JPWO2018229928A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
JPWO2018229928A1
JPWO2018229928A1 JP2019524654A JP2019524654A JPWO2018229928A1 JP WO2018229928 A1 JPWO2018229928 A1 JP WO2018229928A1 JP 2019524654 A JP2019524654 A JP 2019524654A JP 2019524654 A JP2019524654 A JP 2019524654A JP WO2018229928 A1 JPWO2018229928 A1 JP WO2018229928A1
Authority
JP
Japan
Prior art keywords
dci
dci format
control
control channel
blind decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019524654A
Other languages
English (en)
Inventor
一樹 武田
一樹 武田
聡 永田
聡 永田
チン ムー
チン ムー
リュー リュー
リュー リュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JPWO2018229928A1 publication Critical patent/JPWO2018229928A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Abstract

既存のLTEシステムと異なる構成を適用して通信を行う場合に、適切に制御チャネルの通信を行うこと。本発明の一態様に係るユーザ端末は、DL制御チャネルを受信する受信部と、DL制御チャネル候補のモニタリングを制御する制御部と、を有し、前記制御部は、DCIフォーマット及び/又はDCIペイロードサイズに基づいてモニタするアグリゲーションレベル及び/又はDL制御チャネル候補数を決定することを特徴とする。

Description

本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE−A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.13、14又は15以降などともいう)も検討されている。
既存のLTEシステム(例えば、LTE Rel.8−13)では、1msのサブフレーム(伝送時間間隔(TTI:Transmission Time Interval)などともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ:Hybrid Automatic Repeat reQuest)などの処理単位となる。
無線基地局は、ユーザ端末に対するデータの割当て(スケジューリング)を制御し、下り制御情報(DCI:Downlink Control Information)を用いてデータのスケジューリングをユーザ端末に通知する。ユーザ端末は、下り制御情報が送信される下り制御チャネル(PDCCH)をモニタして受信処理(復調、復号処理等)を行い、受信した下り制御情報に基づいてDLデータの受信及び/又は上りデータの送信を制御する。
下り制御チャネル(PDCCH/EPDCCH)は、1又は複数の制御チャネル要素(CCE(Control Channel Element)/ECCE(Enhanced Control Channel Element))の集合(aggregation)を利用して送信が制御される。また、各制御チャネル要素は複数のリソースエレメントグループ(REG(Resource Element Group)/EREG(Enhanced Resource Element Group))で構成される。リソースエレメントグループは、リソースエレメント(RE)に対する制御チャネルのマッピングを行う場合にも利用される。
将来の無線通信システム(例えば、LTE Rel.14、15以降、5G、NRなど)では、既存のLTEシステム(例えば、LTE Rel.13以前)とは異なる構成でデータのスケジューリングを制御することが想定される。具体的には、将来の無線通信システムでは、柔軟なニューメロロジー及び周波数の利用をサポートし、動的なフレーム構成を実現することが求められている。ニューメロロジーとは、例えば、ある信号の送受信に適用される通信パラメータ(例えば、サブキャリア間隔、帯域幅など)のことをいう。
また、将来の無線通信システムでは、制御チャネル及び/又はデータチャネルに既存のLTEシステムと異なる構成を用いることが検討されている。既存のLTEシステムと異なる構成において、既存のLTEシステムの制御チャネルの構成を用いると、適切に通信できないおそれがある。
本発明はかかる点に鑑みてなされたものであり、既存のLTEシステムと異なる構成を適用して通信を行う場合に、適切に制御チャネルの通信を行うことができるユーザ端末及び無線通信方法を提供することを目的の1つとする。
本発明の一態様に係るユーザ端末は、DL制御チャネルを受信する受信部と、DL制御チャネル候補のモニタリングを制御する制御部と、を有し、前記制御部は、DCIフォーマット及び/又はDCIペイロードサイズに基づいてモニタするアグリゲーションレベル及び/又はDL制御チャネル候補数を決定することを特徴とする。
本発明によれば、既存のLTEシステムと異なる構成を適用して通信を行う場合に、適切に制御チャネルの通信を行うことができる。
図1A及び図1Bは、既存のLTE及び将来の無線通信システムにおける下り制御チャネルの一例を示す図である。 既存のLTEのアグリゲーションレベル及びPDCCH候補数の一例を示す図である。 図3A−図3Cは、第1サーチスペース設計の一例を示す図である。 図4A及び図4Bは、第2サーチスペース設計の一例を示す図である。 図5A−図5Cは、第3サーチスペース設計の一例を示す図である。 図6A−図6Cは、第2設定方法の一例を示す図である。 図7A−図7Dは、第3設定方法の一例を示す図である。 図8A−図8Cは、ケース1及びケース2の一例を示す図である。 図9A−図9Fは、ケース3の一例を示す図である。 図10A−図10Eは、ケース4の一例を示す図である。 図11A−図11Cは、1つのCORESETに対するサーチスペースを示す図である。 図12A−図12Cは、複数のCORESETに対するサーチスペースを示す図である。 本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
既存のLTEシステムにおいて、無線基地局は、UEに対して下り制御チャネル(例えば、PDCCH(Physical Downlink Control Channel)、拡張PDCCH(EPDCCH:Enhanced PDCCH)など)を用いて下り制御情報(DCI:Downlink Control Information)を送信する。下り制御情報を送信することは、下り制御チャネルを送信すると読みかえられてもよい。
DCIは、例えばデータをスケジューリングする時間・周波数リソースを指定する情報やトランスポートブロックサイズを指定する情報、データ変調方式を指定する情報、HARQプロセス識別子を指定する情報、復調用RSに関する情報、などの少なくとも1つを含むスケジューリング情報であってもよい。DLデータ受信及び/又はDL参照信号の測定をスケジューリングするDCIは、DLアサインメントまたはDLグラントと呼ばれてもよいし、ULデータ送信及び/又はULサウンディング(測定用)信号の送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
DLアサインメント及び/またはULグラントには、DLデータに対するHARQ−ACKフィードバックやチャネル測定情報(CSI:Channel State Information)などのUL制御信号(UCI:Uplink Control Information)を送信するチャネルのリソースや系列、送信フォーマットに関する情報が含まれていてもよい。また、UL制御信号(UCI:Uplink Control Information)をスケジューリングするDCIがDLアサインメントおよびULグラントとは別に規定されてもよい。DLアサインメント、ULグラントおよびUCIスケジューリングのいずれのDCIであるかは、DCI内に含まれる特定のビットフィールドの値がいずれであるかに基づいて判断するものとしてもよいし、DCIのペイロードサイズが複数の所定の値のうちいずれであるかに基づいて判断するものとしてもよいし、それぞれのDCIはあらかじめ異なるリソース領域にマッピングされるものとし、いずれのリソース領域でDCIが検出されたかに基づいて判断するものとしてもよい。
UEは、所定数の下り制御チャネル候補のセットをモニタするように設定される。ここで、モニタとは、例えば、当該セットで、対象となるDCIフォーマットについて各下り制御チャネルの復号を試行することをいう。このような復号は、ブラインド復号(BD:Blind Decoding)、ブラインド検出とも呼ばれる。下り制御チャネル候補は、BD候補、(E)PDCCH候補などとも呼ばれる。
モニタすべき下り制御チャネル候補のセット(複数の下り制御チャネル候補)は、サーチスペースとも呼ばれる。基地局は、サーチスペースに含まれる所定の下り制御チャネル候補にDCIを配置する。UEは、サーチスペース内の1つ以上の候補リソースに対してブラインド復号を行い、当該UEに対するDCIを検出する。サーチスペースは、ユーザ間共通の上位レイヤシグナリングで設定されてもよいし、ユーザ個別の上位レイヤシグナリングで設定されてもよい。また、サーチスペースは、当該ユーザ端末に対して同じキャリアで2つ以上設定されてもよい。
既存のLTEでは、リンクアダプテーションを目的として、サーチスペースには複数種類のアグリゲーションレベル(AL:Aggregation Level)が規定される。ALは、DCIを構成する制御チャネル要素(CCE)/拡張制御チャネル要素(ECCE)の数に対応する。また、サーチスペースは、あるALについて、複数の下り制御チャネル候補を有するように構成される。各下り制御チャネル候補は、一以上のリソースユニット(CCE及び/又はECCE)で構成される。
DCIには、巡回冗長検査(CRC:Cyclic Redundancy Check)ビットが付けられる(attached)。当該CRCは、UE個別の識別子(例えば、セル−無線ネットワーク一時識別子(C−RNTI:Cell-Radio Network Temporary Identifier))又はシステム共通の識別子によりマスキング(スクランブル)されている。UEは、自端末に対応するC−RNTIでCRCがスクランブルされたDCI及びシステム共通の識別子によりCRCがスクランブルされたDCIを検出することができる。
また、サーチスペースとしては、UEに共通に設定される共通(common)サーチスペースと、UE毎に設定されるUE固有(UE-specific)サーチスペースがある。既存のLTEのPDCCHのUE固有サーチスペースにおいて、AL(=CCE数)は、1、2、4及び8である。BD候補数は、AL=1、2、4及び8について、それぞれ6、6、2及び2と規定される。
既存のLTEシステムでは、下り制御チャネル(又は、下り制御情報)は、システム帯域幅全体を利用して送信が行われる(図1A参照)。そのため、UEは、各サブフレームにおいて、DLデータの割当て有無に関わらず、システム帯域幅全体をモニタして下り制御情報の受信(ブラインド復号)を行う必要があった。
これに対し、将来の無線通信システムでは、所定キャリアにおいて常にシステム帯域全体を利用して通信を行うのでなく、通信用途及び/又は通信環境等に基づいて所定の周波数領域(周波数帯域とも呼ぶ)を動的又は準静的に設定して通信を制御することが考えられる。例えば、将来の無線通信システムでは、あるUEに対する下り制御情報を必ずしもシステム帯域全体に割当てて送信するのでなく、所定の周波数領域を設定して下り制御情報の送信を制御することが考えられる(図1B参照)。
UEに設定される所定の周波数領域と時間領域(例えば1 OFDM シンボル、2 OFDM シンボル、など)からなる無線リソースは、コントロールリソースセット(CORESET:control resource set)、制御リソースセット、コントロールサブバンド(control subband)、サーチスペースセット、サーチスペースリソースセット、コントロール領域、制御サブバンド、又はNR−PDCCH領域等とも呼ばれる。
コントロールリソースセットは、所定リソース単位で構成され、システム帯域幅(キャリア帯域幅)もしくは当該ユーザ端末が受信処理可能な最大の帯域幅以下に設定することができる。例えば、コントロールリソースセットを、周波数方向における1又は複数のRB(PRB及び/又はVRB)で構成することができる。ここで、RBは例えば12サブキャリアからなる周波数リソースブロック単位を意味する。UEは、コントロールリソースセットの範囲内で下り制御情報をモニタして受信を制御することができる。これにより、UEは、下り制御情報の受信処理において、常にシステム帯域幅全体をモニタする必要がなくなるため、消費電力を低減することが可能となる。
また、コントロールリソースセットは、下り制御情報がマッピングされるリソース又はNR−PDCCHを収める時間リソース及び/周波数リソースの枠である。また、コントロールリソースセットは、リソースユニットのサイズに基づいて定義することができる。例えば、1つのコントロールリソースセットのサイズはリソースユニットのサイズの整数倍の大きさに設定することができる。またコントロールリソースセットは、連続又は非連続のリソースユニットで構成されてもよい。
リソースユニットは、NR−PDCCHに割り当てるリソースの単位であり、PRB、PRBペア、NR−CCE、NR−REG、NR−REGグループのいずれか1つであってもよい。
NRにおいて、UEは1つ以上のDCIフォーマット及び/又はDCIサイズをモニタすることを必要とする。例えば、幾つかのDCIフォーマット(例えば、DCIフォーマット0/1A)は、フォールバックのために用いられ、幾つかのDCIフォーマット(例えば、DCIフォーマット2C/4)は、送信モード(Transmission mode)等に基づいて制御されるデータスケジューリングのために用いられる。
LTEにおけるサーチスペース設計の原則は、NRにおいて再利用されてもよい。複数のアグリゲーションレベル(AL)がサポートされてもよい。1つのALに対して、複数のブラインド復号候補(例えば、PDCCH候補)が定義されてもよい。
LTEにおいて、モニタされるサーチスペース(モニタされるAL及びPDCCH候補数)は、或るUEのための全てのDCIフォーマットに対して、同一である。例えば、図2に示すように、DCIフォーマット0/1Aにおいて、AL=1、2、4、8に対するPDCCH候補数は、それぞれ6、6、2、2である。他のDCIフォーマットXにおいても、各ALに対応するPDCCH候補数は同一である。
しかしながら、UEにモニタされるDCIサイズ(DCIペイロードサイズ)は、著しく異なる。例えば、LTEにおいて、1つのUEにモニタされるDCIサイズは、40ビットから70ビットであり得る。また、DCIフォーマット及び/又はDCIサイズによって要求されるALは異なる。
これに対し、既存のLTEでは、ペイロードが小さいDCIフォーマット(例えば、0/1A)であっても、MIMOのスケジューリングなどのためのペイロードが大きいDCIフォーマット(例えば、X、あるいは2/2A/2C)であっても、図2に示すように、複数のALに対するBDの回数の分布は同一である。
また、DCIによってユースケースは、著しく異なる。例えば、幾つかのDCIフォーマットは、カバレッジが劣化する場合に、又は、再設定の不確定期間中の通信をサポートするために、用いられるだけである。このように特定のDCIフォーマットが使用される可能性は低いのに対し、UEは、高い可能性で送信される他のDCIフォーマットについて同数のブラインド復号を行う。
このように、モニタされる全てのDCIフォーマット及び/又はDCIサイズに対して同じサーチスペース設計(例えば、モニタされるAL及びブラインド復号候補数)を用いることは、効率的でない。
そこで、本発明者らは、異なるDCIフォーマット及び/又はDCIサイズに対して異なるサーチスペースを用いることを着想した。本発明の一態様では、異なるDCIフォーマット及び/又はDCIサイズに対するサーチスペース設計を提供する。また、本発明の一態様では、このサーチスペースの設定方法を提供する。
このサーチスペース設計によれば、異なるDCIフォーマット及び/又はDCIサイズに対して、適切なサーチスペースを提供し、不要なブラインド復号を減らすことができる。
以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(無線通信方法)
<第1の態様>
第1の態様では、幾つかのサーチスペース設計を示す。
《第1サーチスペース設計》
第1サーチスペース設計においては、UEによってモニタされるALは、DCIフォーマット及び/又はDCIサイズによって異なる。また、全てのDCIフォーマット及び/又はDCIサイズに対して、1つのモニタされるALに対するブラインド復号候補数(例えば、PDCCH候補数)は同一である。図3は、第1サーチスペース設計の一例を示す図である。
図3Aに示す例1においては、DCIフォーマットYに対して、AL=1、2、4がモニタされる。言い換えれば、DCIフォーマットYに対して、AL=1、2、4が使用可能である。DCIフォーマットXに対して、AL=2、4、8がモニタされる。また、DCIフォーマットYが用いられる場合、AL=1、2、4に対するブラインド復号候補数はそれぞれN1、N2、N3である。また、DCIフォーマットXが用いられる場合、AL=2、4、8に対するブラインド復号候補数はそれぞれN2、N3、N4である。
図3Bに示す例2においては、DCIフォーマットYに対して、AL=1、2がモニタされる。DCIフォーマットXに対して、AL=4、8がモニタされる。また、DCIフォーマットYが用いられる場合、AL=1、2に対するブラインド復号候補数はそれぞれN1、N2である。また、DCIフォーマットXが用いられる場合、AL=4、8に対するブラインド復号候補数はそれぞれN3、N4である。
図3Cに示す例3においては、DCIフォーマットYに対して、AL=1、2、4、8がモニタされる。DCIフォーマットXに対して、AL=4、8がモニタされる。また、DCIフォーマットYを用いられる場合、AL=1、2、4、8に対するブラインド復号候補数はそれぞれN1、N2、N3、N4である。また、DCIフォーマットXが用いられる場合、AL=4、8に対するブラインド復号候補数はそれぞれN3、N4である。
第1サーチスペース設計によれば、UEは、特定のDCIフォーマットについて、特定のALをモニタしてもよいし、特定のALのモニタリングをスキップしてもよい。
例えば、DCIフォーマットXのペイロードが大きく、DCIフォーマットXに対してAL=1又はAL=1、2が使われない可能性が高く、DCIフォーマットYのペイロードが小さく、DCIフォーマットYに対して様々なALが使われる可能性が高い場合、第1サーチスペース設計を用いることにより、特定のDCIフォーマット及び特定のALにおいて、無駄なブラインド復号を減らすことができる。
《第2サーチスペース設計》
第2サーチスペース設計においては、全てのDCIフォーマット及び/又はDCIサイズに対して、モニタされるALは同一である。また、1つのモニタされるALに対するブラインド復号候補数は、DCIフォーマット及び/又はDCIサイズによって異なってもよい。図4は、第2サーチスペース設計の一例を示す図である。
図4Aに示す例1においては、DCIフォーマットYに対して、AL=1、2、4、8がモニタされる。DCIフォーマットXは、AL=1、2、4、8がモニタされる。また、DCIフォーマットYを用いる場合、AL=1、2、4、8に対するブラインド復号候補数はそれぞれN1、N2、N3、N4である。また、DCIフォーマットXを用いる場合、AL=1、2、4、8に対するブラインド復号候補数はそれぞれN1、N2、M3、M4である。
図4Bに示す例2においては、DCIフォーマットYに対して、AL=1、2、4、8がモニタされる。DCIフォーマットXに対して、AL=1、2、4、8がモニタされる。また、DCIフォーマットYが用いられる場合、AL=1、2、4、8に対するブラインド復号候補数はそれぞれN1、N2、N3、N4である。また、DCIフォーマットXが用いられる場合、AL=1、2、4、8に対するブラインド復号候補数はそれぞれM1、M2、M3、M4である。
DCIフォーマット、DCIサイズ、及び/又は所要品質によって、使用されるAL、及び/又は典型的に使用されるALが異なる可能性があり、モニタされるALに対するブラインド復号候補数の分布が異なる可能性がある。第2サーチスペース設計によれば、DCIフォーマット、DCIサイズ、及び/又は所要品質に適したブラインド復号候補数を設定することにより、無駄なブラインド復号を減らすことができる。
《第3サーチスペース設計》
第3サーチスペース設計においては、モニタされるALは、DCIフォーマット及び/又はDCIサイズによって異なってもよい。また、1つのモニタされるALに対するブラインド復号候補数は、DCIフォーマット及び/又はDCIサイズによって異なってもよい。図5は、第3サーチスペース設計の一例を示す図である。
図5Aに示す例1においては、DCIフォーマットYに対して、AL=1、2、4がモニタされる。DCIフォーマットXに対して、AL=2、4、8がモニタされる。また、DCIフォーマットYが用いられる場合、AL=1、2、4に対するブラインド復号候補数はそれぞれN1、N2、N3である。また、DCIフォーマットXが用いられる場合、AL=2、4、8に対するブラインド復号候補数はそれぞれM2、M3、M4である。
図5Bに示す例2においては、DCIフォーマットYに対して、AL=1、2がモニタされる。DCIフォーマットXに対して、AL=4、8がモニタされる。また、DCIフォーマットYが用いられる場合、AL=1、2に対するブラインド復号候補数はそれぞれN1、N2である。また、DCIフォーマットXが用いられる場合、AL=4、8に対するブラインド復号候補数はそれぞれM3、M4である。
図5Cに示す例3においては、DCIフォーマットYに対して、AL=1、2、4、8がモニタされる。DCIフォーマットXに対して、AL=4、8がモニタされる。また、DCIフォーマットYが用いられる場合、AL=1、2、4、8に対するブラインド復号候補数はそれぞれN1、N2、N3、N4である。また、DCIフォーマットXが用いられる場合、AL=4、8に対するブラインド復号候補数はそれぞれM3、M4である。
図5に示すように、第1サーチスペース設計と同様、モニタされるALは、DCIフォーマットによって異なる。例えば、特定のDCIフォーマットに対して、特定のALがモニタされてもよい。また、図5に示すように、第2サーチスペース設計と同様、各ALに対するブラインド復号候補数は、DCIフォーマットによって異なってもよい。
第3サーチスペース設計によれば、第1サーチスペース設計と同様、特定のDCIフォーマット及び/又はDCIサイズの特定のALに対するモニタリングをスキップすることにより、無駄なブラインド復号を減らすことができる。また、第2サーチスペース設計と同様、DCIフォーマット、DCIサイズ、及び/又は所要品質に適したブラインド復号候補数を設定することにより、無駄なブラインド復号を減らすことができる。
<第2の態様>
第2の態様では、サーチスペースのための幾つかの設定方法を示す。
《第1設定方法》
第1設定方法において、ネットワークは、上位レイヤシグナリング(例えば、RRCシグナリング)を介して、各DCIフォーマット及び/又はDCIサイズに対し、モニタされる的確なALと、ブラインド復号候補数と、をUEに設定する。
ネットワークは、DCIフォーマット及び/又はDCIサイズに紐づけられたAL及び/又はブラインド復号候補数を示す設定情報を、上位レイヤシグナリングを介してUEに通知してもよい。各DCIフォーマット及び/又はDCIサイズに対するAL及びブラインド復号候補数は、例えば、第1の態様のいずれかのサーチスペース設計に従っていてもよい。
第1設定方法によれば、DCIフォーマット及び/又はDCIサイズに適したAL及びブラインド復号候補数をUEに設定できる。
《第2設定方法》
第2設定方法においては、複数のサーチスペースパターンが予めUEに設定される。各サーチスペースパターンは、1つのDCIフォーマット及び/又はDCIサイズに対して、モニタされるALと、そのALに対するブラインド復号候補数と、の組み合わせを示す。複数のサーチスペースパターンは、仕様により規定されてもよいし、ネットワークからUEへ通知されてもよい。
異なるDCIフォーマットに対するサーチスペースパターンが、上位レイヤシグナリング(例えば、RRCシグナリング)により独立にUEに設定される。ネットワークは、DCIフォーマット及び/又はDCIサイズに紐づけられたサーチスペースパターンのIDを示す設定情報を、上位レイヤシグナリングを介して通知してもよい。
図6は、第2設定方法の一例を示す図である。
図6Aに示すパターン1においては、AL=1、2がモニタされ、AL=1、2に対するブラインド復号候補数はそれぞれN1、N2である。
図6Bに示すパターン2においては、AL=4、8がモニタされ、AL=4、8に対するブラインド復号候補数はそれぞれN3、N4である。
図6Cに示すパターン3においては、AL=1、2、4、8がモニタされ、AL=1、2、4、8に対するブラインド復号候補数はそれぞれN1、N2、N3、N4である。
第2設定方法によれば、上位レイヤシグナリングは、特定のDCIフォーマット及び/又はDCIサイズのサーチスペースパターンを通知することにより、UEによってモニタされるDCIフォーマット及び/又はDCIサイズに対して、モニタされるAL及びブラインド復号候補数を設定できる。よって、サーチスペースの設定のためのシグナリングのオーバーヘッドを抑えることができる。
《第3設定方法》
第3設定方法においては、複数のサーチスペースパターンが予めUEに設定される。各サーチスペースパターンは、複数のDCIフォーマット及び/又はDCIサイズのそれぞれに紐づけられた、モニタされるAL及びブラインド復号候補数を含む。複数のサーチスペースパターンは、仕様により規定されてもよいし、ネットワークからUEへ通知されてもよい。
ネットワークは、上位レイヤシグナリング(例えば、RRCシグナリング)を介して、サーチスペースパターンを、UEに設定する。ネットワークは、サーチスペースパターンのIDを、上位レイヤシグナリングを介して通知してもよい。
図7は、第2設定方法の一例を示す図である。ここでは、2つのモニタされるDCIフォーマット及び/又はDCIサイズに対して、4パターン(サーチスペースパターン)が定義される。これら4パターンの1つがUEに設定される。
図7Aに示すパターン1においては、DCIフォーマットYに対して、AL=1、2、4、8がモニタされ、AL=1、2、4、8に対するブラインド復号候補数はそれぞれN1、N2、N3、N4である。また、DCIフォーマットYと同様、DCIフォーマットXに対して、AL=1、2、4、8がモニタされ、AL=1、2、4、8に対するブラインド復号候補数はそれぞれN1、N2、N3、N4である。
図7Bに示すパターン2においては、DCIフォーマットYに対して、AL=1、2、4、8がモニタされ、AL=1、2、4、8に対するブラインド復号候補数はそれぞれN1、N2、N3、N4である。また、DCIフォーマットXに対して、AL=1、2、4、8がモニタされ、AL=1、2、4、8に対するブラインド復号候補数はそれぞれM1、M2、M3、M4である。
図7Cに示すパターン3においては、DCIフォーマットYに対して、AL=1、2がモニタされ、AL=1、2に対するブラインド復号候補数はそれぞれN1、N2である。また、DCIフォーマットXに対して、AL=4、8がモニタされ、AL=4、8に対するブラインド復号候補数はそれぞれM3、M4である。
図7Dに示すパターン4においては、DCIフォーマットYに対して、AL=1、2、4がモニタされ、AL=1、2、4に対するブラインド復号候補数はそれぞれN1、N2、N3である。また、DCIフォーマットXに対して、AL=2、4、8がモニタされ、AL=2、4、8に対するブラインド復号候補数はそれぞれM2、M3、M4である。
第3設定方法によれば、上位レイヤシグナリングは、複数のDCIフォーマット及び/又はDCIサイズに対するサーチスペースパターンを通知することにより、複数のDCIフォーマット及び/又はDCIサイズに対して、モニタされるAL及びブラインド復号候補数を設定できる。よって、第2設定方法よりも、サーチスペースの設定のためのシグナリングのオーバーヘッドを抑えることができる。
<第3の態様>
第3の態様では、DCIフォーマット及び/又はDCIサイズ及びコントロールリソースセット(CORESET)の間の関係について、幾つかのケースを示す。
ネットワークは、DCIフォーマット及び/又はDCIサイズと、ALと、ブラインド復号候補数と、に関連付けられたCORESETを示すリソース情報を、上位レイヤシグナリングを介してUEに通知してもよい。ネットワークは、CORESETに関連付けられたDL制御チャネル(DCI)を、当該CORESET内に配置し、DL制御チャネルを送信してもよい。
《ケース1》
ケース1において、1つのCORESETは、全てのAL及び全てのブラインド復号候補に対して、DCIフォーマットX及びYの両方を含む。
図8Aに示すように、DCIフォーマットYのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数N1、N2、N3、N4と、DCIフォーマットXのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数M1、M2、M3、M4と、が1つのCORESETに対して設定される。すなわち、前述の第2サーチスペース設計と同様、異なるDCIフォーマットに対して異なるブラインド復号候補数が設定される。
ケース1によれば、UEは、1つのCORESETにおいて、設定された複数のDCIフォーマット及び/又はDCIサイズ、全てのAL、全てのブラインド復号候補をモニタできる。また、CORESETに適したDCIフォーマット及び/又はDCIサイズ、AL、ブラインド復号候補数を設定できる。
《ケース2》
ケース2において、1つのCORESETは、全てのAL及び全てのブラインド復号候補に対して、DCIフォーマットX又はYのいずれかを含む。
UEが2つのDCIフォーマットをモニタするために、少なくとも2つのCORESETがUEに設定される。リソース情報は、複数のCORESETを示す。AL、ブラインド復号候補数、DCIフォーマット、及びDCIサイズの少なくとも1つは、CORESET毎に設定されてもよい。
図8B及び図8Cにおいては、CORESET1がDCIフォーマットYを含み、CORESET2がDCIフォーマットXを含む。
図8Bに示すように、図8AのうちDCIフォーマットYの設定が、CORESET1に対して設定される。すなわち、DCIフォーマットYのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数N1、N2、N3、N4がCORESET1に対して設定される。
図8Cに示すように、図8AのうちDCIフォーマットXの設定が、CORESET2に対して設定される。すなわち、DCIフォーマットXのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数M1、M2、M3、M4が、CORESET2に対して設定される。
図8B及び図8Cによれば、CORESET1がDCIフォーマットXに制限され、CORESET2がDCIフォーマットYに制限される。よって、UEは、図8B及び図8Cの設定に従って、CORESET1、2をそれぞれモニタすることにより、図8Aと同様、DCIフォーマットX及びYの両方をモニタできる。
このように、複数のDCIフォーマットを複数のCORESETに分けて設定することにより、各CORESETに適したDCIフォーマット、AL、ブラインド復号候補数を設定することができ、DCIの受信性能を向上させることができる。
《ケース3》
ケース3において、1つのCORESETは、AL及びブラインド復号候補のサブセットを有するDCIフォーマットX及びYの両方を含む。
UEが全てのALをモニタするために、少なくとも2つのCORESETがUEに設定されてもよい。ALがCORESETに紐づけられてもよい。
図9Aは、図8Aと同様、DCIフォーマットYのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数N1、N2、N3、N4と、DCIフォーマットXのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数M1、M2、M3、M4と、を示す。
図9Bに示すように、図9AのうちAL=1、2の設定が、CORESET1に対して設定される。すなわち、DCIフォーマットYのAL=1、2にそれぞれ対応するブラインド復号候補数N1、N2と、DCIフォーマットXのAL=1、2にそれぞれ対応するブラインド復号候補数M1、M2とが、CORESET1に対して設定される。
図9Cに示すように、図9AのうちAL=4、8の設定が、CORESET2に対して設定される。すなわち、DCIフォーマットYのAL=4、8にそれぞれ対応するブラインド復号候補数N3、N4と、DCIフォーマットXのAL=4、8にそれぞれ対応するブラインド復号候補数M3、M4とが、CORESET2に対して設定される。
図9B及び図9Cによれば、CORESET1がAL=1、2に制限され、CORESET2がAL=4、8に制限される。よって、UEは、図9B及び図9Cの設定に従って、CORESET1、2をそれぞれモニタすることにより、図9Aと同様、全てのALをモニタできる。
UEが全てのブラインド復号候補をモニタするために、少なくとも2つのCORESETがUEに設定されてもよい。ブラインド復号候補数がCORESETに紐づけられてもよい。
図9Dは、図8A、図9Aと同様である。
図9Eに示すように、図9Dの各ブラインド復号候補数の一部又は全部がCORESET1に分配される。そのために、Y1がN1以下であり、Y2がN2以下であり、Y3がN3以下であり、Y4がN4以下であり、X1がM1以下であり、X2がM2以下であり、X3がM3以下であり、X4がM4以下であるとする。これらを用いて、DCIフォーマットYのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数Y1、Y2、Y3、Y4と、DCIフォーマットXのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数X1、X2、X3、X4とが、CORESET1に対して設定される。
図9Fに示すように、図9Dの各ブラインド復号候補数のうち、CORESET1に分配されたブラインド復号候補数の残りがCORESET2に対して設定される。すなわち、DCIフォーマットYのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数N1−Y1、N2−Y2、N3−Y3、N4−Y4と、DCIフォーマットXのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数M1−X1、M2−X2、M3−X3、M4−X4とが、CORESET2に対して設定される。
図9E及び図9Fによれば、各DCIフォーマット及び各ALにおいて、CORESET1に割り当てられたブラインド復号候補数と、CORESET2に割り当てられたブラインド復号候補数と、の合計が、図9Dのブラインド復号候補数になる。すなわち、特定のDCIフォーマット及び特定のALに設定されたブラインド復号候補数を、複数のCORESETに分配できる。よって、UEは、図9E及び図9Fの設定に従って、CORESET1、2をモニタすることにより、図9Dで定められたブラインド復号候補数をモニタできる。
《ケース4》
ケース4において、1つのCORESETは、AL及びブラインド復号候補のサブセットを有するDCIフォーマットX及びYの両方を含む。
ここでは、ブラインド復号候補が4つのCORESETに分散される場合を示す。
図10Aは、図8Aと同様、DCIフォーマットYのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数N1、N2、N3、N4と、DCIフォーマットXのAL=1、2、4、8にそれぞれ対応するブラインド復号候補数M1、M2、M3、M4と、を示す。
図10Bに示すように、DCIフォーマットYのAL=1、2にそれぞれ対応するブラインド復号候補数N1、N2が、CORESET1に対して設定される。
図10Cに示すように、DCIフォーマットYのAL=4、8にそれぞれ対応するブラインド復号候補数N3、N4が、CORESET2に対して設定される。
図10Dに示すように、DCIフォーマットXのAL=4、8にそれぞれ対応するブラインド復号候補数M3、M4が、CORESET3に対して設定される。
図10Eに示すように、DCIフォーマットXのAL=1、2にそれぞれ対応するブラインド復号候補数M1、M2が、CORESET4に対して設定される。
図10B及び図10Cによれば、CORESET1及びCORESET2は、DCIフォーマットYに限定され、そのうち、CORESET1はAL=1、2に限定され、CORESET2はAL=4、8に限定される。図10D及び図10Eによれば、CORESET3及びCORESET4は、DCIフォーマットXに限定され、そのうち、CORESET3はAL=4、8に限定され、CORESET4はAL=1、2に限定される。
よって、UEは、図10B−図10Eの設定に従って、CORESET1−4をモニタすることにより、図10Aと同様、全てのDCIフォーマット及び全てのALをモニタできる。
《変更例》
1つのCORESETがUEに設定される場合、当該CORESETにおいてモニタされるAL及びブラインド復号候補数は、当該CORESETのサイズによって異なってもよい。CORESETのサイズは、CORESETに含まれるリソースユニットの数(CORESET内リソースユニット数)で表されてもよい。
図11Aに示すようにCORESET内リソースユニット数が2であるケースと、図11Bに示すようにCORESET内リソースユニット数が4であるケースと、図11Cに示すようにCORESET内リソースユニット数が8であるケースと、が想定されてもよい。各ケースにおいて、DCIフォーマットXを用いてモニタされるAL及びブラインド復号候補数と、DCIフォーマットYを用いてモニタされるAL及びブラインド復号候補数と、が設定されてもよい。
また、CORESETにおけるブラインド復号候補数の合計が所定値以下であるという条件下において、各DCIフォーマット及び各ALに対するブラインド復号候補数が決定されてもよい。
例えば、DCIフォーマット毎のブラインド復号候補数の合計(図11A−Cにおける各行の合計、例えば図11AのDCIフォーマットYでは、N11+N12+N13+N14)が所定値以下であってもよいし、全てのDCIフォーマットのブラインド復号候補数の合計(図11A−Cのそれぞれの合計、例えば図11Aでは、N11+N12+N13+N14+M11+M12+M13+M14)が所定値以下であってもよい。
複数のCORESETがUEに設定される場合、各CORESETにおいてモニタされるAL及びブラインド復号候補数は、各CORESET内リソースユニット数によって異なってもよい。
図12Aに示すように、CORESET1内リソースユニット数が2であり、CORESET2内リソースユニット数が2であるケースと、図12Bに示すように、CORESET1内リソースユニット数が4であり、CORESET2内リソースユニット数が4であるケースと、図12Cに示すように、CORESET1内リソースユニット数が4であり、CORESET2内リソースユニット数が2であるケースと、が想定されてもよい。各ケースにおいて、DCIフォーマットXを用いてモニタされるAL及びブラインド復号候補数と、DCIフォーマットYを用いてモニタされるAL及びブラインド復号候補数と、が、CORESET1及びCORESET2のそれぞれに対して設定されてもよい。
図12Cに示すように、CORESET1内リソースユニット数が、CORESET2内リソースユニット数よりも大きい場合、CORESET1のブラインド復号候補数が、CORESET2のブラインド復号候補数よりも大きいか等しくてもよい。
また、複数のCORESETにおけるブラインド復号候補数の合計が所定値以下であるという条件下において、各CORESETの各DCIフォーマット及び各ALに対するブラインド復号候補数が決定されてもよい。
例えば、DCIフォーマット毎の複数のCORESETのブラインド復号候補数の合計(図12A−Cにおける各行の合計、例えば図12AのDCIフォーマットYでは、Y11+Y12+Y13+Y14+Y41+Y42+Y43+Y44)が所定値以下であってもよいし、全てのDCIフォーマットの複数のCORESETのブラインド復号候補数の合計(図12A−Cのそれぞれの合計、例えば図12Aでは、Y11+Y12+Y13+Y14+Y41+Y42+Y43+Y44+X11+X12+X13+X14+X41+X42+X43+X44)が所定値以下であってもよい。
UEに設定されるCORESETの数は、UEによって異なってもよい。
各CORESETのサイズが均一である場合、CORESETの総数、周波数方向に並ぶCORESETの数、時間方向に並ぶCORESETの数、のいずれかに基づいて、各CORESET内のブラインド復号候補数が決定されてもよい。例えば、CORESETの総数が増えるほど、CORESET当たりのブラインド復号候補数が減ってもよい。
各CORESETのサイズが異なる場合、CORESETのサイズに応じて(例えば、CORESETのサイズに比例して)、ブラインド復号候補数が複数のCORESETに分配されてもよい。
複数のCORESETの送信方法が互いに異なっていてもよい。例えば、CORESET1に対してビームフォーミングが適用され、CORESET2に対してビームフォーミングが適用されなくてもよい。
複数のCORESETのリソースのサイズ及び/又は形状(リソースユニットの配置)が互いに異なっていてもよい。例えば、CORESET1の周波数リソースがシステム帯域又はUEの送信帯域の全帯域にまたがり、CORESET2の周波数リソースがシステム帯域又はUEの送信帯域の一部に制限されていてもよい。また、例えば、CORESET1の時間リソースが、各スロットにおいて1回だけモニタするように割り当てられ、CORESET2の時間リソースが各スロットにおいて4回モニタするように割り当てられていてもよい。
このように、複数のCORESETの特性が互いに異なることにより、各CORESETに適したDCIフォーマット、AL、ブラインド復号候補数を設定することができ、DCIの受信性能を向上させることができる。
(無線通信システム)
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図13は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE−A(LTE-Advanced)、LTE−B(LTE-Beyond)、SUPER 3G、IMT−Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New−RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a−12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
各ユーザ端末20は、LTE、LTE−Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア−周波数分割多元接続(SC−FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC−FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ−ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI−RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
図14は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
また、送受信部103は、DCIフォーマット及び/又はDCIペイロードサイズに関連付けられたアグリゲーションレベル及び/又はDL制御チャネル候補数を示す設定情報を、ユーザ端末20へ送信してもよい。また、送受信部103は、UEに対して設定された、DCIフォーマット及び/又はDCIペイロードサイズ、アグリゲーションレベル及び/又はDL制御チャネル候補数に基づく、DL制御チャネル(例えば、PDCCH)を、ユーザ端末20へ送信してもよい。
また、送受信部103は、DCIフォーマット及び/又はDCIペイロードサイズと、アグリゲーションレベルと、DL制御チャネル候補数と、に関連付けられた制御リソースセット(例えば、CORESET)を示すリソース情報を、ユーザ端末20へ送信してもよい。また、送受信部103は、CORESET内においてDL制御チャネルを送信してもよい。
図15は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI−RS、DMRS)などのスケジューリングの制御を行う。
また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ−ACKを含むPUCCHを受信した場合、HARQ−ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
また、制御部301は、CORESET内にDCIを配置してもよい。
(ユーザ端末)
図16は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
また、送受信部203は、無線基地局10からDL制御チャネルを受信してもよい。
また、送受信部203は、DCIフォーマット及び/又はDCIペイロードサイズに関連付けられたアグリゲーションレベル(UEによってモニタされるアグリゲーションレベル)及び/又はDL制御チャネル候補数(例えば、ブラインド復号候補数)を示す設定情報を、無線基地局10から受信してもよい。設定情報は、DCIフォーマット及び/又はDCIペイロードサイズと、対応するアグリゲーションレベル及び/又はDL制御チャネル候補数とを示してもよい。
また、設定情報は、アグリゲーションレベル及びDL制御チャネル候補数の複数の組み合わせ(例えば、サーチスペースパターン)のいずれかを示してもよい。
また、送受信部203は、DCIフォーマット及び/又はDCIペイロードサイズと、アグリゲーションレベルと、DL制御チャネル候補数と、に関連付けられた制御リソースセットを示すリソース情報を、無線基地局10から受信してもよい。
また、リソース情報は、複数の制御リソースセットを示してもよい。アグリゲーションレベル、DL制御チャネル候補数、DCIフォーマット、及びDCIペイロードサイズの少なくとも1つは、制御リソースセット毎に設定されてもよい。
図17は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
また、制御部401は、DL制御チャネル候補(例えば、PDCCH候補)のモニタリング(例えば、ブラインド復号)を制御してもよい。また、制御部401は、DCIフォーマット及び/又はDCIペイロードサイズに基づいてアグリゲーションレベル及び/又はDL制御チャネル候補数を決定してもよい。
また、制御部401は、設定情報に基づいて、DL制御チャネル候補のモニタリングを制御してもよい。
また、制御部401は、制御リソースセット内のDL制御チャネルのモニタリングを制御してもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD−ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu−ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC−FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1−13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8−12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S−GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE−A(LTE-Advanced)、LTE−B(LTE-Beyond)、SUPER 3G、IMT−Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New−RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi−Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1. DL制御チャネルを受信する受信部と、
    DL制御チャネル候補のモニタリングを制御する制御部と、を有し、
    前記制御部は、DCIフォーマット及び/又はDCIペイロードサイズに基づいてアグリゲーションレベル及び/又はDL制御チャネル候補数を決定することを特徴とするユーザ端末。
  2. 前記受信部は、DCIフォーマット及び/又はDCIペイロードサイズに関連付けられたアグリゲーションレベル及び/又はDL制御チャネル候補数を示す設定情報を受信し、
    前記制御部は、前記設定情報に基づいて、DL制御チャネル候補のモニタリングを制御することを特徴とする請求項1に記載のユーザ端末。
  3. 前記設定情報は、アグリゲーションレベル及びDL制御チャネル候補数の複数の組み合わせのいずれかを示すことを特徴とする請求項2に記載のユーザ端末。
  4. 前記受信部は、DCIフォーマット及び/又はDCIペイロードサイズと、アグリゲーションレベルと、DL制御チャネル候補数と、に関連付けられた制御リソースセットを示すリソース情報を受信し、
    前記制御部は、前記制御リソースセット内のDL制御チャネルのモニタリングを制御することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5. 前記リソース情報は、複数の制御リソースセットを示し、
    アグリゲーションレベル、DL制御チャネル候補数、DCIフォーマット、及びDCIペイロードサイズの少なくとも1つは、制御リソースセット毎に設定されることを特徴とする請求項4に記載のユーザ端末。
  6. ユーザ端末の無線通信方法であって、
    DL制御チャネルを受信する工程と、
    DL制御チャネル候補のモニタリングを制御する工程と、を有し、
    前記ユーザ端末は、DCIフォーマット及び/又はDCIペイロードサイズに基づいてモニタするアグリゲーションレベル及び/又はDL制御チャネル候補数を決定することを特徴とする無線通信方法。
JP2019524654A 2017-06-15 2017-06-15 ユーザ端末及び無線通信方法 Pending JPWO2018229928A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022108 WO2018229928A1 (ja) 2017-06-15 2017-06-15 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
JPWO2018229928A1 true JPWO2018229928A1 (ja) 2020-04-16

Family

ID=64659187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019524654A Pending JPWO2018229928A1 (ja) 2017-06-15 2017-06-15 ユーザ端末及び無線通信方法

Country Status (6)

Country Link
US (1) US11304199B2 (ja)
EP (1) EP3641437A4 (ja)
JP (1) JPWO2018229928A1 (ja)
CN (1) CN110999461A (ja)
AU (1) AU2017418274B2 (ja)
WO (1) WO2018229928A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121808B2 (en) * 2017-09-08 2021-09-14 Apple Inc. Method and apparatus for channel coding in the fifth generation new radio system
KR102581454B1 (ko) * 2017-11-10 2023-09-22 삼성전자주식회사 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
RU2750435C1 (ru) 2017-11-14 2021-06-28 Идак Холдингз, Инк. Способы определения кандидата физического канала управления нисходящей линии связи (pdcch)
EP3741064B1 (en) * 2018-01-16 2023-11-22 Lenovo (Singapore) Pte. Ltd. Rate-matching a data transmission around resources
US11871420B2 (en) * 2018-05-11 2024-01-09 Lg Electronics Inc. Method for transmitting and receiving uplink channel in wireless communication system, and device for same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255209A (ja) * 2012-05-11 2013-12-19 Ntt Docomo Inc ブラインド復号方法、無線基地局、ユーザ端末及び無線通信システム
JP2015530026A (ja) * 2012-08-11 2015-10-08 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて下りリンク制御チャネルを受信する方法及びそのための装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225172A (zh) 2012-01-27 2021-08-06 交互数字专利控股公司 由WTRU执行的用于ePDCCH的方法
JP5771177B2 (ja) * 2012-09-28 2015-08-26 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
JP2015139106A (ja) * 2014-01-22 2015-07-30 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255209A (ja) * 2012-05-11 2013-12-19 Ntt Docomo Inc ブラインド復号方法、無線基地局、ユーザ端末及び無線通信システム
JP2015530026A (ja) * 2012-08-11 2015-10-08 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて下りリンク制御チャネルを受信する方法及びそのための装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Configuration aspect of the NR-PDCCH", 3GPP TSG RAN WG1 MEETING #89 R1-1707497, JPN6017033336, 15 May 2017 (2017-05-15), pages 2 - 2, ISSN: 0004753432 *
MOTOROLA MOBILITY: "Remaining Details of EPDCCH Search Space", 3GPP TSG-RAN WG1#71 R1-125146, JPN6017033334, 12 November 2012 (2012-11-12), ISSN: 0004753430 *
SAMSUNG: "Configurations for PDCCH Monitoring", 3GPP TSG RAN WG1 #89 R1-1707991, JPN6017033338, 15 May 2017 (2017-05-15), ISSN: 0004753431 *

Also Published As

Publication number Publication date
AU2017418274A1 (en) 2020-01-23
WO2018229928A1 (ja) 2018-12-20
AU2017418274B2 (en) 2022-09-01
US11304199B2 (en) 2022-04-12
EP3641437A4 (en) 2020-12-23
EP3641437A1 (en) 2020-04-22
US20210144714A1 (en) 2021-05-13
CN110999461A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
JP7078625B2 (ja) 端末、無線通信方法及びシステム
JP7074757B2 (ja) 端末、無線通信方法、基地局及びシステム
US11456841B2 (en) User terminal and radio communication method
WO2019193688A1 (ja) ユーザ端末及び無線通信方法
JPWO2019193700A1 (ja) ユーザ端末及び無線基地局
WO2019026157A1 (ja) ユーザ端末及び無線通信方法
JPWO2018203408A1 (ja) ユーザ端末及び無線通信方法
JPWO2018158923A1 (ja) ユーザ端末及び無線通信方法
JPWO2019016953A1 (ja) ユーザ端末及び無線通信方法
JP7007399B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2018143399A1 (ja) ユーザ端末及び無線通信方法
US11304199B2 (en) User terminal and radio communication method
JPWO2018229951A1 (ja) 端末及び無線通信方法
JPWO2018143389A1 (ja) ユーザ端末及び無線通信方法
WO2018207369A1 (ja) ユーザ端末及び無線通信方法
WO2019138510A1 (ja) ユーザ端末及び無線通信方法
WO2018110619A1 (ja) ユーザ端末及び無線通信方法
JPWO2019142330A1 (ja) ユーザ端末及び無線通信方法
WO2019064537A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220419