JPWO2018232356A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2018232356A5
JPWO2018232356A5 JP2019569305A JP2019569305A JPWO2018232356A5 JP WO2018232356 A5 JPWO2018232356 A5 JP WO2018232356A5 JP 2019569305 A JP2019569305 A JP 2019569305A JP 2019569305 A JP2019569305 A JP 2019569305A JP WO2018232356 A5 JPWO2018232356 A5 JP WO2018232356A5
Authority
JP
Japan
Prior art keywords
dna template
cell
rnp
cells
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019569305A
Other languages
Japanese (ja)
Other versions
JP2020524998A5 (en
JP2020524998A (en
JP7275054B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2018/037919 external-priority patent/WO2018232356A1/en
Publication of JP2020524998A publication Critical patent/JP2020524998A/en
Publication of JP2020524998A5 publication Critical patent/JP2020524998A5/ja
Publication of JPWO2018232356A5 publication Critical patent/JPWO2018232356A5/ja
Priority to JP2023076182A priority Critical patent/JP2023100828A/en
Application granted granted Critical
Publication of JP7275054B2 publication Critical patent/JP7275054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

いくつかの態様において、RNP-DNA鋳型複合体は約1×105個~約2×106個の細胞に導入される。いくつかの態様において、細胞は初代造血細胞または初代造血幹細胞である。いくつかの態様において、初代造血細胞は免疫細胞である。いくつかの態様において、免疫細胞はT細胞である。いくつかの態様において、T細胞は制御性T細胞、エフェクターT細胞またはナイーブT細胞である。いくつかの態様において、T細胞はCD8+T細胞である。いくつかの態様において、T細胞はCD4+CD8+T細胞である。
[本発明1001]
(a)Cas9リボ核タンパク質複合体(RNP)-DNA鋳型複合体を提供する工程であって、該RNP-DNA鋳型複合体が、
(i)RNPがCas9ヌクレアーゼドメインおよびガイドRNAを含み、該ガイドRNAが細胞のゲノムの標的領域に特異的にハイブリダイズし、該Cas9ヌクレアーゼドメインが該標的領域を切断して該細胞の該ゲノム中に挿入部位を生じさせる、該RNPと;
(ii)二本鎖または一本鎖のDNA鋳型であって、該DNA鋳型のサイズが約200ヌクレオチドよりも大きく、該DNA鋳型の5'および3'末端が、該挿入部位に隣接するゲノム配列と相同であるヌクレオチド配列を含む、DNA鋳型と
を含み、該複合体におけるRNP:DNA鋳型のモル比が約3:1~約100:1である、工程;ならびに
(b)該RNP-DNA鋳型複合体を細胞に導入する工程
を含む、細胞のゲノムを編集する方法。
[本発明1002]
RNP-DNA鋳型複合体が、RNPをDNA鋳型とともに約20~25℃の温度で約1分未満~約30分の間インキュベートすることによって形成される、本発明1001の方法。
[本発明1003]
DNA鋳型が直鎖状DNA鋳型である、本発明1001または1002の方法。
[本発明1004]
DNA鋳型が一本鎖DNA鋳型である、本発明1001~1003のいずれかの方法。
[本発明1005]
DNA鋳型が純粋な一本鎖DNA鋳型である、本発明1001~1003のいずれかの方法。
[本発明1006]
RNP-DNA鋳型複合体と細胞とが、該RNP-DNA鋳型複合体を該細胞に導入する前に混合される、本発明1001~1005のいずれかの方法。
[本発明1007]
RNPがCas9ヌクレアーゼを含む、本発明1001~1006のいずれかの方法。
[本発明1008]
RNPがCas9ニッカーゼを含む、本発明1001~1006のいずれかの方法。
[本発明1009]
RNP-DNA鋳型複合体が少なくとも2つの構造的に異なるRNP複合体を含む、本発明1001~1008のいずれかの方法。
[本発明1010]
少なくとも2つの構造的に異なるRNP複合体が構造的に異なるガイドRNAを含む、本発明1009の方法。
[本発明1011]
構造的に異なるRNP複合体それぞれがCas9ニッカーゼを含み、構造的に異なるガイドRNAが標的領域の反対の鎖にハイブリダイズする、本発明1010の方法。
[本発明1012]
少なくとも2つの構造的に異なるRNP複合体が構造的に異なるCas9ヌクレアーゼドメインを含む、本発明1009の方法。
[本発明1013]
前記導入する工程がエレクトロポレーションを含む、本発明1001~1012のいずれかの方法。
[本発明1014]
RNP:DNA鋳型のモル比が約5:1~約15:1である、本発明1001~1013のいずれかの方法。
[本発明1015]
RNP:DNA鋳型のモル比が約5:1~約10:1である、本発明1001~1014のいずれかの方法。
[本発明1016]
RNP:DNA鋳型のモル比が約8:1~約12:1である、本発明1001~1015のいずれかの方法。
[本発明1017]
DNA鋳型のサイズが約1kbよりも大きい、本発明1001~1016のいずれかの方法。
[本発明1018]
DNA鋳型が約2.5pM~約25pMの濃度である、本発明1001~1017のいずれかの方法。
[本発明1019]
DNA鋳型の量が約1μg~約10μgである、本発明1001~1018のいずれかの方法。
[本発明1020]
細胞が初代造血細胞または初代造血幹細胞である、本発明1001~1019のいずれかの方法。
[本発明1021]
RNP-DNA鋳型複合体が約1×10 5 個~約2×10 6 個の細胞に導入される、本発明1001~1020のいずれかの方法。
[本発明1022]
細胞が初代造血細胞である、本発明1001~1021のいずれかの方法。
[本発明1023]
初代造血細胞が免疫細胞である、本発明1022の方法。
[本発明1024]
免疫細胞がT細胞である、本発明1023の方法。
[本発明1025]
T細胞が制御性T細胞、エフェクターT細胞またはナイーブT細胞である、本発明1024の方法。
[本発明1026]
制御性T細胞、エフェクターT細胞またはナイーブT細胞がCD4 + T細胞である、本発明1025の方法。
[本発明1027]
T細胞がCD8 + T細胞である、本発明1024の方法。
[本発明1028]
T細胞がCD4 + CD8 + T細胞である、本発明1024の方法。
In some embodiments, the RNP-DNA template complex is introduced into about 1 × 10 5 to about 2 × 10 6 cells. In some embodiments, the cell is a primary hematopoietic cell or a primary hematopoietic stem cell. In some embodiments, the primary hematopoietic cells are immune cells. In some embodiments, the immune cell is a T cell. In some embodiments, the T cell is a regulatory T cell, an effector T cell or a naive T cell. In some embodiments, the T cell is a CD8 + T cell. In some embodiments, the T cell is a CD4 + CD8 + T cell.
[Invention 1001]
(A) A step of providing a Cas9 ribonuclear protein complex (RNP) -DNA template complex, wherein the RNP-DNA template complex is used.
(I) The RNP contains a Cas9 nuclease domain and a guide RNA, the guide RNA specifically hybridizes to the target region of the cell's genome, and the Cas9 nuclease domain cleaves the target region into the genome of the cell. With the RNA, which gives rise to an insertion site in
(Ii) A double- or single-stranded DNA template in which the size of the DNA template is greater than about 200 nucleotides, and the 5'and 3'ends of the DNA template are genomic sequences flanking the insertion site. With a DNA template containing a nucleotide sequence homologous to
The molar ratio of RNP: DNA template in the complex is from about 3: 1 to about 100: 1, steps;
(B) Step of introducing the RNP-DNA template complex into cells
How to edit the genome of a cell, including.
[Invention 1002]
The method of the present invention 1001 wherein the RNP-DNA template complex is formed by incubating RNP with the DNA template at a temperature of about 20-25 ° C for less than about 1 minute to about 30 minutes.
[Invention 1003]
The method of the present invention 1001 or 1002, wherein the DNA template is a linear DNA template.
[Invention 1004]
The method according to any one of 1001 to 1003 of the present invention, wherein the DNA template is a single-stranded DNA template.
[Invention 1005]
The method of any of 1001-1003 of the present invention, wherein the DNA template is a pure single-stranded DNA template.
[Invention 1006]
The method of any of 1001 to 1005 of the present invention, wherein the RNP-DNA template complex and the cell are mixed prior to introducing the RNP-DNA template complex into the cell.
[Invention 1007]
The method of any of 1001-1006 of the present invention, wherein the RNP comprises Cas9 nuclease.
[Invention 1008]
The method of any of 1001-1006 of the present invention, wherein the RNP comprises Cas9 nickase.
[Invention 1009]
The method of any of 1001-1008 of the present invention, wherein the RNP-DNA template complex comprises at least two structurally distinct RNP complexes.
[Invention 1010]
The method of the present invention 1009, wherein at least two structurally distinct RNP complexes contain structurally distinct guide RNAs.
[Invention 1011]
The method of the invention 1010, wherein each of the structurally distinct RNP complexes contains Cas9 nickase and the structurally distinct guide RNA hybridizes to the opposite strand of the target region.
[Invention 1012]
The method of the present invention 1009, wherein at least two structurally distinct RNP complexes contain structurally distinct Cas9 nuclease domains.
[Invention 1013]
The method of any of 1001 to 1012 of the present invention, wherein the process of introduction comprises electroporation.
[Invention 1014]
The method according to any one of 1001 to 1013 of the present invention, wherein the molar ratio of the RNP: DNA template is about 5: 1 to about 15: 1.
[Invention 1015]
The method according to any one of 1001 to 1014 of the present invention, wherein the molar ratio of the RNP: DNA template is about 5: 1 to about 10: 1.
[Invention 1016]
The method according to any one of 1001 to 1015 of the present invention, wherein the molar ratio of the RNP: DNA template is about 8: 1 to about 12: 1.
[Invention 1017]
The method of any of 1001-1016 of the present invention, wherein the size of the DNA template is greater than about 1 kb.
[Invention 1018]
The method of any of 1001-1017 of the present invention, wherein the DNA template has a concentration of about 2.5 pM to about 25 pM.
[Invention 1019]
The method of any of 1001-1018 of the present invention, wherein the amount of DNA template is from about 1 μg to about 10 μg.
[Invention 1020]
The method of any of 1001-1019 of the present invention, wherein the cells are primary hematopoietic cells or primary hematopoietic stem cells.
[Invention 1021]
The method of any of 1001 to 1020 of the present invention, wherein the RNP-DNA template complex is introduced into about 1 × 10 5 to about 2 × 10 6 cells.
[Invention 1022]
The method of any of 1001 to 1021 of the present invention, wherein the cell is a primary hematopoietic cell.
[Invention 1023]
The method of 1022 of the present invention, wherein the primary hematopoietic cells are immune cells.
[Invention 1024]
The method of the present invention 1023, wherein the immune cells are T cells.
[Invention 1025]
The method of the invention 1024, wherein the T cells are regulatory T cells, effector T cells or naive T cells.
[Invention 1026]
The method of the invention 1025, wherein the regulatory T cells, effector T cells or naive T cells are CD4 + T cells.
[Invention 1027]
The method of the present invention 1024, wherein the T cells are CD8 + T cells.
[Invention 1028]
The method of the present invention 1024, wherein the T cells are CD4 + CD8 + T cells.

Claims (35)

(a)Cas9リボ核タンパク質複合体(RNP)-DNA鋳型複合体を提供する工程であって、該RNP-DNA鋳型複合体が、
(i)RNPがCas9ヌクレアーゼドメインおよびガイドRNAを含み、該ガイドRNAが細胞のゲノムの標的領域に特異的にハイブリダイズし、該Cas9ヌクレアーゼドメインが該標的領域を切断して該細胞の該ゲノム中に挿入部位を生じさせる、該RNPと;
(ii)二本鎖または一本鎖のDNA鋳型であって、該DNA鋳型のサイズが約200ヌクレオチドよりも大きく、該DNA鋳型の5'および3'末端が、該挿入部位に隣接するゲノム配列と相同であるヌクレオチド配列を含む、DNA鋳型と
を含み、該複合体におけるRNP:DNA鋳型のモル比が約3:1~約100:1である、工程;ならびに
(b)該RNP-DNA鋳型複合体を細胞に導入する工程であって、該RNP-DNA鋳型複合体と該細胞とが、該RNP-DNA鋳型複合体を該細胞に導入する前に混合される、工程
を含む、細胞のゲノムを編集するインビトロまたはエクスビボ方法。
(A) A step of providing a Cas9 ribonuclear protein complex (RNP) -DNA template complex, wherein the RNP-DNA template complex is used.
(I) The RNP contains a Cas9 nuclease domain and a guide RNA, the guide RNA specifically hybridizes to the target region of the cell's genome, and the Cas9 nuclease domain cleaves the target region into the genome of the cell. With the RNA, which gives rise to an insertion site in
(Ii) A double- or single-stranded DNA template in which the size of the DNA template is greater than about 200 nucleotides, and the 5'and 3'ends of the DNA template are genomic sequences flanking the insertion site. The RNP: DNA template has a molar ratio of about 3: 1 to about 100: 1 in the complex, comprising a DNA template comprising a nucleotide sequence homologous to, and (b) the RNP-DNA template. A step of introducing the complex into a cell, wherein the RNP-DNA template complex and the cell are mixed before the RNP-DNA template complex is introduced into the cell.
In vitro or exvivo methods for editing the genome of a cell, including.
RNP-DNA鋳型複合体が、RNPをDNA鋳型とともに約20~25℃の温度で約1分未満~約30分の間インキュベートすることによって形成される、請求項1記載の方法。 The method of claim 1, wherein the RNP-DNA template complex is formed by incubating RNP with the DNA template at a temperature of about 20-25 ° C for less than about 1 minute to about 30 minutes. (a)DNA鋳型が直鎖状DNA鋳型である、
b)DNA鋳型が一本鎖DNA鋳型、任意で純粋な一本鎖DNA鋳型である、または
(c)(i)DNA鋳型が細胞のゲノムに非ウイルス的に挿入されるか、もしくは(ii)DNA鋳型がウイルスベクターの非存在下で細胞のゲノムに挿入される、
請求項1または2記載の方法。
(A) The DNA template is a linear DNA template,
( B) The DNA template is a single-stranded DNA template, optionally a pure single-stranded DNA template, or
(C) (i) The DNA template is non-virally inserted into the cell's genome, or (ii) the DNA template is inserted into the cell's genome in the absence of a viral vector.
The method of claim 1 or 2.
(a)RNPがCas9ヌクレアーゼを含む、または
(b)RNPがCas9ニッカーゼを含む、
請求項1~3のいずれか一項記載の方法。
(A) RNP contains Cas9 nuclease, or
(B) RNP contains Cas9 nickase,
The method according to any one of claims 1 to 3 .
RNP-DNA鋳型複合体が少なくとも2つの構造的に異なるRNP複合体を含む、請求項1~4のいずれか一項記載の方法。 The method according to any one of claims 1 to 4 , wherein the RNP-DNA template complex comprises at least two structurally different RNP complexes. (a)少なくとも2つの構造的に異なるRNP複合体が構造的に異なるガイドRNAを含任意で、構造的に異なるRNP複合体それぞれがCas9ニッカーゼを含み、構造的に異なるガイドRNAが標的領域の反対の鎖にハイブリダイズする、または
(b)少なくとも2つの構造的に異なるRNP複合体が構造的に異なるCas9ヌクレアーゼドメインを含む、
請求項5記載の方法。
(A) At least two structurally different RNP complexes contain structurally different guide RNAs, optionally each structurally different RNP complex contains Cas9 nickase, and structurally different guide RNAs are targeted regions. Hybridizes to the opposite chain of, or
(B) At least two structurally distinct RNP complexes contain structurally distinct Cas9 nuclease domains.
The method according to claim 5 .
前記導入する工程がエレクトロポレーションを含む、請求項1~6のいずれか一項記載の方法。 The method according to any one of claims 1 to 6 , wherein the introduced step comprises electroporation. (a)RNP:DNA鋳型のモル比が約5:1~約15:1である、
(b)RNP:DNA鋳型のモル比が約5:1~約10:1である、または
(c)RNP:DNA鋳型のモル比が約8:1~約12:1である、
請求項1~7のいずれか一項記載の方法。
(A) The molar ratio of RNP: DNA template is about 5: 1 to about 15: 1.
(B) The molar ratio of RNP: DNA template is about 5: 1 to about 10: 1, or
(C) The molar ratio of RNP: DNA template is about 8: 1 to about 12: 1,
The method according to any one of claims 1 to 7 .
(a)DNA鋳型のサイズが約1kbよりも大きい、
(b)DNA鋳型が約2.5pM~約25pMの濃度である、および/または
(c)DNA鋳型の量が約1μg~約10μgである、
請求項1~8のいずれか一項記載の方法。
(A) The size of the DNA template is larger than about 1 kb,
(B) The DNA template has a concentration of about 2.5 pM to about 25 pM, and / or
(C) The amount of DNA template is about 1 μg to about 10 μg,
The method according to any one of claims 1 to 8 .
細胞が初代造血細胞または初代造血幹細胞である、請求項1~9のいずれか一項記載の方法。 The method according to any one of claims 1 to 9 , wherein the cell is a primary hematopoietic cell or a primary hematopoietic stem cell. RNP-DNA鋳型複合体が約1×105個~約2×106個の細胞に導入される、請求項1~10のいずれか一項記載の方法。 The method according to any one of claims 1 to 10 , wherein the RNP-DNA template complex is introduced into about 1 × 10 5 to about 2 × 10 6 cells. 細胞が初代造血細胞であ任意で、初代造血細胞が免疫細胞である、請求項1~11のいずれか一項記載の方法。 The method according to any one of claims 1 to 11 , wherein the cell is a primary hematopoietic cell and optionally the primary hematopoietic cell is an immune cell . 免疫細胞がT細胞である、請求項12記載の方法。 12. The method of claim 12 , wherein the immune cell is a T cell. (a)T細胞が制御性T細胞、エフェクターT細胞、もしくはナイーブT細胞であ任意で、制御性T細胞、エフェクターT細胞、もしくはナイーブT細胞が、CD4 + T細胞である、
(b)T細胞がCD8 + T細胞である、または
(c)T細胞がCD4 + CD8 + T細胞である、
請求項13記載の方法。
(A) T cells are regulatory T cells, effector T cells , or naive T cells, and optionally regulatory T cells, effector T cells, or naive T cells are CD4 + T cells. ,
(B) T cells are CD8 + T cells, or
(C) T cells are CD4 + CD8 + T cells,
13. The method of claim 13 .
DNA鋳型のサイズが、約5kbより大きい、請求項1~14のいずれか一項記載の方法。The method according to any one of claims 1 to 14, wherein the size of the DNA template is larger than about 5 kb. 細胞のゲノムの標的領域に非ウイルス的に挿入されている少なくとも1つのDNA鋳型を含む、初代免疫細胞であって、該DNA鋳型のサイズが約200ベースペア(bp)以上である、初代免疫細胞。Primary immune cells that contain at least one DNA template that is non-virally inserted into the target region of the cell's genome and whose DNA template size is approximately 200 base pairs (bp) or greater. .. DNA鋳型を初代免疫細胞内に導入するためのウイルスベクターを含まない、請求項16記載の細胞。The cell according to claim 16, which does not contain a viral vector for introducing a DNA template into a primary immune cell. DNA鋳型のサイズが、1キロベース(1kb)以上である、請求項16または17記載の細胞。The cell according to claim 16 or 17, wherein the size of the DNA template is 1 kilobase (1 kb) or more. DNA鋳型のサイズが、約200bp、250bp、300bp、350bp、400bp、450bp、500bp、550bp、600bp、650bp、700bp、750bp、800bp、850bp、900bp、1kb、1.1kb、1.2kb、1.3kb、1.4kb、1.5kb、1.6kb、1.7kb、1.8kb、1.9kb、2.0kb、2.1kb、2.2kb、2.3kb、2.4kb、2.5kb、2.6kb、2.7kb、2.8kb、2.9kb、3kb、3.1kb、3.2kb、3.3kb、3.4kb、3.5kb、3.6kb、3.7kb、3.8kb、3.9kb、4.0kb、4.1kb、4.2kb、4.3kb、4.4kb、4.5kb、4.6kb、4.7kb、4.8kb、4.9kb、5.0kb、またはこれらのサイズの間の任意のDNA鋳型サイズ以上である、請求項16または17記載の細胞。The size of the DNA template is about 200bp, 250bp, 300bp, 350bp, 400bp, 450bp, 500bp, 550bp, 600bp, 650bp, 700bp, 750bp, 800bp, 850bp, 900bp, 1kb, 1.1kb, 1.2kb, 1.3kb, 1.4kb. , 1.5kb, 1.6kb, 1.7kb, 1.8kb, 1.9kb, 2.0kb, 2.1kb, 2.2kb, 2.3kb, 2.4kb, 2.5kb, 2.6kb, 2.7kb, 2.8kb, 2.9kb, 3kb, 3.1kb , 3.2kb, 3.3kb, 3.4kb, 3.5kb, 3.6kb, 3.7kb, 3.8kb, 3.9kb, 4.0kb, 4.1kb, 4.2kb, 4.3kb, 4.4kb, 4.5kb, 4.6kb, 4.7kb, 4.8 The cell according to claim 16 or 17, which is greater than or equal to kb, 4.9 kb, 5.0 kb, or any DNA template size between these sizes. DNA鋳型のサイズが、約200bp~約500bp、約200bp~約750bp、約200bp~約1kb、約200bp~約1.5kb、約200bp~約2.0kb、約200bp~約2.5kb、約200bp~約3.0kb、約200bp~約3.5kb、約200bp~約4.0kb、約200bp~約4.5kb、または約200bp~約5.0kbである、請求項16または17記載の細胞。The size of the DNA template is about 200bp to about 500bp, about 200bp to about 750bp, about 200bp to about 1kb, about 200bp to about 1.5kb, about 200bp to about 2.0kb, about 200bp to about 2.5kb, about 200bp to about 3.0. The cell according to claim 16 or 17, which is kb, about 200 bp to about 3.5 kb, about 200 bp to about 4.0 kb, about 200 bp to about 4.5 kb, or about 200 bp to about 5.0 kb. DNA鋳型が、二本鎖DNA鋳型または一本鎖DNA鋳型である、請求項16~20のいずれか一項記載の細胞。The cell according to any one of claims 16 to 20, wherein the DNA template is a double-stranded DNA template or a single-stranded DNA template. DNA鋳型が、直鎖状DNA鋳型または環状DNA鋳型であり、任意で、環状DNA鋳型がプラスミドである、請求項16~21のいずれか一項記載の細胞。The cell according to any one of claims 16 to 21, wherein the DNA template is a linear DNA template or a circular DNA template, and optionally, the circular DNA template is a plasmid. 初代ヒト免疫細胞である、請求項16~22のいずれか一項記載の細胞。The cell according to any one of claims 16 to 22, which is a primary human immune cell. 初代T細胞である、請求項16~23のいずれか一項記載の細胞。The cell according to any one of claims 16 to 23, which is a primary T cell. 初代ヒトT細胞である、請求項16~24のいずれか一項記載の細胞。The cell according to any one of claims 16 to 24, which is a primary human T cell. DNA鋳型が、異種配列を含む、請求項16~25のいずれか一項記載の細胞。The cell according to any one of claims 16 to 25, wherein the DNA template contains a heterologous sequence. DNA鋳型が、遺伝子を含む、請求項16~26のいずれか一項記載の細胞。The cell according to any one of claims 16 to 26, wherein the DNA template contains a gene. DNA鋳型が、キメラ抗原受容体(CAR)を含む、請求項16~27のいずれか一項記載の細胞。The cell according to any one of claims 16 to 27, wherein the DNA template contains a chimeric antigen receptor (CAR). ウイルスフリーである、請求項16~28のいずれか一項記載の細胞。The cell according to any one of claims 16 to 28, which is virus-free. 請求項16~29のいずれか一項記載の複数の初代免疫細胞を含む、細胞集団。A cell population comprising the plurality of primary immune cells according to any one of claims 16 to 29. 初代免疫細胞のゲノムの標的領域に挿入されている少なくとも1つのDNA鋳型を含む、初代免疫細胞であって、該DNA鋳型のサイズが約200ベースペア以上であり、初代免細胞が、DNA鋳型を初代免疫細胞内に導入するためのウイルスベクターを含まない、初代免疫細胞。Primary immune cells containing at least one DNA template inserted into the target region of the genome of the primary immune cell, the size of the DNA template being approximately 200 base pairs or larger, and the primary immune cell extinguishing the DNA template. Primary immune cells that do not contain a viral vector for introduction into the primary immune cells. リボ核タンパク質複合体(RNP)-DNA鋳型複合体を含む、生存可能なウイルスフリーの初代細胞であって、該RNPがヌクレアーゼドメインおよびガイドRNAを含み、該DNA鋳型のサイズが約200ヌクレオチド以上であり、該DNA鋳型の5'および3'末端が、該初代細胞のゲノム中の挿入部位に隣接するゲノム配列と相同であるヌクレオチド配列を含む、初代細胞。A viable virus-free primary cell containing a ribonuclear protein complex (RNP) -DNA template complex, wherein the RNP contains a nuclease domain and a guide RNA, and the size of the DNA template is approximately 200 nucleotides or larger. A primary cell, wherein the 5'and 3'ends of the DNA template contain a nucleotide sequence homologous to the genomic sequence flanking the insertion site in the genome of the primary cell. 請求項16~32のいずれか一項記載の初代免疫細胞を含む、対象における疾患を治療するための医薬。A pharmaceutical agent for treating a disease in a subject, comprising the primary immune cell according to any one of claims 16 to 32. 以下の工程を含む、初代免疫細胞を編集するインビトロまたはエクスビボ方法:In vitro or Exvivo methods for editing primary immune cells, including the following steps:
リボ核タンパク質複合体(RNP)-DNA鋳型複合体を提供する工程であって、該RNPがヌクレアーゼドメインおよびガイドRNAを含み、該DNA鋳型のサイズが約200ヌクレオチド以上であり、該DNA鋳型の5'および3'末端が、初代免疫細胞のゲノム中の挿入部位に隣接するゲノム配列と相同であるヌクレオチド配列を含む、工程;A step of providing a ribonuclear protein complex (RNP) -DNA template complex, wherein the RNP contains a nuclease domain and a guide RNA, the size of the DNA template is about 200 nucleotides or more, and 5 of the DNA template. A step comprising a nucleotide sequence in which the'and 3'ends are homologous to the genomic sequence flanking the insertion site in the genome of the primary immune cell;
該RNP-DNA鋳型複合体を初代免疫細胞に非ウイルス的に導入する工程であって、該ガイドRNAが初代免疫細胞のゲノムの標的領域に特異的にハイブリダイズし、該ヌクレアーゼドメインが該標的領域を切断して該初代免疫細胞のゲノム中に挿入部位を生じさせる、工程;ならびにIn the step of non-virally introducing the RNP-DNA template complex into a primary immune cell, the guide RNA specifically hybridizes to the target region of the genome of the primary immune cell, and the nuclease domain is the target region. To generate an insertion site in the genome of the primary immune cell, step;
該初代免疫細胞のゲノム中の挿入部位にDNA鋳型を挿入することにより、該初代免疫細胞を編集する工程。A step of editing a primary immune cell by inserting a DNA template into the insertion site in the genome of the primary immune cell.
非ウイルス的に導入する工程がエレクトロポレーションを含む、請求項34記載の方法。34. The method of claim 34, wherein the non-viral introduction step comprises electroporation.
JP2019569305A 2017-06-15 2018-06-15 Targeted non-viral DNA insertion Active JP7275054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023076182A JP2023100828A (en) 2017-06-15 2023-05-02 Targeted non-viral dna insertions

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762520117P 2017-06-15 2017-06-15
US62/520,117 2017-06-15
US201762552180P 2017-08-30 2017-08-30
US62/552,180 2017-08-30
PCT/US2018/037919 WO2018232356A1 (en) 2017-06-15 2018-06-15 Targeted non-viral dna insertions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023076182A Division JP2023100828A (en) 2017-06-15 2023-05-02 Targeted non-viral dna insertions

Publications (4)

Publication Number Publication Date
JP2020524998A JP2020524998A (en) 2020-08-27
JP2020524998A5 JP2020524998A5 (en) 2021-07-29
JPWO2018232356A5 true JPWO2018232356A5 (en) 2022-02-07
JP7275054B2 JP7275054B2 (en) 2023-05-17

Family

ID=64659467

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019569305A Active JP7275054B2 (en) 2017-06-15 2018-06-15 Targeted non-viral DNA insertion
JP2023076182A Pending JP2023100828A (en) 2017-06-15 2023-05-02 Targeted non-viral dna insertions

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023076182A Pending JP2023100828A (en) 2017-06-15 2023-05-02 Targeted non-viral dna insertions

Country Status (12)

Country Link
US (4) US20200362355A1 (en)
EP (1) EP3638317A4 (en)
JP (2) JP7275054B2 (en)
KR (2) KR20200018645A (en)
CN (1) CN111344020A (en)
AU (1) AU2018283405A1 (en)
BR (1) BR112019026625A2 (en)
CA (1) CA3067382A1 (en)
IL (1) IL271389A (en)
MX (1) MX2019015188A (en)
SG (1) SG11201912179SA (en)
WO (1) WO2018232356A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019084552A1 (en) 2017-10-27 2019-05-02 The Regents Of The University Of California Targeted replacement of endogenous t cell receptors
GB2589246A (en) 2018-05-16 2021-05-26 Synthego Corp Methods and systems for guide RNA design and use
EP3833680A4 (en) * 2018-05-30 2022-05-25 The Regents of the University of California Gene editing of monogenic disorders in human hematopoietic stem cells -- correction of x-linked hyper-igm syndrome (xhim)
KR20230056026A (en) * 2020-08-27 2023-04-26 티뮤니티 테라퓨틱스 인크. Vector-Free Process for Manufacturing Engineered Immune Cells
CN114107292B (en) * 2020-08-27 2024-03-12 阿思科力(苏州)生物科技有限公司 Gene editing system and method for site-directed insertion of exogenous gene
CN113046381A (en) * 2021-04-12 2021-06-29 南华大学 Method for separating specific protein-DNA complex in organism, fusion protein and preparation method thereof
WO2023220207A2 (en) * 2022-05-10 2023-11-16 Editas Medicine, Inc. Genome editing of cells
WO2024059618A2 (en) 2022-09-13 2024-03-21 Arsenal Biosciences, Inc. Immune cells having co-expressed tgfbr shrnas
WO2024059824A2 (en) 2022-09-16 2024-03-21 Arsenal Biosciences, Inc. Immune cells with combination gene perturbations

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US20020064802A1 (en) 2000-04-28 2002-05-30 Eva Raschke Methods for binding an exogenous molecule to cellular chromatin
GB0124391D0 (en) 2001-10-11 2001-11-28 Gene Expression Technologies L Control of gene expression
US20050136040A1 (en) 2001-10-11 2005-06-23 Imperial College Innovations Limited Control of gene expression using a complex of an oligonucleotide and a regulatory peptide
US20030232410A1 (en) 2002-03-21 2003-12-18 Monika Liljedahl Methods and compositions for using zinc finger endonucleases to enhance homologous recombination
ITMI20030821A1 (en) 2003-04-18 2004-10-19 Internat Ct For Genetic En Gineering And CHEMICAL POLYPEPTIDES AND THEIR USE.
US20060182736A1 (en) 2003-06-10 2006-08-17 Kim Jin-Soo Transducible dna-binding proteins
US8133733B2 (en) 2003-10-24 2012-03-13 Gencia Corporation Nonviral vectors for delivering polynucleotides to target tissues
WO2005123962A2 (en) 2004-06-14 2005-12-29 The University Of Texas At Austin Gene targeting in eukaryotic cells by group ii intron ribonucleoprotein particles
US10022457B2 (en) 2005-08-05 2018-07-17 Gholam A. Peyman Methods to regulate polarization and enhance function of cells
DK2336362T3 (en) 2005-08-26 2019-01-21 Dupont Nutrition Biosci Aps USE OF CRISPR-ASSOCIATED GENES (CAS)
PL2049663T3 (en) 2006-08-11 2015-08-31 Dow Agrosciences Llc Zinc finger nuclease-mediated homologous recombination
US20110239315A1 (en) 2009-01-12 2011-09-29 Ulla Bonas Modular dna-binding domains and methods of use
JP2012525146A (en) 2009-04-28 2012-10-22 プレジデント アンド フェロウズ オブ ハーバード カレッジ Overcharged protein for cell penetration
WO2011059836A2 (en) 2009-10-29 2011-05-19 Trustees Of Dartmouth College T cell receptor-deficient t cell compositions
US8956828B2 (en) 2009-11-10 2015-02-17 Sangamo Biosciences, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
SG181601A1 (en) 2009-12-10 2012-07-30 Univ Minnesota Tal effector-mediated dna modification
CA2796600C (en) 2010-04-26 2019-08-13 Sangamo Biosciences, Inc. Genome editing of a rosa locus using zinc-finger nucleases
US8876458B2 (en) 2011-01-25 2014-11-04 United Technologies Corporation Blade outer air seal assembly and support
WO2013074916A1 (en) 2011-11-18 2013-05-23 Board Of Regents, The University Of Texas System Car+ t cells genetically modified to eliminate expression of t- cell receptor and/or hla
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
US20130236504A1 (en) 2012-03-06 2013-09-12 Medical University Of South Carolina Delivery System for Enhancing Drug Efficacy
LT3401400T (en) 2012-05-25 2019-06-10 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
DE202013012597U1 (en) 2012-10-23 2017-11-21 Toolgen, Inc. A composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and a Cas protein-encoding nucleic acid or Cas protein, and their use
EP3138911B1 (en) 2012-12-06 2018-12-05 Sigma Aldrich Co. LLC Crispr-based genome modification and regulation
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
EP4234696A3 (en) 2012-12-12 2023-09-06 The Broad Institute Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
EP2931899A1 (en) 2012-12-12 2015-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
CA3081054A1 (en) 2012-12-17 2014-06-26 President And Fellows Of Harvard College Rna-guided human genome engineering
KR20140101203A (en) 2013-02-08 2014-08-19 이정민 Auto buffing machine
CA2906553C (en) 2013-03-15 2022-08-02 The General Hospital Corporation Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US9937207B2 (en) 2013-03-21 2018-04-10 Sangamo Therapeutics, Inc. Targeted disruption of T cell receptor genes using talens
US20160053274A1 (en) 2013-04-02 2016-02-25 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
ES2883131T3 (en) 2013-05-29 2021-12-07 Cellectis Methods for modifying T cells for immunotherapy using the RNA-guided CAS nuclease system
US9890393B2 (en) 2013-05-29 2018-02-13 Cellectis Methods for engineering T cells for immunotherapy by using RNA-guided CAS nuclease system
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US10822606B2 (en) 2013-09-27 2020-11-03 The Regents Of The University Of California Optimized small guide RNAs and methods of use
CN105899665B (en) 2013-10-17 2019-10-22 桑格摩生物科学股份有限公司 The delivering method and composition being transformed for nuclease-mediated genome project
WO2015073867A1 (en) 2013-11-15 2015-05-21 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Engineering neural stem cells using homologous recombination
US10787684B2 (en) * 2013-11-19 2020-09-29 President And Fellows Of Harvard College Large gene excision and insertion
WO2015089354A1 (en) * 2013-12-12 2015-06-18 The Broad Institute Inc. Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders
WO2015089486A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
KR20160089527A (en) 2013-12-12 2016-07-27 더 브로드 인스티튜트, 인코퍼레이티드 Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing
MX2016007327A (en) 2013-12-12 2017-03-06 Broad Inst Inc Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components.
WO2015086795A1 (en) 2013-12-13 2015-06-18 Cellectis Cas9 nuclease platform for microalgae genome engineering
KR20220100078A (en) 2014-01-31 2022-07-14 팩터 바이오사이언스 인크. Methods and products for nucleic acid production and delivery
WO2015115903A1 (en) 2014-02-03 2015-08-06 Academisch Ziekenhuis Leiden H.O.D.N. Lumc Site-specific dna break-induced genome editing using engineered nucleases
KR20230152175A (en) 2014-04-18 2023-11-02 에디타스 메디신, 인코포레이티드 Crispr-cas-related methods, compositions and components for cancer immunotherapy
KR101826904B1 (en) 2014-08-06 2018-02-08 기초과학연구원 Immune-compatible cells created by nuclease-mediated editing of genes encoding Human Leukocyte Antigens
WO2016036754A1 (en) 2014-09-02 2016-03-10 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification
WO2016049251A1 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes
EP3204513A2 (en) 2014-10-09 2017-08-16 Life Technologies Corporation Crispr oligonucleotides and gene editing
EP3215166B1 (en) 2014-10-31 2024-04-24 The Trustees of the University of Pennsylvania Altering gene expression in car-t cells and uses thereof
WO2016097751A1 (en) 2014-12-18 2016-06-23 The University Of Bath Method of cas9 mediated genome engineering
AU2016209295B2 (en) 2015-01-21 2021-08-12 Genevant Sciences Gmbh Methods, compositions, and systems for delivering therapeutic and diagnostic agents into cells
EP3929296A1 (en) 2015-01-30 2021-12-29 The Regents of The University of California Protein delivery in primary hematopoietic cells
US20180200387A1 (en) 2015-02-23 2018-07-19 Crispr Therapeutics Ag Materials and methods for treatment of human genetic diseases including hemoglobinopathies
WO2016172359A2 (en) 2015-04-24 2016-10-27 The Regents Of The University Of California Systems for detecting, monitoring or treating diseases or conditions using engineered cells and methods for making and using them
CA2986060A1 (en) 2015-05-29 2016-12-08 Valerie Odegard Composition and methods for regulating inhibitory interactions in genetically engineered cells
AU2016278982A1 (en) 2015-06-17 2018-01-18 The Uab Research Foundation CRISPR/Cas9 complex for genomic editing
EP3310931B1 (en) 2015-06-17 2021-11-17 The UAB Research Foundation Crispr/cas9 complex for introducing a functional polypeptide into cells of blood cell lineage
US20170000743A1 (en) 2015-07-02 2017-01-05 Vindico NanoBio Technology Inc. Compositions and Methods for Delivery of Gene Editing Tools Using Polymeric Vesicles
AU2016291778B2 (en) 2015-07-13 2021-05-06 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US20180243446A1 (en) 2015-09-01 2018-08-30 The Hospital For Sick Children Method and compositions for removing duplicated copy number variaions (cnvs) for genetic disorders and related uses
WO2017053729A1 (en) 2015-09-25 2017-03-30 The Board Of Trustees Of The Leland Stanford Junior University Nuclease-mediated genome editing of primary cells and enrichment thereof
US11286480B2 (en) 2015-09-28 2022-03-29 North Carolina State University Methods and compositions for sequence specific antimicrobials
EP4108255A1 (en) 2015-10-05 2022-12-28 Precision Biosciences, Inc. Genetically-modified cells comprising a modified human t cell receptor alpha constant region gene
WO2017070169A1 (en) 2015-10-19 2017-04-27 The Methodist Hospital Crispr-cas9 delivery to hard-to-transfect cells via membrane deformation
CN108368522A (en) 2015-10-20 2018-08-03 10X 基因组学有限公司 Method and system for high-throughput unicellular genetic manipulation
WO2017070429A1 (en) 2015-10-22 2017-04-27 Regents Of The University Of Minnesota Methods involving editing polynucleotides that encode t cell receptor
CN108368520B (en) 2015-11-04 2023-01-17 菲特治疗公司 Genome engineering of pluripotent cells
JP2019500899A (en) 2015-11-23 2019-01-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Cellular RNA tracking and manipulation through nuclear delivery of CRISPR / Cas9
AU2016369490C1 (en) 2015-12-18 2021-12-23 Sangamo Therapeutics, Inc. Targeted disruption of the T cell receptor
AU2016380836A1 (en) 2015-12-30 2018-07-12 Avectas Limited Vector-free delivery of gene editing proteins and compositions to cells and tissues
US20190241910A1 (en) 2016-03-11 2019-08-08 Bluebird Bio, Inc. Genome edited immune effector cells
JP2019510503A (en) 2016-04-07 2019-04-18 ブルーバード バイオ, インコーポレイテッド Chimeric antigen receptor T cell composition
KR20230088514A (en) 2016-04-14 2023-06-19 프레드 허친슨 캔서 센터 Compositions and methods to program therapeutic cells using targeted nucleic acid nanocarriers
US10188749B2 (en) 2016-04-14 2019-01-29 Fred Hutchinson Cancer Research Center Compositions and methods to program therapeutic cells using targeted nucleic acid nanocarriers
EP4180519A1 (en) 2016-04-15 2023-05-17 Memorial Sloan Kettering Cancer Center Transgenic t cell and chimeric antigen receptor t cell compositions and related methods
WO2017189336A1 (en) 2016-04-25 2017-11-02 The Regents Of The University Of California Methods and compositions for genomic editing
JP7148494B2 (en) * 2016-04-25 2022-10-05 ウニベルシテート バーゼル Allele editing and its applications
WO2017186550A1 (en) 2016-04-29 2017-11-02 Basf Plant Science Company Gmbh Improved methods for modification of target nucleic acids
WO2017210334A1 (en) 2016-05-31 2017-12-07 Massachusetts Institute Of Technology Hydrodynamically controlled electric fields for high throughput transformation & high throughput parallel transformation platform
WO2017220527A1 (en) 2016-06-20 2017-12-28 Glycotope Gmbh Means and methods for modifying multiple alleles
CN110312799A (en) 2016-08-17 2019-10-08 博德研究所 Novel C RISPR enzyme and system
US20190177677A1 (en) 2016-08-20 2019-06-13 The Regents Of The University Of California High-throughput system and method for the temporary permeablization of cells
CN110291100A (en) 2016-10-12 2019-09-27 费尔丹生物公司 For polypeptide load to be delivered to the synthetic peptide shuttling agent of the rational design of the cytosol and/or nucleus of target eukaryocyte, purposes, relative method and kit from extracellular space
WO2018073393A2 (en) 2016-10-19 2018-04-26 Cellectis Tal-effector nuclease (talen) -modified allogenic cells suitable for therapy
WO2018073391A1 (en) 2016-10-19 2018-04-26 Cellectis Targeted gene insertion for improved immune cells therapy
WO2018094291A1 (en) 2016-11-18 2018-05-24 Christopher Bradley Massively multiplexed homologous template repair for whole-genome replacement
US10975388B2 (en) 2016-12-14 2021-04-13 Ligandal, Inc. Methods and compositions for nucleic acid and protein payload delivery
CN110546495B (en) 2016-12-30 2022-11-01 加利福尼亚州立大学董事会 Methods for selection and passage of genome editing T cells
WO2019084552A1 (en) 2017-10-27 2019-05-02 The Regents Of The University Of California Targeted replacement of endogenous t cell receptors
BR112020008704A2 (en) 2017-10-30 2020-11-10 Pact Pharma, Inc. editing primary cell genes

Similar Documents

Publication Publication Date Title
Gasser et al. Expression of abbreviated mouse dihydrofolate reductase genes in cultured hamster cells.
CN107446923B (en) rAAV8-CRISPR-SaCas9 system and application thereof in preparation of hepatitis B treatment drug
CN107893074A (en) A kind of gRNA, expression vector, knockout system, kit for being used to knock out CXCR4 genes
JP2016500262A5 (en)
WO2017075475A1 (en) Crispr/cas-related methods and compositions for treating herpes simplex virus
CA3001351A1 (en) Crispr/cas-related methods and compositions for treating hepatitis b virus
JP2018518182A5 (en)
Baur et al. Intermolecular homologous recombination in plants
CN107787367A (en) Guiding RNA for the chemical modification of the gene regulation of CRISPR/CAS mediations
WO2015153780A1 (en) Crispr/cas-related methods and compositions for treating primary open angle glaucoma
JP2020524998A5 (en)
BR112015022522B1 (en) METHOD FOR MODIFICATION OF GENOMIC MATERIAL IN A PLANT CELL AND VIRAL VECTOR
CA3025523A1 (en) Peptides and nanoparticles for intracellular delivery of genome-editing molecules
WO2015115903A1 (en) Site-specific dna break-induced genome editing using engineered nucleases
WO2012156839A2 (en) New generation of splice-less lentiviral vectors for safer gene therapy applications
JPWO2018232356A5 (en)
EP2872528A1 (en) Compositions and methods for duchenne muscular dystrophy gene therapy
Aksoy et al. Multiple copies of a retroposon interrupt spliced leader RNA genes in the African trypanosome, Trypanosoma gambiense.
CN111718964A (en) Nucleic acid sequence and system for repairing DMD gene mutation
CA3102072A1 (en) Gene targeting
CN110551762A (en) CRISPR/ShaCas9 gene editing system and application thereof
CN115820642A (en) CRISPR-Cas9 system for treating duchenne muscular dystrophy
Monstein et al. A candidate gene for human U1 RNA.
Khromov et al. Delivery of CRISPR/Cas9 ribonucleoprotein complex to apical meristem cells for DNA-free editing of potato Solanum tuberosum genome
CN107841509A (en) A kind of kit for knocking out glioblastoma DHC2 genes