JPWO2019030905A1 - Radiant plate - Google Patents

Radiant plate Download PDF

Info

Publication number
JPWO2019030905A1
JPWO2019030905A1 JP2019535546A JP2019535546A JPWO2019030905A1 JP WO2019030905 A1 JPWO2019030905 A1 JP WO2019030905A1 JP 2019535546 A JP2019535546 A JP 2019535546A JP 2019535546 A JP2019535546 A JP 2019535546A JP WO2019030905 A1 JPWO2019030905 A1 JP WO2019030905A1
Authority
JP
Japan
Prior art keywords
radiation plate
ceramic powder
resin
plate according
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019535546A
Other languages
Japanese (ja)
Other versions
JP6908300B2 (en
Inventor
植田 耕作
耕作 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UETA GENERAL INCORPORATED ASSOCIATION
Original Assignee
UETA GENERAL INCORPORATED ASSOCIATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UETA GENERAL INCORPORATED ASSOCIATION filed Critical UETA GENERAL INCORPORATED ASSOCIATION
Publication of JPWO2019030905A1 publication Critical patent/JPWO2019030905A1/en
Application granted granted Critical
Publication of JP6908300B2 publication Critical patent/JP6908300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station

Abstract

遠赤外線の放射率が高いセラミックス粉末を用い、開口部の周長を増加させることにより、冷却効率の向上が可能な放射板を提供する。放射板は、複数の開口部(4)を有する樹脂基体(2)を備え、樹脂基体(2)は、母材樹脂に炭酸カルシウムを主成分とする第1セラミックス粉を混練して成形される。Provided is a radiation plate capable of improving cooling efficiency by using a ceramic powder having a high emissivity of far infrared rays and increasing the circumference of an opening. The radiation plate includes a resin substrate (2) having a plurality of openings (4), and the resin substrate (2) is formed by kneading a matrix resin with a first ceramic powder containing calcium carbonate as a main component. ..

Description

本発明は、空調装置の熱交換器に用いる放射板に関する。 The present invention relates to a radiation plate used for a heat exchanger of an air conditioner.

近年、地球の平均地上気温が上昇し、空調装置の設置が激増している。海外においても、生活水準の上昇に伴い、空調装置の普及が記録的に伸びている。しかし、電力供給が十分でなく停電も頻発している国もあり、消費電力が大きい空調装置の省電力化が要望されている。 In recent years, the average surface temperature of the earth has risen, and the number of air conditioners installed has increased dramatically. Even overseas, the spread of air conditioners has increased record-setting due to rising living standards. However, in some countries, where the power supply is insufficient and power outages frequently occur, there is a demand for power saving of air conditioners that consume large amounts of power.

従来、空調の省電力化としては、冷房の設定温度を高くし、断熱材により保冷効果や蓄熱効果を高めることで対応している。また、空調装置の熱交換器の機能を高める省電力技術が特許文献1に提案されている。 Conventionally, the power saving of air conditioning has been dealt with by increasing the set temperature of cooling and enhancing the cold insulation effect and the heat storage effect by a heat insulating material. Further, Patent Document 1 proposes a power-saving technique that enhances the function of the heat exchanger of the air conditioner.

特開2014−224621号公報JP, 2014-224621, A

特許文献1に記載の技術では、二酸化ケイ素(SiO2)を主成分とするセラミックス粉末を樹脂に混練して成形したネットが用いられている。ネットを空気の流通経路に装着することにより、通過する空気の温度を変化させて熱交換効率を高めることが記載されている。しかし、ネットの形状及び単位面積当たりの開口率については記載されているが、セラミックス粉末の種類や開口部の形状などが熱交換効率に与える影響については記載がない。In the technique described in Patent Document 1, a net formed by kneading a ceramic powder containing silicon dioxide (SiO 2 ) as a main component with a resin to form the net is used. It is described that the temperature of the passing air is changed and the heat exchange efficiency is increased by mounting the net in the air circulation path. However, although the shape of the net and the aperture ratio per unit area are described, there is no description about the effect of the type of ceramic powder, the shape of the openings, etc. on the heat exchange efficiency.

上記問題点を鑑み、本発明は、遠赤外線の放射率が高いセラミックス粉末を混練して成形した樹脂基体に複数の開口部を設け、開口部の周長を増加させることにより、冷却効率の向上が可能な放射板を提供することを目的とする。 In view of the above problems, the present invention improves cooling efficiency by providing a plurality of openings in a resin base formed by kneading and molding a ceramic powder having a high emissivity of far infrared rays and increasing the circumferential length of the openings. It is intended to provide a radiation plate capable of

上記目的を達成するために、本発明の一態様は、母材樹脂に炭酸カルシウムを主成分とする第1セラミックス粉を混練した樹脂基体を備え、複数の開口部を有する放射板であることを要旨とする。 In order to achieve the above object, one embodiment of the present invention is a radiating plate having a plurality of openings, which is provided with a resin substrate in which a base material resin is kneaded with a first ceramic powder containing calcium carbonate as a main component. Use as a summary.

第1セラミックス粉は、母材樹脂に対して35±10質量%配合されることが望ましい。また、二酸化ケイ素を主成分とする第2セラミックス粉を更に混練してもよい。この場合、第1セラミックス粉を前記第2セラミックス粉に対して66.6質量%配合し、第1及び第2セラミックス粉が母材樹脂に対して35±10質量%配合されることが望ましい。更に、樹脂基体表面における複数の開口部の開口率が60±5%で、複数の開口部それぞれの平面形状において、開口面積に対する周長の百分率で規定される周長率が35%以上であることが望ましい。 It is desirable that the first ceramic powder is blended in an amount of 35±10 mass% with respect to the base material resin. Further, the second ceramic powder containing silicon dioxide as a main component may be further kneaded. In this case, it is preferable that the first ceramic powder is mixed with the second ceramic powder in an amount of 66.6 mass% and the first and second ceramic powders are mixed with the base resin in an amount of 35±10 mass %. Further, the aperture ratio of the plurality of openings on the surface of the resin substrate is 60±5%, and in the planar shape of each of the plurality of openings, the perimeter ratio defined by the percentage of the perimeter with respect to the opening area is 35% or more. Is desirable.

本発明によれば、遠赤外線の放射率が高いセラミックス粉末を用い、開口部の周長を増加させることにより、冷却効率の向上が可能な放射板を提供することができる。 According to the present invention, it is possible to provide a radiation plate capable of improving cooling efficiency by using ceramic powder having a high emissivity of far infrared rays and increasing the circumferential length of the opening.

本発明の実施形態に係る放射板の一例を示す平面概略図である。It is a plane schematic diagram showing an example of a radiation plate concerning an embodiment of the present invention. 図1に示した放射板に設けられた開口部の拡大図である。It is an enlarged view of the opening part provided in the radiation plate shown in FIG. 図1に示した放射板のA−A断面を示す概略図である。It is the schematic which shows the AA cross section of the radiation plate shown in FIG. 本発明の実施形態に係る放射板に用いるセラミックス粉Aの間接測定法による赤外線放射率測定結果の一例を示す図である。It is a figure which shows an example of the infrared emissivity measurement result by the indirect measuring method of the ceramic powder A used for the radiation plate which concerns on embodiment of this invention. 本発明の実施形態に係る放射板に用いるセラミックス粉Aのレーザ回折法による粒度分布測定結果の一例を示す図である。It is a figure which shows an example of the particle size distribution measurement result by the laser diffraction method of the ceramic powder A used for the radiation plate which concerns on embodiment of this invention. 本発明の実施形態に係る放射板に用いるセラミックス粉Bの間接測定法による赤外線放射率測定結果の一例を示す図である。It is a figure which shows an example of the infrared emissivity measurement result by the indirect measuring method of the ceramics powder B used for the radiation plate which concerns on embodiment of this invention. 本発明の実施形態に係る放射板に用いるセラミックス粉Bのレーザ回折法による粒度分布測定結果の一例を示す図である。It is a figure which shows an example of the particle size distribution measurement result by the laser diffraction method of the ceramic powder B used for the radiation plate which concerns on embodiment of this invention. 従来の放射板の一例を示す平面概略図である。It is a schematic plan view showing an example of a conventional radiation plate. 本発明の実施形態に係る放射板の開口率と空調装置の節電効率との関係の一例を示す図である。It is a figure which shows an example of the relationship between the aperture ratio of the radiation plate and the power saving efficiency of an air conditioner which concern on embodiment of this invention. 本発明の実施形態に係る放射板の開口部の開口面積と周長率との関係の一例を示す図である。It is a figure which shows an example of the relationship of the opening area of the opening part of a radiation plate and circumference ratio which concern on embodiment of this invention. 本発明の実施形態に係る放射板の周長率と空調装置の節電効率との関係の一例を示す図である。It is a figure which shows an example of the relationship between the circumference ratio of the radiation plate and the power saving efficiency of an air conditioner which concern on embodiment of this invention. 本発明のその他の実施形態に係る放射板の断面を示す概略図である。It is the schematic which shows the cross section of the radiation plate which concerns on other embodiment of this invention.

以下図面を参照して、本発明の実施形態を説明する。図面の記載において同一あるいは類似部分には同一あるいは類似な符号を付している。ただし、図面は模式的なものであり、層の厚みと幅との関係、各層の厚みの比率などは現実のものとは異なることに留意すべきである。また、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 An embodiment of the present invention will be described below with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and the relationship between the thickness and width of layers, the ratio of the thickness of each layer, and the like are different from actual ones. Further, it is needless to say that the drawings include parts in which dimensional relationships and ratios are different from each other.

(実施形態)
本発明の実施形態に係る放射板は、例えば、空調装置の熱交換器に用いられ、図1〜図3に示すように、複数の開口部4を有する樹脂基体2を備える。樹脂基体2は、母材樹脂にセラミックス粉を混練して成形される。
(Embodiment)
The radiation plate according to the embodiment of the present invention is used, for example, in a heat exchanger of an air conditioner, and includes a resin substrate 2 having a plurality of openings 4 as shown in FIGS. 1 to 3. The resin substrate 2 is formed by kneading a base material resin with ceramic powder.

樹脂基体2の母材樹脂として、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、塩化ビニール(PVC)、ポリスチレン(PS)などの樹脂が用いられる。PEは、耐火性、耐熱性、耐薬品性、低温脆性、防湿性などに優れ、加工性がよく安価である。PEは軟化温度が低く、セラミックス粉を多量に配合しても流動性に優れ、複雑な形状に加工できる。実施形態では、母材樹脂としてPEを用いる。 As a base material resin of the resin substrate 2, a resin such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), vinyl chloride (PVC), polystyrene (PS) is used. PE is excellent in fire resistance, heat resistance, chemical resistance, low temperature brittleness, moisture resistance, etc., and has good processability and is inexpensive. PE has a low softening temperature, is excellent in fluidity even when a large amount of ceramic powder is mixed, and can be processed into a complicated shape. In the embodiment, PE is used as the base material resin.

樹脂基体2に含まれるセラミックス粉は、吸収した熱エネルギを遠赤外領域の波長が4μm〜14μmの育成光線に変えて空気中に熱放射する。セラミックス粉の遠赤外線の放射特性は産地、粒度などにより異なる。例えば、ある産地のセラミックス粉A(第1セラミックス粉)は、図4に示すように、波長が4μm寄りの遠赤外線の放射率が高い。第1セラミックス粉は、炭酸カルシウム(CaCO3)が99%以上で主成分であり、二酸化ケイ素(SiO2)が0.5%以下で含有されている。実施形態に用いる第1セラミックス粉の粒子径は、図5に示すように、10μm以下である。The ceramic powder contained in the resin substrate 2 converts the absorbed heat energy into a growing light beam having a wavelength in the far infrared region of 4 μm to 14 μm, and radiates the heat into the air. Far-infrared radiation characteristics of ceramic powder differ depending on the place of production, particle size, etc. For example, as shown in FIG. 4, the ceramic powder A (first ceramic powder) of a certain production area has a high emissivity of far infrared rays having a wavelength near 4 μm. The first ceramic powder contains 99% or more of calcium carbonate (CaCO 3 ) as a main component, and contains 0.5% or less of silicon dioxide (SiO 2 ). The particle diameter of the first ceramic powder used in the embodiment is 10 μm or less, as shown in FIG.

また、他の産地のセラミックス粉B(第2セラミックス粉)は、図6に示すように、波長が14μm寄りの遠赤外線の放射率が高い。第2セラミックス粉は、SiO2が約67%で主成分であり、アルミナ(Al23)が約15%、酸化第二鉄(Fe23)が約4%、酸化ナトリウム(Na2O)が約4%、酸化カルシウム(CaO)が約3%、酸化カリウム(K2O)が約3%、酸化マグネシウム(Mg2O)が約2%、二酸化チタン(TiO2)が約0.5%で含有されている。実施形態に用いる第2セラミックス粉の粒子径は、図7に示すように、10μm以下である。Further, as shown in FIG. 6, the ceramic powder B (second ceramic powder) from other producing areas has a high emissivity of far infrared rays having a wavelength near 14 μm. The second ceramic powder is made up of about 67% of SiO 2 , which is the main component, about 15% of alumina (Al 2 O 3 ), about 4% of ferric oxide (Fe 2 O 3 ), and sodium oxide (Na 2 O) about 4%, calcium oxide (CaO) about 3%, potassium oxide (K 2 O) about 3%, magnesium oxide (Mg 2 O) about 2%, titanium dioxide (TiO 2 ) about 0%. It is contained at 0.5%. The particle diameter of the second ceramic powder used in the embodiment is 10 μm or less, as shown in FIG. 7.

第1セラミックス粉は、全般的に遠赤外線放射率が高く、また材料も安価である。しかし、図4に示したように、波長が5ミクロンm〜15μmの範囲で部分的に放射率が低いところがある。一方、第2セラミックス粉は材料コストが第1セラミックス粉に比べて高価ではあるが、図6に示したように、波長が5ミクロンm〜15μmの範囲で放射率が比較的高い。したがって、放射板としては、第1セラミックス粉単体でも十分な効果を実現できるが、第1セラミックス粉を主として、第2セラミックス粉を補助的に追加することがより望ましい。 The first ceramic powder generally has a high far-infrared emissivity, and the material is inexpensive. However, as shown in FIG. 4, the emissivity is partially low in the wavelength range of 5 μm to 15 μm. On the other hand, although the material cost of the second ceramic powder is higher than that of the first ceramic powder, as shown in FIG. 6, the emissivity is relatively high in the wavelength range of 5 μm to 15 μm. Therefore, as the radiation plate, the first ceramic powder alone can achieve a sufficient effect, but it is more desirable to mainly add the first ceramic powder and supplementarily add the second ceramic powder.

セラミックス粉は、母材樹脂に50質量%以上配合しても、遠赤外線放射率の増加は微小で、冷却効果の改善も僅かしか認められない。実施形態に係る樹脂基体2では、コスト増も配慮して、母材樹脂に対して第1セラミックス粉を35±10質量%配合する。あるいは、第1及び第2セラミックス粉を混合して用いる場合、第1セラミックス粉を第2セラミックス粉に対して66.6質量%以上混合したセラミックス粉を35±10質量%配合することが望ましい。第1セラミックス粉に配合する第2セラミックス粉を1/3質量比率以上に増加しても冷却効果の改善は少なく、また製造コストの増加を招いてしまう。 Even if 50% by mass or more of the ceramic powder is blended with the base material resin, the far infrared ray emissivity is slightly increased, and the cooling effect is only slightly improved. In the resin substrate 2 according to the embodiment, the first ceramic powder is blended in an amount of 35±10 mass% with respect to the base material resin in consideration of cost increase. Alternatively, when the first and second ceramic powders are mixed and used, it is desirable to mix 35±10 mass% of ceramic powder in which 66.6 mass% or more of the first ceramic powder is mixed with the second ceramic powder. Even if the second ceramic powder mixed with the first ceramic powder is increased to 1/3 mass ratio or more, the cooling effect is not improved much and the manufacturing cost is increased.

開口部4の平面形状は、図2に示すように、正方形を基本図形として、正方形の各辺に矩形状の突起6が設置されている。正方形は1辺の長さがLである。突起6は各辺の中央部に設けられ、幅がWで、対辺に向かう長さがPである。開口部4の角部は半径Rで角丸加工されている。図3に示すように、樹脂基体2の厚さはTである。なお、開口部4の平面形状は正方形に限定されず、多角形あるいは円形であってもよい。開口部4の角部は角丸加工に限定されず、面取り加工であってもよく、あるいは角部の加工を施さなくてもよい。また、突起6は少なくとも1辺に設ければよく、突起6の形状も限定されない。 As shown in FIG. 2, the planar shape of the opening 4 has a square as a basic figure, and a rectangular projection 6 is provided on each side of the square. The length of one side of the square is L. The protrusion 6 is provided at the center of each side, has a width W, and a length P toward the opposite side. The corners of the opening 4 are rounded with a radius R. As shown in FIG. 3, the thickness of the resin substrate 2 is T. The planar shape of the opening 4 is not limited to a square, and may be polygonal or circular. The corners of the opening 4 are not limited to rounded corners and may be chamfered or may not be processed. Further, the projection 6 may be provided on at least one side, and the shape of the projection 6 is not limited.

放射板の形状は長方形であり、外周に凸部10a及び凹部10bが設けられている。放射板の1辺に設けられた凸部10a及び凹部10bは、それぞれ対辺の凹部10b及び凸部10aに嵌め合わせ可能である。凸部10a及び凹部10bを用いてつなぎ合せることにより、放射板を熱交換器の形状に容易に合わせて設置することができる。 The radiating plate has a rectangular shape, and a convex portion 10a and a concave portion 10b are provided on the outer circumference. The convex portion 10a and the concave portion 10b provided on one side of the radiation plate can be fitted to the concave portion 10b and the convex portion 10a on the opposite side, respectively. By connecting the protrusions 10a and the recesses 10b to each other, the radiation plate can be easily installed in conformity with the shape of the heat exchanger.

(放射板の製造方法)
実施形態に係る放射板の一例を説明する。まず、第2セラミックス粉に対して第1セラミックス粉を約67%以上配合したセラミックス粉を準備する。母材樹脂のPE樹脂に対するセラミックス粉の質量比を80:20として加熱された混練装置に投入し、均一になるまで十分に攪拌混練する。混練された材料を直径3mmの多孔ノズルから押し出しながら連続して切断して、直径が約3mm、長さが約2.5mmのペレットを作製し、マスターバッチとする。
(Method for manufacturing radiation plate)
An example of the radiation plate according to the embodiment will be described. First, a ceramic powder in which the first ceramic powder is mixed in an amount of about 67% or more with respect to the second ceramic powder is prepared. The mass ratio of the ceramic powder to the PE resin of the base resin is 80:20, and the mixture is put into a heated kneading device and sufficiently kneaded until uniform. The kneaded material is continuously extruded while being extruded from a multi-hole nozzle having a diameter of 3 mm to prepare pellets having a diameter of about 3 mm and a length of about 2.5 mm, which is used as a master batch.

マスターバッチとして作製された、セラミックス粉が約80質量%配合されたペレットと、PE樹脂のみのペレットとを目的配合率、例えばセラミックス粉が約35質量%となるように混合機において混合し、正規配合比率のペレットとする。 Pellets prepared as a masterbatch containing about 80% by mass of ceramic powder and PE resin-only pellets were mixed in a mixer so that the target compounding ratio, for example, about 35% by mass of ceramic powder, was mixed, Use pellets with the mixing ratio.

正規配合比率のペレットを射出成形機で流動可能な温度に加熱する。射出成形機から金型に押し込み充填し、冷却後成形された放射板を金型から取り出す。このようにして、実施形態に係る放射板が製造される。セラミックス粉の粒子径は、図5及び図7に示したように、10μm以下と細かいので、母材樹脂に容易に混練することができる。また、セラミックス粉を30質量%以上の高い比率で母材樹脂に混練しても、粒子径が細かいので成形された放射板の表面を滑らかにすることができる。 The pellets in the normal mixing ratio are heated to a temperature at which they can flow in an injection molding machine. The mold is pushed into the mold from the injection molding machine, and after cooling, the molded radiation plate is taken out from the mold. In this way, the radiation plate according to the embodiment is manufactured. As shown in FIGS. 5 and 7, the ceramic powder has a fine particle diameter of 10 μm or less, so that it can be easily kneaded with the base material resin. Further, even if the ceramic powder is kneaded with the base material resin in a high proportion of 30% by mass or more, the surface of the molded radiation plate can be made smooth because the particle diameter is small.

(実施例)
放射板の冷却効率を増大させるには、樹脂基体2の遠赤外線放射率を増加させる必要がある。空調装置の室外機や室内機の空気取り入れ側に放射板を設置する場合、樹脂基体2の厚さTは2mm〜3mmが望ましい。厚さTが2mmより薄いと、放射板に流入する空気との接触面積が減少して遠赤外線放射率が低減する。厚さTが3mmより厚いと、空気の送風抵抗が増大して冷却効果が抑制される。また、加工の容易さを考慮すると、暑さTは2.4mm±1mmが望ましい。
(Example)
In order to increase the cooling efficiency of the radiation plate, it is necessary to increase the far infrared ray emissivity of the resin substrate 2. When the radiation plate is installed on the air intake side of the outdoor unit or the indoor unit of the air conditioner, the thickness T of the resin substrate 2 is preferably 2 mm to 3 mm. If the thickness T is less than 2 mm, the contact area with the air flowing into the radiating plate decreases, and the far infrared emissivity decreases. When the thickness T is thicker than 3 mm, the air blowing resistance increases and the cooling effect is suppressed. Further, considering the ease of processing, the heat T is preferably 2.4 mm±1 mm.

従来の放射板では、樹脂基体2に配置する複数の開口部4aの形状は、例えば、図8に示すように正六角形である。あるいは、開口部4aの形状は正方形でも真円形でもよい。樹脂基体2全表面積に対する複数の開口部4aの開口面積の百分率で規定される開口率が小さいと送風抵抗が増大し、冷却効率が低下する。従来の放射板では、冷却効率を増加させるために、各開口部4aの開口面積を大きくして開口率を増加させることで対応していた。 In the conventional radiation plate, the shape of the plurality of openings 4a arranged in the resin substrate 2 is, for example, a regular hexagon as shown in FIG. Alternatively, the shape of the opening 4a may be square or perfect circle. If the opening ratio defined by the percentage of the opening area of the plurality of openings 4a with respect to the total surface area of the resin substrate 2 is small, the ventilation resistance increases and the cooling efficiency decreases. In the conventional radiation plate, in order to increase the cooling efficiency, the opening area of each opening 4a is increased to increase the aperture ratio.

しかし、開口部4aの開口面積を増加させても、冷却効果を逆に減少させる場合もある。冷却効果を増加させるには、空気が樹脂基体2と接触する面積を増加させ、遠赤外線の放射量を増加させる必要がある。図10の表に示すように、開口部4、4aの平面形状において、開口面積に対する周長の百分率で規定される周長率は、開口面積の増加により減少する。例えば、従来の開口部4aの周長率は、開口面積が約158mm2では、正方形が約32%で大きく、正六角形で約30%、真円で約29%と小さい。開口面積が約253mm2と増加すると、周長率は、正方形が約25%、正六角形が約23%、真円が約22%と、いずれも減少する。However, even if the opening area of the opening 4a is increased, the cooling effect may be decreased. In order to increase the cooling effect, it is necessary to increase the area where air contacts the resin substrate 2 and increase the radiation amount of far infrared rays. As shown in the table of FIG. 10, in the planar shape of the openings 4 and 4a, the perimeter ratio defined by the percentage of the perimeter with respect to the opening area decreases as the opening area increases. For example, the perimeter ratio of the conventional opening 4a is large at about 32% for a square, about 30% for a regular hexagon, and about 29% for a perfect circle when the opening area is about 158 mm 2 . When the opening area is increased to about 253 mm 2 , the perimeter is reduced to about 25% for squares, about 23% for regular hexagons, and about 22% for perfect circles.

図10に示した実施例の開口部4の形状は、図2と同様の形状である。開口面積が約158mm2では、長さL〜13.5mm、幅W〜2.4mm、長さP〜1.6mm、半径R〜1.2mmである。開口面積が約253mm2では、長さL〜17mm、幅W〜3mm、長さP〜2mm、半径R〜1.5mmである。図10の表に示すように、実施例に係る開口部4の周長及び周長率は、従来の開口部4aで一番大きな正方形と比べて、いずれも約44%〜約47%大きい。The opening 4 of the embodiment shown in FIG. 10 has the same shape as that of FIG. When the opening area is approximately 158 mm 2 , the length L is 13.5 mm, the width W is 2.4 mm, the length P is 1.6 mm, and the radius R is 1.2 mm. When the opening area is about 253 mm 2 , the length is L to 17 mm, the width is W to 3 mm, the length is P to 2 mm, and the radius is R to 1.5 mm. As shown in the table of FIG. 10, the perimeter and perimeter of the opening 4 according to the embodiment are both about 44% to about 47% larger than the largest square of the conventional opening 4a.

実施形態に係る放射板の冷却効率を評価するため、空調装置の室外機の空気取り入れ側に放射板を取り付けて空調装置の節電効率を測定した。樹脂基体2に含有される第1及び第2セラミックス粉の混合比は2:1である。放射板には、図10の表に示した開口面積が約253mm2の開口部4が設けられている。図9には、実施形態に係る放射板の開口率と、空調装置の節電効率の関係を示す。図9の表に示すように、開口率が約40%で節電効率が約3%〜約9%、開口率が約50%で節電効率が約14%〜約21%、開口率が約60%で節電効率が約20%〜約36%と、開口率の増加とともに節電効率も増加する。In order to evaluate the cooling efficiency of the radiation plate according to the embodiment, the radiation plate was attached to the air intake side of the outdoor unit of the air conditioner to measure the power saving efficiency of the air conditioner. The mixing ratio of the first and second ceramic powders contained in the resin substrate 2 is 2:1. The radiation plate is provided with the openings 4 having an opening area of about 253 mm 2 shown in the table of FIG. FIG. 9 shows the relationship between the aperture ratio of the radiation plate and the power saving efficiency of the air conditioner according to the embodiment. As shown in the table of FIG. 9, the aperture ratio is about 40%, the power saving efficiency is about 3% to about 9%, the aperture ratio is about 50%, the power saving efficiency is about 14% to about 21%, and the aperture ratio is about 60%. %, the power saving efficiency is about 20% to about 36%, and the power saving efficiency increases as the aperture ratio increases.

図11には、実施形態に係る放射板の周長率と空調装置の節電効率との関係を示す。図11には、比較例として、図10に示した正方形及び真円の形状で開口面積が約253mm2の開口部4aが配置された放射板についても評価結果を示している。開口率は、実施例及び比較例ともに約60%である。図11の表に示すように、実施例は、周長率が約36%で節電効率が約20%〜約36%である。比較例では、周長率は、正方形で約25%、及び真円で約22%であり、それぞれの節電効率は、約15%〜約28%、及び約12%〜約24%である。このように、周長率の増加により節電効率が増加する。FIG. 11 shows the relationship between the circumference ratio of the radiation plate and the power saving efficiency of the air conditioner according to the embodiment. As a comparative example, FIG. 11 also shows the evaluation results of the radiation plate having the square and perfect circle shapes shown in FIG. 10 and having the opening 4a having an opening area of about 253 mm 2 . The aperture ratio is about 60% in both the example and the comparative example. As shown in the table of FIG. 11, in the embodiment, the circumference ratio is about 36% and the power saving efficiency is about 20% to about 36%. In the comparative example, the circumference ratio is about 25% for a square and about 22% for a perfect circle, and the power saving efficiency of each is about 15% to about 28% and about 12% to about 24%. Thus, the power saving efficiency is increased by the increase of the circumference ratio.

冷却効率を低減させないためには、開口率を60%±5%として、周長率を35%以上とすることが望ましい。図10に示したように、開口率を増加すると、周長率は減少する。例えば、開口率が60%を超えて大きくなると、周長率の低下により、冷却効率は低減してしまう。 In order not to reduce the cooling efficiency, it is desirable that the aperture ratio is 60%±5% and the circumferential length ratio is 35% or more. As shown in FIG. 10, when the aperture ratio is increased, the circumference ratio is decreased. For example, when the aperture ratio exceeds 60% and becomes large, the cooling efficiency is reduced due to the decrease in the circumference ratio.

以上説明したように、実施形態によれば、母材樹脂に混合するセラミックス粉は高い遠赤外線放射率を有する。また、樹脂基体2には、正方形を基本図形として、正方形の各辺に矩形状の突起6が設置された開口部4を配置し、開口率の増加に伴う周長率の低下を抑制している。その結果、冷却効率の向上が可能な放射板を実現することができる。 As described above, according to the embodiment, the ceramic powder mixed with the base material resin has a high far-infrared emissivity. Further, in the resin substrate 2, a square is used as a basic figure, and the openings 4 in which the rectangular protrusions 6 are installed are arranged on each side of the square to suppress the decrease in the circumference ratio due to the increase in the opening ratio. There is. As a result, it is possible to realize a radiation plate capable of improving cooling efficiency.

(その他の実施形態)
上記のように、本発明は、実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described by way of embodiments, but it should not be understood that the descriptions and drawings forming a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.

実施形態では、図3に示したように、開口部4の周縁部が略直角に形成されている。この場合、開口部4の周縁部で空気の流れが乱されて送風抵抗が増大し、冷却効率が低下する可能性がある。図12に示すように、樹脂基体2の一面側において、突起6を含めた開口部4の周縁部8が丸み付けされている。例えば、空調装置の室外機において、周縁部8が丸み付けされた一面側から空気を取り入れるように放射板を装着する。空気は周縁部8が丸み付けされた開口部4をスムーズに流入することができ、冷却効率の低下を抑制することが可能となる。なお、丸み付けは、半径0.5mm〜2mmが望ましく、半径1mm±0.1mmがより望ましい。丸み付けの半径が0.5mm〜2mmの範囲外になると、送風抵抗が顕著になる。 In the embodiment, as shown in FIG. 3, the peripheral portion of the opening 4 is formed at a substantially right angle. In this case, there is a possibility that the flow of air is disturbed at the peripheral edge of the opening 4 to increase the ventilation resistance and reduce the cooling efficiency. As shown in FIG. 12, on one surface side of the resin substrate 2, the peripheral edge portion 8 of the opening 4 including the protrusion 6 is rounded. For example, in an outdoor unit of an air conditioner, a radiation plate is attached so that air is taken in from the one side whose peripheral edge 8 is rounded. The air can smoothly flow into the opening 4 having the rounded peripheral portion 8 and can suppress the decrease in cooling efficiency. The radius of rounding is preferably 0.5 mm to 2 mm, more preferably 1 mm±0.1 mm. When the radius of rounding is out of the range of 0.5 mm to 2 mm, the ventilation resistance becomes remarkable.

このように、本発明はここでは記載していない様々な実施形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲に係る発明特定事項によってのみ限定されるものである。 As described above, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the matters specifying the invention according to the scope of claims appropriate from this disclosure.

2…樹脂基体
4…開口部
6…突起
8…周縁部
2... Resin base 4... Opening 6... Protrusion 8... Peripheral part

Claims (10)

複数の開口部を有する樹脂基体を備え、該樹脂基体は、母材樹脂に炭酸カルシウムを主成分とする第1セラミックス粉を混練して成形されることを特徴とする放射板。 A radiation plate, comprising: a resin base having a plurality of openings, wherein the resin base is formed by kneading a base material resin with a first ceramic powder containing calcium carbonate as a main component. 前記樹脂基体は、前記第1セラミックス粉が前記母材樹脂に対して35±10質量%配合されていることを特徴とする請求項1に記載の放射板。 The radiation plate according to claim 1, wherein the resin base material contains the first ceramic powder in an amount of 35±10% by mass with respect to the base material resin. 前記樹脂基体は、前記母材樹脂に二酸化ケイ素を主成分とする第2セラミックス粉を更に混練して成形したことを特徴とする請求項1に記載の放射板。 The radiation plate according to claim 1, wherein the resin base is formed by further kneading the base resin with a second ceramic powder containing silicon dioxide as a main component. 前記樹脂基体は、前記第1及び第2セラミックス粉が前記母材樹脂に対して35±10質量%配合されていることを特徴とする請求項3に記載の放射板。 The radiation plate according to claim 3, wherein the resin base contains the first and second ceramic powders mixed in an amount of 35±10 mass% with respect to the base resin. 前記第1セラミックス粉が、前記第2セラミックス粉に対して66.6質量%以上配合されていることを特徴とする請求項3又は4に記載の放射板。 The radiation plate according to claim 3 or 4, wherein the first ceramic powder is mixed in an amount of 66.6 mass% or more with respect to the second ceramic powder. 前記第1及び第2セラミックス粉それぞれの粒径が10μm以下であることを特徴とする請求項1〜5のいずれか1項に記載の放射板。 The radiation plate according to claim 1, wherein each of the first and second ceramic powders has a particle size of 10 μm or less. 前記樹脂基体表面における前記複数の開口部の開口率が60±5%で、前記複数の開口部それぞれの平面形状において、開口面積に対する周長の百分率で規定される周長率が35%以上であることを特徴とする請求項1〜6のいずれか1項に記載の放射板。 The opening ratio of the plurality of openings on the surface of the resin substrate is 60±5%, and in the planar shape of each of the plurality of openings, the perimeter ratio defined by the percentage of the perimeter with respect to the opening area is 35% or more. It exists, The radiation plate of any one of Claims 1-6 characterized by the above-mentioned. 前記平面形状は、正多角形を基本図形として、前記正多角形の少なくとも1辺に該1辺から対辺に向かう突起が設置されていることを特徴とする請求項7に記載の放射板。 The radiation plate according to claim 7, wherein the planar shape has a regular polygon as a basic figure, and at least one side of the regular polygon is provided with a protrusion extending from the one side to the opposite side. 前記平面形状は、正方形を基本図形として、前記正方形の各辺に該各辺から対辺に向かう矩形状の突起が設置されていることを特徴とする請求項7に記載の放射板。 8. The radiating plate according to claim 7, wherein the planar shape has a square as a basic figure, and rectangular protrusions extending from each side to the opposite side are provided on each side of the square. 前記樹脂基体表面側において、前記複数の開口部それぞれの周縁部が丸み付けされていることを特徴とする請求項7〜9のいずれか1項に記載の放射板。 The radiation plate according to any one of claims 7 to 9, wherein a peripheral edge portion of each of the plurality of openings is rounded on the surface side of the resin substrate.
JP2019535546A 2017-08-10 2017-08-10 Radiant plate Active JP6908300B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029148 WO2019030905A1 (en) 2017-08-10 2017-08-10 Radiation plate

Publications (2)

Publication Number Publication Date
JPWO2019030905A1 true JPWO2019030905A1 (en) 2020-08-20
JP6908300B2 JP6908300B2 (en) 2021-07-21

Family

ID=65271975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019535546A Active JP6908300B2 (en) 2017-08-10 2017-08-10 Radiant plate

Country Status (3)

Country Link
JP (1) JP6908300B2 (en)
PH (1) PH12020500277A1 (en)
WO (1) WO2019030905A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929815Y1 (en) * 1970-12-09 1974-08-13
JPH07190675A (en) * 1993-12-28 1995-07-28 Kitagawa Ind Co Ltd Radiation material
JPH10189346A (en) * 1996-12-24 1998-07-21 Diamond Electric Mfg Co Ltd Electric device
JPH10224062A (en) * 1996-12-03 1998-08-21 Shozo Iwai Radiator, its manufacture and personal computer
JP2001315411A (en) * 2000-05-08 2001-11-13 Ricoh Co Ltd Plate for fixing apparatus
JP2003092011A (en) * 2001-09-18 2003-03-28 Matsushita Electric Ind Co Ltd Lighting device
CN1553133A (en) * 2003-06-04 2004-12-08 乐金电子(天津)电器有限公司 Fin of heat exchanger containing and using ceramic paint
JP4422783B1 (en) * 2008-04-23 2010-02-24 石の癒株式会社 Indoor environment adjustment system
JP2014224621A (en) * 2013-05-15 2014-12-04 有限会社B.E. Air conditioning net and heat exchanger using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929815Y1 (en) * 1970-12-09 1974-08-13
JPH07190675A (en) * 1993-12-28 1995-07-28 Kitagawa Ind Co Ltd Radiation material
JPH10224062A (en) * 1996-12-03 1998-08-21 Shozo Iwai Radiator, its manufacture and personal computer
JPH10189346A (en) * 1996-12-24 1998-07-21 Diamond Electric Mfg Co Ltd Electric device
JP2001315411A (en) * 2000-05-08 2001-11-13 Ricoh Co Ltd Plate for fixing apparatus
JP2003092011A (en) * 2001-09-18 2003-03-28 Matsushita Electric Ind Co Ltd Lighting device
CN1553133A (en) * 2003-06-04 2004-12-08 乐金电子(天津)电器有限公司 Fin of heat exchanger containing and using ceramic paint
JP4422783B1 (en) * 2008-04-23 2010-02-24 石の癒株式会社 Indoor environment adjustment system
JP2014224621A (en) * 2013-05-15 2014-12-04 有限会社B.E. Air conditioning net and heat exchanger using the same

Also Published As

Publication number Publication date
WO2019030905A1 (en) 2019-02-14
JP6908300B2 (en) 2021-07-21
PH12020500277A1 (en) 2021-01-25

Similar Documents

Publication Publication Date Title
US20130010465A1 (en) Light emitting bulb
JP2011145026A (en) Pneumatic inductive radiation unit
JP6486409B2 (en) Operation method of air conditioner and reticulated resin molding
JP6908300B2 (en) Radiant plate
JP2014224621A (en) Air conditioning net and heat exchanger using the same
JP5678789B2 (en) Thermally conductive polyalkylene terephthalate resin composition and molded body
CN108105859B (en) Air conditioner indoor unit and control method thereof
CA3035529C (en) Pneumatic radiation unit
US20190377118A1 (en) Light guide element and electronic device having the same
CN103703577A (en) Reflector for light-emitting diode and housing
KR20190133319A (en) Method of manufacturing an insulating floor material and an insulating floor material manufactured by the manufacturing method
TWI621233B (en) Wire structure and design method of wire structure
JP6886759B2 (en) Power saving panel and air conditioner
CN106085165B (en) LED light
CN209893255U (en) Heat radiation structure of ceiling lamp
JP2018128617A (en) Wavelength conversion member and led light-emitting device
CN218154404U (en) Novel soaking floor heating module
KR20170040979A (en) Graphite composite molding material and manufacturing method of heat radiating material using thereof
JP2014001885A (en) Heat reservoir for both cooling and heating
JP2012140565A (en) Heat-retaining material and material for heat retention
JP5171183B2 (en) Molded body for light source cover and lighting fixture provided with the molded body
JP3210077U (en) Heat storage unit for air conditioning
CN207449563U (en) A kind of changes in temperature blender door structure
CN214155177U (en) Informatization communication device
CN214249835U (en) Fresh air outlet plaque and fresh air conditioner

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20191209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210624

R150 Certificate of patent or registration of utility model

Ref document number: 6908300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150