JPWO2018234506A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2018234506A5
JPWO2018234506A5 JP2019570982A JP2019570982A JPWO2018234506A5 JP WO2018234506 A5 JPWO2018234506 A5 JP WO2018234506A5 JP 2019570982 A JP2019570982 A JP 2019570982A JP 2019570982 A JP2019570982 A JP 2019570982A JP WO2018234506 A5 JPWO2018234506 A5 JP WO2018234506A5
Authority
JP
Japan
Prior art keywords
neopeptides
neopeptide
poxvirus
recombinant poxvirus
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019570982A
Other languages
Japanese (ja)
Other versions
JP2020530437A (en
JP7334124B2 (en
JP2020530437A5 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2018/066668 external-priority patent/WO2018234506A2/en
Publication of JP2020530437A publication Critical patent/JP2020530437A/en
Publication of JP2020530437A5 publication Critical patent/JP2020530437A5/ja
Priority to JP2023100296A priority Critical patent/JP2023123609A/en
Publication of JPWO2018234506A5 publication Critical patent/JPWO2018234506A5/ja
Application granted granted Critical
Publication of JP7334124B2 publication Critical patent/JP7334124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

別の側面では、組換えポックスウイルスによりコードされる前記1以上のネオペプチドの各々は、1以上の腫瘍特異的突然変異を含んでなり、好ましくは、前記ネオペプチドの少なくとも60%が、ミスセンスまたはフレームシフト突然変異を含んでなる。望ましくは、1以上のネオペプチドが、16~90アミノ酸残基、好ましくは、17~85アミノ酸残基、より好ましくは、18~80アミノ酸残基の長さを有する。好ましい実施形態では、ミスセンス突然変異を含んでなるネオペプチドは、18~29残基の長さを有し、フレームシフト突然変異を含んでなるネオペプチドは、30~80アミノ酸残基の長さを有する。ミスセンス突然変異を有するネオペプチドの少なくとも80%が、中心の位置で置換アミノ酸を有する。好ましい実施形態では、いくつかのネオペプチド、好ましくは全てのネオペプチドが、1以上の融合体の形態で組換えポックスウイルスにより発現される。組換えポックスウイルスは、好ましくは、自殺遺伝子および免疫賦活遺伝子からなる群から選択される1以上の治療遺伝子をさらにコードし得る。 In another aspect, each of said one or more neopeptides encoded by the recombinant poxvirus comprises one or more tumor-specific mutations, preferably at least 60% of said neopeptides are missense or comprising a frameshift mutation. Desirably, the one or more neopeptides has a length of 16-90 amino acid residues, preferably 17-85 amino acid residues, more preferably 18-80 amino acid residues. In preferred embodiments, the neopeptide comprising the missense mutation has a length of 18-29 residues and the neopeptide comprising the frameshift mutation has a length of 30-80 amino acids. have. At least 80% of neopeptides with missense mutations have the substituted amino acid at the central position. In a preferred embodiment, some, preferably all neopeptides are expressed by the recombinant poxvirus in the form of one or more fusions. The recombinant poxvirus may preferably further encode one or more therapeutic genes selected from the group consisting of suicide genes and immunostimulatory genes.

相同組換えは、その欠失III内にmCherry蛍光タンパク質をコードする遺伝子を含有する親MVA(MVA mCherry)を用いて、行った。MVA mCherryの利点は、最初の開始MVA mCherryウイルス(親ウイルス)に感染している細胞から、発現カセットを組み込むことに成功している組換えウイルスに感染している細胞を区別することである。実際に、欠失III内での発現カセットの組換えが成功している場合は、mCherry遺伝子は除去され、ウイルスプラークは白色として出現する。 Homologous recombination was performed with the parental MVA (MVA mCherry) containing the gene encoding the mCherry fluorescent protein within its deletion III. The advantage of MVA mCherry is that it distinguishes cells infected with a recombinant virus that successfully integrates the expression cassette from cells infected with the original starting MVA mCherry virus (parental virus). Indeed, if the expression cassette has been successfully recombined within deletion III, the mCherry gene will be removed and viral plaques will appear white.

まとめると、これらの結果は、リンカーの存在は、CEF細胞において生じる白色プラークの割合、従って組換えMVAの作製を負に変えるものの、免疫原性に対する大きな影響は及ぼさないことを示す。従って、ベクター構築物の設計を促進するため、従って、特に、10を超えるネオペプチドの発現が考えられるが、作製される組換えポックスウイルスの割合を減少させるリスクにある構築物において、有害な相同組換え事象のリスクを低減させるために、必要に応じて、リンカーを省略してもよい。 Taken together, these results indicate that the absence of the linker negatively alters the proportion of white plaques produced in CEF cells and thus the production of recombinant MVA, but does not significantly affect immunogenicity. Therefore, to facilitate the design of vector constructs, therefore, deleterious homologous recombination, especially in constructs where the expression of more than 10 neopeptides is possible, but at risk of reducing the proportion of recombinant poxviruses produced. Linkers may be omitted if desired to reduce the risk of events.

Claims (16)

1以上のネオペプチドをコードする組換えポックスウイルスを含んでなる個別化癌ワクチンであって、いくつかのネオペプチドが2~15個のネオペプチドの1以上の融合体の形態で、前記組換えポックスウイルスにより発現され、前記融合体が、いずれのTMセグメントも含まず、かつ、0.1以下のハイドロパシースコアを示す前記個別化癌ワクチンを調製する方法であって、
前記方法が、組換えポックスウイルスによりコードされるのに好適な1以上のネオペプチドを同定する同定工程を含んでなり、
前記1以上のネオペプチドが、1以上の腫瘍特異的突然変異を含んでなり、
前記同定工程が、以下のサブ工程a)~d)、h)およびi):
a)腫瘍サンプルおよび非腫瘍サンプルからDNAを抽出する工程;
b)標的領域を選択する工程;
c)前記抽出DNAから前記標的領域を配列決定する工程;
d)前記腫瘍サンプルおよび前記非腫瘍サンプルから得られるDNA配列を比較することにより、1以上の腫瘍特異的突然変異を同定する工程;
h)ネオエピトープ自体における潜在的なTMセグメントおよびいくつかのネオペプチドを含んでなるネオペプチド融合体における潜在的なTMセグメントの存在を予測し、TMセグメントを含まない潜在的なネオペプチドおよび/またはTMセグメントを含まない潜在的なネオペプチド融合体を選択する工程;ならびに
i)疎水性の程度によって前記潜在的なネオペプチドおよび/または前記潜在的なネオペプチド融合体をランク付けし、ネオペプチド融合体が0.1以下のグローバルハイドロパシースコアを示すように、ネオペプチドおよび/またはネオペプチド融合体を選択する工程
を含んでなる、前記方法。
Personalized cancer vaccine comprising a recombinant poxvirus encoding one or more neopeptides, some neopeptides in the form of one or more fusions of 2 to 15 neopeptides, said recombinant A method of preparing said personalized cancer vaccine expressed by a poxvirus, wherein said fusion does not contain any TM segment and exhibits a hydropathy score of 0.1 or less, comprising:
said method comprising an identifying step of identifying one or more neopeptides suitable for being encoded by a recombinant poxvirus;
said one or more neopeptides comprise one or more tumor-specific mutations;
Said identifying step comprises the following sub-steps a) to d), h) and i):
a) extracting DNA from tumor and non-tumor samples;
b) selecting a target region;
c) sequencing said target region from said extracted DNA;
d) identifying one or more tumor-specific mutations by comparing DNA sequences obtained from said tumor sample and said non-tumor sample;
h) Predict the presence of a potential TM segment in the neoepitope itself and a potential TM segment in a neopeptide fusion comprising several neopeptides, and potential neopeptides and/or no TM segments. selecting potential neopeptide fusions that do not contain a TM segment; and i) ranking said potential neopeptides and/or said potential neopeptide fusions by degree of hydrophobicity, said neopeptide fusions selecting the neopeptide and/or neopeptide fusion such that the body exhibits a global hydropathy score of 0.1 or less.
前記標的領域が、ゲノムの全コード領域である、請求項に記載の方法。 2. The method of claim 1 , wherein the target region is the entire coding region of the genome. 前記腫瘍サンプルが、腫瘍生検であり、かつ、前記非腫瘍サンプルが、生体液、細胞学的材料または生検である、請求項またはに記載の方法。 3. The method of claim 1 or 2 , wherein said tumor sample is a tumor biopsy and said non-tumor sample is a biological fluid, cytological material or biopsy. 前記同定工程が、以下のさらなるサブ工程e)~g):
e)mRNA転写レベル、またはタンパク質翻訳レベルのいずれかで、腫瘍中の発現レベル別に潜在的なネオペプチドをランク付けする工程;
f)非自己発現腫瘍特異的突然変異を選択する工程、ここで、前記ネオペプチドは、対象の正常細胞において発現している別のタンパク質の一部ではない;
g)前記ネオペプチドに含まれるネオエピトープの免疫能を予測する工程
の1以上をさらに含んでなる、請求項のいずれか一項に記載の方法。
Said identification step comprises the following further sub-steps e)-g):
e) ranking potential neopeptides by their level of expression in tumors, either at the level of mRNA transcription or at the level of protein translation;
f) selecting a non-self-expressing tumor-specific mutation, wherein said neopeptide is not part of another protein expressed in normal cells of the subject;
The method according to any one of claims 1 to 3 , further comprising one or more of the steps of g) predicting the immunocompetence of the neoepitopes contained in said neopeptide.
前記同定工程が、
サブ工程f)、
サブ工程e)およびf)、
サブ工程f)およびg)、または
サブ工程e)~)のすべて
をさらに含んでなる、請求項に記載の方法。
The identification step includes
sub-step f),
sub-steps e) and f),
5. The method of claim 4 , further comprising sub-steps f) and g), or all of sub-steps e)-g ) .
前記方法が、前記組換えポックスウイルスを作製する工程をさらに含んでなる、請求項のいずれか一項に記載の方法。 A method according to any one of claims 1 to 5 , wherein said method further comprises the step of producing said recombinant poxvirus. 前記組換えポックスウイルスのゲノムに挿入される前記1以上のネオペプチドをコードする核酸分子が、対象における発現を可能にする好適な調節エレメントの制御下で1以上の発現カセット内に配置される、請求項に記載の方法。 the one or more neopeptide-encoding nucleic acid molecules inserted into the genome of the recombinant poxvirus are placed in one or more expression cassettes under the control of suitable regulatory elements allowing expression in a subject; 7. The method of claim 6 . 前記1以上のネオペプチドをコードする前記核酸分子または発現カセットが、親ポックスウイルスのゲノムに挿入されて、前記組換えポックスウイルスが作製され、前記親ポックスウイルスが、ネオペプチドをコードする核酸分子または発現カセットのために選択される挿入部位においてクローン化された蛍光レポーター遺伝子を含んでなる、請求項またはに記載の方法。 said nucleic acid molecule or expression cassette encoding said one or more neopeptides is inserted into the genome of a parental poxvirus to produce said recombinant poxvirus, said parental poxvirus comprising a nucleic acid molecule encoding a neopeptide or 8. A method according to claim 6 or 7 , comprising a cloned fluorescent reporter gene at the insertion site selected for the expression cassette. 前記蛍光レポーターが、GFP(緑色蛍光タンパク質)、eGFP(高感度緑色蛍光タンパク質)、AmCyan1蛍光タンパク質およびmCherryからなる群から選択される、請求項に記載の方法。 9. The method of claim 8 , wherein said fluorescent reporter is selected from the group consisting of GFP (green fluorescent protein), eGFP (enhanced green fluorescent protein), AmCyanl fluorescent protein and mCherry. 前記組換えポックスウイルスを作製する前記工程が、前記蛍光レポーターのヌクレオチド配列において少なくとも1つの二本鎖切断を生じることができるエンドヌクレアーゼによる切断のさらなる工程であって、前記エンドヌクレアーゼが、前記ポックスウイルスのゲノムを切断しない前記さらなる工程を含んでなる、請求項に記載の方法。 Said step of generating said recombinant poxvirus is the further step of cleaving with an endonuclease capable of producing at least one double-stranded break in the nucleotide sequence of said fluorescent reporter, said endonuclease said poxvirus 10. A method according to claim 9 , comprising said further step not cutting the genome of. 前記エンドヌクレアーゼが、ジンクフィンガーヌクレアーゼ(ZFN)、転写活性化因子様エフェクターヌクレアーゼ(TALEN)、クラスター化して規則的な配置の短い回文配列リピート(CRISPR)/Cas9ヌクレアーゼおよび蛍光レポーター遺伝子内に独特な切断部位を有する制限酵素からなる群から選択される、請求項10に記載の方法。 Said endonucleases are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly arranged short palindromic repeats (CRISPR)/Cas9 nucleases and fluorescent reporter genes unique 11. The method of claim 10 , selected from the group consisting of restriction enzymes having a cleavage site. 前記組換えポックスウイルスを作製する前記工程が、2~0.05の間に含まれる親に対する組換えの比で、最大4週間で前記組換えポックスウイルスを作製することを可能とする、請求項11のいずれか一項に記載の方法。 3. The step of producing the recombinant poxvirus enables producing the recombinant poxvirus in up to 4 weeks with a ratio of recombination to parent comprised between 2 and 0.05. 12. The method according to any one of 6 to 11 . 前記方法が、製造工程をさらに含んでなり、前記製造工程が、好適なプロデューサー細胞中で好適な規模まで増幅する工程、および生産された組換えポックスウイルスを細胞培養物から回収する工程を含んでなる、請求項12のいずれか一項に記載の方法。 The method further comprises a manufacturing step, said manufacturing step comprising amplifying to a suitable scale in a suitable producer cell and recovering the produced recombinant poxvirus from the cell culture. The method according to any one of claims 1 to 12 , comprising: 前記製造工程が、前記回収された組換えポックスウイルスを精製する工程をさらに含んでなる、請求項13に記載の方法。 14. The method of claim 13 , wherein said manufacturing step further comprises purifying said harvested recombinant poxvirus. a)前記プロデューサー細胞が、ニワトリ胚線維芽細胞(CEF)である;
b)生産された組換えポックスウイルスを回収する前記工程が、前記プロデューサー細胞膜が破壊される溶解工程を含んでなる;かつ/あるいは、
c)前記精製工程が、タンジェンシャルフロー濾過(TFF)工程を含んでなる、請求項13または14に記載の方法。
a) said producer cells are chicken embryo fibroblasts (CEF);
b) said step of recovering the recombinant poxvirus produced comprises a lysis step in which said producer cell membrane is disrupted; and/or
c) A method according to claim 13 or 14 , wherein said purification step comprises a tangential flow filtration (TFF) step.
前記製造工程が、個別化癌ワクチンに関して、少なくとも10pfuの生産に達する、請求項1315のいずれか一項に記載の方法。 16. The method of any one of claims 13-15 , wherein the manufacturing process reaches a production of at least 109 pfu for the personalized cancer vaccine.
JP2019570982A 2017-06-21 2018-06-21 Personalized vaccine Active JP7334124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023100296A JP2023123609A (en) 2017-06-21 2023-06-19 Personalized vaccine

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP17305760.5 2017-06-21
EP17305760 2017-06-21
EP18305496.4 2018-04-23
EP18305496 2018-04-23
PCT/EP2018/066668 WO2018234506A2 (en) 2017-06-21 2018-06-21 Personalized vaccine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023100296A Division JP2023123609A (en) 2017-06-21 2023-06-19 Personalized vaccine

Publications (4)

Publication Number Publication Date
JP2020530437A JP2020530437A (en) 2020-10-22
JP2020530437A5 JP2020530437A5 (en) 2021-09-24
JPWO2018234506A5 true JPWO2018234506A5 (en) 2023-07-05
JP7334124B2 JP7334124B2 (en) 2023-08-28

Family

ID=62599637

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019570982A Active JP7334124B2 (en) 2017-06-21 2018-06-21 Personalized vaccine
JP2023100296A Pending JP2023123609A (en) 2017-06-21 2023-06-19 Personalized vaccine

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023100296A Pending JP2023123609A (en) 2017-06-21 2023-06-19 Personalized vaccine

Country Status (10)

Country Link
US (2) US11969462B2 (en)
EP (1) EP3641803A2 (en)
JP (2) JP7334124B2 (en)
KR (1) KR20200026894A (en)
CN (1) CN111065406A (en)
AU (1) AU2018287159A1 (en)
CA (1) CA3067405A1 (en)
IL (1) IL271558B2 (en)
SG (1) SG11201912429RA (en)
WO (1) WO2018234506A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022516639A (en) * 2019-01-03 2022-03-01 エヴァクシオン・バイオテック・アクティエセルスカブ Vaccines targeting neoepitope
TW202043256A (en) 2019-01-10 2020-12-01 美商健生生物科技公司 Prostate neoantigens and their uses
CN113631185A (en) * 2019-02-27 2021-11-09 尼克塔治疗公司 Immunotherapeutic combinations for the treatment of cancer
EP3842065A1 (en) 2019-12-23 2021-06-30 Transgene Process for designing a recombinant poxvirus for a therapeutic vaccine
CN111303277A (en) * 2020-02-19 2020-06-19 中国人民解放军军事科学院军事医学研究院 An immunoglobulin F (ab') for resisting smallpox virus2And method for preparing the same
WO2023209068A1 (en) 2022-04-28 2023-11-02 Carbocalyx Gmbh Personalized anticancer vaccine comprising glycoengineered tumour cells or tumour cell fragments
WO2024062098A1 (en) 2022-09-23 2024-03-28 Transgene Recombinant pseudocowpox virus encoding an interleukin-12
CN116656730B (en) * 2023-05-25 2024-03-19 军事科学院军事医学研究院军事兽医研究所 Recombinant canary pox virus expressing rabies virus G, M protein and construction method thereof

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603112A (en) 1981-12-24 1986-07-29 Health Research, Incorporated Modified vaccinia virus
US7045313B1 (en) 1982-11-30 2006-05-16 The United States Of America As Represented By The Department Of Health And Human Services Recombinant vaccinia virus containing a chimeric gene having foreign DNA flanked by vaccinia regulatory DNA
GB9013750D0 (en) 1990-06-20 1990-08-08 Pfizer Ltd Therapeutic agents
US5250534A (en) 1990-06-20 1993-10-05 Pfizer Inc. Pyrazolopyrimidinone antianginal agents
GB9301192D0 (en) 1993-06-09 1993-06-09 Trott Francis W Flower shaped mechanised table
UA68327C2 (en) 1995-07-04 2004-08-16 Gsf Forschungszentrum Fur Unwe A recombinant mva virus, an isolated eukaryotic cell, infected with recombinant mva virus, a method for production in vitro of polypeptides with use of said cell, a method for production in vitro of virus parts (variants), vaccine containing the recombinant mva virus, a method for immunization of animals
US5672485A (en) 1996-08-13 1997-09-30 Regents Of The University Of Minnesota Immortalized cell lines for virus growth
FR2766091A1 (en) 1997-07-18 1999-01-22 Transgene Sa ANTITUMOR COMPOSITION BASED ON MODIFIED IMMUNOGENIC POLYPEPTIDE WITH CELL LOCATION
FR2790955B1 (en) 1999-03-19 2003-01-17 Assist Publ Hopitaux De Paris USE OF STABILIZED OLIGONUCLEOTIDES AS ANTI-TUMOR ACTIVE INGREDIENT
UA82466C2 (en) 2001-07-18 2008-04-25 Бавариан Нордика А/С Method for intensification of chordopoxvirus amplification
MXPA04005577A (en) 2001-12-10 2005-04-19 Bavarian Nordic As Poxvirus containing formulations and process for preparing stable, poxvirus containing compositions.
AU2004257939B2 (en) 2003-07-22 2008-06-05 Valneva Production of poxviruses with adherent or non adherent avian cell lines
EP1528101A1 (en) 2003-11-03 2005-05-04 ProBioGen AG Immortalized avian cell lines for virus production
GB0502661D0 (en) 2005-02-09 2005-03-16 Stabilitech Ltd A desiccated product
BRPI0618850A2 (en) 2005-11-21 2011-09-13 Sanofi Pasteur Ltd stabilization formulations for recombinant viruses
RS51525B (en) 2006-01-05 2011-06-30 Transgene Sa. Avian telomerase reverse transcriptase
RU2489486C2 (en) * 2006-06-20 2013-08-10 Трансжене С.А. Method to produce pox viruses and compositions of pox viruses
MX2009008118A (en) 2007-01-30 2009-10-13 Transgene Sa Papillomavirus e2 polypeptide used for vaccination.
GB0705245D0 (en) 2007-03-19 2007-04-25 Stabilitech Ltd Stable biological products
EP1985305A1 (en) 2007-04-24 2008-10-29 Vivalis Duck embryonic derived stem cell lines for the production of viral vaccines
WO2008138533A1 (en) 2007-05-14 2008-11-20 Bavarian Nordic A/S Purification of vaccinia virus- and recombinant vaccinia virus-based vaccines
EP2160402A2 (en) 2007-05-15 2010-03-10 Transgene SA Signaling peptides
JP5421250B2 (en) 2007-07-03 2014-02-19 トランスジーン ソシエテ アノニム Avian immortal cell line
US8357531B2 (en) 2007-07-03 2013-01-22 Transgene S.A. Immortalized avian cell lines
CA2705869C (en) 2007-11-19 2012-10-30 Philippe Erbs Poxviral oncolytic vectors
EP2212423B1 (en) 2007-11-19 2015-02-11 Transgene SA Poxviral oncolytic vectors
WO2009100521A1 (en) 2008-02-12 2009-08-20 Sanofi Pasteur Limited Methods using ion exchange and gel filtration chromatography for poxvirus purification
EP2199400A1 (en) * 2008-12-22 2010-06-23 Emergent Product Development Germany GmbH Single recombination system and methods of use
CA2760465A1 (en) 2009-05-12 2010-11-18 Transgene Sa Method for orthopoxvirus production and purification
CN105648056A (en) * 2010-05-14 2016-06-08 综合医院公司 Composite and method for detecting tumor specific novel antigen
RS64230B1 (en) 2011-05-24 2023-06-30 BioNTech SE Individualized vaccines for cancer
CN103732236B (en) 2011-08-05 2017-09-15 新罗杰公司 Method and composition for producing vaccinia virus
ES2729759T3 (en) * 2012-07-12 2019-11-06 Persimmune Inc Customized cancer vaccines and adoptive immune cell therapies
TWI690322B (en) 2012-10-02 2020-04-11 法商傳斯堅公司 Virus-containing formulation and use thereof
CN105518151B (en) * 2013-03-15 2021-05-25 莱兰斯坦福初级大学评议会 Identification and use of circulating nucleic acid tumor markers
KR102341899B1 (en) * 2013-04-07 2021-12-21 더 브로드 인스티튜트, 인코퍼레이티드 Compositions and methods for personalized neoplasia vaccines
BR112016012862A2 (en) * 2013-12-06 2017-09-26 Broad Inst Inc neoplasia vaccine formulations
IL248507B (en) 2014-05-13 2022-07-01 Bavarian Nordic As Combination therapy for treating cancer with a recombinant poxvirus expressing a tumor antigen and an immune checkpoint molecule antagonist or agonist
IL248511B (en) 2014-05-13 2022-07-01 Bavarian Nordic As Combination therapy for treating cancer with a poxvirus expressing a tumor antigen and a monoclonal antibody against tim-3
KR20180010229A (en) 2015-05-20 2018-01-30 더 브로드 인스티튜트, 인코퍼레이티드 Shared neointimal antigen
MA43362A (en) 2015-05-26 2018-10-10 Advaxis Inc IMMUNOTHERAPY BASED ON PERSONALIZED ADMINISTRATION VECTORS, AND THEIR USES
TWI750122B (en) * 2015-06-09 2021-12-21 美商博德研究所有限公司 Formulations for neoplasia vaccines and methods of preparing thereof
KR20180027501A (en) 2015-06-24 2018-03-14 어드박시스, 인크. Manufacturing device and process for customized delivery vector-based immunotherapy
AU2016369519B2 (en) * 2015-12-16 2023-04-20 Gritstone Bio, Inc. Neoantigen identification, manufacture, and use
WO2017177207A1 (en) * 2016-04-07 2017-10-12 Bostongene, Llc Construction and methods of use of a therapeutic cancer vaccine library comprising fusion-specific vaccines

Similar Documents

Publication Publication Date Title
JP2020530437A5 (en)
JP2018516563A5 (en)
JP2022023118A (en) Engineering of systems, methods, and optimized guide compositions for sequence manipulation
JP2018532419A (en) CRISPR-Cas sgRNA library
CN108251452A (en) A kind of transgenic zebrafish for expressing Cas9 genes and its construction method and application
Maule Pulsed-field gel electrophoresis
CN107488649A (en) A kind of fusion protein of Cpf1 and p300 Core domains, corresponding DNA target are to activation system and application
KR20180012834A (en) A method for regulation of gene expression by expressing Cas9 protein from the two independent vector
KR20160030187A (en) Delivery and use of the crispr-cas systems, vectors and compositions for hepatic targeting and therapy
PT98399A (en) METHOD FOR THE INTEGRATING TRANSFORMATION OF YEAST USING DISPERSED REPETITIVE ELEMENTS
CN110592135A (en) Method for editing rice aroma gene Badh2 by CRISPR/Cas9
JPWO2018234506A5 (en)
CN116179512B (en) Endonuclease with wide target recognition range and application thereof
US10385334B2 (en) Molecular identity tags and uses thereof in identifying intermolecular ligation products
CN116144631B (en) Heat-resistant endonuclease and mediated gene editing system thereof
CN109295071B (en) Rice flower organ development regulation gene PEH1, and encoded protein and application thereof
CN110577972B (en) CRISPR/Sa-ShaCas9 gene editing system and application thereof
CN110577970B (en) CRISPR/Sa-SlutCas9 gene editing system and application thereof
CN110551763B (en) CRISPR/SlutCas9 gene editing system and application thereof
CA3190758A1 (en) Systems and methods for transposing cargo nucleotide sequences
WO1999040208A1 (en) In vivo construction of dna libraries
US6841347B1 (en) In vivo construction of DNA libraries
JP5517116B2 (en) Recombinant virus, Escherichia coli holding the same, and method for producing the same
CN109868288A (en) Cas9 transcription templates DNA and Plasmid DNA and in-vitro transcription method for drosophila CRISPR transgenosis
JP3898009B2 (en) Multi-step differential cloning technology and cell growth control gene