JPWO2019013003A1 - Composition and liquid crystal display device using the same - Google Patents

Composition and liquid crystal display device using the same Download PDF

Info

Publication number
JPWO2019013003A1
JPWO2019013003A1 JP2019529049A JP2019529049A JPWO2019013003A1 JP WO2019013003 A1 JPWO2019013003 A1 JP WO2019013003A1 JP 2019529049 A JP2019529049 A JP 2019529049A JP 2019529049 A JP2019529049 A JP 2019529049A JP WO2019013003 A1 JPWO2019013003 A1 JP WO2019013003A1
Authority
JP
Japan
Prior art keywords
liquid crystal
group
general formula
compound
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019529049A
Other languages
Japanese (ja)
Other versions
JP6662495B2 (en
Inventor
士朗 谷口
士朗 谷口
偉 呉
偉 呉
晴己 大石
晴己 大石
長谷部 浩史
浩史 長谷部
丸山 和則
和則 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Publication of JPWO2019013003A1 publication Critical patent/JPWO2019013003A1/en
Application granted granted Critical
Publication of JP6662495B2 publication Critical patent/JP6662495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/16Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon double bonds, e.g. stilbenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/18Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon triple bonds, e.g. tolans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/24Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing nitrogen-to-nitrogen bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本発明が解決しようとする課題は、Δεが正の組成物であって、広い温度範囲の液晶相を有し、粘性が小さく、低温での溶解性が良好で、比抵抗や電圧保持率が高く、熱や光に対して安定であり、更に、高い弾性定数及び相対的に高いε⊥を有する液晶組成物を提供することにある。第一成分として、一般式(A1)及び一般式(A2)で表される群から選ばれる正の誘電率異方性を有する化合物、第二成分として一般式(B)で表される群から選ばれる負の誘電率異方性を有する化合物、第三成分として一般式(C)で表される群から選ばれる誘電的に中性の化合物を含有し、混合物全体として正の誘電率異方性を有する事を特徴とする液晶組成物を提供する。また、当該組成物を用いた液晶表示素子を提供する。The problem to be solved by the present invention is that the composition has a positive Δε, has a liquid crystal phase in a wide temperature range, has a low viscosity, has good solubility at low temperatures, and has a specific resistance and a voltage holding ratio. It is an object of the present invention to provide a liquid crystal composition which is high, stable to heat and light, and has a high elastic constant and a relatively high ε⊥. As the first component, a compound having a positive dielectric anisotropy selected from the group represented by the general formula (A1) and the general formula (A2), and as the second component, a compound represented by the general formula (B) A compound having a selected negative dielectric anisotropy, a compound having a dielectrically neutral property selected from the group represented by formula (C) as a third component, and a positive dielectric anisotropy as a whole mixture. Provided is a liquid crystal composition having properties. In addition, a liquid crystal display device using the composition is provided.

Description

本発明は、アクティブマトリクス素子に適した液晶組成物及びこの組成物を含有するアクティブマトリクス素子に関する。特に、誘電率異方性が正である液晶組成物並びにこれを含有するIPSモード、FFSモード、ECBモード、TNモード、OCBモード、PSAモード等の素子に関する。   The present invention relates to a liquid crystal composition suitable for an active matrix device and an active matrix device containing the composition. In particular, the present invention relates to a liquid crystal composition having a positive dielectric anisotropy and an element containing the liquid crystal composition such as an IPS mode, an FFS mode, an ECB mode, a TN mode, an OCB mode, and a PSA mode.

液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ、時計、広告表示板等に用いられるようになっている。表示方式に基づいた代表的な分類はTN(twisted nematic)型、STN(super twisted nematic)型、TFTを用いたVA(vertical alignment)型やPSA(polymer sustained alignment)型、水平配向モードとしてはIPS(in−plane switching)型、FFS(fringe field switching)型等がある。これらの液晶表示素子に用いられる液晶組成物は水分、空気、熱、光などの外的刺激に対して安定であること、また、室温を中心としてできるだけ広い温度範囲で液晶相を示し、低粘性であり、かつ低い電圧で駆動できる事が求められる。   The liquid crystal display device is used for various measuring instruments such as watches and calculators, panels for automobiles, word processors, electronic organizers, printers, computers, televisions, watches, advertising boards, and the like. Typical classifications based on the display method are TN (twisted nematic) type, STN (super twisted nematic) type, VA (vertical alignment) type using TFT, PSA (polymer sustained alignment) type, and horizontal alignment mode as IP. (In-plane switching) type, FFS (fringe field switching) type, and the like. The liquid crystal compositions used in these liquid crystal display devices are stable against external stimuli such as moisture, air, heat, and light. And it can be driven at a low voltage.

VA型、PSA型ディスプレイではΔεが負の液晶組成物が主に用いられており、TN型、STN型、IPS型、FFS型では主に誘電率異方性(Δε)が正の液晶組成物が用いられている。これらの液晶組成物は、個々の表示素子にとってΔε及び屈折率異方性(Δn)を最適な値とするために、数種類から数十種類の化合物から構成される。素子としての高速応答性、低い動作電圧、広い動作温度範囲、高い信頼性を達成するため、液晶組成物はΔεの絶対値やΔn等を最適な値に維持しつつ、粘度(η)が小さく、高いネマチック相−等方性液体相転移温度(Tni)、低温での析出や相変化が起こらない優れた保存安定性を備える必要があり、更に熱や光、水分等の刺激に対しても安定でなければならない。また、水平配向型ディスプレイのIPS型やFFS型は、原理的にVA型やPSA型のディスプレイと比較してコントラストで劣るという問題があるため、コントラスト改善に対する継続的な要求がある。すなわち、FFS型やIPS型ディスプレイにおいては、従来から要求される液晶組成物としての諸特性に加えて、表示素子とした際に高いコントラストを実現可能な液晶組成物が要求されている。   VA and PSA displays mainly use a liquid crystal composition having a negative Δε, and TN, STN, IPS and FFS types mainly use a liquid crystal composition having a positive dielectric anisotropy (Δε). Is used. These liquid crystal compositions are composed of several to several tens of compounds in order to optimize Δε and refractive index anisotropy (Δn) for each display element. In order to achieve high-speed response, low operating voltage, wide operating temperature range, and high reliability as a device, the liquid crystal composition has a low viscosity (η) while maintaining the absolute value of Δε, Δn, and the like at optimal values. It must have a high nematic phase-isotropic liquid phase transition temperature (Tni), excellent storage stability that does not cause precipitation or phase change at low temperatures, and is also resistant to heat, light, moisture and the like. Must be stable. Further, the IPS type or FFS type of the horizontal alignment type display has a problem that the contrast is inferior to the VA type or the PSA type display in principle, and there is a continuous demand for improvement of the contrast. That is, in the FFS type and IPS type displays, a liquid crystal composition capable of realizing a high contrast when used as a display element is required in addition to various characteristics as a liquid crystal composition conventionally required.

FFS型やIPS型ディスプレイにおける黒輝度(オフ表示時の黒レベル)は、主に素子構成により左右される。一方、液晶組成物の物性値にも影響されることが知られており、一般的には小さいΔnと高い弾性定数を備える液晶組成物が黒表示の改善(黒輝度の低減)に有効である事が知られている。然しながらΔnが過度に小さい液晶組成物を用いると、セルギャップ(d)との積を一定に保つために厚いセルギャップが必要となり、応答速度の悪化を招くので好ましくない。一方で、高い弾性定数を有する液晶組成物を用いる場合、戻りの応答速度が高速化され、厚ギャップ化も不要となるため黒輝度低減の手法としてより好ましい。   The black luminance (black level at the time of OFF display) in the FFS type or IPS type display mainly depends on the element configuration. On the other hand, it is known that the liquid crystal composition is also affected by the physical properties of the liquid crystal composition. Generally, a liquid crystal composition having a small Δn and a high elastic constant is effective for improving black display (reducing black luminance). Things are known. However, if a liquid crystal composition having an excessively small Δn is used, a thick cell gap is required to keep the product of the cell gap (d) constant, and the response speed is deteriorated, which is not preferable. On the other hand, when a liquid crystal composition having a high elastic constant is used, the return response speed is increased, and the thickness gap is not required, which is more preferable as a method of reducing black luminance.

FFS型やIPS型ディスプレイの透過率は、液晶組成物の誘電率異方性を構成する2成分の値(ε//及びε⊥)の比率を変更することで改善することが知られている。特に、誘電的に正の液晶組成物を用いたFFS型表示素子の場合は、画素電極上に発生する略垂直方向の電界によって直上の液晶分子がチルトアップするため、透過率が低下するという問題がある。これを解決する方法として、誘電的に負の液晶組成物を用いる方法、誘電的に正であるがε⊥値が相対的に大きい液晶組成物を用いる方法などが提案されている。然しながら、前者は液晶組成物の粘性が高くなり、応答速度の面で不利である。後者は、近年様々な液晶組成物が開発されているが、液晶組成物の有する物理的、化学的特性はそれぞれトレードオフの関係になっており、すべてを改善することは難しい。即ち、Δεの絶対値やΔn等を最適な値に調整可能であり、ηが小さく、高いTniを有し、低温での析出や相変化が起こらない優れた保存安定性を備え、熱や光及び水分等の刺激に対して安定であり、更に、高い弾性定数を備え、IPS型又はFFS型の液晶表示素子とした際に高い透過率を発揮する具体的な液晶組成物については、強い要求が継続的に存在している。   It is known that the transmittance of an FFS or IPS display can be improved by changing the ratio of two component values (ε // and ε⊥) constituting the dielectric anisotropy of the liquid crystal composition. . In particular, in the case of an FFS type display element using a dielectrically positive liquid crystal composition, the liquid crystal molecules immediately above tilt up due to an electric field in a substantially vertical direction generated on a pixel electrode, and thus the transmittance is reduced. There is. As a method for solving this, a method using a dielectrically negative liquid crystal composition, a method using a dielectrically positive liquid crystal composition having a relatively large ε⊥ value, and the like have been proposed. However, in the former, the viscosity of the liquid crystal composition is increased, which is disadvantageous in response speed. For the latter, various liquid crystal compositions have been developed in recent years, but the physical and chemical properties of the liquid crystal composition are in a trade-off relationship, and it is difficult to improve all of them. That is, the absolute value of Δε, Δn, etc. can be adjusted to optimal values, η is small, has high Tni, has excellent storage stability in which precipitation and phase change do not occur at low temperatures, and has heat and light. There is a strong demand for a specific liquid crystal composition that is stable against stimuli such as water and moisture, has a high elastic constant, and exhibits high transmittance when formed into an IPS or FFS type liquid crystal display device. Exist continuously.

IPS型やFFS型等の横電界型液晶表示を志向した液晶組成物として、例えば、式(1)や式(2)で表される誘電的に中性なアルケニル化合物を用いた液晶組成物が開示されている(特許文献1から3)。   As a liquid crystal composition intended for a lateral electric field type liquid crystal display such as an IPS type or an FFS type, for example, a liquid crystal composition using a dielectrically neutral alkenyl compound represented by the formula (1) or (2) is used. It is disclosed (Patent Documents 1 to 3).

Figure 2019013003
Figure 2019013003

しかしながら、これらの発明では高度化された現在の要求には十分に答えられておらず、前述した課題を同時に解決可能な液晶組成物の開発が求められている。   However, these inventions have not sufficiently responded to the current demands for sophistication, and there has been a demand for the development of liquid crystal compositions that can simultaneously solve the above-mentioned problems.

特表2004−529214Table 2004-529214 特開2009−191264JP 2009-191264 A 特開2006−328399JP 2006-328399

本発明が解決しようとする課題は、Δεが正の組成物であって、広い温度範囲の液晶相を有し、粘性が小さく、低温で析出や相変化を起こさず保存安定性が良好で、比抵抗や電圧保持率が高く、熱や光に対して安定であり、更に、高い弾性定数及び相対的に高いε⊥を有する液晶組成物を提供することにある。更にこれを用いることで、高速応答性や信頼性に優れ、動作温度範囲が広く、コントラストに優れたFFS型、IPS型の液晶表示素子を提供することにある。   The problem to be solved by the present invention is a composition having a positive Δε, a liquid crystal phase in a wide temperature range, a small viscosity, good storage stability without causing precipitation or phase change at low temperatures, It is an object of the present invention to provide a liquid crystal composition which has high specific resistance and voltage holding ratio, is stable against heat and light, and has a high elastic constant and a relatively high ε⊥. Another object of the present invention is to provide an FFS-type or IPS-type liquid crystal display device which is excellent in high-speed response and reliability, has a wide operating temperature range, and is excellent in contrast.

本発明者は、種々の液晶化合物及び種々の化学物質を検討し、特定の液晶化合物を組み合わせることにより前記課題が解決であることを見出し、本発明を完成するに至った。   The present inventor has studied various liquid crystal compounds and various chemical substances, and found that the above problem can be solved by combining specific liquid crystal compounds, thereby completing the present invention.

即ち、本発明は、第一成分として、一般式(A1)及び一般式(A2)で表される群から選ばれる正の誘電率異方性を有する化合物を少なくとも1種含有し、第二成分として一般式(B)で表される群から選ばれる負の誘電率異方性を有する化合物を少なくとも1種含有し、第三成分として一般式(C)で表される群から選ばれる誘電的に中性の化合物を含有し、混合物全体として正の誘電率異方性を有する液晶組成物を提供する事を目的とする。   That is, the present invention contains, as a first component, at least one compound having a positive dielectric anisotropy selected from the group represented by the general formulas (A1) and (A2), Contains at least one compound having a negative dielectric anisotropy selected from the group represented by the general formula (B), and has a dielectric component selected from the group represented by the general formula (C) as a third component. It is an object of the present invention to provide a liquid crystal composition which contains a neutral compound and has a positive dielectric anisotropy as a whole mixture.

Figure 2019013003
Figure 2019013003

(式中、RA1、RA2、RB1、RB2、RC1及びRC2は相互に独立して、炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニル基又は炭素原子数2〜8のアルケニルオキシ基を表し、
A1、nA2及びnC1は相互に独立して、1、2又は3を表し、
B1及びnB2は相互に独立して、0、1、2又は3を表すが、nB1+nB2は3以下であり、
A1、GA2、GB1及びGB2は相互に独立して、
(a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−又は−S−に置き換えられてもよい。)及び
(b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)
からなる群より選ばれる基を表し、上記の基(a)及び基(b)上の水素原子は相互に独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
C1及びGC2は相互に独立して、1,4−シクロヘキシレン基、1,4−フェニレン基、2−フルオロ−1,4フェニレン基又は3−フルオロ−1,4−フェニレン基を表し、
Kは、下記(K−1)〜(K−5)で表される群から選ばれる基であり、
(Wherein, R A1 , R A2 , R B1 , R B2 , R C1 and R C2 each independently represent an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a carbon atom Represents an alkenyl group having 2 to 8 carbon atoms or an alkenyloxy group having 2 to 8 carbon atoms,
n A1 , n A2 and n C1 independently of one another, represent 1, 2 or 3;
n B1 and n B2 independently represent 0, 1, 2 or 3; however, n B1 + n B2 is 3 or less;
G A1 , G A2 , G B1 and G B2 are independent of each other,
(A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one -CH = or two or more non-adjacent -CH = present in this group may be replaced by -N =)
A hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom;
G C1 and G C2 independently represent a 1,4-cyclohexylene group, a 1,4-phenylene group, a 2-fluoro-1,4 phenylene group or a 3-fluoro-1,4-phenylene group,
K is a group selected from the group represented by the following (K-1) to (K-5),

Figure 2019013003
Figure 2019013003

A1は、−OCH−、−CHO−又は単結合を表すが、一般式(A1)中に存在する少なくとも一つのZA1は単結合ではなく、
A2、ZB1及びZB2は相互に独立して−CHCH−、−OCH−、−CHO−、−OCF−、−CFO−、−COO−、−OCO−、−C≡C−又は単結合を表し、
C1は、−OCH−、−CHO−、−OCF−、−CFO−、−COO−、−OCO−、−CHCH−、−CH=CH−、−C≡C−、=N−N=又は単結合を表し、
A11、YA12、YA21及びYA22は相互に独立して、水素原子又はフッ素原子を表し、XA1及びXA2は相互に独立して、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基又はトリフルオロメトキシ基を表し、
A1及びZA1が複数存在する場合それらは同一であっても異なっていても良く、GA2及びZA2が複数存在する場合それらは同一であっても異なっていても良く、
B1及びZB1が複数存在する場合それらは同一であっても異なっていても良く、GB2及びZB2が複数存在する場合それらは同一であっても異なっていても良く、GC1及びZC1が複数存在する場合それらは同一でも異なっていてもよい。ただし一般式(C)で表される化合物は、一般式(B)で表される化合物を除く。)
更に当該組成物を使用したTN型(Twisted Nematic)、ECB型(Electrically Controlled Birefringence)、IPS型(In Plane Switching)又はFFS型(Fringe Field Switching)の表示素子を提供することを目的とする。
Z A1 represents —OCH 2 —, —CH 2 O— or a single bond, but at least one Z A1 present in the general formula (A1) is not a single bond,
Z A2 , Z B1 and Z B2 independently of one another are —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, —COO—, —OCO— , -C≡C- or a single bond;
Z C1 is, -OCH 2 -, - CH 2 O -, - OCF 2 -, - CF 2 O -, - COO -, - OCO -, - CH 2 CH 2 -, - CH = CH -, - C≡ C-, = N-N = or a single bond;
Y A11 , Y A12 , Y A21 and Y A22 independently represent a hydrogen atom or a fluorine atom, and X A1 and X A2 independently represent a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl Represents a group or a trifluoromethoxy group,
When a plurality of G A1 and Z A1 are present, they may be the same or different, and when a plurality of G A2 and Z A2 exist, they may be the same or different;
If G B1 and Z B1 there are a plurality thereof may be the same or different and they if G B2 and Z B2 there are a plurality may be the same or different and G C1 and Z When a plurality of C1 are present, they may be the same or different. However, the compound represented by the general formula (C) excludes the compound represented by the general formula (B). )
Further, a display element of a TN type (Twisted Nematic), an ECB type (Electrically Controlled Birefringence), an IPS type (In Plane Switching), or an FFS type (Fringe Field Switching) using the composition is provided.

本発明の液晶組成物は、液晶温度範囲が広く、粘性が低く、低温で析出や相変化を起こさず保存安定性が良好で、比抵抗や電圧保持率が熱や光によって受ける変化が極めて小さいため、製品の実用性が高い。また、当該組成物を用いた液晶表示素子は動作温度範囲が広く、高速応答性、信頼性に優れ、保存安定性が良好である。さらに液晶組成物として高い弾性定数及び相対的に高いε⊥を有するため、特にFFS型又はIPS型の表示素子に用いた場合に透過率が高く、また黒輝度が改善される。即ち高いコントラストを実現する事ができ非常に有用である。   The liquid crystal composition of the present invention has a wide liquid crystal temperature range, low viscosity, good storage stability without causing precipitation or phase change at low temperatures, and a change in specific resistance and voltage holding ratio which is received by heat or light is extremely small. Therefore, the practicality of the product is high. In addition, a liquid crystal display device using the composition has a wide operating temperature range, high-speed response, excellent reliability, and good storage stability. Further, since the liquid crystal composition has a high elastic constant and a relatively high ε⊥, particularly when used in an FFS type or IPS type display element, the transmittance is high and the black luminance is improved. That is, a high contrast can be realized, which is very useful.

本願実施例と比較例のΔεとε⊥/Δεを示した図である。It is the figure which showed (DELTA) (epsilon) and (epsilon) (psi) / (DELTA) (epsilon) of this Example and a comparative example. 本願実施例と比較例のFFSセルにおける最大透過率を示した図である。FIG. 9 is a diagram showing the maximum transmittance in the FFS cells of the example of the present application and the comparative example.

本発明は、第一成分として、一般式(A1)及び一般式(A2)で表される群から選ばれる正の誘電率異方性(Δεの値が1.5より大きい)を有する化合物を少なくとも1種含有し、第二成分として一般式(B)で表される群から選ばれる負の誘電率異方性(Δεの値が−1.5より小さい)を有する化合物を少なくとも1種含有し、第三成分として一般式(C)で表される群から選ばれる誘電的に中性(Δεの値が−1.5〜1.5)の化合物を含有し、混合物全体として正の誘電率異方性を有する事を特徴とする液晶組成物であり、更にこれを用いた液晶表示素子である。   The present invention provides a compound having a positive dielectric anisotropy (having a value of Δε greater than 1.5) selected from the group represented by the general formulas (A1) and (A2) as a first component. Contains at least one compound having at least one compound having a negative dielectric anisotropy (value of Δε is smaller than −1.5) selected from the group represented by formula (B) as the second component And a compound having a dielectric neutrality (having a value of -1.5 to 1.5) selected from the group represented by the general formula (C) as a third component. It is a liquid crystal composition characterized by having anisotropic anisotropy, and a liquid crystal display device using the same.

本発明の組成物は、第一成分として、一般式(A1)及び一般式(A2)で表される群から選ばれる誘電的に正の化合物を含有するが、1種を使用してもよいし、2種以上を組み合わせて使用することもできる。2種以上を使用する場合は、一般式(A1)のみから選択してもよいし、一般式(A2)のみから選択してもよいし、それぞれから少なくとも1種以上の化合物を選択して組み合わせても良い。   The composition of the present invention contains, as the first component, a dielectrically positive compound selected from the group represented by formulas (A1) and (A2), but one kind may be used. However, two or more kinds can be used in combination. When two or more compounds are used, they may be selected from only the general formula (A1), or may be selected from only the general formula (A2), or at least one compound may be selected from each and combined. May be.

第一成分の化合物の好ましい含有量は、下限値として、3質量%であり、6質量%であり、9質量%であり、12質量%であり、15質量%であり、上限値として、60質量%であり、55質量%であり、50質量%であり、45質量%であり、40質量%である。   The preferable content of the compound of the first component is 3% by mass, 6% by mass, 9% by mass, 12% by mass, 15% by mass, and 60% by mass as the lower limit. % By mass, 55% by mass, 50% by mass, 45% by mass, and 40% by mass.

一般式(A1)で表される化合物は、液晶組成物の誘電率異方性を上昇させ、屈折率異方性を適切に調節し、相溶性(低温安定性)を高め、更に組成物のε⊥の値を上昇させる目的で用いることができ、好ましい化合物は以下の一般式(A1−1)〜(A1−4)で表される化合物で与えられる。   The compound represented by the general formula (A1) increases the dielectric anisotropy of the liquid crystal composition, appropriately adjusts the refractive index anisotropy, increases the compatibility (low-temperature stability), and further improves the composition. It can be used for increasing the value of ε⊥, and preferred compounds are given by compounds represented by the following formulas (A1-1) to (A1-4).

Figure 2019013003
Figure 2019013003

(式中、RA1、GA1及びXA1は、請求項1の一般式(A1)におけるRA1、GA1及びXA1と同じ意味を表し、WA1は、水素原子、シアノ基、フッ素原子又は塩素原子を表す。)
一般式(A1−1)及び一般式(A1−3)で表される化合物は液晶組成物の相溶性を向上させる点で好ましく、一般式(A1−2)及び一般式(A1−4)で表される化合物は液晶組成物のネマチック上限温度範囲を拡大できる点で好ましく、一般式(A1−3)及び一般式(A1−4)で表される化合物は更に組成物のε⊥の値を高めることが出来る点で好ましい。また、組成物の弾性定数を高める目的で、GA1が酸素原子を含有するヘテロ環であることも好ましい。
(Wherein, R A1 , G A1 and X A1 have the same meaning as R A1 , G A1 and X A1 in the general formula (A1) of claim 1, and W A1 represents a hydrogen atom, a cyano group, or a fluorine atom. Or represents a chlorine atom.)
The compounds represented by the general formulas (A1-1) and (A1-3) are preferable in terms of improving the compatibility of the liquid crystal composition, and the compounds represented by the general formulas (A1-2) and (A1-4) The compound represented by the formula (A1-3) and the compound represented by the formula (A1-4) are preferable in that they can extend the nematic maximum temperature range of the liquid crystal composition. This is preferable in that it can be increased. Further, for the purpose of increasing the elastic constant of the composition, also preferably G A1 is a heterocyclic ring containing an oxygen atom.

一般式(A1−1)で表される化合物の好ましい含有量は、下限値として3質量%であり、6質量%であり、9質量%であり、上限値として、30質量%であり、25質量%であり、20質量%である。
一般式(A1−2)で表される化合物の好ましい含有量は、下限値として2質量%であり、4質量%であり、6質量%であり、上限値として、24質量%であり、22質量%であり、20質量%であり、18質量%である。
The preferable content of the compound represented by the general formula (A1-1) is 3% by mass as a lower limit, 6% by mass, 9% by mass, and 30% by mass as an upper limit, and 25% by mass. % By mass and 20% by mass.
The preferable content of the compound represented by the general formula (A1-2) is 2% by mass as a lower limit, 4% by mass, 6% by mass, and 24% by mass as an upper limit, and 22% by mass. % By mass, 20% by mass and 18% by mass.

一般式(A1−3)で表される化合物の好ましい含有量は、下限値として3質量%であり、5質量%であり、7質量%であり、9質量%であり、上限値として、25質量%であり、20質量%であり、15質量%である。   The preferred content of the compound represented by the general formula (A1-3) is 3% by mass as a lower limit, 5% by mass, 7% by mass, 9% by mass, and 25% as an upper limit. % By mass, 20% by mass and 15% by mass.

一般式(A1−4)で表される化合物の好ましい含有量は、下限値として2質量%であり、4質量%であり、6質量%であり、上限値として、20質量%であり、18質量%であり、16質量%であり、14質量%である。   The preferred content of the compound represented by the general formula (A1-4) is 2% by mass as a lower limit, 4% by mass, 6% by mass, and 20% by mass as an upper limit, and 18% by mass. % By mass, 16% by mass, and 14% by mass.

特に好ましい化合物の具体例は一般式(A1−1−1)〜(A1−1−2)、(A1−2−1)〜(A1−2−6)、(A1−3−1)〜(A1−3−3)、(A1−4−1)〜(A1−4−6)で表される化合物で与えられる。   Specific examples of particularly preferable compounds are represented by formulas (A1-1-1) to (A1-1-2), (A1-2-1) to (A1-2-6), (A1-3-1) to (A1-3-1). A1-3-3) and compounds represented by (A1-4-1) to (A1-4-6).

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

(式中、RA1は前述の意味を表す。)
これらの中でも、一般式(A1−2−4)、(A1−2−5)、(A1−2−6)、(A1−3−2)、(A1−3−3)、(A1−4−3)、(A1−4−4)、(A1−4−5)、(A1−4−6)で表される化合物が、液晶組成物の相溶性、誘電率異方性、ε⊥、粘性並びにネマチック温度範囲などの特性を高い次元で両立することが出来る点で好ましい。
(In the formula, R A1 represents the meaning described above.)
Among these, general formulas (A1-2-4), (A1-2-5), (A1-2-6), (A1-3-2), (A1-3-3), (A1-4) -3), (A1-4-4), (A1-4-5), and the compounds represented by (A1-4-6) are compatible with the liquid crystal composition, dielectric anisotropy, ε⊥, It is preferable because characteristics such as viscosity and nematic temperature range can be compatible at a high level.

一般式(A2)で表される好ましい化合物は以下の一般式(A2−1)〜(A2−3)で表される化合物で与えられる。   Preferred compounds represented by the general formula (A2) are given by compounds represented by the following general formulas (A2-1) to (A2-3).

Figure 2019013003
Figure 2019013003

(式中、RA2、GA2及びXA2は、請求項1の一般式(A1)におけるRA2、GA2及びXA2と同じ意味を表し、WA21及びWA22は相互に独立して、水素原子、シアノ基、フッ素原子又は塩素原子を表し、nA21は0、1又は2を表す。)
一般式(A2−1)で表される化合物は組成物の屈折率異方性を高めることができる点で好ましく、一般式(A2−2)及び一般式(A2−3)で表される化合物は更に組成物の誘電率異方性を高めることができる点で好ましい。また、組成物の弾性定数を高める目的で、GA2が酸素原子を含有するヘテロ環であることも好ましい。
(Wherein, R A2 , G A2 and X A2 represent the same meaning as R A2 , G A2 and X A2 in the general formula (A1) of claim 1, and W A21 and W A22 independently of each other, Represents a hydrogen atom, a cyano group, a fluorine atom or a chlorine atom, and nA21 represents 0, 1 or 2.)
The compound represented by the general formula (A2-1) is preferable in that the refractive index anisotropy of the composition can be increased, and the compound represented by the general formula (A2-2) and the general formula (A2-3) Is preferred in that the dielectric anisotropy of the composition can be further increased. Further, for the purpose of increasing the elastic constant of the composition, also preferably G A2 is a heteroaryl ring containing an oxygen atom.

一般式(A2−1)で表される化合物の好ましい含有量は、下限値として3質量%であり、6質量%であり、9質量%であり、上限値として、20質量%であり、17質量%であり、14質量%である。   The preferable content of the compound represented by the general formula (A2-1) is 3% by mass as a lower limit, 6% by mass, 9% by mass, and 20% by mass as an upper limit, and 17% by mass. % By mass and 14% by mass.

一般式(A2−2)で表される化合物の好ましい含有量は、下限値として2質量%であり、4質量%であり、6質量%であり、上限値として、18質量%であり、15質量%であり、12質量%である。   The preferable content of the compound represented by the general formula (A2-2) is 2% by mass as a lower limit, 4% by mass, 6% by mass, and 18% by mass as an upper limit, and 15% by mass. % By mass and 12% by mass.

一般式(A2−3)で表される化合物の好ましい含有量は、下限値として2質量%であり、5質量%であり、7質量%であり、9質量%であり、上限値として、22質量%であり、18質量%であり、15質量%である。   The preferred content of the compound represented by the formula (A2-3) is 2% by mass as a lower limit, 5% by mass, 7% by mass, 9% by mass, and 22% as an upper limit. % By mass, 18% by mass, and 15% by mass.

特に好ましい化合物の具体例は一般式(A2−1−1)〜(A2−1−6)、(A2−2−1)〜(A2−2−2)、(A2−3−1)〜(A2−3−6)で表される化合物で与えられる。   Specific examples of particularly preferred compounds are represented by formulas (A2-1-1) to (A2-1-6), (A2-2-1) to (A2-2-2), (A2-3-1) to (A2-3-1). A2-3-6).

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

(RA2は前述の意味を表す。)
これらの中で、組成物の相溶性を高める目的で使用できる特に好ましい化合物は一般式(A2−1−1)、(A2−1−2)、(A2−2−1)、(A2−2−2)、(A2−3−1)及び(A2−3−2)で表される化合物であり、ネマチック上限温度範囲を拡大させる目的で使用できる特に好ましい化合物は一般式(A2−1−3)、(A2−1−4)、(A2−1−5)、(A2−3−4)、(A2−3−5)及び(A2−3−6)で表される化合物であり、組成物の誘電率異方性を上昇させ、更にε⊥の値を高めることができる点で特に好ましい化合物は一般式(A2−3−2)、(A2−3−3)、(A2−3−5)及び(A2−3−6)で表される化合物である。
( RA2 represents the meaning described above.)
Among these, particularly preferred compounds that can be used for the purpose of increasing the compatibility of the composition are those represented by formulas (A2-1-1), (A2-1-2), (A2-2-1), and (A2-2-1). -2), compounds represented by (A2-3-1) and (A2-3-2), particularly preferred compounds which can be used for the purpose of extending the nematic upper limit temperature range are represented by the general formula (A2-1-3) ), (A2-1-4), (A2-1-5), (A2-3-4), (A2-3-5) and (A2-3-6). Particularly preferred compounds which can increase the dielectric anisotropy of the product and further increase the value of ε⊥ are those represented by formulas (A2-3-2), (A2-3-3), and (A2-3-3). 5) and (A2-3-6).

本発明の組成物は、第二成分として、一般式(B)で表される群から選ばれる誘電的に負の化合物を含有するが、1種を使用してもよいし、2種以上を組み合わせて使用することもできる。一般式(B)の化合物は、主に組成物のε⊥を相対的に高める目的で使用され、組成物中における好ましい含有量は、下限値として3質量%であり、4質量%であり、5質量%であり、8質量%であり、10質量%であり、上限値として、50質量%であり、45質量%であり、40質量%であり、35質量%であり、30質量%であり、25質量%である。   The composition of the present invention contains, as the second component, a dielectrically negative compound selected from the group represented by the general formula (B). One type may be used, or two or more types may be used. They can be used in combination. The compound of the general formula (B) is used mainly for the purpose of relatively increasing ε⊥ of the composition, and the preferred content in the composition is 3% by mass as a lower limit, and 4% by mass, 5% by mass, 8% by mass, 10% by mass, and as an upper limit, 50% by mass, 45% by mass, 40% by mass, 35% by mass, and 30% by mass. And 25% by mass.

一般式(B)で表される化合物は、組成物に使用した際に高い信頼性や広いネマチック温度範囲、低い粘性や高い弾性定数などを同時に満たす必要があり、それらの目的で好適に使用できる化合物は以下の一般式(B1)〜(B6)で表される化合物で与えられる。   The compound represented by the general formula (B) needs to simultaneously satisfy high reliability, a wide nematic temperature range, a low viscosity and a high elastic constant when used in the composition, and can be suitably used for those purposes. The compound is given by a compound represented by the following general formulas (B1) to (B6).

Figure 2019013003
Figure 2019013003

(式中、RB1、RB2、GB1、ZB1、ZB2、nB1及びnB2は、請求項1の一般式(B)におけるRB1、RB2、GB1、ZB1、nB1及びnB2と同じ意味を表し、WB31、WB32、WB33及びWB34は相互に独立して、水素原子、シアノ基、フッ素原子又は塩素原子を表し、nB12は0、1又は2を表すが、分子内に複数存在するWB31、WB32、WB33及びWB34は同一であっても異なっていても良い。)
一般式(B1)〜(B3)で表される化合物は組成物の相溶性を向上させ、高い信頼性を与える点で好ましく、一般式(B2)及び式(B3)で表される化合物はさらに組成物の屈折率異方性を大きく出来る点でより好ましい。一般式(B4)〜(B6)で表される化合物は組成物のε⊥を有意に上昇させるため、少ない添加量で所望のε⊥の値を得ることができ、組成物の低粘性化に寄与する点で好ましい。また、組成物の弾性定数を高める目的で、GB1が酸素原子を含有するヘテロ環であることも好ましい。
(Wherein, R B1, R B2, G B1, Z B1, Z B2, n B1 and n B2 is, R B1, R B2 in the general formula of claim 1 (B), G B1, Z B1, n B1 and represent the same meaning as n B2, W B31, W B32 , W B33 and W B34 are independently of each other, hydrogen atom, a cyano group, a fluorine atom or a chlorine atom, a n B12 is 0, 1 or 2 represents but, W B31 a plurality present in the molecule, W B32, W B33 and W B34 may or may not be the same.)
The compounds represented by the general formulas (B1) to (B3) are preferable in terms of improving the compatibility of the composition and giving high reliability, and the compounds represented by the general formulas (B2) and (B3) are more preferable. It is more preferable in that the refractive index anisotropy of the composition can be increased. Since the compounds represented by the general formulas (B4) to (B6) significantly increase ε⊥ of the composition, a desired value of ε⊥ can be obtained with a small amount of addition, and the viscosity of the composition can be reduced. It is preferable in that it contributes. Further, for the purpose of increasing the elastic constant of the composition, also preferably G B1 is a heterocyclic containing oxygen atoms.

一般式(B1)で表される化合物の好ましい含有量は、下限値として3質量%であり、4質量%であり、6質量%であり、8質量%であり、上限値として、35質量%であり、30質量%であり、28質量%であり、26質量%であり、24質量%である。   The preferred content of the compound represented by the general formula (B1) is 3% by mass as a lower limit, 4% by mass, 6% by mass, 8% by mass, and 35% by mass as an upper limit. , 30% by mass, 28% by mass, 26% by mass, and 24% by mass.

一般式(B2)で表される化合物の好ましい含有量は、下限値として3質量%であり、4質量%であり、6質量%であり、8質量%であり、上限値として、30質量%であり、28質量%であり、26質量%であり、24質量%である。   The preferable content of the compound represented by the general formula (B2) is 3% by mass as a lower limit, 4% by mass, 6% by mass, 8% by mass, and 30% by mass as an upper limit. , 28% by mass, 26% by mass, and 24% by mass.

一般式(B3)で表される化合物の好ましい含有量は、下限値として3質量%であり、5質量%であり、7質量%であり、9質量%であり、上限値として、20質量%であり、18質量%であり、16質量%であり、14質量%である。   The preferred content of the compound represented by the general formula (B3) is 3% by mass as a lower limit, 5% by mass, 7% by mass, 9% by mass, and 20% by mass as an upper limit. And 18% by mass, 16% by mass and 14% by mass.

一般式(B4)で表される化合物の好ましい含有量は、下限値として3質量%であり、5質量%であり、7質量%であり、上限値として、18質量%であり、16質量%であり、14質量%であり、12質量%である。   The preferable content of the compound represented by the general formula (B4) is 3% by mass as a lower limit, 5% by mass, 7% by mass, and 18% by mass as an upper limit, 16% by mass. And 14% by mass and 12% by mass.

一般式(B5)で表される化合物の好ましい含有量は、下限値として3質量%であり、5質量%であり、7質量%であり、上限値として、18質量%であり、16質量%であり、14質量%であり、12質量%である。   The preferable content of the compound represented by the formula (B5) is 3% by mass as a lower limit, 5% by mass, 7% by mass, and 18% by mass as an upper limit, 16% by mass. And 14% by mass and 12% by mass.

一般式(B6)で表される化合物の好ましい含有量は、下限値として3質量%であり、5質量%であり、7質量%であり、上限値として、16質量%であり、14質量%であり、12質量%であり、10質量%である。   The preferable content of the compound represented by the general formula (B6) is 3% by mass as a lower limit, 5% by mass, 7% by mass, and 16% by mass as an upper limit, and 14% by mass. And 12% by mass and 10% by mass.

特に好ましい化合物の具体例は一般式(B1−1)〜(B1−8)、(B2−1)〜(B2−4)、(B3−1)〜(B3−5)、(B4−1)〜(B4−2)、(B5−1)〜(B5−2)及び(B6−1)で表される化合物で与えられる。   Specific examples of particularly preferable compounds are represented by formulas (B1-1) to (B1-8), (B2-1) to (B2-4), (B3-1) to (B3-5), and (B4-1). To (B4-2), (B5-1) to (B5-2), and (B6-1).

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

(RB1及びRB2は前述の意味を表し、RB21は炭素原子数1〜8のアルキル基を表す。)
第二成分を構成する成分は。組成物に求められる物性値に応じて一般式(B1−1)〜(B6−1)で表される化合物から適宜選択することができる。
(R B1 and R B2 represents the abovementioned meaning, R B21 represents an alkyl group having 1 to 8 carbon atoms.)
What constitutes the second component? It can be appropriately selected from the compounds represented by formulas (B1-1) to (B6-1) according to the physical properties required for the composition.

屈折率異方性の低い液晶組成物が必要な場合には、一般式(B1−1)〜(B1−8)で表される化合物を好適に用いることができ、更に信頼性を重視する場合は一般式(B1−1)〜(B1−6)で表される化合物を好適に用いることができ、それに加えて組成物のε⊥を高め、かつ優れた相溶性と広いネマチック温度範囲を得るためには一般式(B1−1)〜(B1−4)で表される化合物を好適に用いることができる。   In the case where a liquid crystal composition having low refractive index anisotropy is required, the compounds represented by formulas (B1-1) to (B1-8) can be preferably used. Can be suitably used the compounds represented by formulas (B1-1) to (B1-6). In addition, ε⊥ of the composition is increased, and excellent compatibility and a wide nematic temperature range are obtained. For this purpose, the compounds represented by formulas (B1-1) to (B1-4) can be suitably used.

組成物の粘性が重視される場合には、1.第二成分の含有量を過度に増やすことを避けるため負の誘電異方性が大きい化合物を用いる方法、2.粘性の低い第三成分の含有量を増やすために、比較的屈折率異方性の大きい化合物を用いる方法、があり、1の観点から好適に使用できる化合物は一般式(B1−3)、(B1−4)、(B4−1)〜(B6−1)で表される化合物であり、2の観点から好適に使用できる化合物は一般式(B2−1)〜(B3−5)で表される化合物であり、さらに信頼性を重視した場合に好適に使用できる化合物は一般式(B2−1)、(B2−2)、(B3−1)〜(B3−5)で表される化合物である。   When the viscosity of the composition is important, 1. 1. A method using a compound having a large negative dielectric anisotropy in order to avoid excessively increasing the content of the second component. In order to increase the content of the third component having low viscosity, there is a method of using a compound having a relatively large refractive index anisotropy. Compounds that can be preferably used from the viewpoint of 1 include compounds represented by general formulas (B1-3) and ( B1-4), compounds represented by (B4-1) to (B6-1), and compounds that can be suitably used from the viewpoint of 2 are represented by general formulas (B2-1) to (B3-5). Compounds which can be suitably used when reliability is emphasized are compounds represented by general formulas (B2-1), (B2-2) and (B3-1) to (B3-5). is there.

本発明の組成物は、第三成分として、一般式(C)で表される群から選ばれる誘電的に中性の化合物を含有するが、1種を使用してもよいし、2種以上を組み合わせて使用することもできる。   The composition of the present invention contains, as the third component, a dielectrically neutral compound selected from the group represented by the general formula (C). One type may be used, or two or more types may be used. Can also be used in combination.

一般式(C)で表される好ましい化合物は以下の式(C1)〜(C3)で表される化合物で与えられる。   Preferred compounds represented by the general formula (C) are given by compounds represented by the following formulas (C1) to (C3).

Figure 2019013003
Figure 2019013003

(式中、RC1及びRC2は、請求項1の一般式(C)におけるRC1及びRC2と同じ意味を表し、
C11〜GC12、GC21〜GC23、GC31〜GC34は相互に独立して、1,4−シクロヘキシレン基、1,4−フェニレン基、2−フルオロ−1,4フェニレン基又は3−フルオロ−1,4−フェニレン基を表すが、GC11〜GC12、GC21〜GC23、GC31〜GC34上の水素原子はフッ素原子によって置換されても良い。ただし一般式(C1)〜(C3)で表される化合物は、一般式(B)で表される化合物を除く。)
第3成分の化合物の好ましい含有量は、下限値として、10質量%であり、14質量%であり、18質量%であり、22質量%であり、上限値として、90質量%であり、85質量%であり、80質量%であり、75質量%であり、70質量%である。
(Wherein, R C1 and R C2 represent the same meaning as R C1 and R C2 in the general formula (C) of claim 1;
G C11 to G C12 , G C21 to G C23 , and G C31 to G C34 are independently of each other, 1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4 phenylene group or 3 - represents a fluoro-1,4-phenylene group, G C11 ~G C12, G C21 ~G C23, G C31 hydrogen atom on ~G C34 may be substituted by fluorine atoms. However, the compounds represented by the general formulas (C1) to (C3) exclude the compounds represented by the general formula (B). )
The preferred content of the compound of the third component is, as a lower limit, 10% by mass, 14% by mass, 18% by mass, 22% by mass, and an upper limit of 90% by mass, 85% by mass. % By mass, 80% by mass, 75% by mass, and 70% by mass.

一般式(C1)で表される化合物は、液晶組成物の粘性を低減し、屈折率異方性を適切に調節し、相溶性(低温安定性)を高める目的で用いることができ、好ましい化合物は以下の一般式(C1―1)〜(C1−3)で表される化合物で与えられる。   The compound represented by the general formula (C1) can be used for the purpose of reducing the viscosity of the liquid crystal composition, appropriately adjusting the refractive index anisotropy, and increasing the compatibility (low-temperature stability). Is given by compounds represented by the following general formulas (C1-1) to (C1-3).

Figure 2019013003
Figure 2019013003

(式中、RC1及びRC2は相互に独立して炭素原子数1〜8のアルキル基、アルコキシ基、炭素数2〜8のアルケニル基又はアルケニルオキシ基を表す。)
一般式(C1−1)で表される化合物は組成物の粘性を有意に低減させ、相溶性を改善できる点で好ましく、一般式(C1−2)で表される化合物は組成物の相溶性を有意に改善できる点で好ましく、一般式(C1−3)で表される化合物は組成物の粘性を低減させ、さらに屈折率異方性を大きくできる点で好ましい。これらの化合物は求められる諸特性に応じて単独で使用することも出来るし、組み合わせて使用することもできる。
(In the formula, R C1 and R C2 each independently represent an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkenyl group having 2 to 8 carbon atoms, or an alkenyloxy group.)
The compound represented by the general formula (C1-1) is preferable in that the viscosity of the composition can be significantly reduced and the compatibility can be improved, and the compound represented by the general formula (C1-2) is preferably the compatibility of the composition. Is significantly improved, and the compound represented by the general formula (C1-3) is preferable since the viscosity of the composition can be reduced and the refractive index anisotropy can be further increased. These compounds can be used alone or in combination depending on the properties required.

一般式(C1−1)で表される化合物において、RC1及びRC2は一方がアルキル基で他方がアルキル基又はアルコキシ基であることが好ましく、少なくとも一方がアルケニル基であることがより好ましく、一方がアルキル基で他方がアルケニル基であることが特に好ましい。In the compound represented by the general formula (C1-1), one of R C1 and R C2 is preferably an alkyl group and the other is an alkyl group or an alkoxy group, and more preferably at least one is an alkenyl group. It is particularly preferred that one is an alkyl group and the other is an alkenyl group.

一般式(C1−2)で表される化合物において、RC1及びRC2はいずれもがアルキル基であることが好ましく、RC1がアルキル基またはアルケニル基であり、RC2がアルコキシ基であることがより好ましい。In the compound represented by the general formula (C1-2), each of R C1 and R C2 is preferably an alkyl group, R C1 is an alkyl group or an alkenyl group, and R C2 is an alkoxy group. Is more preferred.

一般式(C1−3)で表される化合物において、RC1及びRC2がともにアルキル基であることが好ましく、一方がアルキル基で他方がアルコキシ基であるか、或いは少なくとも一方がアルケニル基で他方がアルキル基であることがより好ましい。In the compound represented by the general formula (C1-3), R C1 and R C2 are preferably both alkyl groups, and one is an alkyl group and the other is an alkoxy group, or at least one is an alkenyl group and the other is an alkyl group. Is more preferably an alkyl group.

一般式(C1−1)〜(C1−3)で表される化合物の好ましい具体例は、以下の一般式(C1−1−1)〜(C1−1−10)、(C1−2−1)〜(C1−2−6)、(C1−3−1)〜(C1−3−6)で表される化合物で与えられる。   Preferred specific examples of the compounds represented by the general formulas (C1-1) to (C1-3) include the following general formulas (C1-1-1) to (C1-1-10) and (C1-2-1). ) To (C1-2-6), (C1-3-1) to (C1-3-6).

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

この中でも、組成物に高い弾性定数と低い粘性を与えるために一般式(C1−1)で表される化合物として一般式(C1−1−4)、(C1−1−7)、(C1−1−9)又は(C1−1−10)で表される化合物のいずれか一種以上を含有することがより好ましく、一般式(C1−1−4)で表される化合物を含有することが特に好ましく、一般式(C1−1−4)と一般式(C1−1−7)で表される化合物を同時に含有することが最も好ましい。一般式(C1−1)で表される化合物の好ましい含有量は、下限値として、10%であり、15%であり、20%であり、上限値として、70%であり、65%であり、60%であり、55%であり、50%であり、45%であり、40%である。また、一般式(C1−1)で表される化合物の屈折率異方性は、通常、目的とする液晶組成物のそれより小さい。従って、第一成分及び/又は第二成分の構成成分の選択に際し、組成物の粘性に致命的な上昇を与えない範囲で、相対的に高い屈折率異方性を有する化合物を用いることが好ましい。その具体例は第一成分及び第二成分の化合物例示において記載したとおりである。   Among them, the compounds represented by the general formulas (C1-1-4), (C1-1-7), and (C1--1) as compounds represented by the general formula (C1-1) in order to give the composition a high elastic constant and a low viscosity. It is more preferable to contain any one or more of the compounds represented by 1-9) or (C1-1-10), and particularly preferable to contain the compound represented by the general formula (C1-1-4). It is most preferable that the compounds represented by formulas (C1-1-4) and (C1-1-7) are simultaneously contained. The preferred content of the compound represented by the general formula (C1-1) is 10%, 15%, or 20% as a lower limit, and 70% or 65% as an upper limit. , 60%, 55%, 50%, 45%, and 40%. Further, the compound represented by the general formula (C1-1) generally has a smaller refractive index anisotropy than that of a target liquid crystal composition. Therefore, when selecting the components of the first component and / or the second component, it is preferable to use a compound having a relatively high refractive index anisotropy within a range that does not give a fatal increase in the viscosity of the composition. . Specific examples thereof are as described in the exemplified compounds of the first component and the second component.

一般式(C2)で表される化合物は、液晶組成物の粘性を低減し、屈折率異方性を適切に調節し、ネマチック温度範囲を拡大させる目的で用いることができ、好ましい化合物は以下の一般式(C2―1)〜(C2−3)で表される化合物で与えられる。   The compound represented by the general formula (C2) can be used for the purpose of reducing the viscosity of the liquid crystal composition, appropriately adjusting the refractive index anisotropy, and expanding the nematic temperature range. It is provided by compounds represented by formulas (C2-1) to (C2-3).

Figure 2019013003
Figure 2019013003

(式中、RC1及びRC2は相互に独立して炭素原子数1〜8のアルキル基、アルコキシ基、炭素数2〜8のアルケニル基又はアルケニルオキシ基を表し、YC1及びYC2はいずれか一方がフッ素原子を表し他方は水素原子を表す。)
一般式(C2−1)で表される化合物は組成物の粘性を低減させ、優れた低温安定性と広いネマチック温度範囲を両立できる点で好ましく、一般式(C2−2)で表される化合物は組成物のネマチック上限温度範囲を拡大させ、高い屈折率異方性を得られる点で好ましく、一般式(C2−3)及び(2−4)で表される化合物は、組成物の屈折率異方性を優位に上昇させ、さらにネマチック温度範囲を拡大できる点で好ましい。これらの化合物は求められる諸特性に応じて、単独で使用することもできるし組み合わせて使用することもできる。
(Wherein R C1 and R C2 independently represent an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkenyl group or an alkenyloxy group having 2 to 8 carbon atoms, and Y C1 and Y C2 are each One of them represents a fluorine atom and the other represents a hydrogen atom.)
The compound represented by the general formula (C2-1) is preferable in that it can reduce the viscosity of the composition, and achieve both excellent low-temperature stability and a wide nematic temperature range. The compound represented by the general formula (C2-2) Is preferable in that the range of the maximum nematic temperature of the composition can be expanded and a high refractive index anisotropy can be obtained, and the compounds represented by the general formulas (C2-3) and (2-4) are preferably those having a refractive index of This is preferable in that the anisotropy can be significantly increased and the nematic temperature range can be further expanded. These compounds can be used alone or in combination depending on various properties required.

一般式(C2−1)及び(C2−2)で表される化合物において、RC1がアルキル基且つRC2がアルキル基またはアルコキシ基であることが好ましく、RC1がアルケニル基且つRC2がアルキル基であることがより好ましい。In the compounds represented by formulas (C2-1) and (C2-2), R C1 is preferably an alkyl group and R C2 is an alkyl group or an alkoxy group, R C1 is an alkenyl group, and R C2 is an alkyl group. More preferably, it is a group.

一般式(C2−3)で表される化合物において、RC1及びRC2がともにアルキル基であることが好ましく、一方がアルケニル基で他方がアルキル基であることがより好ましい。In the compound represented by the formula (C2-3), R C1 and R C2 are preferably both alkyl groups, more preferably one is an alkenyl group and the other is an alkyl group.

一般式(C2−1)〜(C2−3)で表される化合物の好ましい具体例は、以下の一般式(C2−1−1)〜(C2−1−6)、(C2−2−1)〜(C2−2−7)、(C2−3−1)〜(C2−3−16)で表される化合物で与えられる。   Preferred specific examples of the compounds represented by formulas (C2-1) to (C2-3) include the following formulas (C2-1-1) to (C2-1-6) and (C2-2-1). ) To (C2-2-7), (C2-3-1) to (C2-3-16).

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

一般式(C3)で表される化合物は、液晶組成物のネマチック上限温度範囲を有意に拡大し、屈折率異方性を適切に調節する目的で用いることができ、好ましい化合物は以下の一般式(C3―1)〜(C3−3)で表される化合物で与えられる。   The compound represented by the general formula (C3) can be used for the purpose of significantly expanding the nematic upper limit temperature range of the liquid crystal composition and appropriately adjusting the refractive index anisotropy. It is provided by compounds represented by (C3-1) to (C3-3).

Figure 2019013003
Figure 2019013003

(RC1及びRC2は相互に独立して炭素原子数1〜8のアルキル基、アルコキシ基、炭素数2〜8のアルケニル基又はアルケニルオキシ基を表す。)
一般式(C3−1)及び(C3−2)で表される化合物は組成物のネマチック上限温度範囲を有意に拡大させる点で好ましく、一般式(C3−3)で表される化合物は組成物のネマチック上限温度範囲を拡大させ、更に高い屈折率異方性を得られる点で好ましい。これらの化合物は求められる諸特性に応じて単独で使用することもできるし、組み合わせて使用することもできるが、液晶組成物の相溶性を維持するためには0種〜3種程度を組み合わせて使用するのが好ましく、その含有量は0〜15質量%の範囲が好ましく、0〜10質量%の範囲がより好ましい。
(R C1 and R C2 independently represent an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkenyl group having 2 to 8 carbon atoms or an alkenyloxy group.)
The compounds represented by the general formulas (C3-1) and (C3-2) are preferable in that they significantly expand the nematic upper limit temperature range of the composition, and the compounds represented by the general formula (C3-3) are preferable. Is preferable in that the range of the maximum temperature of the nematic can be expanded to obtain a higher refractive index anisotropy. These compounds can be used alone or in combination depending on the properties required, but in order to maintain the compatibility of the liquid crystal composition, about 0 to 3 kinds are combined. It is preferably used, and its content is preferably in the range of 0 to 15% by mass, more preferably in the range of 0 to 10% by mass.

一般式(C3−1)及び(C3−2)で表される化合物において、RC1及びRC2がともにアルキル基であることが好ましく、いずれか一方または両方がアルケニル基であることも好ましい。In the compounds represented by the general formulas (C3-1) and (C3-2), both R C1 and R C2 are preferably alkyl groups, and it is also preferable that one or both of them are alkenyl groups.

一般式(C3−3)で表される化合物において、RC1及びRC2がともにアルキル基であることが好ましいが、RC1がアルケニル基でRC2がアルキル基であることも好ましい。In the compound represented by the general formula (C3-3), both R C1 and R C2 are preferably an alkyl group, but it is also preferable that R C1 is an alkenyl group and R C2 is an alkyl group.

一般式(C3−1)〜式(C3−3)で表される化合物の好ましい具体例は、以下の一般式(C3−1−1)〜(C3−1−5)、(C3−2−1)〜(C3−2−3)、(C3−3−1)〜(C3−3−4)で表される化合物で与えられる。   Preferred specific examples of the compounds represented by formulas (C3-1) to (C3-3) include the following formulas (C3-1-1) to (C3-1-5) and (C3-2-5). 1) to (C3-2-3) and compounds represented by (C3-3-1) to (C3-3-4).

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

本発明の組成物は、第4成分として、一般式(M)で表される群から選ばれる誘電的に正の化合物を任意に含有することができる。一般式(M)で表される化合物は、1種を使用してもよいし、2種以上を組み合わせて使用することもできる。   The composition of the present invention can optionally contain, as the fourth component, a dielectrically positive compound selected from the group represented by the general formula (M). As the compound represented by the general formula (M), one type may be used, or two or more types may be used in combination.

Figure 2019013003
Figure 2019013003

(式中、Rは炭素数1〜8のアルキル基、アルコキシ基又は炭素数2〜8のアルケニル基、アルケニルオキシ基を表し、
は1、2、又は3を表し、

(a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−又は−S−に置き換えられてもよい。)及び
(b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)
からなる群より選ばれる基を表し、上記の基(a)及び基(b)上の水素原子はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
は−CHCH−、−CFO−、−COO−、−C≡C−、又は単結合を表し、
及びZが複数存在する場合は同一でも異なっていてもよく、
M1及びYM2は相互に独立してフッ素原子又は水素原子を表し、
はフッ素原子、塩素原子、トリフルオロメチル基、トリフルオロメトキシ基、シアノ基、又は炭素数2〜5のアルケニルオキシ基を表す。)
一般式(M)で表される好ましい化合物は以下の一般式(M1)〜(M3)で表される化合物で与えられる。
(Wherein, R M represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group or an alkenyl group having 2 to 8 carbon atoms, an alkenyloxy group,
n M represents 1, 2, or 3;
G M is (a) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - is replaced by -O- or -S- And (b) a 1,4-phenylene group (one -CH = or two or more non-adjacent -CH = present in the group may be replaced by -N = Good.)
A hydrogen atom on the group (a) and the group (b) may be each independently substituted with a cyano group, a fluorine atom or a chlorine atom;
Z M represents —CH 2 CH 2 —, —CF 2 O—, —COO—, —C≡C—, or a single bond;
When a plurality of G M and Z M are present, they may be the same or different,
Y M1 and Y M2 independently represent a fluorine atom or a hydrogen atom,
XM represents a fluorine atom, a chlorine atom, a trifluoromethyl group, a trifluoromethoxy group, a cyano group, or an alkenyloxy group having 2 to 5 carbon atoms. )
Preferred compounds represented by formula (M) are given by compounds represented by the following formulas (M1) to (M3).

Figure 2019013003
Figure 2019013003

(式中、R、YM1、YM2及びXは、一般式(M)におけるR、YM1、YM2及びXと同じ意味を表し、YM3は一般式(M)におけるYM1と同じ意味を表し、GM1は一般式(M)におけるGと同じ意味を表す。)
信頼性を重視する場合は一般式(M1)で表される化合物を用いることが好ましく、高い屈折率異方性を重視する場合は一般式(M2)で表される化合物を用いることが好ましく、高い誘電率異方性を重視する場合は一般式(M3)で表される化合物を用いることが好ましい。また、液晶組成物としてε⊥の値を大きく保つためには、一般式(M2)及び(M3)で表される化合物を用いることが好ましい。第四成分としての一般式(M)で表される化合物は、上述の諸特性を考慮して一般式(M1)〜(M3)で表される化合物のうち一種を単独で用いてもよいし、複数を組み合わせて用いることもできる。
(Wherein, R M, Y M1, Y M2 and X M represent the same meaning in the general formula (M) and R M, Y M1, Y M2 and X M, Y M3 is Y in the general formula (M) represents the same meaning as M1, G M1 are as defined G M in the general formula (M).)
It is preferable to use a compound represented by the general formula (M1) when importance is placed on reliability, and it is preferable to use a compound represented by the general formula (M2) when importance is placed on high refractive index anisotropy. When importance is placed on high dielectric anisotropy, it is preferable to use a compound represented by the general formula (M3). In order to maintain a large value of ε⊥ as a liquid crystal composition, it is preferable to use compounds represented by general formulas (M2) and (M3). As the compound represented by the general formula (M) as the fourth component, one kind of the compounds represented by the general formulas (M1) to (M3) may be used alone in consideration of the above-mentioned various properties. , May be used in combination.

第4成分の化合物の好ましい含有量は、下限値として、0質量%であり、3質量%であり、6質量%であり、9質量%であり、12質量%であり、上限値として、40質量%であり、35質量%であり、30質量%であり、25質量%であり、20質量%である。   The preferred content of the compound of the fourth component is 0% by mass, 3% by mass, 6% by mass, 9% by mass, 12% by mass, and 40% by mass as a lower limit. % By mass, 35% by mass, 30% by mass, 25% by mass and 20% by mass.

一般式(M1)で表される好ましい化合物は以下の一般式(M1−1)〜(M1−5)で表される化合物で与えられる。   Preferred compounds represented by the general formula (M1) are given by compounds represented by the following general formulas (M1-1) to (M1-5).

Figure 2019013003
Figure 2019013003

(式中、R及びXは、一般式(M)におけるR及びXと同じ意味を表す。)
一般式(M1−1)〜(M1−6)で表される化合物はいずれも液晶組成物の信頼性を低下させないという点で好ましいが、液晶組成物の相溶性(低温安定性)を重視する場合は一般式(M1−1)〜(M1−3)で表される化合物を用いることが好ましく、高いネマチック上限温度範囲を重視する場合は、一般式(M1−4)〜(M1−5)で表される化合物を用いることが好ましい。
(Wherein, R M and X M represent the same meaning as R M and X M in the general formula (M).)
All of the compounds represented by formulas (M1-1) to (M1-6) are preferable in that they do not reduce the reliability of the liquid crystal composition, but emphasis is placed on the compatibility (low-temperature stability) of the liquid crystal composition. In this case, it is preferable to use the compounds represented by the general formulas (M1-1) to (M1-3). When emphasizing a high nematic maximum temperature range, the compounds represented by the general formulas (M1-4) to (M1-5) are preferable. It is preferable to use the compound represented by

一般式(M2)で表される好ましい化合物は以下の一般式(M2−1)〜(M2−7)で表される化合物で与えられる。   Preferred compounds represented by the general formula (M2) are given by compounds represented by the following general formulas (M2-1) to (M2-7).

Figure 2019013003
Figure 2019013003

(式中、Rは、一般式(M)におけるRと同じ意味を表し、Alkenylは、炭素原子数2〜8のアルケニル基を表す。)
一般式(M2−1)〜(M2−7)で表される化合物はいずれも液晶組成物の屈折率異方性を大きくできるという点で好ましいが、液晶組成物の相溶性(低温安定性)を重視する場合は一般式(M2−1)及び(M2−2)で表される化合物を用いることが好ましく、高いネマチック上限温度範囲を重視する場合は一般式(M2−3)〜(M2−7)で表される化合物を用いることが好ましく、中でも、液晶組成物としてε⊥の値を大きく保つためには一般式(M2―4)で表される化合物を用いることが好ましく、光刺激に対して液晶組成物を安定させるためには一般式(M2−7)で表される化合物を用いることが好ましい。
(Wherein, R M has the same meaning as R M in formula (M), and Alkenyl represents an alkenyl group having 2 to 8 carbon atoms.)
All of the compounds represented by formulas (M2-1) to (M2-7) are preferable in that the refractive index anisotropy of the liquid crystal composition can be increased, but the compatibility of the liquid crystal composition (low-temperature stability). When it is important to use the compounds represented by the general formulas (M2-1) and (M2-2), and when a high nematic maximum temperature range is important, the compounds represented by the general formulas (M2-3) to (M2-) It is preferable to use the compound represented by the formula (7). Among them, in order to keep the value of ε⊥ large as the liquid crystal composition, it is preferable to use the compound represented by the general formula (M2-4). On the other hand, in order to stabilize the liquid crystal composition, it is preferable to use a compound represented by the general formula (M2-7).

一般式(M3)で表される好ましい化合物は以下の一般式(M3−1)〜(M3−5)で表される化合物で与えられる。   Preferred compounds represented by the general formula (M3) are given by compounds represented by the following general formulas (M3-1) to (M3-5).

Figure 2019013003
Figure 2019013003

(式中、Rは、一般式(M)におけるRと同じ意味を表す。)
一般式(M3−1)〜(M3−5)で表される化合物はいずれも液晶組成物の誘電率異方性を大きくできるという点で好ましいが、液晶組成物の相溶性(低温安定性)を重視する場合は一般式(M3−1)で表される化合物を用いることが好ましく、高いネマチック上限温度範囲を重視する場合は一般式(M3−2)〜(M3−5)で表される化合物を用いることが好ましく、中でも、液晶組成物としてε⊥の値を大きく保つためには一般式(M3―3)〜(M3−5)で表される化合物を用いることが好ましく、屈折率異方性を大きくするためには一般式(M3−2)で表される化合物を用いることが好ましい。
(Wherein, R M has the same meaning as R M in formula (M).)
Any of the compounds represented by formulas (M3-1) to (M3-5) is preferable in that the dielectric anisotropy of the liquid crystal composition can be increased, but the compatibility (low-temperature stability) of the liquid crystal composition is high. When emphasizing is preferred, a compound represented by the general formula (M3-1) is preferably used. When emphasizing a high nematic maximum temperature range, the compound is represented by the general formulas (M3-2) to (M3-5). It is preferable to use a compound. In particular, in order to maintain a large value of ε⊥ as a liquid crystal composition, it is preferable to use a compound represented by any one of formulas (M3-3) to (M3-5). In order to increase the anisotropy, it is preferable to use a compound represented by the general formula (M3-2).

本発明における組成物は、更に一般式(Q)で表される末端基を有する化合物を含有することができる。これらの化合物群は液晶組成物の光や熱に対する安定性を高める目的で使用する。   The composition of the present invention can further contain a compound having a terminal group represented by the general formula (Q). These compounds are used for the purpose of increasing the stability of the liquid crystal composition to light and heat.

Figure 2019013003
Figure 2019013003

(式中の波線は結合手を意味する)
一般式(Q)で表される末端基を有する化合物は、具体的には、下記の一般式(Q−a)から一般式(Q−e)で表される化合物であることが好ましい。
(The wavy line in the formula means a bond)
Specifically, the compound having a terminal group represented by the general formula (Q) is preferably a compound represented by the following general formulas (Qa) to (Qe).

Figure 2019013003
Figure 2019013003

式中、RQ1は炭素原子数1から10の直鎖アルキル基又は分岐鎖アルキル基が好ましく、RQ2は炭素原子数1から20の直鎖アルキル基又は分岐鎖アルキル基が好ましく、RQ3、RQ4は炭素原子数1から8の直鎖アルキル基、分岐鎖アルキル基、直鎖アルコキシ基又は分岐鎖アルコキシ基が好ましく、Lは炭素原子数1から8の直鎖アルキレン基又は分岐鎖アルキレン基が好ましく、W及びWは−CH2−又はO原子が好ましく、排他的に−CH2−であるか、又は排他的にO原子であることが好ましい。一般式(Q−a)から一般式(Q−e)で表される化合物中、一般式(Q−a)、(Q−c)及び一般式(Q−e)で表される化合物が更に好ましい。In the formula, R Q1 is preferably a linear alkyl group or a branched alkyl group having 1 to 10 carbon atoms, R Q2 is preferably a linear alkyl group or a branched alkyl group having 1 to 20 carbon atoms, R Q3 , R Q4 is preferably a linear alkyl group having 1 to 8 carbon atoms, a branched alkyl group, a linear alkoxy group or a branched alkoxy group, and L Q is a linear alkylene group having 1 to 8 carbon atoms or a branched alkylene group. Preferably, the groups are preferred, and W 1 and W 2 are preferably —CH 2 — or O atoms, preferably exclusively —CH 2 — or exclusively O atoms. Among the compounds represented by the general formulas (Qa) to (Qe), the compounds represented by the general formulas (Qa), (Qc) and (Qe) further include: preferable.

本願発明の組成物において、一般式(Q)で表される化合物を1種含有する事が好ましいが、2種以上を含有してもよい。含有量は0.001から1%であることが好ましく、0.001から0.1%が更に好ましく、0.001から0.05%が特に好ましい。   The composition of the present invention preferably contains one compound represented by the general formula (Q), but may contain two or more compounds. The content is preferably 0.001 to 1%, more preferably 0.001 to 0.1%, and particularly preferably 0.001 to 0.05%.

本発明における組成物は、さらに、一般式(R)で表される末端基を有する化合物を含有することができる。これらの化合物群は液晶組成物の光や熱に対する安定性を高める目的で使用することができ、特に紫外線や可視光に対する安定性を高めるために使用する。   The composition according to the present invention may further contain a compound having a terminal group represented by the general formula (R). These compounds can be used for the purpose of increasing the stability of the liquid crystal composition to light and heat, and are used particularly for increasing the stability to ultraviolet light and visible light.

Figure 2019013003
Figure 2019013003

(式中、RはH、O・又は炭素数1〜5のアルキル基又はアルコキシ基を表し、波線は結合手を意味する。)
一般式(R)で表される末端基を有する化合物は、具体的には、下記の一般式(R−a)から一般式(R−e)で表される化合物であることが好ましい。
(In the formula, R represents H, O. or an alkyl group or an alkoxy group having 1 to 5 carbon atoms, and a wavy line means a bond.)
Specifically, the compound having a terminal group represented by the general formula (R) is preferably a compound represented by the following general formulas (Ra) to (R-e).

本願発明の組成物において、一般式(R)で表される末端基を有する化合物を1種含有することが好ましく、1〜3種含有することがより好ましい。含有量は0.001から0.5%であることが好ましく、0.001から0.2%が更に好ましく、0.001から0.1%が特に好ましい。   The composition of the present invention preferably contains one compound having a terminal group represented by the general formula (R), and more preferably contains one to three compounds. The content is preferably 0.001 to 0.5%, more preferably 0.001 to 0.2%, and particularly preferably 0.001 to 0.1%.

本発明における組成物は、紫外線吸収剤を含有することもできる。用いることができる紫外線吸収剤は特に制限されないが、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系、トリアジン系などの市販の紫外線吸収剤を使用することができる。紫外線吸収剤は1種含有する事が好ましいが、2種以上を含有してもよい。含有量は0.001から1%であることが好ましく、0.001から0.1%が更に好ましく、0.001から0.05%が特に好ましい。   The composition of the present invention can also contain an ultraviolet absorber. The ultraviolet absorber that can be used is not particularly limited, but commercially available ultraviolet absorbers such as benzophenone, benzotriazole, cyanoacrylate, and triazine can be used. It is preferable that one ultraviolet absorber is contained, but two or more ultraviolet absorbers may be contained. The content is preferably 0.001 to 1%, more preferably 0.001 to 0.1%, and particularly preferably 0.001 to 0.05%.

本発明の組成物は、高分子安定化した液晶表示素子を作製するために、重合性化合物を含有することができる。使用できる重合性化合物として、光などのエネルギー線により重合が進行する光重合性モノマーなどが挙げられ、構造として、例えば、ビフェニル誘導体、ターフェニル誘導体などの六員環が複数連結した液晶骨格を有する重合性化合物などが挙げられる。更に具体的には、一般式(XX)   The composition of the present invention can contain a polymerizable compound in order to produce a polymer-stabilized liquid crystal display device. Examples of the polymerizable compound that can be used include a photopolymerizable monomer that undergoes polymerization by energy rays such as light, and have a liquid crystal skeleton in which a plurality of six-membered rings such as biphenyl derivatives and terphenyl derivatives are connected. And a polymerizable compound. More specifically, general formula (XX)

Figure 2019013003
Figure 2019013003

(式中、X201及びX202はそれぞれ独立して、水素原子又はメチル基を表し、
Sp201及びSp202はそれぞれ独立して、単結合、炭素原子数1〜8のアルキレン基又は−O−(CH−(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)が好ましく、
201は−OCH−、−CHO−、−COO−、−OCO−、−CFO−、−OCF−、−CHCH−、−CFCF−、−CH=CH−COO−、−CH=CH−OCO−、−COO−CH=CH−、−OCO−CH=CH−、−COO−CHCH−、−OCO−CHCH−、−CHCH−COO−、−CHCH−OCO−、−COO−CH−、−OCO−CH−、−CH−COO−、−CH−OCO−、−CY=CY−(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、−C≡C−又は単結合を表し、
201は1,4−フェニレン基、トランス−1,4−シクロヘキシレン基又は単結合を表し、式中の全ての1,4−フェニレン基は、任意の水素原子がフッ素原子により置換されていても良い。)で表される二官能モノマーが好ましい。
(Wherein X 201 and X 202 each independently represent a hydrogen atom or a methyl group;
Sp 201 and Sp 202 are each independently a single bond, an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s — (wherein, s represents an integer of 2 to 7, and an oxygen atom is Is preferably bonded to an aromatic ring),
Z 201 is -OCH 2 -, - CH 2 O -, - COO -, - OCO -, - CF 2 O -, - OCF 2 -, - CH 2 CH 2 -, - CF 2 CF 2 -, - CH = CH-COO -, - CH = CH-OCO -, - COO-CH = CH -, - OCO-CH = CH -, - COO-CH 2 CH 2 -, - OCO-CH 2 CH 2 -, - CH 2 CH 2 -COO -, - CH 2 CH 2 -OCO -, - COO-CH 2 -, - OCO-CH 2 -, - CH 2 -COO -, - CH 2 -OCO -, - CY 1 = CY 2 - (Wherein, Y 1 and Y 2 each independently represent a fluorine atom or a hydrogen atom), —C≡C— or a single bond;
M 201 represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond, and all 1,4-phenylene groups in the formula have an arbitrary hydrogen atom substituted by a fluorine atom. Is also good. )) Are preferred.

201及びX202は、何れも水素原子を表すジアクリレート誘導体、何れもメチル基を有するジメタクリレート誘導体の何れも好ましく、一方が水素原子を表しもう一方がメチル基を表す化合物も好ましい。これらの化合物の重合速度は、ジアクリレート誘導体が最も早く、ジメタクリレート誘導体が遅く、非対称化合物がその中間であり、その用途により好ましい態様を用いることができる。PSA表示素子においては、ジメタクリレート誘導体が特に好ましい。Each of X 201 and X 202 is preferably a diacrylate derivative each representing a hydrogen atom, and each is preferably a dimethacrylate derivative having a methyl group, and a compound wherein one represents a hydrogen atom and the other represents a methyl group is also preferred. The polymerization rate of these compounds is the fastest for the diacrylate derivative, the slowest for the dimethacrylate derivative, and the middle for the asymmetric compound, and a preferred embodiment can be used depending on the application. In a PSA display element, a dimethacrylate derivative is particularly preferred.

Sp201及びSp202はそれぞれ独立して、単結合、炭素原子数1〜8のアルキレン基又は−O−(CH−を表すが、PSA表示素子においては少なくとも一方が単結合であることが好ましく、共に単結合を表す化合物又は一方が単結合でもう一方が炭素原子数1〜8のアルキレン基又は−O−(CH−を表す態様が好ましい。この場合1〜4のアルキル基が好ましく、sは1〜4が好ましい。Sp 201 and Sp 202 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s —, but at least one of them is a single bond in a PSA display element. preferably, the compound or one of the other by a single bond or an alkylene group having 1 to 8 carbon atoms -O- (CH 2) both represent a single bond s - aspects that represent preferred. In this case, 1 to 4 alkyl groups are preferable, and s is preferably 1 to 4.

201は、−OCH−、−CHO−、−COO−、−OCO−、−CFO−、−OCF−、−CHCH−、−CFCF−又は単結合が好ましく、−COO−、−OCO−又は単結合がより好ましく、単結合が特に好ましい。Z 201 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond. Is preferable, -COO-, -OCO- or a single bond is more preferable, and a single bond is particularly preferable.

201は任意の水素原子がフッ素原子により置換されていても良い1,4−フェニレン基、トランス−1,4−シクロヘキシレン基又は単結合を表すが、1,4−フェニレン基又は単結合が好ましい。Cが単結合以外の環構造を表す場合、Z201は単結合以外の連結基も好ましく、M201が単結合の場合、Z201は単結合が好ましい。M 201 represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond, in which an arbitrary hydrogen atom may be substituted by a fluorine atom, wherein the 1,4-phenylene group or the single bond is preferable. When C represents a ring structure other than a single bond, Z 201 is preferably a linking group other than a single bond, and when M 201 is a single bond, Z 201 is preferably a single bond.

これらの点から、一般式(XX)において、Sp201及びSp202の間の環構造は、具体的には次に記載する構造が好ましい。From these points, in the general formula (XX), the ring structure between Sp 201 and Sp 202 is specifically preferably the following structure.

一般式(XX)において、M201が単結合を表し、環構造が二つの環で形成される場合において、次の式(XXa−1)から式(XXa−5)を表すことが好ましく、式(XXa−1)から式(XXa−3)を表すことがより好ましく、式(XXa−1)を表すことが特に好ましい。In Formula (XX), when M 201 represents a single bond, and the ring structure is formed with two rings, it is preferable to represent Formula (XXa-1) to Formula (XXa-5) below, It is more preferable to represent the formula (XXa-3) from (XXa-1), and it is particularly preferable to represent the formula (XXa-1).

Figure 2019013003
Figure 2019013003

(式中、両端はSp201又はSp202に結合するものとする。)
これらの骨格を含む重合性化合物は重合後の配向規制力がPSA型液晶表示素子に最適であり、良好な配向状態が得られることから、表示ムラが抑制されるか、又は、全く発生しない。
(In the formula, both ends are bonded to Sp 201 or Sp 202. )
The polymerizable compound having such a skeleton has an alignment regulating force after polymerization that is optimal for a PSA-type liquid crystal display element, and a good alignment state is obtained, so that display unevenness is suppressed or does not occur at all.

以上のことから、重合性モノマーとしては、一般式(XX−1)〜一般式(XX−4)が特に好ましく、中でも一般式(XX−2)が最も好ましい。   From the above, as the polymerizable monomer, general formulas (XX-1) to (XX-4) are particularly preferable, and among them, general formula (XX-2) is most preferable.

Figure 2019013003
Figure 2019013003

(式中、ベンゼンはフッ素原子により置換されていても良く、Sp20は炭素原子数2から5のアルキレン基を表す。)
本発明の組成物にモノマーを添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。
(In the formula, benzene may be substituted by a fluorine atom, and Sp 20 represents an alkylene group having 2 to 5 carbon atoms.)
When a monomer is added to the composition of the present invention, the polymerization proceeds even in the absence of a polymerization initiator, but may contain a polymerization initiator to promote the polymerization. Examples of the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.

本発明の重合性化合物を含有した組成物は、これに含まれる重合性化合物が紫外線照射により重合することで液晶配向能が付与され、組成物の複屈折を利用して光の透過光量を制御する液晶表示素子に使用される。液晶表示素子として、AM−LCD(アクティブマトリックス液晶表示素子)、TN(ネマチック液晶表示素子)、STN−LCD(超ねじれネマチック液晶表示素子)、OCB−LCD及びIPS−LCD(インプレーンスイッチング液晶表示素子)に有用であるが、AM−LCDに特に有用であり、透過型あるいは反射型の液晶表示素子に用いることができる。
The composition containing the polymerizable compound of the present invention is provided with a liquid crystal alignment ability by polymerizing the polymerizable compound contained therein by ultraviolet irradiation, and controls the amount of transmitted light using the birefringence of the composition. Used for a liquid crystal display device. As liquid crystal display elements, AM-LCD (active matrix liquid crystal display element), TN (nematic liquid crystal display element), STN-LCD (super twisted nematic liquid crystal display element), OCB-LCD and IPS-LCD (in-plane switching liquid crystal display element) ), But particularly useful for AM-LCDs, and can be used for transmissive or reflective liquid crystal display devices.

本発明の組成物を用いた液晶表示素子は高速応答性と信頼性に優れ、広い動作温度範囲を実現した有用なものであり、アクティブマトリックス駆動用液晶表示素子に好適に使用できる。また、FFS型又はIPS型表示素子に使用した場合に高い透過率と低減された黒輝度による優れたコントラストを実現できることから、IPS型及びFFS型表示素子用の液晶組成物として特に適している。   The liquid crystal display device using the composition of the present invention is excellent in high-speed response and reliability, is useful in realizing a wide operating temperature range, and can be suitably used for a liquid crystal display device for driving an active matrix. In addition, when used for an FFS or IPS display device, it is particularly suitable as a liquid crystal composition for IPS and FFS display devices because it can realize high transmittance and excellent contrast due to reduced black luminance.

以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Further, “%” in the compositions of the following Examples and Comparative Examples means “% by mass”.

実施例中、測定した特性は以下の通りである。   The characteristics measured in the examples are as follows.

N-I :ネマチック相−等方性液体相転移温度(℃)
-N :スメクチック相(又は固体層)−ネマチック相転移温度(℃)
Δn :25℃における屈折率異方性
:25℃における常光屈折率
アッベ屈折計を用い、589nm光源に対する屈折率を測定した。
T NI : Nematic phase-isotropic liquid phase transition temperature (° C)
T -N : Smectic phase (or solid layer) -nematic phase transition temperature (° C)
[Delta] n: 25 refractive index anisotropy n at ° C. o: using ordinary refractive index Abbe refractometer at 25 ° C., the refractive index was measured for the 589nm light source.

Δε :25℃における誘電率異方性
ε⊥ :25℃における垂直方向の誘電率
配向処理の異なる2種類のセル(ホメオトロピック配向、ホモジニアス配向、基板間厚み10ミクロン)に液晶を封入し、1KHzの交流電界を印加してキャパシタンスを測定して求めたεllとε⊥の差分からΔεを求めた。
Δε: dielectric anisotropy at 25 ° C. ε⊥: dielectric constant in the vertical direction at 25 ° C. Liquid crystal is sealed in two types of cells (homeotropic alignment, homogeneous alignment, inter-substrate thickness 10 μm) having different alignment treatments, and 1 KHz. Δε was obtained from the difference between εll and ε⊥ obtained by measuring the capacitance by applying the AC electric field of.

η :20℃におけるバルク粘度(mPa・s)
γ:25℃における回転粘性係数(mPa・s)
Vth:厚さ6ミクロンのTNセルに液晶を封入し、25℃、クロスニコル偏光板下において透過率が10%変化する電圧を測定した。
η: Bulk viscosity at 20 ° C. (mPa · s)
γ 1 : rotational viscosity coefficient at 25 ° C. (mPa · s)
Vth: A liquid crystal was sealed in a TN cell having a thickness of 6 μm, and a voltage at which the transmittance changed 10% under a crossed Nicol polarizing plate was measured at 25 ° C.

11、K33
厚さ30ミクロンのホモジニアス配向セルに液晶を封入し、1KHzの電圧(V)を0から30Vまで印加して25℃における電気容量(C)の変化を計測し、得られたC−VカーブのフィッティングからK11とK33を求めた。
K 11, K 33:
The liquid crystal is sealed in a homogeneous alignment cell having a thickness of 30 μm, a voltage (V) of 1 KHz is applied from 0 to 30 V, and a change in electric capacity (C) at 25 ° C. is measured. to determine the K 11 and K 33 from the fitting.

22:厚さ20ミクロンのTNセルに1KHzの電圧(V)を0から30Vまで印加して得られ25℃での電気容量(C)の変化を計測し、得られたC−Vカーブの閾値電圧(Vc)から、下記式に従いK22を求めた。
K22 = 〔K33-4[(Vc/π)2×ε0・Δε-K11]〕/2
透過率(T):液晶組成物を封入したFFSセル(セルギャップ3.5ミクロン、電極幅3ミクロン、電極間距離4ミクロン、SiN絶縁層厚み4000Å、配向膜は電極長手方向から5°傾けてラビング処理)に、25℃において、クロスニコル偏光板下で電圧を印加した際の輝度変化から最大透過率を測定した。
K 22 : A change in electric capacity (C) at 25 ° C. obtained by applying a voltage (V) of 1 KHz from 0 to 30 V to a TN cell having a thickness of 20 μm and measuring a C-V curve obtained. from the threshold voltage (Vc), it was determined K 22 according to the following equation.
K 22 = [K 33 -4 [(Vc / π) 2 × ε 0・ Δε-K 11 ]] / 2
Transmittance (T): FFS cell enclosing a liquid crystal composition (cell gap: 3.5 μm, electrode width: 3 μm, distance between electrodes: 4 μm, SiN x insulating layer thickness: 4000 °, alignment film inclined at 5 ° from the electrode longitudinal direction) Rubbing treatment), the maximum transmittance was measured from the luminance change when a voltage was applied under a crossed Nicol polarizing plate at 25 ° C.

VHR:液晶組成物を封入した配向膜付きガラスセル(セルギャップ3.5ミクロン、アンチパラレル、配向膜は日産化学製のSE−7492を使用)を、周波数60Hz,印加電圧5V、印加パルス64μs、60℃の条件で測定した際の電圧保持率(%)。   VHR: A glass cell with an alignment film enclosing a liquid crystal composition (cell gap 3.5 μm, anti-parallel, alignment film using SE-7492 manufactured by Nissan Chemical Co., Ltd.), frequency 60 Hz, applied voltage 5 V, applied pulse 64 μs, Voltage holding ratio (%) measured at 60 ° C.

耐熱試験後VHR:上述の液晶セルを120℃の恒温槽中に1時間保持した後、前記方法と同様に測定した際の電圧保持率(%)。   VHR after heat resistance test: Voltage holding ratio (%) when the above-mentioned liquid crystal cell was held in a thermostat at 120 ° C. for 1 hour and then measured in the same manner as described above.

低温保存性(LTS):
低温での保存性評価は、組成物を調製後、厚さ3.5ミクロンのFFSセルに組成物を封入し、これを−20℃、−25℃、−30℃、−40℃等の温度制御式試験槽の中で保存し、定期的に目視で組成物の相変化又は析出物の発生を観察した。「240hr」は240時間経過時点で相変化及び析出が確認されたなかったことを意味する。
(環構造)
Low temperature storage (LTS):
For the evaluation of the storage stability at low temperature, after the composition was prepared, the composition was sealed in an FFS cell having a thickness of 3.5 μm, and this was subjected to a temperature of −20 ° C., −25 ° C., −30 ° C., −40 ° C., etc. The composition was stored in a controlled test tank, and the composition was periodically visually observed for phase change or generation of precipitate. “240 hr” means that no phase change and no precipitation were confirmed after 240 hours.
(Ring structure)

Figure 2019013003
Figure 2019013003

(側鎖構造及び連結構造) (Side chain structure and connection structure)

Figure 2019013003
Figure 2019013003

(比較例1〜2)
特開2006−328329の例33に記載された液晶組成物、及び特開2009−191624の例2に記載された液晶組成物を調整した。これらを選択した理由は、当該組成物がIPS型液晶表示素子用に好適に使用できると記載されているからである。物性値は当該文献に記載の値をそのまま転記し、ε⊥/Δεは新たに算出した。なお、表中の含有率は組成物に対する質量%を表す。
(Comparative Examples 1-2)
The liquid crystal composition described in Example 33 of JP-A-2006-328329 and the liquid crystal composition described in Example 2 of JP-A-2009-191624 were prepared. The reason for selecting these is that the composition is described as being suitable for use in IPS-type liquid crystal display devices. The physical property values were transcribed as they were in the literature, and ε⊥ / Δε was newly calculated. In addition, the content rate in a table | surface represents the mass% with respect to a composition.

Figure 2019013003
Figure 2019013003

Figure 2019013003
Figure 2019013003

(実施例1〜14)
以下に本願の構成要件を満足する組成物を調整しその効果を確認した。なお、表中の含有率は組成物に対する質量%を表す。
(Examples 1 to 14)
Hereinafter, a composition satisfying the constitutional requirements of the present application was prepared, and the effect was confirmed. In addition, the content rate in a table | surface represents the mass% with respect to a composition.

Figure 2019013003
Figure 2019013003

表1に記載の液晶組成物を調製し、その物性値を測定した。実施例1の組成物は広い液晶温度範囲、大きいε⊥/Δε、小さいγ1、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例1の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   The liquid crystal compositions shown in Table 1 were prepared, and the physical properties thereof were measured. The composition of Example 1 had a wide liquid crystal temperature range, a large? / ?, a small? 1, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 1 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表2に記載の液晶組成物を調製し、その物性値を測定した。実施例2の組成物は広い液晶温度範囲、大きいε⊥/Δε、極めて小さいγ1、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例2の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   The liquid crystal compositions described in Table 2 were prepared, and the physical properties thereof were measured. The composition of Example 2 had a wide liquid crystal temperature range, a large ε⊥ / Δε, an extremely small γ1, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 2 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表3に記載の液晶組成物を調製し、その物性値を測定した。実施例3の組成物は広い液晶温度範囲、大きいε⊥/Δε、極めて小さいγ1、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例3の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   The liquid crystal compositions described in Table 3 were prepared, and the physical properties thereof were measured. The composition of Example 3 had a wide liquid crystal temperature range, a large? / ?, an extremely small? 1, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 3 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表4に記載の液晶組成物を調製し、その物性値を測定した。実施例4の組成物は広い液晶温度範囲、比較的大きいε⊥/Δε、低い駆動電圧、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例4の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。
The liquid crystal compositions described in Table 4 were prepared, and the physical properties thereof were measured. The composition of Example 4 had a wide liquid crystal temperature range, a relatively large ε⊥ / Δε, a low driving voltage, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 4 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表5に記載の液晶組成物を調製し、その物性値を測定した。実施例5の組成物は広い液晶温度範囲、大きいε⊥/Δε、極めて小さいγ1、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例5の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   The liquid crystal compositions described in Table 5 were prepared, and the physical properties thereof were measured. The composition of Example 5 had a wide liquid crystal temperature range, a large? / ?, an extremely small? 1, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 5 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表6に記載の液晶組成物を調製し、その物性値を測定した。実施例6の組成物は広い液晶温度範囲、大きいε⊥/Δε、極めて小さいγ1、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例6の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   Liquid crystal compositions described in Table 6 were prepared, and physical properties thereof were measured. The composition of Example 6 had a wide liquid crystal temperature range, a large ε⊥ / Δε, an extremely small γ1, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 6 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表7に記載の液晶組成物を調製し、その物性値を測定した。実施例1の組成物は広い液晶温度範囲、大きいε⊥/Δε、小さいγ1、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例7の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   The liquid crystal compositions described in Table 7 were prepared, and the physical properties thereof were measured. The composition of Example 1 had a wide liquid crystal temperature range, a large? / ?, a small? 1, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 7 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表8に記載の液晶組成物を調製し、その物性値を測定した。実施例8の組成物は広い液晶温度範囲、比較的大きいε⊥/Δε、低い駆動電圧、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例8の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   Liquid crystal compositions described in Table 8 were prepared, and physical properties thereof were measured. The composition of Example 8 had a wide liquid crystal temperature range, a relatively large ⊥ / Δε, a low driving voltage, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 8 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表9に記載の液晶組成物を調製し、その物性値を測定した。実施例9の組成物は広い液晶温度範囲、大きいε⊥/Δε、極めて小さいγ1、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例9の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   The liquid crystal compositions described in Table 9 were prepared, and the physical properties thereof were measured. The composition of Example 9 had a wide liquid crystal temperature range, a large ε⊥ / Δε, an extremely small γ1, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 9 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表10に記載の液晶組成物を調製し、その物性値を測定した。実施例10の組成物は広い液晶温度範囲、比較的大きいε⊥/Δε、小さいγ1、低い駆動電圧、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例10の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   Liquid crystal compositions shown in Table 10 were prepared, and physical properties thereof were measured. The composition of Example 10 had a wide liquid crystal temperature range, a relatively large ε⊥ / Δε, a small γ1, a low driving voltage, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 10 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表11に記載の液晶組成物を調製し、その物性値を測定した。実施例11の組成物は広い液晶温度範囲、大きいε⊥/Δε、極めて小さいγ1、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例11の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   Liquid crystal compositions described in Table 11 were prepared, and physical properties thereof were measured. The composition of Example 11 had a wide liquid crystal temperature range, a large ε⊥ / Δε, an extremely small γ1, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 11 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表12に記載の液晶組成物を調製し、その物性値を測定した。実施例12の組成物は広い液晶温度範囲、比較的大きいε⊥/Δε、低い駆動電圧、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例12の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   The liquid crystal compositions described in Table 12 were prepared, and the physical properties thereof were measured. The composition of Example 12 had a wide liquid crystal temperature range, a relatively large ⊥ / Δε, a low driving voltage, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 12 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表13に記載の液晶組成物を調製し、その物性値を測定した。実施例13の組成物は広い液晶温度範囲、大きいε⊥/Δε、極めて小さいγ1、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例13の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   The liquid crystal compositions described in Table 13 were prepared, and the physical properties thereof were measured. The composition of Example 13 had a wide liquid crystal temperature range, a large ε⊥ / Δε, an extremely small γ1, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 13 can be suitably used for an IPS type or FFS type liquid crystal display device.

Figure 2019013003
Figure 2019013003

表14に記載の液晶組成物を調製し、その物性値を測定した。実施例14の組成物は広い液晶温度範囲、大きいε⊥/Δε、極めて小さいγ1、高いKavgを有していた。また、VHR及び耐熱試験後VHRはほぼ変化がなく高い値を示した。当該液晶を封入したFFSセルを電気光学特性測定装置(シンテック、OPTIPRO)を用いて測定したところ、高い透過率、高いコントラストを示し、応答速度は十分に高速であった。従って、実施例14の液晶組成物はIPS型またはFFS型液晶表示素子に好適に使用できる。   Liquid crystal compositions described in Table 14 were prepared, and physical properties thereof were measured. The composition of Example 14 had a wide liquid crystal temperature range, a large ε⊥ / Δε, an extremely small γ1, and a high Kavg. In addition, VHR and VHR after the heat resistance test showed almost no change and high values. When the FFS cell in which the liquid crystal was sealed was measured using an electro-optical property measuring device (Shintech, OPTIPRO), high transmittance and high contrast were exhibited, and the response speed was sufficiently high. Therefore, the liquid crystal composition of Example 14 can be suitably used for an IPS type or FFS type liquid crystal display device.

実施例7と比較例1の液晶組成物を封入したFFSセルの最大透過率及びコントラスト測定結果を示す。なお、最大透過率は、比較例1の透過率を100%として規格化した。コントラストは、電圧オフ時透過率(黒表示)に対する最大透過率の比として算出した。実施例7の液晶組成物は、類似の物性値を有する比較例1の液晶組成物と比較して、高い透過率及び高いコントラストを示すことがわかった。   10 shows the results of measuring the maximum transmittance and the contrast of the FFS cells in which the liquid crystal compositions of Example 7 and Comparative Example 1 are sealed. Note that the maximum transmittance was standardized by setting the transmittance of Comparative Example 1 to 100%. The contrast was calculated as a ratio of the maximum transmittance to the transmittance when the voltage was turned off (black display). It was found that the liquid crystal composition of Example 7 exhibited higher transmittance and higher contrast than the liquid crystal composition of Comparative Example 1 having similar physical properties.

Figure 2019013003
Figure 2019013003

実施例10と比較例2の液晶組成物を封入したFFSセルの最大透過率及びコントラスト測定結果を示す。最大透過率は、比較例2の透過率を100%として規格化した。コントラストは前述の方法と同様に算出した。実施例10の液晶組成物は、類似の物性値を有する比較例2の液晶組成物と比較して、高い透過率及びコントラストを示すことがわかった。   10 shows the results of measuring the maximum transmittance and contrast of the FFS cells in which the liquid crystal compositions of Example 10 and Comparative Example 2 are sealed. The maximum transmittance was normalized by setting the transmittance of Comparative Example 2 to 100%. The contrast was calculated in the same manner as described above. It was found that the liquid crystal composition of Example 10 exhibited higher transmittance and contrast than the liquid crystal composition of Comparative Example 2 having similar physical properties.

Figure 2019013003
Figure 2019013003

実施例7及び実施例10の液晶組成物のVHR測定結果を示す。本願発明の液晶組成物は、耐熱試験後も高いVHRを維持しており、信頼性に優れることがわかった。 10 shows VHR measurement results of the liquid crystal compositions of Example 7 and Example 10. It was found that the liquid crystal composition of the present invention maintained a high VHR even after the heat test, and was excellent in reliability.

Figure 2019013003
Figure 2019013003

以上より、本願発明の組成物は、広い温度範囲の液晶相を有し、粘性が小さく、低温での溶解性が良好で、比抵抗や電圧保持率が高く、熱や光に対して安定であり、更に、高い弾性定数及び相対的に高いε⊥とε⊥/Δεを有しており、これを用いたFFS型又はIPS型の液晶表示素子は、高速応答性や信頼性に優れ、動作温度範囲が広く、優れた透過率やコントラストを発揮することがわかった。   As described above, the composition of the present invention has a liquid crystal phase in a wide temperature range, has low viscosity, has good solubility at low temperatures, has high specific resistance and voltage holding ratio, and is stable to heat and light. In addition, it has a high elastic constant and relatively high ε⊥ and εε / Δε, and the FFS or IPS type liquid crystal display device using it has excellent high-speed response and reliability, It was found that the temperature range was wide and excellent transmittance and contrast were exhibited.

Claims (10)

第一成分として、一般式(A1)及び一般式(A2)で表される群から選ばれる正の誘電率異方性を有する化合物を少なくとも1種含有し、
第二成分として、一般式(B)で表される群から選ばれる負の誘電率異方性を有する化合物を少なくとも1種含有し、
第三成分として、一般式(C)で表される群から選ばれる誘電的に中性の化合物を少なくとも1種含有し、混合物全体として正の誘電率異方性を有する液晶組成物。
Figure 2019013003
(式中、RA1、RA2、RB1、RB2、RC1及びRC2は相互に独立して、炭素原子数1〜8のアルキル基、炭素原子数1〜8のアルコキシ基、炭素原子数2〜8のアルケニル基又は炭素原子数2〜8のアルケニルオキシ基を表し、
A1、nA2及びnC1は相互に独立して、1、2又は3を表し、
B1及びnB2は相互に独立して、0、1、2又は3を表すが、nB1+nB2は3以下であり、
A1、GA2、GB1及びGB2は相互に独立して、
(a) 1,4−シクロヘキシレン基(この基中に存在する1個の−CH−又は隣接していない2個以上の−CH−は−O−又は−S−に置き換えられてもよい。)及び
(b) 1,4−フェニレン基(この基中に存在する1個の−CH=又は隣接していない2個以上の−CH=は−N=に置き換えられてもよい。)
からなる群より選ばれる基を表し、上記の基(a)及び基(b)上の水素原子は相互に独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
C1及びGC2は相互に独立して、1,4−シクロヘキシレン基、1,4−フェニレン基、2−フルオロ−1,4フェニレン基又は3−フルオロ−1,4−フェニレン基を表し、
Kは、下記(K−1)〜(K−5)で表される群から選ばれる基であり、
Figure 2019013003
A1は、−OCH−、−CHO−又は単結合を表すが、一般式(A1)中に存在する少なくとも一つのZA1は単結合ではなく、
A2、ZB1及びZB2は相互に独立して−CHCH−、−OCH−、−CHO−、−OCF−、−CFO−、−COO−、−OCO−、−C≡C−又は単結合を表し、
C1は、−OCH−、−CHO−、−OCF−、−CFO−、−COO−、−OCO−、−CHCH−、−CH=CH−、−C≡C−、=N−N=又は単結合を表し、
A11、YA12、YA21及びYA22は相互に独立して、水素原子又はフッ素原子を表し、XA1及びXA2は相互に独立して、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基又はトリフルオロメトキシ基を表し、
A1及びZA1が複数存在する場合それらは同一であっても異なっていても良く、GA2及びZA2が複数存在する場合それらは同一であっても異なっていても良く、
B1及びZB1が複数存在する場合それらは同一であっても異なっていても良く、GB2及びZB2が複数存在する場合それらは同一であっても異なっていても良く、GC1及びZC1が複数存在する場合それらは同一でも異なっていてもよい。ただし一般式(C)で表される化合物は、一般式(B)で表される化合物を除く。)
As the first component, at least one compound having a positive dielectric anisotropy selected from the group represented by the general formulas (A1) and (A2) is contained,
As a second component, at least one compound having a negative dielectric anisotropy selected from the group represented by the general formula (B) is contained,
A liquid crystal composition containing at least one dielectrically neutral compound selected from the group represented by formula (C) as a third component, and having a positive dielectric anisotropy as a whole mixture.
Figure 2019013003
(Wherein, R A1 , R A2 , R B1 , R B2 , R C1 and R C2 each independently represent an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a carbon atom Represents an alkenyl group having 2 to 8 carbon atoms or an alkenyloxy group having 2 to 8 carbon atoms,
n A1 , n A2 and n C1 independently of one another, represent 1, 2 or 3;
n B1 and n B2 independently represent 0, 1, 2 or 3; however, n B1 + n B2 is 3 or less;
G A1 , G A2 , G B1 and G B2 are independent of each other,
(A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one -CH = or two or more non-adjacent -CH = present in this group may be replaced by -N =)
A hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom;
G C1 and G C2 independently represent a 1,4-cyclohexylene group, a 1,4-phenylene group, a 2-fluoro-1,4 phenylene group or a 3-fluoro-1,4-phenylene group,
K is a group selected from the group represented by the following (K-1) to (K-5),
Figure 2019013003
Z A1 represents —OCH 2 —, —CH 2 O— or a single bond, but at least one Z A1 present in the general formula (A1) is not a single bond,
Z A2 , Z B1 and Z B2 independently of one another are —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, —COO—, —OCO— , -C≡C- or a single bond;
Z C1 is, -OCH 2 -, - CH 2 O -, - OCF 2 -, - CF 2 O -, - COO -, - OCO -, - CH 2 CH 2 -, - CH = CH -, - C≡ C-, = N-N = or a single bond;
Y A11 , Y A12 , Y A21 and Y A22 independently represent a hydrogen atom or a fluorine atom, and X A1 and X A2 independently represent a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl Represents a group or a trifluoromethoxy group,
When a plurality of G A1 and Z A1 are present, they may be the same or different, and when a plurality of G A2 and Z A2 are present, they may be the same or different;
If G B1 and Z B1 there are a plurality thereof may be the same or different and they if G B2 and Z B2 there are a plurality may be the same or different and G C1 and Z When a plurality of C1 are present, they may be the same or different. However, the compound represented by the general formula (C) excludes the compound represented by the general formula (B). )
第一成分として少なくとも1種の一般式(A1)で表される正の誘電率異方性を有する化合物を含有する請求項1記載の液晶組成物。 The liquid crystal composition according to claim 1, wherein the first component contains at least one compound having a positive dielectric anisotropy represented by the general formula (A1). 一般式(A1)で表される化合物として、一般式(A1−1)〜(A1−4)で表される化合物から選ばれる1種又は2種以上の化合物を含有する請求項2に記載の液晶組成物。
Figure 2019013003
(式中、RA1、GA1及びXA1は、請求項1の一般式(A1)におけるRA1、GA1及びXA1と同じ意味を表し、WA1は、水素原子、シアノ基、フッ素原子又は塩素原子を表す。)
The compound according to claim 2, wherein the compound represented by the general formula (A1) contains one or more compounds selected from the compounds represented by the general formulas (A1-1) to (A1-4). Liquid crystal composition.
Figure 2019013003
(Wherein, R A1 , G A1 and X A1 represent the same meaning as R A1 , G A1 and X A1 in the general formula (A1) of claim 1, and W A1 represents a hydrogen atom, a cyano group, or a fluorine atom Or represents a chlorine atom.)
第一成分として少なくとも1種の一般式(A2)で表される正の誘電率異方性を有する化合物を含有する請求項1に記載の液晶組成物。 The liquid crystal composition according to claim 1, wherein the liquid crystal composition contains at least one compound having a positive dielectric anisotropy represented by the general formula (A2) as a first component. 一般式(A2)で表される化合物として、一般式(A2−1)〜(A2−3)で表される化合物から選ばれる1種又は2種以上の化合物を含有する請求項4に記載の液晶組成物。
Figure 2019013003
(式中、RA2、GA2及びXA2は、請求項1の一般式(A1)におけるRA2、GA2及びXA2と同じ意味を表し、WA21及びWA22は相互に独立して、水素原子、シアノ基、フッ素原子又は塩素原子を表し、nA21は0、1又は2を表す。)
The compound according to claim 4, wherein the compound represented by the general formula (A2) contains one or more compounds selected from the compounds represented by the general formulas (A2-1) to (A2-3). Liquid crystal composition.
Figure 2019013003
(Wherein, R A2 , G A2 and X A2 represent the same meaning as R A2 , G A2 and X A2 in the general formula (A1) of claim 1, and W A21 and W A22 independently of each other, Represents a hydrogen atom, a cyano group, a fluorine atom or a chlorine atom, and nA21 represents 0, 1 or 2.)
一般式(B)で表される化合物として、下記の一般式(B−1)〜(B−6)で表される群から選ばれる誘電的に負の化合物を少なくとも一種含有する請求項1〜5のいずれか1項に記載の液晶組成物。
Figure 2019013003
(式中、RB1、RB2、GB1、ZB1、ZB2、nB1及びnB2は、請求項1の一般式(B)におけるRB1、RB2、GB1、ZB1、nB1及びnB2と同じ意味を表し、WB31、WB32、WB33及びWB34は相互に独立して、水素原子、シアノ基、フッ素原子又は塩素原子を表し、nB12は0、1又は2を表すが、分子内に複数存在するWB31、WB32、WB33及びWB34は同一であっても異なっていても良い。)
The compound represented by the general formula (B) contains at least one dielectrically negative compound selected from the group represented by the following general formulas (B-1) to (B-6). 6. The liquid crystal composition according to any one of 5.
Figure 2019013003
(Wherein, R B1, R B2, G B1, Z B1, Z B2, n B1 and n B2 is, R B1, R B2 in the general formula of claim 1 (B), G B1, Z B1, n B1 and represent the same meaning as n B2, W B31, W B32 , W B33 and W B34 are independently of each other, hydrogen atom, a cyano group, a fluorine atom or a chlorine atom, a n B12 is 0, 1 or 2 represents but, W B31 a plurality present in the molecule, W B32, W B33 and W B34 may or may not be the same.)
一般式(C)で表される化合物として下記の一般式(C1)〜(C3)で表される誘電的に中性の化合物を少なくとも1種含有する請求項1〜6いずれか1項に記載の液晶組成物。
Figure 2019013003
(式中、RC1及びRC2は、請求項1の一般式(C)におけるRC1及びRC2と同じ意味を表し、
C11〜GC12、GC21〜GC23、GC31〜GC34は相互に独立して、1,4−シクロヘキシレン基、1,4−フェニレン基、2−フルオロ−1,4フェニレン基又は3−フルオロ−1,4−フェニレン基を表すが、GC11〜GC12、GC21〜GC23、GC31〜GC34上の水素原子はフッ素原子によって置換されても良い。ただし一般式(C1)〜(C3)で表される化合物は、一般式(B)で表される化合物を除く。)
The compound represented by the following general formulas (C1) to (C3) as the compound represented by the general formula (C), which contains at least one compound that is dielectrically neutral. Liquid crystal composition.
Figure 2019013003
(Wherein, R C1 and R C2 represent the same meaning as R C1 and R C2 in the general formula (C) of claim 1;
G C11 to G C12 , G C21 to G C23 , and G C31 to G C34 are independently of each other, 1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4 phenylene group or 3 - represents a fluoro-1,4-phenylene group, G C11 ~G C12, G C21 ~G C23, G C31 hydrogen atom on ~G C34 may be substituted by fluorine atoms. However, the compounds represented by the general formulas (C1) to (C3) exclude the compounds represented by the general formula (B). )
一般式(C)で表される化合物として下記の一般式(C1−1)〜(C3−3)で表される誘電的に中性の化合物を少なくとも1種含有する請求項1〜7いずれか1項に記載の液晶組成物。
Figure 2019013003
(式中、RC1及びRC2は、請求項1の一般式(C)におけるRC1及びRC2と同じ意味を表し、YC1及びYC2はいずれか一方がフッ素原子を表し他方は水素原子を表す。)
The compound represented by the general formula (C) contains at least one dielectrically neutral compound represented by the following general formulas (C1-1) to (C3-3). Item 2. The liquid crystal composition according to item 1.
Figure 2019013003
(In the formula, R C1 and R C2 represent the same meaning as R C1 and R C2 in the general formula (C) of claim 1, one of Y C1 and Y C2 represents a fluorine atom, and the other represents a hydrogen atom. Represents.)
25℃における弾性定数K11とK33の平均値が12pN以上である請求項1〜8いずれか1項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 8, wherein an average value of elastic constants K11 and K33 at 25 ° C is 12 pN or more. 請求項1〜9いずれか1項に記載の液晶組成物を用いたIPS型又はFFS型液晶表示素子。 An IPS-type or FFS-type liquid crystal display device using the liquid crystal composition according to claim 1.
JP2019529049A 2017-07-10 2018-06-28 Composition and liquid crystal display device using the same Active JP6662495B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017134608 2017-07-10
JP2017134608 2017-07-10
PCT/JP2018/024562 WO2019013003A1 (en) 2017-07-10 2018-06-28 Composition and liquid crystal display element using same

Publications (2)

Publication Number Publication Date
JPWO2019013003A1 true JPWO2019013003A1 (en) 2019-12-26
JP6662495B2 JP6662495B2 (en) 2020-03-11

Family

ID=65002473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019529049A Active JP6662495B2 (en) 2017-07-10 2018-06-28 Composition and liquid crystal display device using the same

Country Status (4)

Country Link
JP (1) JP6662495B2 (en)
KR (1) KR20200010426A (en)
CN (1) CN110719947A (en)
WO (1) WO2019013003A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4321594A1 (en) * 2022-03-18 2024-02-14 Kyusyu Nanotec Optics Co., Ltd. Liquid crystal composition and liquid crystal element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023564A1 (en) * 1996-11-28 1998-06-04 Chisso Corporation Fluorine-substituted benzene derivatives, liquid-crystal composition, and liquid-crystal display element
JP2017132847A (en) * 2016-01-26 2017-08-03 Jnc株式会社 Liquid crystal composition and liquid crystal display element
CN108587647A (en) * 2018-06-05 2018-09-28 晶美晟光电材料(南京)有限公司 A kind of positive type liquid crystal compound, the liquid crystal compound comprising the liquid-crystal compounds and its application
WO2019101059A1 (en) * 2017-11-23 2019-05-31 江苏和成显示科技有限公司 Compound, liquid crystal composition thereof and electro-optical display device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691746B2 (en) * 1999-07-28 2011-06-01 Dic株式会社 Nematic liquid crystal composition and liquid crystal display device using the same
JP5367203B2 (en) 2000-11-29 2013-12-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Electro-optical liquid crystal display and liquid crystal medium
ATE417910T1 (en) 2005-05-25 2009-01-15 Merck Patent Gmbh LIQUID CRYSTAL MEDIUM AND LIQUID CRYSTAL DISPLAY
JP5546771B2 (en) 2008-02-12 2014-07-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Liquid crystal medium and liquid crystal display
JP5376269B2 (en) * 2011-08-02 2013-12-25 Dic株式会社 Nematic liquid crystal composition
DE112013004127B4 (en) * 2012-08-22 2016-08-11 Dic Corporation Nematic liquid crystal composition and its use
JP6493678B2 (en) * 2014-07-31 2019-04-03 Jnc株式会社 Liquid crystalline compound, liquid crystal composition and liquid crystal display device
CN106459765B (en) * 2014-07-31 2018-03-09 Dic株式会社 Nematic liquid crystal composition
CN104498055B (en) * 2014-12-31 2017-01-11 石家庄诚志永华显示材料有限公司 Liquid crystal composition
EP3081620B1 (en) * 2015-04-13 2020-04-01 Merck Patent GmbH Liquid-crystalline medium and liquid-crystal display comprising the same
EP3095834B9 (en) * 2015-05-21 2019-09-04 Merck Patent GmbH Liquid-crystalline medium and liquid-crystal display comprising the same
JP6511975B2 (en) * 2015-06-09 2019-05-15 Jnc株式会社 Liquid crystal composition and liquid crystal display device containing dihydropyran compound
CN105131975B (en) * 2015-09-02 2017-11-10 石家庄诚志永华显示材料有限公司 A kind of positive and negative mixed liquid crystal composition
CN105602577B (en) * 2016-01-28 2017-07-07 石家庄诚志永华显示材料有限公司 Positive dielectric anisotropy liquid crystal composition and its liquid crystal display cells or liquid crystal display
CN106398718B (en) * 2016-08-31 2021-05-11 晶美晟光电材料(南京)有限公司 Liquid crystal mixture with positive dielectric constant and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023564A1 (en) * 1996-11-28 1998-06-04 Chisso Corporation Fluorine-substituted benzene derivatives, liquid-crystal composition, and liquid-crystal display element
JP2017132847A (en) * 2016-01-26 2017-08-03 Jnc株式会社 Liquid crystal composition and liquid crystal display element
WO2019101059A1 (en) * 2017-11-23 2019-05-31 江苏和成显示科技有限公司 Compound, liquid crystal composition thereof and electro-optical display device
CN108587647A (en) * 2018-06-05 2018-09-28 晶美晟光电材料(南京)有限公司 A kind of positive type liquid crystal compound, the liquid crystal compound comprising the liquid-crystal compounds and its application

Also Published As

Publication number Publication date
JP6662495B2 (en) 2020-03-11
CN110719947A (en) 2020-01-21
WO2019013003A1 (en) 2019-01-17
KR20200010426A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
KR101738906B1 (en) Nematic liquid crystal composition and liquid crystal display element using same
JP5376269B2 (en) Nematic liquid crystal composition
JP5582264B2 (en) Nematic liquid crystal composition
JP5534115B1 (en) Nematic liquid crystal composition
JP5534114B1 (en) Nematic liquid crystal composition
JP5776864B1 (en) Nematic liquid crystal composition
KR102006209B1 (en) Nematic liquid crystal composition and liquid crystal display element using same
JP5648881B2 (en) Nematic liquid crystal composition
JP5534382B1 (en) Nematic liquid crystal composition
JP5780431B2 (en) Nematic liquid crystal composition
TW201522587A (en) Nematic liquid crystal composition and liquid crystal display element using same
JP6662495B2 (en) Composition and liquid crystal display device using the same
JP5910800B1 (en) Nematic liquid crystal composition
WO2020044832A1 (en) Composition and liquid crystal display element using same
JP6002997B2 (en) Nematic liquid crystal composition
JPWO2013179966A1 (en) Liquid crystal composition having negative dielectric anisotropy, and liquid crystal display device using the liquid crystal composition
JP6061040B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP2013241519A (en) Nematic liquid crystal composition
TW202142679A (en) Cholesteric liquid crystal composition and uses thereof and liquid crystal element wherein the cholesteric liquid crystal element has a wide usable temperature range, high display quality, and low driving voltage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190819

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R151 Written notification of patent or utility model registration

Ref document number: 6662495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154