JPWO2019009259A1 - Composition for forming flexible device substrate - Google Patents

Composition for forming flexible device substrate Download PDF

Info

Publication number
JPWO2019009259A1
JPWO2019009259A1 JP2019527707A JP2019527707A JPWO2019009259A1 JP WO2019009259 A1 JPWO2019009259 A1 JP WO2019009259A1 JP 2019527707 A JP2019527707 A JP 2019527707A JP 2019527707 A JP2019527707 A JP 2019527707A JP WO2019009259 A1 JPWO2019009259 A1 JP WO2019009259A1
Authority
JP
Japan
Prior art keywords
flexible device
device substrate
composition
formula
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019527707A
Other languages
Japanese (ja)
Other versions
JP7054064B2 (en
Inventor
偉恩 奚
偉恩 奚
邦慶 何
邦慶 何
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2019009259A1 publication Critical patent/JPWO2019009259A1/en
Application granted granted Critical
Publication of JP7054064B2 publication Critical patent/JP7054064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

【課題】耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を維持すると共に、機械的剥離法(MD法)により基材から容易に剥離し得る、フレキシブルディスプレイ基板等のフレキシブルデバイス基板のベースフィルムとして優れた性能を有する樹脂薄膜を与えるフレキシブルデバイス基板形成用組成物を提供することを目的とする。【解決手段】下記式(C1)及び下記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、下記式(E1)で表されるフルオレンジアミンを含むジアミン成分とを用いて得られるポリイミドと有機溶媒とを含むフレキシブルデバイス基板形成用組成物。【化1】〔式中、B1は、下記式(X−1)〜(X−11)からなる群から選ばれる4価の基を表す。〕【化2】【選択図】なしPROBLEM TO BE SOLVED: To maintain excellent properties such as excellent heat resistance, low retardation, excellent flexibility, and excellent transparency, and to easily peel from a substrate by a mechanical peeling method (MD method). An object of the present invention is to provide a composition for forming a flexible device substrate, which gives a resin thin film having excellent performance as a base film of a flexible device substrate such as a flexible display substrate. A tetracarboxylic acid dianhydride component containing an alicyclic tetracarboxylic acid dianhydride represented by the following formula (C1) and the following formula (D1), and a fluorenediamine represented by the following formula (E1) A composition for forming a flexible device substrate, which comprises a polyimide obtained by using a diamine component containing the: and an organic solvent. [In the formula, B1 represents a tetravalent group selected from the group consisting of the following formulas (X-1) to (X-11). ] [Chemical 2] [Selection diagram] None

Description

本発明は、フレキシブルデバイス基板形成用組成物に関し、より具体的には、特にキャリア基材からの基板の剥離工程において機械的剥離法を用いる、フレキシブルディスプレイ等のフレキシブルデバイス基板の形成に好適に使用できる組成物に関する。   The present invention relates to a composition for forming a flexible device substrate, and more specifically, it is suitably used for forming a flexible device substrate such as a flexible display using a mechanical peeling method particularly in the step of peeling a substrate from a carrier substrate. A composition that can be.

近年、液晶ディスプレイや有機エレクトロルミネッセンスディスプレイ等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。
これらのデバイスにはガラス基板上に様々な電子素子、例えば、薄膜トランジスタや透明電極等が形成されているが、このガラス材料を柔軟かつ軽量な樹脂材料に替えることで、デバイス自体の薄型化や軽量化、フレキシブル化が図れる。
このような事情の下、ガラスの代替材料としてポリイミドが注目を集めている。そして、当該用途向けのポリイミドには、柔軟性だけでなく、大抵の場合、ガラスと同様の透明性が要求されることとなる。これらの特性を実現するために、原料に脂環式ジアミン成分や脂環式無水物成分を用いて得られる半脂環式ポリイミドや全脂環式ポリイミドが報告されている(例えば特許文献1〜3参照)。
In recent years, along with the rapid progress of electronics such as liquid crystal displays and organic electroluminescence displays, there has been a demand for thinner and lighter devices and more flexible devices.
Various electronic elements such as thin film transistors and transparent electrodes are formed on a glass substrate in these devices. By changing the glass material to a flexible and lightweight resin material, the device itself can be made thinner and lighter. And flexible.
Under such circumstances, polyimide has attracted attention as a substitute material for glass. In addition, not only flexibility but also the same transparency as that of glass is required in most cases for the polyimide for the application. In order to realize these characteristics, semi-alicyclic polyimides and full-alicyclic polyimides obtained by using an alicyclic diamine component or an alicyclic anhydride component as a raw material have been reported (for example, Patent Documents 1 to 1). 3).

一方、フレキシブルディスプレイの製造において、これまで太陽光発電装置の製造において使用されてきた機械的剥離法(MD法)を用いてガラスキャリアからポリマー基板を好適に剥離できることが報告されている(例えば非特許文献1)。
フレキシブルディスプレイの製造では、ガラスキャリア上にポリイミド等からなるポリマー基板を設け、次にその基板の上に電極等を含む回路を形成し、最終的にこの回路等とともに基板をガラスキャリアから剥離する必要がある。この剥離工程においてMD法を採用し、すなわち、ガラスキャリア上のポリマー(ポリイミド)フィルムの4辺を切断した後、吸引することにより、基板上に設けられた回路等にダメージを与えることなく、ガラスキャリアからの基板の剥離を選択的に実行可能であると報告されている。
ディスプレイの基板には、透明基板を通過した偏光の光学異方性に影響を与えないよう、低い複屈折率が要求される。ここで、かさ高い骨格またはかさ高い側鎖を有するポリイミドは、ポリマー鎖どうしの距離が遠くなるため、得られるフィルムは低い複屈折率を示しうるが、自由体積が大きくなることによって熱膨張率が大きくなる。
On the other hand, it has been reported that a polymer substrate can be suitably peeled from a glass carrier by using a mechanical peeling method (MD method) which has been used in the manufacture of a solar power generation device in the manufacture of a flexible display (for example, Patent Document 1).
In the manufacture of flexible displays, it is necessary to provide a polymer substrate made of polyimide or the like on a glass carrier, then form a circuit including electrodes on the substrate, and finally peel the substrate together with this circuit from the glass carrier. There is. In this peeling step, the MD method is adopted, that is, by cutting the four sides of the polymer (polyimide) film on the glass carrier and then sucking the glass, without damaging the circuit or the like provided on the substrate, It has been reported that the detachment of the substrate from the carrier can be selectively performed.
The substrate of the display is required to have a low birefringence so as not to affect the optical anisotropy of polarized light that has passed through the transparent substrate. Here, a polyimide having a bulky skeleton or a bulky side chain has a long distance between polymer chains, and thus the obtained film may have a low birefringence, but the coefficient of thermal expansion is increased by increasing the free volume. growing.

特開2013−147599号公報JP, 2013-147599, A 特開2014−114429号公報JP, 2014-114429, A 国際公開第2015/152178号International Publication No. 2015/152178

Advanced Functional Materials Volume27 Issue2 p.p. 1-7 DOI: 10.1002/adfm.201602969Advanced Functional Materials Volume27 Issue2 p.p. 1-7 DOI: 10.1002 / adfm.201602969

これまで提案されたフレキシブルディスプレイ用基板材料として有望な半脂環式ポリイミドや全脂環式ポリイミドは、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を有する基板を形成し得るものの、該基板は、高い線膨張係数(>50ppm/℃)または高い複屈折率(Δn>0.01)を有するという問題があった。   The semi-alicyclic polyimides and all-alicyclic polyimides, which have been promising as substrate materials for flexible displays proposed so far, have excellent heat resistance, low retardation, excellent flexibility, and excellent transparency. However, there is a problem that the substrate has a high linear expansion coefficient (> 50 ppm / ° C.) or a high birefringence index (Δn> 0.01).

本発明は、このような事情に鑑みてなされたものであって、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を維持すると共に、厚さ10nmのフィルムにおける低い線膨張係数(<50ppm/℃)及び低い複屈折率(Δn<0.001)を同時に維持しうるフレキシブルディスプレイ基板等のフレキシブルデバイス基板のベースフィルムとして優れた性能を有する樹脂薄膜を与えるフレキシブルデバイス基板形成用組成物を提供することを目的とする。   The present invention has been made in view of such circumstances, and maintains excellent performances such as excellent heat resistance, low retardation, excellent flexibility, and excellent transparency, and a thickness of 10 nm. A resin thin film having excellent performance as a base film for a flexible device substrate such as a flexible display substrate capable of simultaneously maintaining a low linear expansion coefficient (<50 ppm / ° C.) and a low birefringence index (Δn <0.001) in the above film. The object is to provide a composition for forming a flexible device substrate.

本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、芳香族ジアミンを含むジアミン成分とからポリイミドを製造する際に、テトラカルボン酸二無水物成分として特定の構造を有する脂環式テトラカルボン酸二無水物とそれとは異なる構造を有する脂環式テトラカルボン酸二無水物を含有させるとともに、ジアミン成分としてフルオレン構造を有するジアミンを芳香族ジアミンに含有させると、これにより得られたポリイミドは、樹脂薄膜とした際に、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を示し得ると共に、MD法によりガラスキャリアから容易に剥離し得ることを見出し、本発明を完成させた。   The present inventors have conducted extensive studies in order to achieve the above object, a tetracarboxylic acid dianhydride component containing an alicyclic tetracarboxylic acid dianhydride, and a polyimide from a diamine component containing an aromatic diamine. When producing, alicyclic tetracarboxylic dianhydride having a specific structure as a tetracarboxylic dianhydride component and alicyclic tetracarboxylic dianhydride having a different structure from that are contained, and a diamine component As a diamine having a fluorene structure is contained in an aromatic diamine, the resulting polyimide has excellent heat resistance when used as a resin thin film, has low retardation, is excellent in flexibility, and is also excellent in transparency. The present invention has been completed by discovering that it can be easily peeled from a glass carrier by the MD method while exhibiting excellent performance of .

すなわち本発明は、第1観点として、下記式(C1)で表される脂環式テトラカルボン酸二無水物及び下記式(D1)脂環式で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、下記式(E1)で表されるフルオレンジアミンを含むジアミン成分とを用いて得られるポリイミドと有機溶媒とを含有するフレキシブルデバイス基板形成用組成物に関する。
〔式中、Bは、式(X−1)〜(X−11)からなる群から選ばれる4価の基を表す。
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
(式(E1)中、Rはそれぞれ独立に、水素原子、ハロゲン原子、フェニル基またはフェニルエチル基を表し、nは置換基Rの個数を表し、それぞれ独立に0乃至4の整数を表す。)
第2観点として、前記ジアミン成分は、式(E1)で表されるフルオレンジアミンを、ジアミン成分の全モル数に対して50モル%乃至100モル%含む、第1観点に記載のフレキシブルデバイス基板形成用組成物に関する。
第3観点として、前記テトラカルボン酸二無水物成分は、式(D1)で表される脂環式テトラカルボン酸二無水物を、テトラカルボン酸二無水物成分の全モル数に対して、20モル%乃至60モル%含む、第1観点または第2観点に記載のフレキシブルデバイス基板形成用組成物に関する。
第4観点として、機械的剥離法に用いるためのフレキシブルデバイスの基板形成用組成物である、第1観点乃至第3観点のうちいずれか一つに記載のフレキシブルデバイス基板形成用組成物に関する。
第5観点として、第1観点乃至第4観点のうちいずれか一つに記載のフレキシブルデバイス基板形成用組成物を用いて作成されたフレキシブルデバイス基板に関する。
第6観点として、第1観点乃至第4観点のうちいずれか一つに記載のフレキシブルデバイス基板形成用組成物を基材に塗布し、乾燥・加熱して、基材上にフレキシブルデバイス基板を形成する工程、及び
機械的剥離法により前記基材から前記フレキシブルデバイス基板を剥離させる剥離工程を含む、フレキシブルデバイス基板の製造方法に関する。
That is, the present invention, as a first aspect, a tetracyclic carboxylic acid dianhydride represented by the following formula (C1) and a tetracarboxylic acid dianhydride represented by the following formula (D1) alicyclic The present invention relates to a flexible device substrate-forming composition containing a polyimide obtained by using a carboxylic acid dianhydride component and a diamine component containing fluorenediamine represented by the following formula (E1) and an organic solvent.
[In the formula, B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-11).
(In the formula, plural R's each independently represent a hydrogen atom or a methyl group, and * represents a bond.)
(In formula (E1), each R 1 independently represents a hydrogen atom, a halogen atom, a phenyl group or a phenylethyl group, n represents the number of the substituents R 1 , and each independently represents an integer of 0 to 4. .)
As a second aspect, the diamine component comprises the fluorenediamine represented by the formula (E1) in an amount of 50 mol% to 100 mol% with respect to the total number of moles of the diamine component. Composition.
As a third aspect, the tetracarboxylic acid dianhydride component is obtained by converting the alicyclic tetracarboxylic acid dianhydride represented by the formula (D1) to 20 with respect to the total number of moles of the tetracarboxylic acid dianhydride component. The composition for forming a flexible device substrate according to the first aspect or the second aspect, which comprises from 60% by mol to 60% by mol.
A fourth aspect relates to the flexible device substrate-forming composition according to any one of the first to third aspects, which is a flexible device substrate-forming composition for use in a mechanical peeling method.
A fifth aspect relates to a flexible device substrate prepared using the flexible device substrate-forming composition according to any one of the first to fourth aspects.
As a sixth aspect, the composition for forming a flexible device substrate according to any one of the first aspect to the fourth aspect is applied to a substrate, dried and heated to form a flexible device substrate on the substrate. And a peeling step of peeling the flexible device substrate from the base material by a mechanical peeling method.

本発明により、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れる(高い光線透過率、低い黄色度)という優れた性能を維持すると共に、MD法により基材(例えばガラスキャリア)から容易に剥離し得る、フレキシブルディスプレイ基板等のフレキシブルデバイス基板のベースフィルムとして優れた性能を有する樹脂薄膜を与えるフレキシブルデバイス基板形成用組成物を提供することができる。
そして、本発明に係るフレキシブルデバイス基板は、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れる(高い光線透過率、低い黄色度)という優れた性能を維持すると共に、MD法により基材(例えばガラスキャリア)から容易に剥離し得ることから、フレキシブルデバイス、特にフレキシブルディスプレイの基板として好適に用いることができる。
According to the present invention, excellent performances such as excellent heat resistance, low retardation, excellent flexibility, and excellent transparency (high light transmittance, low yellowness) are maintained, and a substrate (for example, by MD method) (for example, It is possible to provide a composition for forming a flexible device substrate, which can be easily peeled from a glass carrier) and provides a resin thin film having excellent performance as a base film of a flexible device substrate such as a flexible display substrate.
The flexible device substrate according to the present invention has excellent heat resistance, low retardation, excellent flexibility, and also excellent transparency (high light transmittance, low yellowness) while maintaining excellent performance. Since it can be easily peeled from a base material (for example, a glass carrier) by the MD method, it can be suitably used as a substrate of a flexible device, particularly a flexible display.

以下、本発明について詳細に説明する。
本発明のフレキシブルデバイス基板形成用組成物は、下記式(C1)で表される脂環式テトラカルボン酸二無水物及び下記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、下記式(E1)で表されるフルオレンジアミンを含むジアミン成分との反応生成物であるポリイミドと有機溶媒とを含有する。
〔式中、Bは、式(X−1)〜(X−11)からなる群から選ばれる4価の基を表す。
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
(式(E1)中、Rはそれぞれ独立に、水素原子、ハロゲン原子、フェニル基またはフェニルエチル基を表し、nは置換基Rの個数を表し、それぞれ独立に0乃至4の整数を表す。)
Hereinafter, the present invention will be described in detail.
The composition for forming a flexible device substrate of the present invention comprises an alicyclic tetracarboxylic dianhydride represented by the following formula (C1) and an alicyclic tetracarboxylic dianhydride represented by the following formula (D1). It contains a polyimide, which is a reaction product of a tetracarboxylic dianhydride component contained therein, and a diamine component containing fluorenediamine represented by the following formula (E1), and an organic solvent.
[In the formula, B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-11).
(In the formula, plural R's each independently represent a hydrogen atom or a methyl group, and * represents a bond.)
(In formula (E1), each R 1 independently represents a hydrogen atom, a halogen atom, a phenyl group or a phenylethyl group, n represents the number of the substituents R 1 , and each independently represents an integer of 0 to 4. .)

[ポリイミド]
本発明で使用するポリイミドは、主鎖に脂環式骨格を有するポリイミドである。具体的には、前記ポリイミドは、前記式(C1)で表される脂環式テトラカルボン酸二無水物及び前記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分を、前記式(E1)で表されるフルオレンジアミンを含むジアミン成分と反応させて得られるポリアミック酸をイミド化して得られるポリイミドである。すなわち、上記ポリイミドは、好ましくはポリアミック酸のイミド化物であって、該ポリアミック酸は、前記式(C1)で表される脂環式テトラカルボン酸二無水物及び前記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、前記式(E1)で表されるフルオレンジアミンを含むジアミン成分との反応物である。
[Polyimide]
The polyimide used in the present invention is a polyimide having an alicyclic skeleton in the main chain. Specifically, the polyimide is a tetracarboxylic acid containing an alicyclic tetracarboxylic dianhydride represented by the formula (C1) and an alicyclic tetracarboxylic dianhydride represented by the formula (D1). A polyimide obtained by imidizing a polyamic acid obtained by reacting an acid dianhydride component with a diamine component containing fluorenediamine represented by the formula (E1). That is, the polyimide is preferably an imidized product of polyamic acid, and the polyamic acid is represented by the alicyclic tetracarboxylic dianhydride represented by the formula (C1) and the formula (D1). It is a reaction product of a tetracarboxylic acid dianhydride component containing an alicyclic tetracarboxylic acid dianhydride and a diamine component containing a fluorenediamine represented by the formula (E1).

〔式中、Bは、式(X−1)〜(X−11)からなる群から選ばれる4価の基を表す。
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
[In the formula, B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-11).
(In the formula, plural R's each independently represent a hydrogen atom or a methyl group, and * represents a bond.)

上記式(C1)で表される脂環式テトラカルボン酸二無水物の中でも、式中のBが式(X−1)、(X−4)、(X−7)で表される化合物であることが好ましい。
好適な例として、上記式(C1)で表される脂環式テトラカルボン酸二無水物及び上記式(D1)で表される脂環式テトラカルボン酸二無水物と、上記式(E1)で表されるジアミンとを反応させて得られるポリアミック酸をイミド化して得られるポリイミドは、後述する式(1)及び(1’)で表されるモノマー単位を含む。
Among the alicyclic tetracarboxylic dianhydrides represented by the above formula (C1), B 1 in the formula is a compound represented by the formula (X-1), (X-4) or (X-7). Is preferred.
As a preferred example, an alicyclic tetracarboxylic dianhydride represented by the above formula (C1) and an alicyclic tetracarboxylic dianhydride represented by the above formula (D1) and the above formula (E1) The polyimide obtained by imidizing the polyamic acid obtained by reacting with the diamine represented by the formula contains the monomer units represented by the formulas (1) and (1 ′) described later.

本発明の目的である耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を維持すると共に、MD法により基材(例えばガラスキャリア)から容易に剥離し得るフレキシブルデバイス基板に適する樹脂薄膜を得るためには、テトラカルボン酸二無水物成分の全モル数に対して、上記式(C1)で表される脂環式テトラカルボン酸二無水物が40モル%以上90モル%以下であることが好ましく、40モル%以上80モル%以下であることが好ましく、60モル%以上80モル%以下であることがより好ましく、また、テトラカルボン酸二無水物成分の全モル数に対して、式(D1)で表される脂環式テトラカルボン酸二無水物が10モル%以上60モル%以下であることが好ましく、20モル%以上60モル%以下であることが好ましく、20モル%以上40モル%以下であることがより好ましい。
また同様に、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を維持すると共に、MD法により基材(例えばガラスキャリア)から容易に剥離し得るフレキシブルデバイス基板に適する樹脂薄膜を得るためには、ジアミン成分の全モル数に対して、上記式(E1)で表されるジアミンが50モル%以上、例えば50モル%以上100モル%以下であることが好ましく、70モル%以上であることがより好ましく、95モル%以上であることがさらに好ましい。
The object of the present invention is excellent in heat resistance, low in retardation, excellent in flexibility, and excellent in transparency and is easily peeled from a substrate (for example, glass carrier) by the MD method. In order to obtain a resin thin film suitable for the obtained flexible device substrate, 40 mol of the alicyclic tetracarboxylic dianhydride represented by the above formula (C1) is used with respect to the total number of moles of the tetracarboxylic dianhydride component. % Or more and 90 mol% or less, preferably 40 mol% or more and 80 mol% or less, more preferably 60 mol% or more and 80 mol% or less, and tetracarboxylic dianhydride component. The alicyclic tetracarboxylic acid dianhydride represented by the formula (D1) is preferably 10 mol% or more and 60 mol% or less, and 20 mol% or less with respect to the total number of moles of Is preferably 60 mol% or less, and more preferably at least 20 mol% 40 mol% or less.
Similarly, it has excellent heat resistance, low retardation, excellent flexibility, and excellent transparency, and is flexible enough to be easily peeled from the base material (eg, glass carrier) by the MD method. In order to obtain a resin thin film suitable for a device substrate, the diamine represented by the above formula (E1) is 50 mol% or more, for example, 50 mol% or more and 100 mol% or less, based on the total number of mols of the diamine component. Is preferred, 70 mol% or more is more preferred, and 95 mol% or more is even more preferred.

好適な態様の一例として、本発明で使用するポリイミドは、下記式(1)で表されるモノマー単位と下記式(1’)で表されるモノマー単位とを含む。
(式(1)中、Bは、上記式(X−1)〜(X−11)からなる群から選ばれる4価の基を表し、Rはそれぞれ独立に水素原子、ハロゲン原子、フェニル基またはフェニルエチル基を表し、nは置換基Rの個数を表し、それぞれ独立に0乃至4の整数である。)
(式(1’)中、Rはそれぞれ独立に水素原子、ハロゲン原子、フェニル基またはフェニルエチル基を表し、nは置換基Rの個数を表し、それぞれ独立に0乃至4の整数である。)
As an example of a preferred embodiment, the polyimide used in the present invention contains a monomer unit represented by the following formula (1) and a monomer unit represented by the following formula (1 ′).
(In the formula (1), B 1 represents a tetravalent group selected from the group consisting of the formulas (X-1) to (X-11), and R 1's each independently represent a hydrogen atom, a halogen atom or phenyl. Group or a phenylethyl group, n represents the number of the substituents R 1 , each independently being an integer of 0 to 4.)
(In the formula (1 ′), R 1's each independently represent a hydrogen atom, a halogen atom, a phenyl group or a phenylethyl group, and n's represent the number of the substituents R 1 's, each independently an integer of 0 to 4. .)

上記式(1)で表されるモノマー単位としては、式(1−1)で表されるものが好ましい。
(式(1−1)中、複数のRは、互いに独立して、水素原子またはメチル基を表す)
As the monomer unit represented by the above formula (1), those represented by the formula (1-1) are preferable.
(In the formula (1-1), a plurality of R's each independently represents a hydrogen atom or a methyl group.)

上記式(1’)で表されるモノマー単位としては、式(1’−1)で表されるものが好ましい。
As the monomer unit represented by the above formula (1 ′), those represented by the formula (1′-1) are preferable.

〈ポリアミック酸の合成〉
本発明で使用するポリイミドは、前述したように、上記式(C1)で表される脂環式テトラカルボン酸二無水物及び上記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、上記式(E1)で表されるフルオレンジアミンを含むジアミン成分とを反応させて得られるポリアミック酸をイミド化して得られる。
上記成分からポリアミック酸への反応は、有機溶媒中で比較的容易に進行させることができ、かつ副生成物が生成しない点で有利である。
<Synthesis of polyamic acid>
The polyimide used in the present invention is, as described above, the alicyclic tetracarboxylic dianhydride represented by the above formula (C1) and the alicyclic tetracarboxylic dianhydride represented by the above formula (D1). It is obtained by imidizing a polyamic acid obtained by reacting a tetracarboxylic acid dianhydride component containing the above with a diamine component containing the fluorenediamine represented by the above formula (E1).
The reaction from the above components to polyamic acid is advantageous in that it can be relatively easily proceeded in an organic solvent and that by-products are not formed.

これらテトラカルボン酸二無水物成分とジアミン成分との反応におけるジアミン成分の仕込み比(モル比)は、ポリアミック酸、さらにはその後イミド化させることにより得られるポリイミドの分子量等を勘案して適宜設定されるものではあるが、テトラカルボン酸二無水物成分1に対して、通常、ジアミン成分0.8〜1.2程度とすることができ、例えば0.9〜1.1程度、好ましくは0.98〜1.02程度である。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。   The charging ratio (molar ratio) of the diamine component in the reaction of the tetracarboxylic dianhydride component and the diamine component is appropriately set in consideration of the polyamic acid, and further the molecular weight of the polyimide obtained by imidization. Although it is one, the diamine component can usually be about 0.8 to 1.2 with respect to the tetracarboxylic dianhydride component 1, for example, about 0.9 to 1.1, preferably 0. It is about 98 to 1.02. Similar to the usual polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyamic acid produced.

上記テトラカルボン酸二無水物成分とジアミン成分との反応の際に用いる有機溶媒は、反応に悪影響を及ぼさず、また生成したポリアミック酸が溶解するものであれば特に限定されない。以下にその具体例を挙げる。
例えば、m−クレゾール、2−ピロリドン、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−ビニル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、3−メトキシ−N,N−ジメチルプロピルアミド、3−エトキシ−N,N−ジメチルプロピルアミド、3−プロポキシ−N,N−ジメチルプロピルアミド、3−イソプロポキシ−N,N−ジメチルプロピルアミド、3−ブトキシ−N,N−ジメチルプロピルアミド、3−sec−ブトキシ−N,N−ジメチルプロピルアミド、3−tert−ブトキシ−N,N−ジメチルプロピルアミド、γ−ブチロラクトン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール−tert−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3−メチル−3−メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3−メチル−3−メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n−へキサン、n−ペンタン、n−オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸イソプロピル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸、3−メトキシプロピオン酸、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、ジグライム、4−ヒドロキシ−4−メチル−2−ペンタノン等があげられるがこれらに限定されない。これらは単独で又は2種以上を組み合わせて使用してもよい。
さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
The organic solvent used in the reaction of the tetracarboxylic dianhydride component and the diamine component is not particularly limited as long as it does not adversely affect the reaction and the generated polyamic acid is dissolved. Specific examples are given below.
For example, m-cresol, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, 3- Methoxy-N, N-dimethylpropylamide, 3-ethoxy-N, N-dimethylpropylamide, 3-propoxy-N, N-dimethylpropylamide, 3-isopropoxy-N, N-dimethylpropylamide, 3-butoxy -N, N-dimethylpropylamide, 3-sec-butoxy-N, N-dimethylpropylamide, 3-tert-butoxy-N, N-dimethylpropylamide, γ-butyrolactone, N-methylcaprolactam, dimethyl sulfoxide, tetra Methyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxy , Isopropyl alcohol, methoxymethyl pentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbyl. Tol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene Glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate mono Propyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, Methylcyclohexene, propyl ether, dihex Ether, dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl acetate. Ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, isopropyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, Examples thereof include, but are not limited to, butyl 3-methoxypropionate, diglyme, and 4-hydroxy-4-methyl-2-pentanone. You may use these individually or in combination of 2 or more types.
Further, even a solvent that does not dissolve the polyamic acid may be used as a mixture with the above-mentioned solvent as long as the generated polyamic acid does not precipitate. Further, since water in the organic solvent inhibits the polymerization reaction and causes hydrolysis of the generated polyamic acid, it is preferable to use dehydrated and dried organic solvent as much as possible.

上記テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で反応させる方法としては、ジアミン成分を有機溶媒に分散あるいは溶解させた分散液又は溶液を撹拌させ、ここにテトラカルボン酸二無水物成分をそのまま添加するか、又はその成分を有機溶媒に分散あるいは溶解させたものを添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた分散液又は溶液にジアミン成分を添加する方法、そしてテトラカルボン酸二無水物成分とジアミン化合物成分とを交互に添加する方法などが挙げられ、これらのいずれの方法であってもよい。
また、テトラカルボン酸二無水物成分及び/又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
As a method of reacting the tetracarboxylic acid dianhydride component and the diamine component in an organic solvent, a dispersion or solution in which the diamine component is dispersed or dissolved in an organic solvent is stirred, and the tetracarboxylic acid dianhydride is added thereto. A component is added as it is, or a method in which the component is dispersed or dissolved in an organic solvent is added, and conversely, a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, or a diamine component is added to a dispersion or solution. And a method of alternately adding the tetracarboxylic acid dianhydride component and the diamine compound component, and any of these methods may be used.
When the tetracarboxylic dianhydride component and / or the diamine component are composed of a plurality of compounds, they may be reacted in a premixed state, may be individually and sequentially reacted, and may be further reacted individually. A low molecular weight substance may be mixed and reacted to form a high molecular weight substance.

上記のポリアミック酸合成時の温度は、上述した使用する溶媒の融点から沸点までの範囲で適宜設定すればよく、例えば−20℃〜150℃の任意の温度を選択することができるが、−5℃〜150℃、通常0〜150℃程度、好ましくは0〜140℃程度であるのがよい。
反応時間は、反応温度や原料物質の反応性に依存するため一概に規定できないが、通常1〜100時間程度である。
また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、テトラカルボン酸二無水物成分とジアミン成分との反応溶液中での合計濃度が、好ましくは1〜50質量%、より好ましくは5〜40質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することもできる。
The temperature at the time of synthesizing the polyamic acid may be appropriately set in the range from the melting point to the boiling point of the above-mentioned solvent to be used, and for example, an arbitrary temperature of −20 ° C. to 150 ° C. can be selected, but −5 C. to 150.degree. C., usually about 0 to 150.degree. C., preferably about 0 to 140.degree.
The reaction time cannot be specified unconditionally because it depends on the reaction temperature and the reactivity of the raw material, but it is usually about 1 to 100 hours.
Further, the reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride component and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 40% by mass. It is also possible to perform the reaction at a high concentration in the initial stage and then add an organic solvent.

〈ポリアミック酸のイミド化〉
ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。
ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100℃〜400℃、好ましくは120℃〜250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
<Imidization of polyamic acid>
Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is and catalytic imidization in which a catalyst is added to the polyamic acid solution.
The temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to perform it while removing the water generated by the imidization reaction outside the system.

ポリアミック酸の化学(触媒)イミド化は、ポリアミック酸の溶液に、塩基性触媒を添加し、−20〜250℃、好ましくは0〜180℃での温度条件にて系内を撹拌することにより行うことができる。
塩基性触媒の量はポリアミック酸のアミド酸基の0.5〜30モル倍、好ましくは1.5〜20モル倍である。
The chemical (catalytic) imidization of polyamic acid is performed by adding a basic catalyst to a solution of polyamic acid and stirring the system under temperature conditions of -20 to 250 ° C, preferably 0 to 180 ° C. be able to.
The amount of the basic catalyst is 0.5 to 30 times, preferably 1.5 to 20 times the amount of the amic acid group of the polyamic acid.

塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン、1−エチルピペリジンなどを挙げることができ、中でもピリジン、1−エチルピペリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, 1-ethylpiperidine, and the like. Among them, pyridine and 1-ethylpiperidine have an appropriate basicity for proceeding the reaction. preferable.
The imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, and the reaction time.

本発明に用いるポリイミド樹脂において、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整して用いることができる。特に好ましくは50%以上である。   In the polyimide resin used in the present invention, the dehydration ring closure rate (imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted and used according to the application and purpose. It is particularly preferably 50% or more.

本発明において、上記反応溶液をろ過した後、そのろ液をそのまま用い、又は、希釈若しくは濃縮してフレキシブルデバイス基板形成用組成物としてもよい。さらにここに後述するその他の成分(有機又は無機の低分子又は高分子化合物)等を配合してフレキシブルデバイス基板形成用組成物としてもよい。このようにろ過を経た場合、該組成物より得られる樹脂薄膜の耐熱性、柔軟性あるいは線膨張係数特性の悪化の原因となり得る不純物の混入を低減できるだけでなく、効率よくフレキシブルデバイス基板形成用組成物を得ることができる。   In the present invention, after filtering the reaction solution, the filtrate may be used as it is, or may be diluted or concentrated to obtain a composition for forming a flexible device substrate. Further, other components (organic or inorganic low-molecular or high-molecular compound) described later may be added to the composition to form a flexible device substrate. When subjected to such filtration, it is possible not only to reduce the mixing of impurities that may cause deterioration of heat resistance, flexibility or linear expansion coefficient characteristics of a resin thin film obtained from the composition, but also to efficiently form a flexible device substrate forming composition. You can get things.

また、本発明に用いるポリイミドは、前記組成物より得られる樹脂薄膜の強度、樹脂薄膜を形成する際の作業性、樹脂薄膜の均一性等を考慮してゲル浸透クロマトグラフィー(GPC)のポリスチレン換算による重量平均分子量(Mw)が5,000乃至350,000であることが好ましい。   In addition, the polyimide used in the present invention is the polystyrene equivalent of gel permeation chromatography (GPC) in consideration of the strength of the resin thin film obtained from the composition, the workability in forming the resin thin film, the uniformity of the resin thin film, and the like. The weight average molecular weight (Mw) is preferably 5,000 to 350,000.

〈ポリマー回収〉
ポリアミック酸及びポリイミドの反応溶液から、ポリマー成分を回収し、用いる場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。
また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2から10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として例えばアルコール類、ケトン類、炭化水素など3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
<Recovery of polymer>
When the polymer component is recovered from the reaction solution of polyamic acid and polyimide and used, the reaction solution may be poured into a poor solvent to cause precipitation. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene and water. The polymer precipitated by pouring it into a poor solvent can be collected by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating.
Further, by repeating the operation of re-dissolving the precipitated and recovered polymer in an organic solvent and re-precipitating and recovering it 2 to 10 times, impurities in the polymer can be reduced. At this time, it is preferable to use three or more kinds of poor solvents such as alcohols, ketones, and hydrocarbons as the poor solvent because the efficiency of purification is further improved.

再沈殿回収工程において樹脂成分を溶解させる有機溶媒は特に限定されない。具体例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、2−ピロリドン、N−エチル−2−ピロリドン、N−ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ−ブチロラクトン、1,3−ジメチル−2−イミダゾリジノン、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4−ヒドロキシ−4−メチル−2−ペンタノンなどが挙げられる。これらの溶媒は2種類以上を混合して用いてもよい。   The organic solvent that dissolves the resin component in the reprecipitation recovery step is not particularly limited. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinylpyrrolidone, dimethyl. Sulfoxide, tetramethylurea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-2-imidazolidinone, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone , Cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4-methyl-2-pentanone and the like. You may use these solvents in mixture of 2 or more types.

[有機溶媒]
本発明のフレキシブルデバイス基板形成用組成物は、前記ポリイミドに加えて、有機溶媒を含む。該有機溶媒は、特に限定されるものではなく、例えば、上記ポリアミック酸及びポリイミドの調製時に用いた反応溶媒の具体例と同様のものが挙げられる。より具体的には、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、N−エチル−2−ピロリドン、γ−ブチロラクトンなどが挙げられる。なお、有機溶媒は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
これらの中でも、フレキシブルデバイス基板形成用組成物から平坦性の高い樹脂薄膜を再現性よく得ることを考慮すると、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、γ−ブチロラクトンが好ましい。
[Organic solvent]
The composition for forming a flexible device substrate of the present invention contains an organic solvent in addition to the polyimide. The organic solvent is not particularly limited, and examples thereof include those similar to the specific examples of the reaction solvent used when preparing the above polyamic acid and polyimide. More specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-ethyl-2-pyrrolidone, γ- Butyrolactone and the like. The organic solvents may be used alone or in combination of two or more.
Among these, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and γ-butyrolactone are preferable, considering that a resin thin film having high flatness can be reproducibly obtained from the composition for forming a flexible device substrate.

[フレキシブルデバイス基板形成用組成物]
本発明は、前記ポリイミドと有機溶媒を含有するフレキシブルデバイス基板形成用組成物である。ここで本発明のフレキシブルデバイス基板形成用組成物は、均一なものであって、相分離は認められないものである。
また本発明のフレキシブルデバイス基板形成用組成物中の固形量は、通常0.5〜30質量%の範囲内であるが、膜の均一性の観点から、好ましくは5質量%以上、20質量%以下である。なお、固形分とは、フレキシブルデバイス基板形成用組成物を構成する全成分から溶媒を除いた残りの成分を意味する。
なお、フレキシブルデバイス基板形成用組成物の粘度は、用いる塗布法、作製する樹脂薄膜の厚み等を勘案して適宜決定されるものではあるが、通常25℃で1〜50,000mPa・sである。
[Flexible device substrate forming composition]
The present invention is a flexible device substrate-forming composition containing the polyimide and an organic solvent. Here, the composition for forming a flexible device substrate of the present invention is uniform and phase separation is not observed.
The solid amount in the composition for forming a flexible device substrate of the present invention is usually in the range of 0.5 to 30% by mass, but from the viewpoint of film uniformity, preferably 5% by mass or more and 20% by mass. It is below. The solid content means the rest of the components of the composition for forming a flexible device substrate, excluding the solvent.
The viscosity of the composition for forming a flexible device substrate is appropriately determined in consideration of the coating method used, the thickness of the resin thin film to be produced, etc., but is usually 1 to 50,000 mPa · s at 25 ° C. ..

本発明のフレキシブルデバイス基板形成用組成物には、加工特性や各種機能性を付与するために、その他に様々な有機又は無機の低分子又は高分子化合物を配合してもよい。例えば、触媒、消泡剤、レベリング剤、界面活性剤、染料、可塑剤、微粒子、カップリング剤、増感剤等を用いることができる。例えば触媒は該組成物から得られる樹脂薄膜のリタデーションや線膨張係数を低下させる目的で添加され得る。   The flexible device substrate-forming composition of the present invention may further contain various organic or inorganic low-molecular or high-molecular compounds in order to impart processing characteristics and various functionalities. For example, catalysts, defoaming agents, leveling agents, surfactants, dyes, plasticizers, fine particles, coupling agents, sensitizers and the like can be used. For example, the catalyst may be added for the purpose of reducing the retardation and linear expansion coefficient of the resin thin film obtained from the composition.

[フレキシブルデバイス基板]
以上説明した本発明のフレキシブルデバイス基板形成用組成物を基材に塗布して乾燥・加熱することで有機溶媒を除去し、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を維持すると共に、MD法により基材(例えばガラスキャリア)から容易に剥離し得る樹脂薄膜、すなわちフレキシブルデバイス基板を得ることができる。本発明のフレキシブルデバイス基板形成用組成物より作成されたフレキシブルデバイス基板も本発明の対象である。
[Flexible device substrate]
The organic solvent is removed by applying the composition for forming a flexible device substrate of the present invention described above to a base material, and drying and heating, which has excellent heat resistance, low retardation, excellent flexibility, and further transparency. It is possible to obtain a resin thin film that can be easily peeled from a base material (for example, a glass carrier) by the MD method, that is, a flexible device substrate while maintaining excellent performance of being excellent. A flexible device substrate prepared from the composition for forming a flexible device substrate of the present invention is also an object of the present invention.

フレキシブルデバイス基板(樹脂薄膜)の製造に用いる基材としては、例えば、プラスチック(ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ、メラミン、トリアセチルセルロース、ABS、AS、ノルボルネン系樹脂等)、金属、ステンレス鋼(SUS)、木材、紙、ガラス、シリコンウェハ、スレート等が挙げられる。
特に、フレキシブルデバイス基板として適用する際、既存設備を利用することができるという観点から、適用する基材がガラス、シリコンウェハであることが好ましく、また得られるフレキシブルデバイス基板が良好な剥離性を示すことからガラスであることがさらに好ましい。なお、適用する基材の線膨張係数としては塗工後の基材の反りの観点から、好ましくは40ppm/℃以下、より好ましくは、30ppm/℃以下である。
Examples of the base material used for manufacturing the flexible device substrate (resin thin film) include plastics (polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, melamine, triacetyl cellulose, ABS, AS, norbornene-based resin, etc.), metal , Stainless steel (SUS), wood, paper, glass, silicon wafer, slate and the like.
In particular, when applied as a flexible device substrate, it is preferable that the base material to be applied is glass or a silicon wafer from the viewpoint that existing equipment can be used, and the obtained flexible device substrate exhibits good peelability. Therefore, glass is more preferable. The linear expansion coefficient of the applied substrate is preferably 40 ppm / ° C. or less, and more preferably 30 ppm / ° C. or less, from the viewpoint of warpage of the substrate after coating.

基材へのフレキシブルデバイス基板形成用組成物の塗布法は、特に限定されるものではないが、例えば、キャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等が挙げられ、目的に応じてこれらを適宜用いることができる。   The method for applying the flexible device substrate-forming composition to the base material is not particularly limited, and examples thereof include cast coating method, spin coating method, blade coating method, dip coating method, roll coating method, bar coating method. Examples thereof include die coating method, ink jet method, printing method (letterpress, intaglio, planographic printing, screen printing, etc.), and these can be appropriately used according to the purpose.

加熱温度は、300℃以下が好ましい。300℃を超えると、得られる樹脂薄膜が脆くなり、特にディスプレイ基板用途に適した樹脂薄膜を得ることができない場合がある。
また、得られる樹脂薄膜の耐熱性と線膨張係数特性を考慮すると、塗布したフレキシブルデバイス基板形成用組成物を40℃〜100℃で5分間〜2時間加熱した後に、そのまま段階的に加熱温度を上昇させ、最終的に175℃超〜280℃で30分〜2時間加熱することが望ましい。このように、溶媒を乾燥させる段階と分子配向を促進する段階の2段階以上の温度で加熱することにより、より再現性よく低熱膨張特性を発現させることができる。
特に、塗布したフレキシブルデバイス基板形成用組成物は、40℃〜100℃で5分間〜2時間加熱した後に、100℃超〜175℃で5分間〜2時間、次いで、175℃超〜280℃で5分〜2時間加熱することが好ましい。
加熱に用いる器具は、例えばホットプレート、オーブン等が挙げられる。加熱雰囲気は、空気下であっても窒素等の不活性ガス下であってもよく、また、常圧下であっても減圧下であってもよく、また加熱の各段階において異なる圧力を適用してもよい。
The heating temperature is preferably 300 ° C or lower. If the temperature exceeds 300 ° C, the obtained resin thin film becomes brittle, and it may not be possible to obtain a resin thin film particularly suitable for display substrate applications.
Further, considering the heat resistance and linear expansion coefficient characteristics of the obtained resin thin film, the applied flexible device substrate-forming composition is heated at 40 ° C. to 100 ° C. for 5 minutes to 2 hours, and then the heating temperature is gradually increased as it is. It is desirable to raise the temperature and finally to heat at over 175 ° C to 280 ° C for 30 minutes to 2 hours. As described above, by heating at a temperature of two or more steps of drying the solvent and promoting the molecular orientation, it is possible to exhibit the low thermal expansion characteristics with good reproducibility.
In particular, the applied flexible device substrate-forming composition is heated at 40 ° C. to 100 ° C. for 5 minutes to 2 hours, then at 100 ° C. to 175 ° C. for 5 minutes to 2 hours, and then at 175 ° C. to 280 ° C. It is preferable to heat for 5 minutes to 2 hours.
Examples of equipment used for heating include a hot plate and an oven. The heating atmosphere may be under air or under an inert gas such as nitrogen, may be under normal pressure or under reduced pressure, and different pressure may be applied in each stage of heating. May be.

樹脂薄膜の厚さは、1〜200μm程度の範囲内でフレキシブルデバイスの種類を考慮して適宜決定されるものではあるが、特にフレキシブルディスプレイ用の基板として用いることを想定した場合、通常1〜60μm程度、好ましくは5〜50μm程度であり、加熱前の塗膜の厚さを調整して所望の厚さの樹脂薄膜を形成する。
なお、このようにして形成された樹脂薄膜を基材から剥離する方法としては特に限定はなく、該樹脂薄膜を基材ごと冷却し、薄膜に切れ目を入れ剥離する方法やロールを介して張力を与えて剥離する方法等が挙げられる。
The thickness of the resin thin film is appropriately determined in consideration of the type of flexible device within the range of about 1 to 200 μm, but when it is assumed to be used as a substrate for a flexible display, it is usually 1 to 60 μm. The thickness is about 5 to 50 μm, and the thickness of the coating film before heating is adjusted to form a resin thin film having a desired thickness.
The method for peeling the resin thin film thus formed from the base material is not particularly limited, and the resin thin film is cooled together with the base material, and a tension is applied via a roll or a method for separating the thin film by cutting. Examples thereof include a method of giving and peeling.

更に、該樹脂薄膜は、例えば50℃乃至200℃における線膨張係数が50ppm/℃以下、特に45ppm/℃乃至49ppm/℃という低い値を有することができ、加熱時の寸法安定性に優れたものである。
また該樹脂薄膜は、入射光の波長を590nmとした場合における複屈折(面内の直交する2つの屈折率の差)と膜厚との積で表される面内リタデーションR、並びに、厚さ方向の断面からみたときの2つの複屈折(面内の2つの屈折率と厚さ方向の屈折率との夫々の差)にそれぞれ膜厚を掛けて得られる2つの位相差の平均値として表される厚さ方向リタデーションRthが、いずれも小さいことを特長とする。
該樹脂薄膜は、平均膜厚が10μm程度である場合において、厚さ方向リタデーションRthが10nmより(例えば6nmより)も小さく、面内リタデーションRが5nmより(例えば1nmより)も小さく、複屈折率Δnが0.001より(例えば0.0004より)も小さい。
Further, the resin thin film can have a low linear expansion coefficient at 50 ° C. to 200 ° C. of 50 ppm / ° C. or less, particularly 45 ppm / ° C. to 49 ppm / ° C., and is excellent in dimensional stability during heating. Is.
The resin thin film has an in-plane retardation R 0 represented by a product of birefringence (difference between two in-plane orthogonal refractive indexes) and film thickness when the wavelength of incident light is 590 nm, and a thickness. As an average value of the two phase differences obtained by multiplying the two birefringences (differences between the two in-plane refractive indexes and the refractive index in the thickness direction) when viewed from the cross section in the vertical direction by the film thickness, respectively. Each of the thickness-direction retardations R th represented is small.
When the average film thickness is about 10 μm, the resin thin film has a thickness direction retardation R th smaller than 10 nm (for example, 6 nm) and an in-plane retardation R 0 smaller than 5 nm (for example, 1 nm). The refractive index Δn is smaller than 0.001 (eg, 0.0004).

以上説明した樹脂薄膜は、上記の特性を有することから、フレキシブルデバイス基板のベースフィルムとして必要な各条件を満たすものであり、フレキシブルデバイス、特にフレキシブルディスプレイの基板のベースフィルムとして特に好適に用いることができる。   Since the resin thin film described above has the above characteristics, it satisfies each condition required as a base film of a flexible device substrate, and is particularly preferably used as a base film of a flexible device substrate, particularly a flexible display substrate. it can.

以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples.

以下の実施例で用いる略記号の意味は、次のとおりである。
<酸二無水物>
BODAxx:ビシクロ[2,2,2]オクタン−2,3,5,6−テトラカルボン酸二無水物
CBDA:1,2,3,4−シクロブタンテトラカルボン酸二無水物
BODA:ビシクロ[2,2,2]オクタ−7エン−2,3,5,6−テトラカルボン酸二無水物
<ジアミン>
FDA:9,9’−ビス(4−アミノフェニル)フルオレン
<有機溶媒>
GBL:γ−ブチロラクトン
The abbreviations used in the following examples have the following meanings.
<Acid dianhydride>
BODAxx: Bicyclo [2,2,2] octane-2,3,5,6-tetracarboxylic dianhydride CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride BODA: Bicyclo [2,2] , 2] Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride <diamine>
FDA: 9,9′-bis (4-aminophenyl) fluorene <organic solvent>
GBL: γ-butyrolactone

なお、実施例において、試料の調製及び物性の分析及び評価に用いた装置及び条件は、以下の通りである。
1)数平均分子量及び重量平均分子量の測定
ポリマーの数平均分子量(以下、Mnと略す)と重量平均分子量(以下、Mwと略す)は、装置:昭和電工(株)製、Showdex GPC−101、カラム:KD803およびKD805、カラム温度:50℃、溶出溶媒:DMF、流量:1.0ml/分、検量線:標準ポリスチレン、の条件にて測定した。
2)線膨張係数(CTE)、ガラス転移温度(Tg)
TAインスツルメンツ社製 TMA Q400を用いて、樹脂薄膜を幅5mm、長さ16mmのサイズにカットし、まず10℃/minで昇温して50乃至350℃まで加熱(第一加熱)し、次いで10℃/minで降温して50℃まで冷却した後に、10℃/minで昇温して50乃至420℃まで加熱(第二加熱)した際の、第二加熱の50℃乃至200℃における線膨張係数(CTE[ppm/℃])、並びに200℃乃至250℃における線膨張係数(CTE[ppm/℃])の値を測定することで求めた。なお、第一加熱、冷却および第二加熱を通じて、荷重0.05Nを加えた。
ガラス転移温度(Tg)の値は、第二加熱終了付近の急激な寸法変化の開始点より算出した。
3)5%重量減少温度(Td5%
5%重量減少温度(Td5%[℃])は、TAインスツルメンツ社製 TGA Q500を用い、窒素中、樹脂薄膜約5乃至10mgを50乃至800℃まで10℃/minで昇温して測定することで求めた。
4)光線透過率(透明性)(T308nm、T400nm、T550nm)及びCIE b値(CIE b
波長308nm、400nm及び550nmの光線透過率(T308nm、T400nm、T550nm[%])及びCIE b値(CIE b)は、日本電色工業(株)製 SA4000スペクトロメーターを用いて、室温にて、リファレンスを空気として、測定を行った。
5)リタデーション(Rth、R
厚さ方向リタデーション(Rth)及び面内リタデーション(R)を、王子計測機器(株)製、KOBURA 2100ADHを用いて、室温にて測定した。
なお、厚さ方向リタデーション(Rth)及び面内リタデーション(R)は以下の式にて算出される。
=(Nx−Ny)×d=ΔNxy×d
th=[(Nx+Ny)/2−Nz]×d=[(ΔNxz×d)+(ΔNyz×d)/2
Nx、Ny:面内の直交する2つの屈折率(Nx>Ny、Nxを遅相軸、Nyを進相軸とも称する)
Nz:面に対して厚さ(垂直)方向の屈折率
d:膜厚
ΔNxy:面内の2つの屈折率の差(Nx−Ny)(複屈折)
ΔNxz:面内の屈折率Nxと厚さ方向の屈折率Nzの差(複屈折)
ΔNyz:面内の屈折率Nyと厚さ方向の屈折率Nzの差(複屈折)
6)複屈折(Δn)
前述の<6)リタデーション>により得られた厚さ方向リタデーション(Rth)の値を用い、以下の式にて算出した。
Δn=[Rth/d(フィルム膜厚)]/1000
7)膜厚
得られた樹脂薄膜の膜厚は、(株)テクロック製 シックネスゲージにて測定した。
In the examples, the apparatus and conditions used for the preparation of samples and the analysis and evaluation of physical properties are as follows.
1) Measurement of number average molecular weight and weight average molecular weight The number average molecular weight (hereinafter abbreviated as Mn) and the weight average molecular weight (hereinafter abbreviated as Mw) of a polymer are measured by a device: Showdex GPC-101 manufactured by Showa Denko KK, It was measured under the conditions of column: KD803 and KD805, column temperature: 50 ° C., elution solvent: DMF, flow rate: 1.0 ml / min, calibration curve: standard polystyrene.
2) Coefficient of linear expansion (CTE), glass transition temperature (Tg)
Using TMA Q400 manufactured by TA Instruments, a resin thin film is cut into a size having a width of 5 mm and a length of 16 mm, first heated at 10 ° C./min and heated to 50 to 350 ° C. (first heating), and then 10 Linear expansion at 50 ° C to 200 ° C of the second heating when the temperature is lowered at 50 ° C / min and cooled to 50 ° C and then the temperature is raised at 10 ° C / min to be heated to 50 to 420 ° C (second heating). It was determined by measuring the coefficient (CTE [ppm / ° C]) and the coefficient of linear expansion (CTE [ppm / ° C]) at 200 ° C to 250 ° C. A load of 0.05 N was applied through the first heating, the cooling and the second heating.
The value of the glass transition temperature (Tg) was calculated from the start point of the rapid dimensional change near the end of the second heating.
3) 5% weight loss temperature (Td 5% )
The 5% weight loss temperature (Td 5% [° C.]) is measured by using TA Instruments TGA Q500 manufactured by TA Instruments, Inc., by heating about 5 to 10 mg of a resin thin film in nitrogen to 50 to 800 ° C. at 10 ° C./min. I asked for it.
4) Light transmittance (transparency) (T 308nm , T 400nm , T 550nm ) and CIE b value (CIE b * )
The light transmittances (T 308 nm , T 400 nm , T 550 nm [%]) and CIE b values (CIE b * ) at wavelengths of 308 nm, 400 nm and 550 nm were measured at room temperature using a SA4000 spectrometer manufactured by Nippon Denshoku Industries Co., Ltd. The measurement was performed using air as a reference.
5) Retardation (R th , R 0 ).
The thickness direction retardation (R th ) and the in-plane retardation (R 0 ) were measured at room temperature using KOBURA 2100ADH manufactured by Oji Scientific Instruments.
The thickness direction retardation (R th ) and the in-plane retardation (R 0 ) are calculated by the following formulas.
R 0 = (Nx−Ny) × d = ΔNxy × d
R th = [(Nx + Ny) / 2−Nz] × d = [(ΔNxz × d) + (ΔNyz × d) / 2
Nx, Ny: Two in-plane orthogonal refractive indices (Nx> Ny, Nx is also called a slow axis, Ny is also called a fast axis)
Nz: Refractive index in the thickness (perpendicular) direction with respect to the surface d: Film thickness ΔNxy: Difference between two in-plane refractive indexes (Nx-Ny) (birefringence)
ΔNxz: Difference between in-plane refractive index Nx and thickness direction refractive index Nz (birefringence)
ΔNyz: Difference between in-plane refractive index Ny and thickness direction refractive index Nz (birefringence)
6) Birefringence (Δn)
Using the value of the thickness direction retardation (R th ) obtained by the above <6) Retardation>, it was calculated by the following formula.
Δn = [R th / d (film thickness)] / 1000
7) Film Thickness The film thickness of the obtained resin thin film was measured by a thickness gauge manufactured by Teclock Co., Ltd.

[1]ポリイミドの合成手順(下記合成例2の例)
窒素の注入口/排出口、ディーン・スターク、メカニカルスターラー及びコンデンサー(水冷却器)を取り付けた200mLの三口フラスコ内に、FDA 6.272g(0.018mol)を入れ、その後すぐにGBL 20.57gを添加し、撹拌を開始した。ジアミンが溶媒中に完全に溶解した後、溶液を撹拌しながら、BODAxx 2.251g(0.009mol)及びCBDA 1.765g(0.009mol)をこの順に添加し、GBL 20.58gを添加して窒素雰囲気下で内温140℃に昇温した。
次に、この系内に1−エチルピペリジン0.41gを添加し、窒素下で7時間内温180℃に加熱した。加熱を停止した後、反応系内にGBLを加えて溶液を6質量%に希釈し、終夜撹拌した。翌日、ポリイミド反応溶液をメタノール600ml中に滴下して30分間撹拌し、ろ過して固体ポリイミドを回収し、この手順を3回繰り返した。ポリイミド中のメタノール残留物を150℃、−100kPa下の真空オーブンの8時間の乾燥により除去し、最終的に、乾燥した9.42gのポリイミド2を得た。ポリイミドの質量パーセント収率は98%であり、Mw=154,096、Mn=41,946であった。
[1] Polyimide synthesis procedure (example of synthesis example 2 below)
In a 200 mL three-necked flask equipped with a nitrogen inlet / outlet, a Dean Stark, a mechanical stirrer and a condenser (water condenser) was placed 6.272 g (0.018 mol) of FDA, and immediately thereafter 20.57 g of GBL Was added and stirring was started. After the diamine was completely dissolved in the solvent, while stirring the solution, 2.251 g (0.009 mol) of BODAxx and 1.765 g (0.009 mol) of CBDA were added in this order, and 20.58 g of GBL was added. The internal temperature was raised to 140 ° C. under a nitrogen atmosphere.
Next, 0.41 g of 1-ethylpiperidine was added to this system, and the mixture was heated to an internal temperature of 180 ° C. for 7 hours under nitrogen. After stopping the heating, GBL was added to the reaction system to dilute the solution to 6% by mass, and the mixture was stirred overnight. The next day, the polyimide reaction solution was dropped into 600 ml of methanol, stirred for 30 minutes, filtered to collect solid polyimide, and this procedure was repeated 3 times. The methanol residue in the polyimide was removed by drying in a vacuum oven at 150 ° C. and −100 kPa for 8 hours to finally obtain 9.42 g of dried polyimide 2. The mass percent yield of the polyimide was 98%, Mw = 154,096, Mn = 41,946.

ポリイミド1〜5の合成スキームを下記に示す。
The synthetic schemes of polyimides 1 to 5 are shown below.

[合成例1]
上記合成手順に従ってP1ポリマー:CBDA/BODAxx/FDA=40/60/100(モル比率)を合成し、7.54gの乾燥したポリイミド1が得られた。ポリイミドの質量パーセント収率は77%であり、MwとMnは表1に記載した通りであった。
[合成例2]
上記合成手順に従ってP2ポリマー:CBDA/BODAxx/FDA=50/50/100(モル比率)を合成し、9.42gの乾燥したポリイミド2が得られた。ポリイミドの質量パーセント収率は98%であり、MwとMnは表1に記載した通りであった。
[合成例3]
上記合成手順に従ってP3ポリマー:CBDA/BODAxx/FDA=60/40/100(モル比率)を合成し、7.39gの乾燥したポリイミド3が得られた。ポリイミドの質量パーセント収率は77%であり、MwとMnは表1に記載した通りであった。
[合成例4]
上記合成手順に従ってP4ポリマー:CBDA/BODAxx/FDA=70/30/100(モル比率)を合成し、7.95gの乾燥したポリイミド4が得られた。ポリイミドの質量パーセント収率は84%であり、MwとMnは表1に記載した通りであった。
[合成例5]
上記合成手順に従ってP5ポリマー:CBDA/BODAxx/FDA=80/20/100(モル比率)を合成し、6.68gの乾燥したポリイミド5が得られた。ポリイミドの質量パーセント収率は71%であり、MwとMnは表1に記載した通りであった。
[比較例1]
比較例1としてのBODA/FDA=100/100(モル比率)のPC1ポリマーは、国際公開第2013/170135号パンフレットの実施例番号1aとして記載されたポリマーである。
[比較例2]
比較例2として、CBDA/FDA=100/100(モル比率)でCBDAとFDAとを上記合成手順に従って合成するが、合成中にゲル化し、ポリマーが得られなかった。
[比較例3]
比較例3として、BODAxx/FD=100/100(モル比率)でBODAxxとFDAとを上記合成手順に従って合成する。PC3ポリマーが9.57g得られたが、フィルムを形成することができなかった。
[Synthesis example 1]
P1 polymer: CBDA / BODAxx / FDA = 40/60/100 (molar ratio) was synthesized according to the above synthetic procedure, and 7.54 g of dried polyimide 1 was obtained. The weight percent yield of polyimide was 77% and Mw and Mn were as set forth in Table 1.
[Synthesis example 2]
P2 polymer: CBDA / BODAxx / FDA = 50/50/100 (molar ratio) was synthesized according to the above synthetic procedure to obtain 9.42 g of dried polyimide 2. The mass percent yield of polyimide was 98% and the Mw and Mn were as set forth in Table 1.
[Synthesis example 3]
P3 polymer: CBDA / BODAxx / FDA = 60/40/100 (molar ratio) was synthesized according to the above synthetic procedure, and 7.39 g of dried polyimide 3 was obtained. The weight percent yield of polyimide was 77% and Mw and Mn were as set forth in Table 1.
[Synthesis example 4]
P4 polymer: CBDA / BODAxx / FDA = 70/30/100 (molar ratio) was synthesized according to the above synthetic procedure, and 7.95 g of dried polyimide 4 was obtained. The weight percent yield of polyimide was 84% and the Mw and Mn were as set forth in Table 1.
[Synthesis example 5]
P5 polymer: CBDA / BODAxx / FDA = 80/20/100 (molar ratio) was synthesized according to the above synthetic procedure, and 6.68 g of dried polyimide 5 was obtained. The weight percent yield of polyimide was 71% and Mw and Mn were as set forth in Table 1.
[Comparative Example 1]
The PC1 polymer of BODA / FDA = 100/100 (molar ratio) as Comparative Example 1 is the polymer described as Example No. 1a in WO 2013/170135.
[Comparative example 2]
As Comparative Example 2, CBDA / FDA = 100/100 (molar ratio) was used to synthesize CBDA and FDA according to the above synthetic procedure, but gelation occurred during synthesis, and a polymer could not be obtained.
[Comparative Example 3]
As Comparative Example 3, BODAxx and FDA are synthesized according to the above synthesis procedure at BODAxx / FD = 100/100 (molar ratio). Although 9.57 g of PC3 polymer was obtained, a film could not be formed.

[2]ポリイミド溶液(ワニス)の調製例
室温で、上記各合成例で得られたポリイミドを12質量%となるようにGBL溶媒中に溶解した。
[2] Preparation Example of Polyimide Solution (Varnish) At room temperature, the polyimide obtained in each of the above Synthesis Examples was dissolved in a GBL solvent so as to be 12% by mass.

[3]フィルム形成例
上記[2]で得られた各ポリイミド溶液(ワニス)を25μmのフィルタを通してゆっくりと加圧ろ過した後、得られた溶液をガラス基材上にコーティングし、空気雰囲気下、80℃の温度で60分間、140℃で30分間、次いで200℃で60分間焼成し、その後、空気中で240℃にて60分間焼成して、例1ないし例5のポリイミド膜(樹脂薄膜)を得た。得られた樹脂薄膜を長方形に切り、評価のために剥離した。
[3] Film formation example Each polyimide solution (varnish) obtained in the above [2] was slowly pressure filtered through a 25 μm filter, and then the obtained solution was coated on a glass substrate under an air atmosphere. The polyimide film (resin thin film) of Examples 1 to 5 was baked at a temperature of 80 ° C. for 60 minutes, at 140 ° C. for 30 minutes, then at 200 ° C. for 60 minutes, and then at 240 ° C. in air for 60 minutes. Got The obtained resin thin film was cut into a rectangle and peeled for evaluation.

[4]樹脂薄膜の評価
上述の手順にて作製した例1ないし例5の樹脂薄膜を機械的切断にて剥がし、その後の評価に供した。
各樹脂薄膜の熱的性能及び光学性能、すなわち、線膨張係数(50〜200℃:CTE[ppm/℃]、200〜250℃:CTE[ppm/℃])、ガラス転移温度(Tg[℃])5%重量減少温度(Td5%[℃])、光線透過率(T308nm[%]、T400nm[%]、T550nm[%])及びCIE b値(黄色評価:CIE b)、リタデーション(Rth[nm]、R[nm])並びに複屈折(Δn)に関して、上記手順に従いそれぞれ評価した。結果を表1に示す。
[4] Evaluation of Resin Thin Film The resin thin films of Examples 1 to 5 produced by the above procedure were peeled off by mechanical cutting and used for the subsequent evaluation.
Thermal performance and optical performance of each resin thin film, that is, linear expansion coefficient (50 to 200 ° C: CTE [ppm / ° C], 200 to 250 ° C: CTE [ppm / ° C]), glass transition temperature (Tg [° C]) ) 5% weight loss temperature (Td 5% [° C]), light transmittance (T 308nm [%], T 400nm [%], T 550nm [%]) and CIE b value (yellow evaluation: CIE b * ), Retardation (R th [nm], R 0 [nm]) and birefringence (Δn) were evaluated according to the above procedure. The results are shown in Table 1.

表1に示すように、例1〜例5の樹脂薄膜は、線膨張係数[ppm/℃]が低く、また、キュア後の400nm及び550nmにおける光線透過率[%]が高く、さらにCIE b値で表される黄色度が小さく、リタデーションRth、R及び副屈折率Δnがいずれも低い値となった点が確認された。
また上記例1〜5で得られた樹脂薄膜は、両手で持ち鋭角(30度程度)に曲げた場合においても割れることがなく、フレキシブルディスプレイ基板に要求される高い柔軟性を有していた。
As shown in Table 1, the resin thin films of Examples 1 to 5 have a low linear expansion coefficient [ppm / ° C.], a high light transmittance [%] at 400 nm and 550 nm after curing, and further CIE b *. It was confirmed that the yellowness represented by the value was small, and the retardations R th , R 0 and the sub-refractive index Δn were all low values.
Further, the resin thin films obtained in Examples 1 to 5 did not crack even when held by both hands and bent at an acute angle (about 30 degrees), and had high flexibility required for a flexible display substrate.

Claims (6)

下記式(C1)で表される脂環式テトラカルボン酸二無水物及び下記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、下記式(E1)で表されるフルオレンジアミンを含むジアミン成分とを用いて得られるポリイミドと、有機溶媒とを含有する、フレキシブルデバイス基板形成用組成物。
〔式中、Bは、式(X−1)〜(X−11)からなる群から選ばれる4価の基を表す。
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
(式(E1)中、Rはそれぞれ独立に、水素原子、ハロゲン原子、フェニル基またはフェニルエチル基を表し、nは置換基Rの個数を表し、それぞれ独立に0乃至4の整数を表す。)
An alicyclic tetracarboxylic dianhydride represented by the following formula (C1) and a tetracarboxylic dianhydride component containing an alicyclic tetracarboxylic dianhydride represented by the following formula (D1); A composition for forming a flexible device substrate, containing a polyimide obtained by using a diamine component containing fluorenediamine represented by (E1) and an organic solvent.
[In the formula, B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-11).
(In the formula, plural R's each independently represent a hydrogen atom or a methyl group, and * represents a bond.)
(In formula (E1), each R 1 independently represents a hydrogen atom, a halogen atom, a phenyl group or a phenylethyl group, n represents the number of the substituents R 1 , and each independently represents an integer of 0 to 4. .)
前記ジアミン成分は、式(E1)で表されるフルオレンジアミンを、ジアミン成分の全モル数に対して50モル%乃至100モル%含む、請求項1に記載のフレキシブルデバイス基板形成用組成物。 The composition for forming a flexible device substrate according to claim 1, wherein the diamine component contains 50 mol% to 100 mol% of the fluorenediamine represented by the formula (E1) with respect to the total number of moles of the diamine component. 前記テトラカルボン酸二無水物成分は、式(D1)で表される脂環式テトラカルボン酸二無水物を、テトラカルボン酸二無水物成分の全モル数に対して20モル%乃至60モル%含む、請求項1または請求項2に記載のフレキシブルデバイス基板形成用組成物。 The tetracarboxylic dianhydride component is an alicyclic tetracarboxylic dianhydride represented by the formula (D1), in an amount of 20 mol% to 60 mol% based on the total number of moles of the tetracarboxylic dianhydride component. The composition for forming a flexible device substrate according to claim 1 or 2, which comprises: 機械的剥離法に用いるためのフレキシブルデバイスの基板形成用組成物である、請求項1乃至請求項3のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物。 The composition for forming a flexible device substrate according to any one of claims 1 to 3, which is a composition for forming a substrate of a flexible device for use in a mechanical peeling method. 請求項1乃至請求項4のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物を用いて作成された、フレキシブルデバイス基板。 A flexible device substrate prepared using the composition for forming a flexible device substrate according to any one of claims 1 to 4. 請求項1乃至請求項4のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物を基材に塗布し、乾燥・加熱して、基材上にフレキシブルデバイス基板を形成する工程、及び
機械的剥離法により前記基材から前記フレキシブルデバイス基板を剥離させる剥離工程を含む、フレキシブルデバイス基板の製造方法。
A process of applying a composition for forming a flexible device substrate according to any one of claims 1 to 4 to a substrate, drying and heating the composition to form a flexible device substrate on the substrate, and a machine. A method of manufacturing a flexible device substrate, comprising a peeling step of peeling the flexible device substrate from the base material by a dynamic peeling method.
JP2019527707A 2017-07-03 2018-07-02 Composition for forming a flexible device substrate Active JP7054064B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017130419 2017-07-03
JP2017130419 2017-07-03
PCT/JP2018/025103 WO2019009259A1 (en) 2017-07-03 2018-07-02 Composition for forming flexible device substrate

Publications (2)

Publication Number Publication Date
JPWO2019009259A1 true JPWO2019009259A1 (en) 2020-05-07
JP7054064B2 JP7054064B2 (en) 2022-04-13

Family

ID=64949990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019527707A Active JP7054064B2 (en) 2017-07-03 2018-07-02 Composition for forming a flexible device substrate

Country Status (5)

Country Link
JP (1) JP7054064B2 (en)
KR (1) KR102592065B1 (en)
CN (1) CN110832031B (en)
TW (1) TWI780171B (en)
WO (1) WO2019009259A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085041A1 (en) * 2021-11-11 2023-05-19 三菱瓦斯化学株式会社 Polyimide resin, varnish, and polyimide film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216535A (en) * 2010-03-31 2011-10-27 Shiima Electronics Inc Composite glass epoxy substrate and metal multilayer substrate using the same
JP2014524512A (en) * 2011-08-19 2014-09-22 アクロン ポリマー システムズ,インコーポレイテッド Heat resistant low birefringence polyimide copolymer film
WO2017010566A1 (en) * 2015-07-16 2017-01-19 宇部興産株式会社 Polyamic acid solution composition and polyimide film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137933A (en) * 2005-11-15 2007-06-07 Toray Ind Inc Resin composition, heat resistant resin laminate film using the same, and metal-clad laminate film
JP2014114429A (en) 2012-01-12 2014-06-26 New Japan Chem Co Ltd Solvent-soluble polyimide resin
JP5845918B2 (en) 2012-01-20 2016-01-20 宇部興産株式会社 Polyimide precursor and polyimide
WO2013154141A1 (en) * 2012-04-13 2013-10-17 宇部興産株式会社 Poly(amic acid) solution composition, and polyimide
JP2015129201A (en) * 2012-10-15 2015-07-16 宇部興産株式会社 Polyamic acid solution composition and polyimide
EP2847250B1 (en) * 2012-05-11 2020-03-18 Akron Polymer Systems, Inc. Thermally stable, flexible substrates for electronic devices
WO2014051050A1 (en) * 2012-09-27 2014-04-03 三菱瓦斯化学株式会社 Polyimide resin composition
WO2014077253A1 (en) * 2012-11-16 2014-05-22 日産化学工業株式会社 Polyimide resin film and electronic-device substrate comprising polyimide resin film
KR102345844B1 (en) * 2014-03-31 2021-12-31 닛산 가가쿠 가부시키가이샤 Method for producing resin thin film, and composition for forming resin thin film
WO2016010003A1 (en) * 2014-07-17 2016-01-21 旭化成イーマテリアルズ株式会社 Resin precursor, resin composition containing same, polyimide resin membrane, resin film, and method for producing same
US11078378B2 (en) * 2015-03-31 2021-08-03 Asahi Kasei Kabushiki Kaisha Polyimide film, polyimide varnish, and product and layered product using the polyimide film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216535A (en) * 2010-03-31 2011-10-27 Shiima Electronics Inc Composite glass epoxy substrate and metal multilayer substrate using the same
JP2014524512A (en) * 2011-08-19 2014-09-22 アクロン ポリマー システムズ,インコーポレイテッド Heat resistant low birefringence polyimide copolymer film
WO2017010566A1 (en) * 2015-07-16 2017-01-19 宇部興産株式会社 Polyamic acid solution composition and polyimide film

Also Published As

Publication number Publication date
KR20200024775A (en) 2020-03-09
CN110832031A (en) 2020-02-21
JP7054064B2 (en) 2022-04-13
TWI780171B (en) 2022-10-11
KR102592065B1 (en) 2023-10-23
WO2019009259A1 (en) 2019-01-10
CN110832031B (en) 2023-08-11
TW201920361A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
JP6631804B2 (en) Method for producing resin thin film and composition for forming resin thin film
JP5581463B2 (en) Diamine, polyimide, and polyimide film and use thereof
JP6236349B2 (en) Polyimide and its use
JP6287852B2 (en) Electronic device substrate comprising polyimide resin film and polyimide resin film
TWI742204B (en) Composition for forming flexible device substrate
JP6990354B2 (en) Composition for forming a resin thin film
WO2016153064A1 (en) Diamine and use thereof
KR102422752B1 (en) Novel tetracarboxylic dianhydride and polyimide and polyimide copolymer obtained from acid dianhydride
TWI758357B (en) Composition for forming flexible device substrate
WO2018225825A1 (en) Method for producing substrate for flexible device
JP2009506349A (en) Poly (aryl etherimide) for LCD negative birefringence film
JP5325491B2 (en) Novel coating type optical compensation film and method for producing the same
JP7054064B2 (en) Composition for forming a flexible device substrate
JP2008280417A (en) Polyimide, polyimide varnish, optical compensation film and polyimide, and production method of optical compensation film
JP5015070B2 (en) Novel coating type optical compensation film and method for producing the same
JP5386797B2 (en) Flexible polyimide film and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R151 Written notification of patent or utility model registration

Ref document number: 7054064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151