells transplanted into a living body before and after the administration step. 請求項1〜11のいずれか1項に記載の評価方法に用いられる、信号物質を含有する生分解性粒子。 A biodegradable particle containing a signal substance used in the evaluation method according to any one of claims 1 to 11. 請求項12に記載の生分解性粒子と、生細胞と、を含むキット。 A kit comprising the biodegradable particles according to claim 12 and living cells. 候補物質が生体の活性に与える影響を評価するシステムにおいて、
信号物質を含有する生分解性粒子を取り込んだ生細胞であって、前記候補物質を投与された生細胞からの信号を、前記候補物質の投与の前後を通じて経時的に検出する、検出部を有する評価システム。
In a system that evaluates the effects of candidate substances on the activity of living organisms
It is a living cell that has taken in biodegradable particles containing a signal substance, and has a detection unit that detects a signal from the living cell to which the candidate substance is administered over time before and after administration of the candidate substance. Evaluation system.
さらに、前記候補物質を投与される前の複数の時点において、前記信号物質を含有する生分解性粒子を取り込んだ生細胞から前記検出部が検出した前記信号の強度から、前記信号強度の減衰の度合いを予測する予測部と、
前記候補物質を投与した後の時点において前記検出部が前記生細胞から検出した前記信号の強度と、前記予測部が予測した前記信号の強度と、の強度差を算出する算出部と、
を有する、請求項14に記載の評価システム。

Further, at a plurality of time points before the candidate substance is administered, the signal intensity is attenuated from the signal intensity detected by the detection unit from the living cells that have taken in the biodegradable particles containing the signal substance. A predictor that predicts the degree and
A calculation unit that calculates the intensity difference between the signal intensity detected by the detection unit from the living cells and the signal intensity predicted by the prediction unit at the time after the administration of the candidate substance.
The evaluation system according to claim 14.

JP2019551101A 2017-11-06 2018-10-19 METHOD FOR EVALUATING EFFECT OF CANDIDATE SUBSTANCE ON BIOLOGICAL ACTIVITY, BIODEGRADABLE PARTICLES, KIT, AND SYSTEM FOR EVALUATING EFFECT OF CANDIDATE SUBSTANCE ON BIO ACTIVITY Active JP7328654B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017213708 2017-11-06
JP2017213708 2017-11-06
PCT/JP2018/039064 WO2019087829A1 (en) 2017-11-06 2018-10-19 Substance on bioactivity, biodegradable particle, kit, and system for evaluating effect of candidate substance on bioactivity

Publications (2)

Publication Number Publication Date
JPWO2019087829A1 true JPWO2019087829A1 (en) 2020-11-26
JP7328654B2 JP7328654B2 (en) 2023-08-17

Family

ID=66331436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019551101A Active JP7328654B2 (en) 2017-11-06 2018-10-19 METHOD FOR EVALUATING EFFECT OF CANDIDATE SUBSTANCE ON BIOLOGICAL ACTIVITY, BIODEGRADABLE PARTICLES, KIT, AND SYSTEM FOR EVALUATING EFFECT OF CANDIDATE SUBSTANCE ON BIO ACTIVITY

Country Status (2)

Country Link
JP (1) JP7328654B2 (en)
WO (1) WO2019087829A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261569A1 (en) * 2019-06-28 2020-12-30 コニカミノルタ株式会社 Method for assessing differentiation state of cells and gelatin nanoparticles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241378A (en) * 2004-02-25 2005-09-08 Olympus Corp Method for analyzing membrane function of living organism with membrane structure
WO2010055829A1 (en) * 2008-11-11 2010-05-20 独立行政法人科学技術振興機構 Method and kit for detecting biological signal of three-dimensional cell culture material
WO2017110745A1 (en) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 Gelatin particle, method for manufacturing gelatin particle, cell including gelatin particle, and method for manufacturing cell including gelatin particle
WO2017110746A1 (en) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 Gelatin particles, method for producing gelatin particles, gelatin particle-encapsulating cells, and method for producing gelatin particle-encapsulating cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241378A (en) * 2004-02-25 2005-09-08 Olympus Corp Method for analyzing membrane function of living organism with membrane structure
WO2010055829A1 (en) * 2008-11-11 2010-05-20 独立行政法人科学技術振興機構 Method and kit for detecting biological signal of three-dimensional cell culture material
WO2017110745A1 (en) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 Gelatin particle, method for manufacturing gelatin particle, cell including gelatin particle, and method for manufacturing cell including gelatin particle
WO2017110746A1 (en) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 Gelatin particles, method for producing gelatin particles, gelatin particle-encapsulating cells, and method for producing gelatin particle-encapsulating cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INFLAMMATION AND REGENERATION, vol. 34, no. 1, JPN6022043032, 2014, pages 45 - 55, ISSN: 0005005827 *

Also Published As

Publication number Publication date
JP7328654B2 (en) 2023-08-17
WO2019087829A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
Lee et al. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface
Hao et al. Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging
Ning et al. Long-term in vivo CT tracking of mesenchymal stem cells labeled with Au@ BSA@ PLL nanotracers
Trekker et al. Sensitive in vivo cell detection using size-optimized superparamagnetic nanoparticles
JPWO2019088292A1 (en) Hydrogel particles and methods for producing them, cells or cell structures containing hydrogel particles, methods for evaluating cell activity using hydrogel particles, and use of hydrogel particles as sustained-release preparations.
CN111450264A (en) Bimodal nanoprobe targeting glioblastoma multiforme and preparation method thereof
JP2014095025A (en) Diamond composite particles
Vreys et al. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain: validation of various MPIO labeling strategies
US20230250153A1 (en) Gelatin particles, method for producing gelatin particles, gelatin particle-containing cell, and method for producing gelatin particle-containing cell
Nelson et al. Initial evaluation of the use of USPIO cell labeling and noninvasive MR monitoring of human tissue-engineered vascular grafts in vivo
Sung et al. Dual-modal nanoprobes for imaging of mesenchymal stem cell transplant by MRI and fluorescence imaging
Wu et al. Affibody-modified Gd@ C-dots with efficient renal clearance for enhanced MRI of EGFR expression in non-small-cell lung cancer
WO2014035620A1 (en) Contrast imaging applications for lanthanide nanoparticles
Kim et al. Magneto-acoustic protein nanostructures for non-invasive imaging of tissue mechanics in vivo
JP7328654B2 (en) METHOD FOR EVALUATING EFFECT OF CANDIDATE SUBSTANCE ON BIOLOGICAL ACTIVITY, BIODEGRADABLE PARTICLES, KIT, AND SYSTEM FOR EVALUATING EFFECT OF CANDIDATE SUBSTANCE ON BIO ACTIVITY
CN104815341A (en) Targeted polymer micelle magnetic nanoparticle, and preparation method and application thereof
Chen et al. Stem cell tracking with nanoparticle-based ultrasound contrast agents
JP6853788B2 (en) Gelatin particles, methods for producing gelatin particles, gelatin particle-encapsulating cells, and gelatin particle-encapsulating cells.
JP2011068667A (en) Scanning suspension comprising particle with diameter of at least 1 micrometer
JP2018019686A (en) Gelatin particles, method of producing gelatin particles, gelatin particle-containing cell, method of producing gelatin particle-containing cell and cell structure
JP7241355B2 (en) COMPOSITE PARTICLE FOR CONTRAST IMAGING, METHOD FOR MANUFACTURING COMPOSITE PARTICLE, CELL, CELL STRUCTURE AND MIXED DISPERSION
Herynek et al. Pre-microporation improves outcome of pancreatic islet labelling for optical and 19 F MR imaging
Hartanto et al. Nanoparticles for ultrasound-guided imaging of cell implantation
CN114366822A (en) Active targeting multi-modal molecular imaging probe and preparation method and application thereof
Nafiujjaman et al. Gold nanoparticles as a computed tomography marker for stem cell tracking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230727

R150 Certificate of patent or registration of utility model

Ref document number: 7328654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150