JPWO2018193897A1 - In vivo phenolic compound reducing agent - Google Patents

In vivo phenolic compound reducing agent Download PDF

Info

Publication number
JPWO2018193897A1
JPWO2018193897A1 JP2019513560A JP2019513560A JPWO2018193897A1 JP WO2018193897 A1 JPWO2018193897 A1 JP WO2018193897A1 JP 2019513560 A JP2019513560 A JP 2019513560A JP 2019513560 A JP2019513560 A JP 2019513560A JP WO2018193897 A1 JPWO2018193897 A1 JP WO2018193897A1
Authority
JP
Japan
Prior art keywords
branched
glucan mixture
phenolic compound
glucose
glucan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019513560A
Other languages
Japanese (ja)
Other versions
JP7141387B2 (en
Inventor
了大 高▲柿▼
了大 高▲柿▼
美文 谷口
美文 谷口
岳夫 櫻井
岳夫 櫻井
光 渡邊
光 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashibara Seibutsu Kagaku Kenkyujo KK
Original Assignee
Hayashibara Seibutsu Kagaku Kenkyujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashibara Seibutsu Kagaku Kenkyujo KK filed Critical Hayashibara Seibutsu Kagaku Kenkyujo KK
Publication of JPWO2018193897A1 publication Critical patent/JPWO2018193897A1/en
Application granted granted Critical
Publication of JP7141387B2 publication Critical patent/JP7141387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

生体内フェノール化合物低減剤及びこれを含んでなる生体内フェノール化合物低減用の飲食物を提供することを課題とすし、下記(A)乃至(C)の特徴を有する分岐α−グルカン混合物を有効成分とする生体内フェノール化合物低減剤及びこれを含んでなる生体内フェノール化合物低減用の飲食物を提供することによって上記課題を解決する:(A)グルコースを構成糖とし、(B)α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、(C)イソマルトデキストラナーゼ消化により、イソマルトースを生成する。An object of the present invention is to provide an in vivo phenolic compound reducing agent and a food and drink for reducing an in vivo phenolic compound comprising the same, wherein a branched α-glucan mixture having the following characteristics (A) to (C) is used as an active ingredient: The above object is achieved by providing an in vivo phenolic compound reducing agent and a food and drink for reducing an in vivo phenolic compound comprising the same: (A) glucose as a constituent sugar, (B) α-1, A non-reducing terminal glucose residue located at one end of a linear glucan having a degree of polymerization of glucose of 3 or more linked via 4 bonds, and a branch of a degree of polymerization of 1 or more linked via a bond other than α-1,4 bond It has a structure, and (C) isomaltose is produced by isomaltodextranase digestion.

Description

本発明は、生体内フェノール化合物低減剤に関し、詳細には、ヒトが摂取したとき、腸内菌叢を改善するとともに、生体内のフェノール化合物を低減する生体内フェノール化合物低減剤と、これを含んでなる生体内フェノール化合物低減用の飲食物に関する。   The present invention relates to an in vivo phenolic compound reducing agent, and in particular, when taken by a human, improves intestinal flora and reduces an in vivo phenolic compound, and includes the same. The invention relates to a food or beverage for reducing a phenolic compound in a living body.

ヒトの腸内(特に大腸)には、多種多様な細菌(腸内細菌)が定住しており、腸内菌叢(腸内フローラ)と呼ばれる細菌群を形成している。腸内菌叢は、100種類以上、100兆個の腸内細菌から構成されていると言われており、ヒト(宿主)の健康と密接な関係があることが知られている。腸内細菌は、ヒトが消化できなかった食物残渣や消化管からの分泌物等を餌として増殖し、便となって体外に排出される。   A wide variety of bacteria (intestinal bacteria) are settled in the human intestine (particularly the large intestine), and form a group of bacteria called intestinal flora (intestinal flora). The intestinal flora is said to be composed of 100 trillion or more trillion intestinal bacteria, and is known to be closely related to human (host) health. Intestinal bacteria proliferate using food residues and secretions from the gastrointestinal tract that humans cannot digest, and are excreted as stool outside the body.

腸内菌叢を構成する細菌として、ビフィドバクテリウム(ビフィズス菌)、バクテロイデス、ユウバクテリウム、クロストリジウム、大腸菌、乳酸桿菌、腸球菌などが知られている。腸内菌叢における細菌のバランスは個人差はあってもその人自身のバランスは新生児の頃から成年に至るまで健康時ではほとんど変わらないと言われている。しかし、ストレス、過労、暴飲・暴食、偏食、気候・温度、薬、感染、加齢等の様々な要因によって、そのバランスが崩れ、ビフィズス菌等の善玉菌が減少してウエルシュ菌や大腸菌等の悪玉菌が増えると、下痢、便秘、免疫力の低下による感染症、腸内腐敗産物の増加による発ガンなどの様々な疾患の原因になることが指摘されている。   Known bacteria constituting the intestinal flora include Bifidobacterium (Bifidobacterium), Bacteroides, Eubacterium, Clostridium, Escherichia coli, Lactobacillus, Enterococcus, and the like. Although the balance of bacteria in the intestinal flora varies from person to person, it is said that the person's own balance hardly changes when he is healthy from neonatal to adulthood. However, due to various factors such as stress, overwork, overdrinking and overeating, unbalanced eating, climate and temperature, medicine, infection, and aging, the balance is disrupted, and good bacteria such as bifidobacteria decrease, and It has been pointed out that an increase in bad bacteria causes various diseases such as diarrhea, constipation, infection due to reduced immunity, and carcinogenesis due to an increase in intestinal putrefaction products.

腸内環境は様々な疾患のみでなく老化にも関与していると考えられている。高齢者では、ビフィズス菌の細菌数が減少して、腸内菌叢が乱れていると言われており、腸内菌叢が悪化すると老化が促進される可能性が指摘されている。腸管内の悪玉菌は有害な腐敗産物(アンモニア、アミン化合物、フェノール化合物、インドール化合物など)を産生する。これらの腐敗産物は腸管に直接的に障害を与えるとともに、部分的に血中に吸収され、体内を巡って各種疾患の発症、肌荒れなどにも関わっていると言われている。   The intestinal environment is thought to be involved not only in various diseases but also in aging. It is said that in the elderly, the number of bacteria of bifidobacteria decreases and the intestinal flora is disturbed, and it has been pointed out that deterioration of the intestinal flora may promote aging. Bad bacteria in the intestinal tract produce harmful spoilage products (ammonia, amine compounds, phenolic compounds, indole compounds, etc.). It is said that these putrefaction products directly damage the intestinal tract, are partially absorbed into blood, and are involved in the development of various diseases and rough skin around the body.

腸内菌叢を改善する方法としてプロバイオティクス(Probiotics)やプレバイオティクス(Prebiotics)を摂取する方法が良く知られている。プロバイオティクスは、腸内環境を改善し、整腸作用や免疫調節作用などをもたらす、生きた微生物群やそうした微生物群を生きた状態で含む食品を意味し、ヒトに有益な作用をもたらす、乳製品などによって摂取する生菌剤である。一方、プレバイオティクス(Prebiotics)は、消化管上部で分解・吸収されず、大腸に共生する有益な細菌の選択的な栄養源となり、それらの増殖を促進し、腸内フローラの構成を健康的なバランスに改善し、人の健康の増進維持に役立つ食品成分を意味する。現在までに、オリゴ糖(ガラクトオリゴ糖、フラクトオリゴ糖、大豆オリゴ糖、乳果オリゴ糖、キシロオリゴ糖、イソマルオリゴ糖、ラフィノース、ラクチュロース、コーヒー豆マンノオリゴ糖、グルコン酸など)や食物繊維(ポリデキストロース、イヌリン等)がプレバイオティクスとしての要件を満たす食品成分として知られている。   As a method for improving the intestinal flora, a method of taking probiotics or prebiotics is well known. Probiotics mean living microbes and foods that contain such microbes in a living state that improve the intestinal environment, produce intestinal and immunomodulatory effects, and have beneficial effects on humans. It is a probiotic that is ingested by dairy products. On the other hand, prebiotics (Prebiotics) are not decomposed and absorbed in the upper gastrointestinal tract, and serve as selective nutrients for beneficial bacteria that coexist in the large intestine, promote their growth, and make the composition of the intestinal flora healthy. It means a food ingredient that improves the balance and helps maintain and improve human health. Up to now, oligosaccharides (galactooligosaccharides, fructooligosaccharides, soybean oligosaccharides, nectar oligosaccharides, xylo-oligosaccharides, isomalisaccharides, raffinose, lactulose, coffee bean mannooligosaccharides, gluconic acid, etc.) and dietary fiber (polydextrose, inulin, etc.) ) Is known as a food ingredient that satisfies the requirements as a prebiotic.

プロバイオティクスやプレバイオティクスを摂取して腸内菌叢が改善されると、前述した有害な腸内腐敗産物(アンモニア、アミン化合物、フェノール化合物、インドール化合物など)の量を低減できると考えられる。非特許文献1、4及び5などには、腸内腐敗産物としてのフェノール、p−クレゾールの原料となるチロシンを含有する飼料を用いてラット/マウスを飼育する際、ガラクトオリゴ糖及び/又は乳酸菌・ビフィズス菌発酵乳を摂取させると血清中のフェノール及びp−クレゾールが低減されることが報告されている。また、非特許文献2には、腸内細菌によって産生されるフェノール類がヘアレスマウスの皮膚に悪影響を及ぼすことが、非特許文献3には、腸内細菌によって産生されるフェノール類はヒトの皮膚における繊維芽細胞の分化を阻害することが、それぞれ報告されている。また、非特許文献6では、チロシン含有飼料で飼育したラットに高アミロース澱粉を併せて摂取させると生体内のp−クレゾールの増加が抑制されたとされ、さらに、非特許文献7には、ビフィズス菌発酵乳がヒトの腸内環境を改善し、血中フェノール化合物を低減するとともに、皮膚の角質水分含量を維持するなどの美容効果を奏することが報告されている。   Improving intestinal flora by taking probiotics and prebiotics could reduce the amount of harmful intestinal spoilage products (ammonia, amine compounds, phenolic compounds, indole compounds, etc.) mentioned above. . Non-Patent Documents 1, 4 and 5, etc., when breeding rats / mouse using a feed containing tyrosine as a raw material of phenol and p-cresol as intestinal putrefaction products, galacto-oligosaccharide and / or lactic acid bacteria. It has been reported that ingestion of fermented milk of bifidobacteria reduces phenol and p-cresol in serum. In addition, Non-Patent Document 2 discloses that phenols produced by intestinal bacteria adversely affect the skin of hairless mice, and Non-Patent Document 3 discloses that phenols produced by intestinal bacteria are human skin. Inhibition of fibroblast differentiation in E. coli has been reported. In addition, Non-Patent Document 6 states that when rats fed on a tyrosine-containing feed were ingested together with high amylose starch, an increase in p-cresol in the living body was suppressed. It has been reported that fermented milk improves human intestinal environment, reduces blood phenolic compounds, and has cosmetic effects such as maintaining the keratin moisture content of the skin.

しかしながら、非特許文献6には、食物繊維及びプレバイオティクスの1つとして知られているイヌリンをラットに摂取させた試験において、イヌリンがp−クレゾールの低減効果を示さなかったことが報告されていることから、腸内菌叢を改善することのできるプロバイオティクスやプレバイオティクスであるからといって、必ずしも生体内の有害代謝産物であるフェノール化合物を低減できるというわけではない。このような状況下、低甘味ないし無味で利用範囲が広く、日常的に手軽かつ安全に継続摂取できるプレバイオティクスとして機能する水溶性食物繊維素材であって、腸内菌叢を改善するだけでなく、腸内腐敗産物として産生されるフェノール、p−クレゾールなどの生体内フェノール化合物を低減することのできる新たな素材が提供されれば極めて有用である。   However, Non-Patent Document 6 reports that in a test in which rats were ingested inulin, which is known as one of dietary fiber and prebiotics, inulin did not show a p-cresol reducing effect. Therefore, just because a probiotic or prebiotic can improve the intestinal flora does not necessarily mean that phenol compounds, which are harmful metabolites in the living body, can be reduced. Under such circumstances, it is a water-soluble dietary fiber material that functions as a prebiotic that is low in sweetness or tasteless, has a wide range of use, can be ingested easily and safely on a daily basis, and only improves intestinal flora. In addition, it would be very useful if a new material capable of reducing phenol compounds in the living body such as phenol and p-cresol produced as intestinal putrefaction products was provided.

カワカミら、「ジャーナル・ニュートリューション・サイエンス・ビタミノロジー(J.Nutr.Sci.Vitaminol.」、第51巻、182−186頁(2005年)Kawakami et al., "Journal Nutrition Science Vitaminology (J. Nutr. Sci. Vitaminol.)", Vol. 51, pp. 182-186 (2005). イイズカら、「ミクロバイアル・エコロジー・イン・ヘルス・アンド・ディジーズ(Microbial Ecology in Health and Disease),第21巻、50−56頁(2009年)Iizuka et al., "Microbiological Ecology in Health and Disease, Vol. 21, pp. 50-56 (2009). イイズカら、「ミクロバイアル・エコロジー・イン・ヘルス・アンド・ディジーズ(Microbial Ecology in Health and Disease),第21巻、221−227頁(2009年)Iizuka et al., "Microbiological Ecology in Health and Disease, Vol. 21, pp. 221-227 (2009). 川上ら、「ヤクルト研究所研究報告集」、第29号、15−26頁(2010年)Kawakami et al., Yakult Research Institute Research Report, Vol. 29, pp. 15-26 (2010) 石井ら、「フレグランスジャーナル(FRAGRANCE JOURNAL)」、第5号(2014年)Ishii et al., "Fragrance Journal", No. 5, 2014 チェン(Chen)ら、「ルミナコイド研究」、第20巻、1号、31−38頁、(2016年)Chen et al., "Luminacoid Research," Vol. 20, No. 1, pp. 31-38, (2016) 株式会社ヤクルト本社、ニュース・リリース、「ビフィズス菌発酵乳が肌荒れを改善」、2013年2月4日Yakult Honsha Co., Ltd., news release, “Bifidobacterium fermented milk improves rough skin”, February 4, 2013

本発明は、ヒトが摂取したとき、腸内菌叢を改善するとともに、生体内フェノール化合物を低減する効果を奏し、それ自体が低甘味ないし無味で利用範囲が広く、日常的に手軽かつ安全に継続摂取できる物質を有効成分とする生体内フェノール化合物低減剤と、これを含んでなる生体内フェノール化合物低減用の飲食物を提供することを課題とする。   The present invention, when ingested by humans, improves the intestinal flora and has the effect of reducing phenolic compounds in the living body. An object of the present invention is to provide an in vivo phenolic compound reducing agent containing a substance that can be continuously taken as an active ingredient, and a food and drink for reducing the in vivo phenolic compound containing the same.

上記課題を解決すべく鋭意研究努力を重ねた結果、本発明者らは、本出願人が、先に国際公開第WO2008/136331号パンフレットにおいて開示した分岐α−グルカン混合物、具体的には、グルコースを構成糖とし、α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、イソマルトデキストラナーゼ消化によりイソマルトースを生成する分岐α−グルカン混合物が、これを摂取したとき、腸内菌叢を改善するだけでなく、生体内のフェノール化合物を顕著に低減させる効果を奏することを見出した。この新たな知見に基づき、本発明者らは、それ自体が低甘味ないし無味で利用範囲が広い当該分岐α−グルカン混合物を有効成分とする生体内フェノール化合物低減剤と、これを含んでなる生体内フェノール化合物低減用の飲食物を確立し、本発明を完成した。   As a result of diligent research efforts to solve the above problems, the present inventors have found that the present applicant has disclosed a branched α-glucan mixture disclosed in WO 2008/136331 pamphlet, specifically, glucose Is a constituent sugar, and is connected via a bond other than the α-1,4 bond to a non-reducing terminal glucose residue of a linear glucan having a degree of polymerization of glucose of 3 or more connected via an α-1,4 bond. A branched α-glucan mixture having a branched structure having a degree of 1 or more and producing isomaltose by digestion with isomaltodextranase, when ingested, not only improves intestinal flora, but also improves phenol in vivo. It has been found that the compound has an effect of remarkably reducing the compound. Based on this new finding, the inventors of the present invention have proposed an in vivo phenolic compound reducing agent containing the branched α-glucan mixture as an active ingredient, which is low in sweetness or tasteless and has a wide range of use, and a product comprising the same. A food and drink for reducing phenolic compounds in the body was established, and the present invention was completed.

すなわち、本発明は、下記(A)乃至(C)の特徴を有する分岐α−グルカン混合物を有効成分とする生体内フェノール化合物低減剤を提供することによって上記の課題を解決するものである。
(A)グルコースを構成糖とし、
(B)α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(C)イソマルトデキストラナーゼ消化により、イソマルトースを生成する。
That is, the present invention solves the above-mentioned problems by providing an in vivo phenol compound reducing agent containing a branched α-glucan mixture having the following characteristics (A) to (C) as an active ingredient.
(A) glucose as a constituent sugar;
(B) A non-reducing terminal glucose residue located at one end of a linear glucan having a degree of polymerization of glucose of 3 or more linked via an α-1,4 bond was linked via a bond other than the α-1,4 bond. Having a branched structure having a glucose polymerization degree of 1 or more,
(C) Isomaltose is produced by isomalt dextranase digestion.

上記特徴を有する分岐α−グルカン混合物は、澱粉などを原料として得られるα−グルカンであって安全な可食性素材であるだけでなく、低甘味ないし無味であり、これを摂取すると、腸内菌叢を改善するとともに、生体内フェノール化合物を顕著に低減させる効果を奏する。したがって、上記特徴(A)乃至(C)を有する分岐α−グルカン混合物は生体内フェノール化合物低減剤の有効成分として極めて有用である。   The branched α-glucan mixture having the above characteristics is an α-glucan obtained from starch or the like and is not only a safe edible material, but also has a low sweetness or tastelessness. It has the effect of improving the flora and significantly reducing phenolic compounds in the living body. Therefore, the branched α-glucan mixture having the above characteristics (A) to (C) is extremely useful as an active ingredient of a phenolic compound reducing agent in a living body.

さらに、本発明は、上記生体内フェノール化合物低減剤を含んでなる生体内フェノール化合物低減用の飲食物を提供することによって上記の課題を解決するものである。   Further, the present invention solves the above-mentioned problems by providing a food and drink for reducing a phenol compound in a living body, which comprises the agent for reducing a phenol compound in a living body.

本発明の生体内フェノール化合物低減剤は、その有効成分である分岐α−グルカン混合物が低甘味ないし無味であるため利用範囲が広く、ヒトが摂取した場合、腸内菌叢を改善するだけでなく、腸内腐敗産物として知られているフェノール化合物を生体内において低減できることから、皮膚の健康、美容の維持、さらには生体の健康維持に有用である。また、本発明の生体内フェノール化合物低減剤を含んでなる飲食物は、これを摂取することによって、簡便かつ安全に効果的に生体内のフェノール化合物を低減することができる。   The in vivo phenolic compound reducing agent of the present invention has a wide range of use because the branched α-glucan mixture as an active ingredient is low in sweetness or tasteless, and when ingested by humans, it not only improves intestinal flora. Since phenol compounds known as intestinal putrefaction products can be reduced in the living body, they are useful for maintaining skin health and beauty, and further maintaining the health of the living body. In addition, a food or drink comprising the in vivo phenolic compound reducing agent of the present invention can reduce phenolic compounds in a living body simply, safely and effectively by ingesting the same.

本発明は、下記(A)乃至(C)の特徴を有する分岐α−グルカン混合物を有効成分とする生体内フェノール化合物低減剤に係る発明である。
(A)グルコースを構成糖とし、
(B)α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(C)イソマルトデキストラナーゼ消化により、イソマルトースを生成する。
The present invention relates to an in vivo phenolic compound reducing agent containing a branched α-glucan mixture having the following characteristics (A) to (C) as an active ingredient.
(A) glucose as a constituent sugar;
(B) A non-reducing terminal glucose residue located at one end of a linear glucan having a degree of polymerization of glucose of 3 or more linked via an α-1,4 bond was linked via a bond other than the α-1,4 bond. Having a branched structure having a glucose polymerization degree of 1 or more,
(C) Isomaltose is produced by isomalt dextranase digestion.

本明細書でいう生体内フェノール化合物低減剤とは、ヒトが経口又は経管摂取した場合に腸内のいわゆる善玉菌を増加させて腸内菌叢を改善するとともに、生体内に含まれるフェノール化合物の量を当該剤を摂取しない場合と比べて低減する剤を意味し、例えば、盲腸内容物、血清、尿、糞便、皮膚などの生体試料に含まれるフェノール化合物の量を、当該剤を摂取した場合としない場合とで比べることによって確認することができる。なお、ここでいう「フェノール化合物」とは、フェノール、p−クレゾール(p−メチルフェノール)などを意味する。なお、これら「フェノール化合物」は、ヒトが摂取した蛋白質由来のアミノ酸であるチロシンが腸内細菌などによって代謝され腸内腐敗産物として生成すると言われている。   The in vivo phenolic compound reducing agent referred to in the present specification is a phenolic compound contained in a living body while improving the intestinal flora by increasing a so-called good bacterium in the intestine when taken orally or by gavage by a human. Means an agent that reduces the amount of phenolic compounds contained in biological samples such as cecal contents, serum, urine, feces, skin, etc. It can be confirmed by comparing the case with the case without. Here, the “phenol compound” means phenol, p-cresol (p-methylphenol) and the like. In addition, it is said that these "phenol compounds" produce tyrosine, which is an amino acid derived from a protein taken by humans, by intestinal bacteria and the like and is produced as intestinal putrefaction products.

非特許文献7に示唆されているように、生体内のフェノール化合物、とりわけ血中や皮膚におけるフェノール化合物を低減することができれば、皮膚において、角質水分含量の維持や表皮の角化の正常化などが期待され、さらには皮膚の健康、美容の維持につながると期待される。加えて、生体内のフェノール化合物は大腸の発ガンと関連することが報告されており(非特許文献6を参照)、これを低減できれば、発ガンや各種疾患リスクの低減にもつながると期待される。   As suggested in Non-Patent Document 7, if a phenol compound in a living body, in particular, a phenol compound in blood or skin can be reduced, in skin, maintenance of keratin moisture content and normalization of keratinization of epidermis are performed. It is expected to lead to maintenance of skin health and beauty. In addition, it has been reported that phenolic compounds in the body are associated with carcinogenesis in the large intestine (see Non-Patent Document 6), and if this can be reduced, it is expected that the risk of carcinogenesis and various diseases will be reduced. You.

本発明の生体内フェノール化合物低減剤は、有効成分として前記分岐α−グルカン混合物(以下、「本分岐α−グルカン混合物」という。)を含有してなるものである。本分岐α−グルカン混合物は、後述のとおり種々の製造方法により得ることができ、得られる本分岐α−グルカン混合物は、通常、様々な分岐構造並びにグルコース重合度(分子量)を有する多数の分岐α−グルカンの混合物の形態にあり、現行の技術では、一つ一つの分岐α−グルカンの単離や定量を行うことは不可能である。このため、個々の分岐α−グルカンの構造、すなわち、構成単位であるグルコース残基の結合様式及び結合順序を分岐α−グルカンの分子ごとに決定することはできないものの、本分岐α−グルカン混合物の構造は、斯界で一般に用いられる種々の物理的手法、化学的手法又は酵素的手法により、混合物全体として特徴付けることができる。   The in vivo phenolic compound reducing agent of the present invention contains the above-mentioned branched α-glucan mixture (hereinafter, referred to as “the present branched α-glucan mixture”) as an active ingredient. The present branched α-glucan mixture can be obtained by various production methods as described below, and the resulting branched α-glucan mixture usually has a large number of branched α-glucans having various branched structures and glucose polymerization degrees (molecular weights). -In the form of a mixture of glucans, it is not possible with the current technology to isolate or quantify each branched α-glucan. For this reason, although the structure of each branched α-glucan, that is, the binding mode and the binding order of glucose residues as constituent units cannot be determined for each molecule of the branched α-glucan, the present branched α-glucan mixture The structure can be characterized as a whole mixture by various physical, chemical or enzymatic methods commonly used in the art.

具体的には、本分岐α−グルカン混合物の構造は、混合物全体として、上記(A)乃至(C)の特徴によって特徴付けられる。すなわち、本分岐α−グルカン混合物は、グルコースを構成糖とするグルカン(特徴(A))であり、α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有している(特徴(B))。なお、特徴(B)でいう「非還元末端グルコース残基」とは、α−1,4結合を介して連結したグルカン鎖のうち、還元性を示さない末端に位置するグルコース残基を意味し、「α−1,4結合以外の結合」とは、文字どおりα−1,4結合以外の結合を意味する。   Specifically, the structure of the present branched α-glucan mixture is characterized by the above-mentioned features (A) to (C) as the whole mixture. That is, the present branched α-glucan mixture is a glucan having glucose as a constituent sugar (feature (A)), and is connected to one end of a linear glucan having a glucose polymerization degree of 3 or more linked via α-1,4 bonds. It has a branched structure with a glucose polymerization degree of 1 or more linked to the located non-reducing terminal glucose residue via a bond other than α-1,4 bond (feature (B)). In addition, the “non-reducing terminal glucose residue” referred to in the characteristic (B) means a glucose residue located at a terminal which does not show reducing property in a glucan chain connected via an α-1,4 bond. "The bond other than the α-1,4 bond” literally means a bond other than the α-1,4 bond.

さらに、本分岐α−グルカン混合物は、イソマルトデキストラナーゼ消化により、イソマルトースを生成する(特徴(C))。特徴(C)でいうイソマルトデキストラナーゼ消化とは、本分岐α−グルカン混合物にイソマルトデキストラナーゼを作用させ、加水分解することを意味する。イソマルトデキストラナーゼは、酵素番号(EC)3.2.1.94が付与される酵素であり、α−グルカンにおけるイソマルトース構造の還元末端側に隣接するα−1,2、α−1,3、α−1,4、及びα−1,6結合のいずれの結合様式であっても加水分解する特徴を有する酵素である。好適には、アルスロバクター・グロビホルミス由来のイソマルトデキストラナーゼ(例えば、サワイ(Sawai)ら、アグリカルチュラル・アンド・バイオロジカル・ケミストリー(Agricultural and Biological Chemistry)、第52巻、第2号、第495頁−501頁(1988)参照)が用いられる。   Further, the present branched α-glucan mixture produces isomaltose by isomaltodextranase digestion (feature (C)). Isomaltodextranase digestion referred to in the feature (C) means that isomaltdextranase is allowed to act on the main branched α-glucan mixture and hydrolyzed. Isomaltodextranase is an enzyme having an enzyme number (EC) of 3.2.1.94, and α-1,2, α-1 adjacent to the reducing end of the isomaltose structure in α-glucan. , 3, α-1,4 and α-1,6 bonds. Suitably, isomaltodextranase from Arthrobacter gloviformis (eg, Sawai et al., Agricultural and Biological Chemistry, Vol. 52, No. 2, No. Pages 495-501 (1988)).

イソマルトデキストラナーゼ消化によりイソマルトースが生成するということは、分岐α−グルカン混合物を構成する分岐α−グルカン分子がイソマルトデキストラナーゼで加水分解され得るイソマルトース構造を有していることを示すものであり、特徴(C)によって、本分岐α−グルカン混合物が、混合物全体としてみた場合、イソマルトデキストラナーゼで加水分解され得るイソマルトース構造を含んでいるという構造的特徴を有していることを、酵素的手法によって特徴付けることができる。   The generation of isomaltose by isomalt-dextranase digestion means that the branched α-glucan molecule constituting the branched α-glucan mixture has an isomaltose structure that can be hydrolyzed by isomalt-dextranase. According to the feature (C), the present branched α-glucan mixture has a structural feature that, when viewed as a mixture as a whole, contains an isomaltose structure that can be hydrolyzed by isomaltdextranase. Can be characterized by enzymatic techniques.

本分岐α−グルカン混合物としては、イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり、通常、5質量%以上70質量%以下、好ましくは、10質量%以上60質量%以下、より好ましくは20質量%以上50質量%以下生成するものが、腸内菌叢の改善により好適であり、生体内のフェノール化合物濃度を低減する効果により優れていると考えられることから好適に用いられる。   As the present branched α-glucan mixture, isomaltose is usually 5% by mass to 70% by mass, preferably 10% by mass to 60% by mass, based on the solid matter of the digested product, by digestion with isomaltodextranase. More preferably, those produced in an amount of 20% by mass or more and 50% by mass or less are preferably used because they are more suitable for improving the intestinal flora and more excellent in reducing the phenol compound concentration in the living body. .

すなわち、後述するとおり、本分岐α−グルカン混合物による腸内菌叢の改善効果、生体内のフェノール化合物濃度を低減する効果には、本分岐α−グルカン混合物がイソマルトデキストラナーゼ消化によりイソマルトースを生成するという構造的特徴を有していることが深く関与していると考えられる。すなわち、イソマルトデキストラナーゼ消化におけるイソマルトース生成量が5質量%未満の分岐α−グルカン混合物は、分岐構造の少ないマルトデキストリンに近い構造的特徴を有するものとなり、逆に、イソマルトデキストラナーゼ消化におけるイソマルトース生成量が70質量%超の分岐α−グルカン混合物はα−1,6結合で連なったグルコースポリマーであるデキストランに近い構造的特徴を有するものとなって、上述した特徴(B)で規定される分岐構造が少なくなるため、いずれの場合も腸内菌叢の改善、ひいては生体内フェノール化合物低減に関与すると考えられる構造的特徴が薄れることとなり、イソマルトデキストラナーゼ消化によるイソマルトースの量には好適範囲が存在する。   That is, as described below, the effect of the present branched α-glucan mixture on the improvement of the intestinal flora and the effect of reducing the concentration of phenolic compounds in the living body are such that the present branched α-glucan mixture is isomaltose digested by isomaltodextranase. It is thought that having the structural feature of generating is deeply involved. That is, a branched α-glucan mixture having an isomaltose production amount of less than 5% by mass in isomaltdextranase digestion has a structural characteristic close to maltodextrin having a small branched structure, and conversely, isomaltdextranase The branched α-glucan mixture having an isomaltose production amount of more than 70% by mass in digestion has a structural characteristic close to that of dextran which is a glucose polymer connected by α-1,6 bonds, and the above-mentioned characteristic (B) In any case, the structural characteristics considered to be involved in the improvement of the intestinal flora and, consequently, the reduction of phenolic compounds in the living body are diminished, and isomaltose by isomaltodextranase digestion. There is a suitable range for the amount of

また、本分岐α−グルカン混合物のより好適な一態様としては、高速液体クロマトグラフ(酵素−HPLC法)により求めた水溶性食物繊維含量が40質量%以上であるという特徴(D)を有しているものが挙げられる。   Further, as a more preferred embodiment of the present branched α-glucan mixture, there is a feature (D) that the content of water-soluble dietary fiber determined by high performance liquid chromatography (enzyme-HPLC method) is 40% by mass or more. Are included.

水溶性食物繊維含量を求める「高速液体クロマトグラフ法(酵素−HPLC法)」(以下、単に「酵素−HPLC法」という。)とは、平成8年5月厚生省告示第146号の栄養表示基準、「栄養成分等の分析方法等(栄養表示基準別表第1の第3欄に掲げる方法)」における第8項、「食物繊維」に記載されている方法であり、その概略を説明すると以下のとおりである。すなわち、試料を熱安定α−アミラーゼ、プロテアーゼ及びグルコアミラーゼによる一連の酵素処理により分解処理し、イオン交換樹脂により処理液から蛋白質、有機酸、無機塩類を除去することによりゲル濾過クロマトグラフィー用の試料溶液を調製する。次いで、ゲル濾過クロマトグラフィーに供し、クロマトグラムにおける、未消化グルカンとグルコースのピーク面積を求め、それぞれのピーク面積と、別途、常法により、グルコース・オキシダーゼ法により求めておいた試料溶液中のグルコース量を用いて、試料の水溶性食物繊維含量を算出する。なお、本明細書を通じて「水溶性食物繊維含量」とは、特に説明がない限り、前記「酵素−HPLC法」で求めた水溶性食物繊維含量を意味する。   "High performance liquid chromatography (enzyme-HPLC method)" (hereinafter simply referred to as "enzyme-HPLC method") for determining the content of water-soluble dietary fiber is the nutrition labeling standard of the Ministry of Health and Welfare Notification No. 146, May 1996. This is the method described in Section 8, "Dietary Fiber" in "Methods for Analyzing Nutritional Components, etc. (Methods Listed in Nutrition Labeling Standard Appended Table 1, Column 3)". It is as follows. That is, the sample is subjected to a decomposition treatment by a series of enzyme treatments with a heat-stable α-amylase, a protease and a glucoamylase, and proteins, organic acids, and inorganic salts are removed from the treatment solution by an ion exchange resin, thereby preparing a sample for gel filtration chromatography. Prepare solution. Next, the gel solution was subjected to gel filtration chromatography to determine the peak areas of undigested glucan and glucose in the chromatogram, and to determine the respective peak areas and the glucose in the sample solution determined by the glucose oxidase method separately by a conventional method. The amount is used to calculate the water soluble dietary fiber content of the sample. In addition, throughout this specification, “water-soluble dietary fiber content” means the content of water-soluble dietary fiber determined by the aforementioned “enzyme-HPLC method” unless otherwise specified.

水溶性食物繊維含量は、α−アミラーゼ及びグルコアミラーゼによって分解されないα−グルカンの含量を示すものであり、特徴(D)は、本分岐α−グルカン混合物の構造を、混合物全体として、酵素的手法により特徴付ける指標の一つである。   The water-soluble dietary fiber content indicates the content of α-glucan that is not decomposed by α-amylase and glucoamylase, and the feature (D) is that the structure of the present branched α-glucan mixture is expressed by an enzymatic method as a whole. This is one of the indices characterized by

なお、上述したとおり、本分岐α−グルカン混合物による腸内菌叢の改善効果、生体内フェノール化合物を低減する効果には、イソマルトデキストラナーゼ消化によりイソマルトースを生成するという構造的特徴が深く関与していると考えられるところ、この特徴的な構造部分は、当然のことながら、本分岐α−グルカン混合物の水溶性食物繊維含量が高まれば高まるほど、換言すれば、α−アミラーゼ及びグルコアミラーゼで分解されない分岐α−グルカンの含量が多いほど、より多く、消化されずに大腸に到達し、腸内菌叢改善効果を示すと考えられる。したがって、本発明の生体内フェノール化合物低減剤の有効成分である本分岐α−グルカン混合物としては、水溶性食物繊維含量が高いものほど好ましく、好適な水溶性食物繊維含量は、通常、40質量%以上であるが、60質量%以上のものがより好ましく、さらに好ましくは75質量%以上である。好適な水溶性食物繊維含量の上限は特になく、技術的に可能な限り高いほどよく、好ましくは100質量%以下又は100質量%未満である。   As described above, the effect of improving the intestinal flora by the present branched α-glucan mixture and the effect of reducing phenolic compounds in the living body are deeply characterized by the structural feature that isomaltose is generated by digestion with isomaltodextranase. It is believed that this characteristic structural portion, of course, is involved in the higher the water-soluble dietary fiber content of the present branched α-glucan mixture, in other words α-amylase and glucoamylase. It is considered that the larger the content of the branched α-glucan that is not decomposed in the above, the more it reaches the large intestine without being digested, and shows an intestinal flora improving effect. Therefore, as the present branched α-glucan mixture which is an active ingredient of the in vivo phenolic compound-reducing agent of the present invention, the higher the water-soluble dietary fiber content, the more preferable. The preferable water-soluble dietary fiber content is usually 40% by mass. However, it is more preferably 60% by mass or more, and still more preferably 75% by mass or more. There is no particular upper limit of the suitable water-soluble dietary fiber content, and the higher the technically possible, the better, and preferably 100% by mass or less or less than 100% by mass.

さらに、本分岐α−グルカン混合物のより好適な一態様としては、下記特徴(E)及び(F)を有する分岐α−グルカン混合物が挙げられる。
(E)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比が1:0.6乃至1:4の範囲にあり、
(F)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基との合計が全グルコース残基の55%以上を占める。
Further, a more preferred embodiment of the present branched α-glucan mixture includes a branched α-glucan mixture having the following features (E) and (F).
(E) the ratio of α-1,4 linked glucose residues to α-1,6 linked glucose residues is in the range of 1: 0.6 to 1: 4,
(F) The sum of α-1,4 bonded glucose residues and α-1,6 bonded glucose residues accounts for 55% or more of all glucose residues.

なお、分岐α−グルカン混合物が上記特徴(E)及び(F)を有しているか否かはメチル化分析によって確認することができる。メチル化分析とは、周知のとおり、多糖又はオリゴ糖において、これを構成する単糖の結合様式を決定する方法として一般的に汎用されている方法である(シューカヌ(Ciucanu)ら、カーボハイドレート・リサーチ(Carbohydrate Research)、第131巻、第2号、第209−217頁(1984))。メチル化分析をグルカンにおけるグルコースの結合様式の分析に適用する場合、まず、グルカンを構成するグルコース残基における全ての遊離の水酸基をメチル化し、次いで、完全メチル化したグルカンを加水分解する。次いで、加水分解により得られたメチル化グルコースを還元してアノマー型を消去したメチル化グルシトールとし、更に、このメチル化グルシトールにおける遊離の水酸基をアセチル化することにより部分メチル化グルシトールアセテート(なお、「部分メチル化グルシトールアセテート」を単に「部分メチル化物」と総称する場合がある。)を得る。得られる部分メチル化物を、ガスクロマトグラフィーで分析することにより、グルカンにおいて結合様式がそれぞれ異なるグルコース残基に由来する各種部分メチル化物は、ガスクロマトグラムにおける全ての部分メチル化物のピーク面積に占めるピーク面積の百分率(%)で表すことができる。そして、このピーク面積%から当該グルカンにおける結合様式の異なるグルコース残基の存在比、すなわち、各グルコシド結合の存在比率を決定することができる。部分メチル化物についての「比」は、メチル化分析のガスクロマトグラムにおけるピーク面積の「比」を意味し、部分メチル化物についての「%」はメチル化分析のガスクロマトグラムにおける「面積%」を意味するものとする。   In addition, whether or not the branched α-glucan mixture has the above characteristics (E) and (F) can be confirmed by methylation analysis. As is well known, methylation analysis is a method generally used as a method for determining the binding mode of a monosaccharide constituting a polysaccharide or an oligosaccharide (Cicanu et al., Carbohydrate). -Research (Carbohydrate Research), Vol. 131, No. 2, pp. 209-217 (1984)). When the methylation analysis is applied to the analysis of the binding mode of glucose in glucan, first, all free hydroxyl groups in glucose residues constituting the glucan are methylated, and then the fully methylated glucan is hydrolyzed. Next, the methylated glucose obtained by the hydrolysis is reduced to methylated glucitol in which the anomeric form has been eliminated, and further, a free hydroxyl group in the methylated glucitol is acetylated to obtain a partially methylated glucitol acetate (in addition, a methylated glucitol acetate). , "Partially methylated glucitol acetate" may be referred to simply as "partially methylated product"). By analyzing the obtained partially methylated product by gas chromatography, various partial methylated products derived from glucose residues having different binding modes in glucan have a peak area occupying the peak area of all partial methylated products in the gas chromatogram. Can be expressed as a percentage (%). Then, from the peak area%, the abundance ratio of glucose residues having different binding modes in the glucan, that is, the abundance ratio of each glucoside bond can be determined. The “ratio” for a partially methylated product means “ratio” of a peak area in a gas chromatogram of a methylation analysis, and the “%” for a partially methylated product means “area%” in a gas chromatogram of a methylation analysis. Shall be.

上記特徴(E)及び(F)における「α−1,4結合したグルコース残基」とは、1位及び4位の炭素原子に結合した水酸基のみを介して他のグルコース残基に結合したグルコース残基であり、メチル化分析において、2,3,6−トリメチル−1,4,5−トリアセチルグルシトールとして検出される。また、上記特徴(E)及び(F)における「α−1,6結合したグルコース残基」とは、1位及び6位の炭素原子に結合した水酸基のみを介して他のグルコース残基に結合したグルコース残基であり、メチル化分析において、2,3,4−トリメチル−1,5,6−トリアセチルグルシトールとして検出される。   The “α-1,4 bonded glucose residue” in the above features (E) and (F) refers to glucose bonded to another glucose residue only through a hydroxyl group bonded to the 1-position and 4-position carbon atoms. Residue, which is detected as 2,3,6-trimethyl-1,4,5-triacetylglucitol in methylation analysis. The “α-1,6-bonded glucose residue” in the above features (E) and (F) refers to a bond to another glucose residue only through a hydroxyl group bonded to the 1- and 6-position carbon atoms. And is detected as 2,3,4-trimethyl-1,5,6-triacetylglucitol in methylation analysis.

メチル化分析により得られる、α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比率(特徴(E))、及び、α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の全グルコース残基に対する割合(特徴(F))は、本分岐α−グルカン混合物の構造を、混合物全体として、化学的手法によって特徴付ける指標の一つとして用いることができる。   The ratio (characteristic (E)) of α-1,4 linked glucose residues to α-1,6 linked glucose residues obtained by methylation analysis, and α-1,4 linked glucose residues The ratio of α-1,6-linked glucose residues to all glucose residues (characteristic (F)) is used as one of indexes for characterizing the structure of the present branched α-glucan mixture as a whole by a chemical method. be able to.

上記特徴(E)の「α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比が1:0.6乃至1:4の範囲にある」との規定は、本分岐α−グルカン混合物をメチル化分析に供したとき、検出される2,3,6−トリメチル−1,4,5−トリアセチルグルシトールと2,3,4−トリメチル−1,5,6−トリアセチルグルシトールの比が1:0.6乃至1:4の範囲にあることを意味する。また、上記特徴(F)の「α−1,4結合したグルコース残基とα−1,6結合したグルコース残基との合計が全グルコース残基の55%以上を占める」との規定は、本分岐α−グルカン混合物が、メチル化分析において、2,3,6−トリメチル−1,4,5−トリアセチルグルシトールと2,3,4−トリメチル−1,5,6−トリアセチルグルシトールとの合計が部分メチル化グルシトールアセテートの55%以上を占めることを意味する。通常、澱粉は1位と6位でのみ結合したグルコース残基を有しておらず、かつα−1,4結合したグルコース残基が全グルコース残基中の大半を占めているので、本分岐α−グルカン混合物が上記特徴(E)及び特徴(F)を有しているということは本分岐α−グルカン混合物が澱粉とは全く異なる構造を有することを意味するものである。   The definition of the above feature (E) that “the ratio of α-1,4 linked glucose residue to α-1,6 linked glucose residue is in the range of 1: 0.6 to 1: 4” When the branched α-glucan mixture is subjected to methylation analysis, 2,3,6-trimethyl-1,4,5-triacetylglucitol and 2,3,4-trimethyl-1,5,5 are detected. It means that the ratio of 6-triacetylglucitol is in the range from 1: 0.6 to 1: 4. In addition, the above-mentioned feature (F) defines that “the sum of α-1,4 bonded glucose residues and α-1,6 bonded glucose residues accounts for 55% or more of all glucose residues”. This methylated α-glucan mixture showed 2,3,6-trimethyl-1,4,5-triacetylglucitol and 2,3,4-trimethyl-1,5,6-triacetylglu It means that the sum with the sitol accounts for 55% or more of the partially methylated glucitol acetate. Normally, starch does not have glucose residues bonded only at the 1-position and 6-position, and α-1,4 bonded glucose residues occupy the majority of all glucose residues. The fact that the α-glucan mixture has the characteristics (E) and (F) means that the present branched α-glucan mixture has a structure completely different from that of starch.

上記特徴(E)及び(F)で規定されるとおり、本分岐α−グルカン混合物は、好ましい一態様において、通常、澱粉には存在しない「α−1,6結合したグルコース残基」を相当程度有するものであるが、より複雑な分岐構造を有するものの方が高い効果を期待できることから、α−1,4結合及びα−1,6結合に加えてα−1,3結合及び/又はα−1,3,6結合を有するのが好ましい。ここで、「α−1,3,6結合」とは、「1位、3位及び6位の水酸基の3箇所で他のグルコースと結合した(α−1,3,6結合した)グルコース残基」を意味する。α−1,4結合及びα−1,6結合に加えてα−1,3結合及び/又はα−1,3,6結合を有していれば、より複雑な分岐構造を有することになるので、基本的には、本分岐α−グルカン混合物中にα−1,3結合及び/又はα−1,3,6結合が含まれていればよく、その割合に特段の制限はないが、例えば、α−1,3結合したグルコース残基は全グルコース残基の0.5%以上10%未満であることが好ましく、α−1,3,6結合したグルコース残基は全グルコース残基の0.5%以上であることが好ましい。   As defined by the above features (E) and (F), in one preferred embodiment, the present branched α-glucan mixture is substantially free from “α-1,6-linked glucose residues” which are not normally present in starch. Although those having a more complicated branch structure can be expected to have higher effects, in addition to α-1,4 bond and α-1,6 bond, α-1,3 bond and / or α- It preferably has 1,3,6 bonds. Here, the “α-1,3,6 bond” refers to “a glucose residue bonded to another glucose (α-1,3,6 bonded) at three positions of hydroxyl groups at the first, third, and sixth positions. "Group". If it has α-1,3 bond and / or α-1,3,6 bond in addition to α-1,4 bond and α-1,6 bond, it will have a more complicated branch structure. Therefore, basically, it is sufficient that the present branched α-glucan mixture contains α-1,3 bond and / or α-1,3,6 bond, and the ratio is not particularly limited, For example, it is preferable that the α-1,3 linked glucose residue is 0.5% or more and less than 10% of the total glucose residue, and the α-1,3,6 linked glucose residue is the total glucose residue. It is preferably at least 0.5%.

上記「α−1,3結合したグルコース残基が全グルコース残基の0.5%以上10%未満である」ことは、本分岐α−グルカン混合物をメチル化分析に供し、2,4,6−トリメチル−1,3,5−トリアセチルグルシトールが部分メチル化グルシトールアセテートの0.5%以上10%未満存在することによって確認することができる。また、上記「α−1,3,6結合したグルコース残基が全グルコース残基の0.5%以上である」ことは、本分岐α−グルカン混合物をメチル化分析に供し、2,4−ジメチル−1,3,5,6−テトラアセチルグルシトールが部分メチル化グルシトールアセテートの0.5%以上10%未満存在することによって確認することができる。   The above-mentioned “α-1,3 bonded glucose residue is 0.5% or more and less than 10% of all glucose residues” means that the present branched α-glucan mixture was subjected to methylation analysis, and 2,4,6 It can be confirmed by the fact that trimethyl-1,3,5-triacetylglucitol is present in an amount of 0.5% to less than 10% of the partially methylated glucitol acetate. In addition, the above-mentioned “α-1,3,6-linked glucose residues are 0.5% or more of all glucose residues” means that the present branched α-glucan mixture was subjected to methylation analysis, It can be confirmed by the presence of dimethyl-1,3,5,6-tetraacetylglucitol at 0.5% or more and less than 10% of the partially methylated glucitol acetate.

本分岐α−グルカン混合物は、重量平均分子量(Mw)、及び、重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)によっても特徴づけることができる。重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、サイズ排除クロマトグラフィー等を用いて求めることができる。また、重量平均分子量(Mw)に基づいて本分岐α−グルカン混合物を構成する分岐α−グルカンの平均グルコース重合度を算出することができるため、本分岐α−グルカン混合物は平均グルコース重合度で特徴づけることもできる。平均グルコース重合度は、重量平均分子量(Mw)から18を減じ、グルコース残基量の分子量に相当する162で除して求めることができる。生体内フェノール化合物低減剤の有効成分として用いる本分岐α−グルカン混合物は、その平均グルコース重合が、通常、8乃至500、好ましくは15乃至400、より好ましくは20乃至300のものが好適である。なお、分岐α−グルカン混合物は、平均グルコース重合度が大きいほど粘度が増し、平均グルコース重合度が小さいほど粘度が小さくなる点で、通常のグルカンと同様の性質を示す。そのため、本発明の生体内フェノール化合物低減剤の実施態様に応じ、要求される粘度に適合する平均グルコース重合度を有する本分岐α−グルカン混合物を適宜選択して用いることができる。   The present branched α-glucan mixture can also be characterized by the weight average molecular weight (Mw) and the value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn). The weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined using, for example, size exclusion chromatography. Further, since the average glucose polymerization degree of the branched α-glucan constituting the present branched α-glucan mixture can be calculated based on the weight average molecular weight (Mw), the present branched α-glucan mixture is characterized by the average glucose polymerization degree. It can also be attached. The average glucose polymerization degree can be determined by subtracting 18 from the weight average molecular weight (Mw) and dividing by 16 corresponding to the molecular weight of the glucose residue. The branched α-glucan mixture used as an active ingredient of the in vivo phenol compound reducing agent preferably has an average glucose polymerization of usually from 8 to 500, preferably from 15 to 400, more preferably from 20 to 300. The branched α-glucan mixture exhibits the same properties as ordinary glucan in that the viscosity increases as the average glucose polymerization degree increases, and the viscosity decreases as the average glucose polymerization degree decreases. Therefore, according to the embodiment of the in vivo phenolic compound reducing agent of the present invention, the present branched α-glucan mixture having an average degree of polymerization of glucose suitable for the required viscosity can be appropriately selected and used.

重量平均分子量(Mw)を数平均分子量(Mn)で除した値であるMw/Mnは、1に近いものほど構成する分岐α−グルカン混合物を構成する分岐α−グルカン分子のグルコース重合度のばらつきが小さいことを意味する。生体内フェノール化合物低減剤の有効成分として用いる本分岐α−グルカン混合物は、Mw/Mnが、通常、20以下のものであれば問題なく使用できるものの、好ましくは10以下、より好ましくは5以下のものが好適である。なお、グルコース重合度が比較的均一な本分岐α−グルカン混合物が本発明に係る生体内フェノール化合物低減剤の有効成分として求められる場合には、Mw/Mnが1により近く、グルコース重合度のばらつきが小さいものほど好ましい。   Mw / Mn, which is a value obtained by dividing the weight-average molecular weight (Mw) by the number-average molecular weight (Mn), is a variation in the degree of glucose polymerization of the branched α-glucan molecules constituting the branched α-glucan mixture, the closer to 1 the composition is. Means smaller. Although the present branched α-glucan mixture used as an active ingredient of the in vivo phenol compound reducing agent can be used without any problem if the Mw / Mn is usually 20 or less, it is preferably 10 or less, more preferably 5 or less. Those are preferred. In addition, when a main branched α-glucan mixture having a relatively uniform glucose polymerization degree is required as an active ingredient of the in vivo phenolic compound reducing agent according to the present invention, Mw / Mn is closer to 1 and the glucose polymerization degree varies. The smaller is, the better.

本分岐α−グルカン混合物は、上記(A)乃至(C)の特徴を有する限り、如何なる方法で製造されたものであっても良い。例えば、α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの非還元末端グルコース残基にα−1,6結合を介して連結したグルコース重合度1以上の分岐構造を導入する作用を有する酵素を澱粉質に作用させて得られる分岐α−グルカン混合物は、本発明の実施において好適に利用することができ、より好適な一例としては、国際公開第WO2008/136331号パンフレットにおいて開示されているα−グルコシル転移酵素を澱粉質に作用させて得られる分岐α−グルカン混合物が挙げられる。また、前記α−グルコシル転移酵素に加え、マルトテトラオース生成アミラーゼ(EC 3.2.1.60)などのアミラーゼや、イソアミラーゼ(EC 3.2.1.68)などの澱粉枝切り酵素を併用すれば、分岐α−グルカン混合物を低分子化することができるので、分子量、グルコース重合度などを所望の範囲に調整することができる。さらには、シクロマルトデキストリングルカノトランスフェラーゼ(EC 2.4.1.19)や、澱粉枝作り酵素(EC 2.4.1.18)、特開2014−054221号公報に開示されている重合度2以上のα−1,4グルカンを澱粉質の内部のグルコース残基にα−1,6転移する活性を有する酵素を併用することにより、分岐α−グルカン混合物を構成する分岐α−グルカンをさらに高度に分岐させ、分岐α−グルカン混合物の水溶性食物繊維含量を高めることもできる。かくして得られる分岐α−グルカン混合物に、さらにグルコアミラーゼ等の糖質加水分解酵素を作用させ、さらに水溶性食物繊維含量を高めた分岐α−グルカン混合物とすることも随意であり、グリコシルトレハロース生成酵素(EC 5.4.99.15)を作用させることにより分岐α−グルカン混合物を構成する分岐α−グルカンの還元末端にトレハロース構造を導入したり、水素添加により分岐α−グルカンの還元末端を還元するなどして分岐α−グルカン混合物の還元力を低下させてもよく、また、サイズ排除クロマトグラフィー等による分画を行なうことにより、所望の分子量を有する分岐α−グルカン混合物を取得することも随意である。   The present branched α-glucan mixture may be produced by any method as long as it has the above-mentioned characteristics (A) to (C). For example, a branched structure having a glucose polymerization degree of 1 or more linked via an α-1,6 bond to a non-reducing terminal glucose residue of a linear glucan having a glucose polymerization degree of 3 or more linked via an α-1,4 bond. A branched α-glucan mixture obtained by allowing an enzyme having an action of introducing glycerol to act on starch can be suitably used in the practice of the present invention. As a more preferable example, WO 2008/136331 Examples include a branched α-glucan mixture obtained by allowing an α-glucosyltransferase disclosed in a pamphlet to act on starch. In addition to the α-glucosyltransferase, an amylase such as maltotetraose-forming amylase (EC 3.2.1.60) or a starch debranching enzyme such as isoamylase (EC 3.2.1.68) is used. When used in combination, the branched α-glucan mixture can be reduced in molecular weight, so that the molecular weight, the degree of glucose polymerization and the like can be adjusted to desired ranges. Further, cyclomaltodextrin glucanotransferase (EC 2.4.1.19), starch branching enzyme (EC 2.4.1.18), and the degree of polymerization disclosed in JP-A-2014-054221. The combined use of an enzyme having an activity of transferring two or more α-1,4 glucans to α-1,6 transfer to a glucose residue inside amylaceous starch in combination with a branched α-glucan constituting a branched α-glucan mixture further improves the branched α-glucan mixture. It can also be highly branched to increase the water soluble dietary fiber content of the branched α-glucan mixture. The thus obtained branched α-glucan mixture may be further reacted with a saccharide hydrolase such as glucoamylase to further form a branched α-glucan mixture having a higher content of water-soluble dietary fiber. (EC 5.4.9.15) to introduce a trehalose structure into the reducing terminal of the branched α-glucan constituting the branched α-glucan mixture, or to reduce the reducing terminal of the branched α-glucan by hydrogenation. Alternatively, the reducing power of the branched α-glucan mixture may be reduced, and it is also possible to obtain a branched α-glucan mixture having a desired molecular weight by performing fractionation by size exclusion chromatography or the like. It is.

本発明の生体内フェノール化合物低減剤に含有される本分岐α−グルカン混合物の量は、所期の生体内フェノール化合物低減効果を発揮する限り、特に限定はないが、本分岐α−グルカン混合物を1乃至100質量%、好ましくは、3乃至100質量%、より好ましくは5乃至100質量%の範囲で含有していれば良い。また、本発明の生体内フェノール化合物低減剤は、本分岐α−グルカン混合物に加えて、必要に応じて、水、ミネラル、着香料、安定化剤、賦形剤、増量剤、pH調整剤などから選ばれる1種又は2種以上の成分を、0.01乃至50質量%、好ましくは、0.1乃至40質量%の割合で適宜配合して利用することもできる。   The amount of the present branched α-glucan mixture contained in the in vivo phenolic compound reducing agent of the present invention is not particularly limited as long as the intended in vivo phenolic compound reducing effect is exhibited. It may be contained in an amount of 1 to 100% by mass, preferably 3 to 100% by mass, more preferably 5 to 100% by mass. In addition, the in vivo phenolic compound reducing agent of the present invention includes, in addition to the present branched α-glucan mixture, if necessary, water, minerals, flavors, stabilizers, excipients, bulking agents, pH adjusters, and the like. One or two or more components selected from the following may be used by appropriately mixing them at a ratio of 0.01 to 50% by mass, preferably 0.1 to 40% by mass.

本発明の生体内フェノール化合物低減剤は、生体内のフェノール化合物の量を低減する効果を発揮する量摂取すればよく、摂取量に特段の制限はないが、例えば、有効成分である本分岐α−グルカン混合物の摂取量として、通常、成人(体重60kg)1回当たり、0.5乃至100gの範囲、好ましくは1乃至50gの範囲、より好ましくは1.5乃至10gの範囲、さらに好ましくは3乃至8gの範囲となるように、本発明の生体内フェノール化合物低減剤を、そのまま、或いは、水、お茶、コーヒーなどの飲料に溶解して摂取するか、食品又は飲料に添加して摂取すればよい。なお、本発明の生体内フェノール化合物低減剤を食品又は飲料の摂取中はもとより、摂取の前又は後に摂取してもよいことは勿論である。   The in vivo phenolic compound reducing agent of the present invention may be taken in an amount that exhibits the effect of reducing the amount of the phenolic compound in the living body, and there is no particular limitation on the amount of ingestion. The amount of the glucan mixture to be taken is generally in the range of 0.5 to 100 g, preferably in the range of 1 to 50 g, more preferably in the range of 1.5 to 10 g, more preferably 3 per adult (60 kg body weight). So that the in vivo phenolic compound reducing agent of the present invention is taken as it is, or dissolved in a beverage such as water, tea, coffee or the like, or added to a food or beverage and taken. Good. The in vivo phenolic compound reducing agent of the present invention may, of course, be taken before or after taking a food or beverage.

本発明の生体内フェノール化合物低減剤は、粉末状、粒状、顆粒状、液状、ペースト状、クリーム状、タブレット状、カプセル状、カプレット状、ソフトカプセル状、錠剤状、棒状、板状、ブロック状、丸薬状、固形状、ゲル状、ゼリー状、グミ状、ウエハース状、ビスケット状、飴状、チュアブル状、シロップ状、スティック状などの適宜の形態とすることができる。また、本発明の生体内フェノール化合物低減剤は、飲食物に含有せしめることにより、特定保健用食品、機能性表示食品、栄養補助食品、又は健康食品などの生活習慣病を予防又は改善することを目的に摂取される飲食物の形態とすることができる。   The in vivo phenolic compound reducing agent of the present invention is in the form of powder, granule, granule, liquid, paste, cream, tablet, capsule, caplet, soft capsule, tablet, rod, plate, block, It can be in an appropriate form such as pill, solid, gel, jelly, gummy, wafer, biscuit, candy, chewable, syrup, stick and the like. In addition, the in vivo phenolic compound reducing agent of the present invention is intended to prevent or ameliorate lifestyle-related diseases such as foods for specified health use, functionally labeled foods, dietary supplements, and health foods by being incorporated into foods and drinks. It can be in the form of food or drink that is ingested for the purpose.

本発明の生体内フェノール化合物低減剤を含んでなる生体内フェノール化合物低減用の飲食物の具体例としては、炭酸飲料、乳飲料、ゼリー飲料、スポーツドリンク、酢飲料、豆乳飲料、鉄含有飲料、乳酸菌飲料、緑茶、紅茶、ココア、コーヒーなどの飲料、米飯、粥、パン、麺類、スープ、味噌汁、ヨーグルトなどの食品、ソフトキャンディー、ハードキャンディ、グミ、ゼリー、クッキー、ソフトクッキー、せんべい、あられ、おこし、求肥、餅類、わらび餅、まんじゅう、ういろう、餡類、羊羹、水羊羹、錦玉、ゼリー、ペクチンゼリー、カステラ、ビスケット、クラッカー、パイ、プリン、バタークリーム、カスタードクリーム、シュークリーム、ワッフル、スポンジケーキ、ホットケーキ、マフィン、ドーナツ、チョコレート、ガナッシュ、シリアルバー、チューインガム、キャラメル、ヌガー、フラワーペースト、ピーナッツペースト、フルーツペースト、ジャム、マーマレードなどの菓子、アイスクリーム、シャーベット、ジェラートなどの氷菓、更には、醤油、粉末醤油、味噌、粉末味噌、もろみ、ひしお、フリカケ、マヨネーズ、ドレッシング、食酢、三杯酢、粉末すし酢、中華の素、天つゆ、麺つゆ、ソース、トマトソース、ケチャップ、焼き肉のタレ、焼き鳥のタレ、から揚げ粉、天ぷら粉、カレールウ、シチューの素、スープの素、ダシの素、複合調味料、みりん、新みりん、テーブルシュガー、コーヒーシュガーなどの各種調味料や調理加工品が挙げられる。さらに、本発明の生体内フェノール化合物低減剤は、生活習慣病を予防又は改善(治療)するための液剤、シロップ剤、経管栄養剤、錠剤、カプセル剤、トローチ剤、舌下剤、顆粒剤、散剤、粉剤、乳剤、噴霧剤などの形態にある薬剤に配合することもできる。さらに、本発明の生体内フェノール化合物低減剤は、ヒト以外の動物が摂取するペットフードや飼料、餌料に配合することもできる。   Specific examples of food and drink for in vivo phenolic compound reduction comprising the in vivo phenolic compound reducing agent of the present invention include carbonated drinks, milk drinks, jelly drinks, sports drinks, vinegar drinks, soy milk drinks, iron-containing drinks, Lactic acid bacteria drinks, beverages such as green tea, black tea, cocoa, coffee, rice, rice porridge, bread, noodles, soup, miso soup, yogurt, etc., soft candy, hard candy, gummy, jelly, cookies, soft cookies, rice crackers, hail, Okoshi, fertilizer, rice cake, warabi mochi, steamed bun, seaweed, bean paste, yokan, mizuyokan, nishikidama, jelly, pectin jelly, castella, biscuit, cracker, pie, pudding, butter cream, custard cream, cream puff, waffle, Sponge cake, hot cake, muffin, donut, chocolate, moth Ash, cereal bar, chewing gum, caramel, nougat, flower paste, peanut paste, fruit paste, jam, marmalade, etc., ice cream, sherbet, gelato, etc., and soy sauce, powdered soy sauce, miso, powdered miso, Moromi, Hoshio, Furikake, Mayonnaise, Dressing, Vinegar, Three tablespoons vinegar, Powdered sushi vinegar, Chinese ingredients, Tentsuyu, Noodle soup, Sauce, Tomato sauce, Ketchup, Grilled meat sauce, Yakitori sauce, Fried flour, Tempura flour, Cararou , Stew ingredients, soup ingredients, dash ingredients, complex seasonings, mirin, new mirin, table sugar, coffee sugar, and various other seasonings and cooked products. Further, the in vivo phenolic compound reducing agent of the present invention may be a solution, a syrup, a tube feeding agent, a tablet, a capsule, a troche, a sublingual agent, a granule, for preventing or improving (treating) a lifestyle-related disease. It can also be incorporated into drugs in the form of powders, powders, emulsions, sprays and the like. Further, the in vivo phenolic compound reducing agent of the present invention can also be incorporated into pet food, feed, and feed that are taken by animals other than humans.

本発明の生体内フェノール化合物低減剤及びこれを含んでなる生体内フェノール化合物低減用の飲食物は、必要に応じて、経管投与などの非経口的投与方法により胃又は消化管へ投与することもできる。   The in vivo phenolic compound reducing agent of the present invention and the food and drink for reducing the in vivo phenolic compound containing the same may be administered to the stomach or digestive tract by parenteral administration such as tube administration, if necessary. Can also.

また、本発明の生体内フェノール化合物低減剤は、後述する実験の項で示すとおり、飲食物に起因し、生体内で生成するフェノール化合物の量を低減することができるので、フェノール化合物が及ぼす皮膚への悪影響の低減、皮膚の健康状態の維持又は改善、具体的には、皮膚のターンオーバーの適正化、改善につながる効果を奏する。   Further, the in vivo phenolic compound reducing agent of the present invention can reduce the amount of a phenolic compound produced in the living body due to food and drink, as shown in the experimental section described below, so that the phenolic compound exerts an effect on the skin. It has the effect of reducing adverse effects on skin, maintaining or improving skin health, and specifically, optimizing and improving skin turnover.

以下、実験に基づいて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail based on experiments.

以下の実験では、国際公開第WO2008/136331号パンフレットの実施例5記載の方法に従い製造した分岐α−グルカン混合物を使用した。すなわち、前記実施例5記載の方法に順じて、27.1質量%トウモロコシ澱粉液化液(加水分解率3.6%)に、最終濃度0.3質量%となるように亜硫酸水素ナトリウムを、また最終濃度1mMとなるように塩化カルシウムを加えた後、50℃に冷却し、これに、国際公開第WO2008/136331号パンフレットの実施例1に記載された方法で調製したバチルス・サーキュランス PP710(FERM BP−10771)由来のα−グルコシル転移酵素の濃縮粗酵素液を固形物1グラム当たり11.1単位加え、50℃、pH6.0で68時間作用させた。その反応液を80℃で60分間保った後、冷却し、濾過して得られる濾液を常法に従って、活性炭で脱色し、H型及びOH型イオン樹脂により脱塩して精製し、更に濃縮、噴霧乾燥して製造した分岐α−グルカン混合物を以下の実験1に使用した。なお、得られた分岐α−グルカン混合物を、国際公開第WO2008/136331号パンフレットの段落0079、0080に記載されたイソマルトデキストラナーゼ消化試験法、α−グルコシダーゼ及びグルコアミラーゼ消化試験法、段落0076乃至0078に記載されたメチル化分析法により分析したところ、以下の(a)乃至(c)の特徴を有していた。
(a)グルコースを構成糖とし、
(b)α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(c)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり35質量%生成した。
In the following experiments, a branched α-glucan mixture produced according to the method described in Example 5 of WO 2008/136331 was used. That is, according to the method described in Example 5, sodium bisulfite was added to a 27.1% by mass corn starch liquefied liquid (hydrolysis rate: 3.6%) so as to have a final concentration of 0.3% by mass. After adding calcium chloride to a final concentration of 1 mM, the mixture was cooled to 50 ° C., and Bacillus circulans PP710 (prepared by the method described in Example 1 of WO 2008/136331) was added thereto. A crude enzyme solution of α-glucosyltransferase derived from FERM BP-10771) was added at 11.1 units per gram of solid, and the mixture was allowed to act at 50 ° C. and pH 6.0 for 68 hours. The reaction solution was kept at 80 ° C. for 60 minutes, cooled, filtered, and the resulting filtrate was decolorized with activated carbon, desalted with H-type and OH-type ion resins, purified, and further concentrated, according to a conventional method. The branched α-glucan mixture produced by spray drying was used in Experiment 1 below. In addition, the obtained branched α-glucan mixture was subjected to the isomaltodextranase digestion test method, α-glucosidase and glucoamylase digestion test method described in paragraphs 0079 and 0080 of WO 2008/136331 pamphlet, paragraph 0076. As a result of analysis by the methylation analysis method described in any of (1) to (0078), it had the following characteristics (a) to (c).
(A) glucose as a constituent sugar;
(B) A non-reducing terminal glucose residue at one end of a linear glucan having a degree of polymerization of glucose of 3 or more linked via an α-1,4 bond was linked via a bond other than the α-1,4 bond. Having a branched structure having a glucose polymerization degree of 1 or more,
(C) Isomaltose was produced by digestion with isomaltodextranase at 35% by mass per solid of the digest.

また、得られた分岐α−グルカン混合物を前記酵素−HPLC法により分析したところ、前記分岐α−グルカン混合物は、上記特徴に加えて、下記(d)の特徴を有しており、さらには、上記メチル化分析法による分析結果から、下記(e)乃至(h)の特徴を有することが判明した。
(d)水溶性食物繊維含量が82.9質量%であり、
(e)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比が1:2.1であり、
(f)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基との合計が全グルコース残基の73.8%であった。
(g)α−1,3結合したグルコース残基が全グルコース残基の2.1%であった。
(h)α−1,3,6結合したグルコース残基が全グルコース残基の5.6%であった。
In addition, when the obtained branched α-glucan mixture was analyzed by the enzyme-HPLC method, the branched α-glucan mixture had the following characteristics (d) in addition to the above characteristics. From the results of the analysis by the methylation analysis method, it was found that the sample had the following characteristics (e) to (h).
(D) a water-soluble dietary fiber content of 82.9% by mass;
(E) the ratio of α-1,4 linked glucose residues to α-1,6 linked glucose residues is 1: 2.1,
(F) The total of α-1,4 bonded glucose residues and α-1,6 bonded glucose residues was 73.8% of all glucose residues.
(G) α-1,3 linked glucose residues were 2.1% of all glucose residues.
(H) α-1,3,6-linked glucose residues were 5.6% of all glucose residues.

さらに、当該分岐α−グルカン混合物を、国際公開第WO2008/136331号パンフレットの段落0081に記載されたゲル濾過HPLCによる分子量分布分析にしたところ、その重量平均分子量(Mw)は5,000ダルトン(平均グルコース重合度に換算すると約30)、Mw/Mnは2.1であった。   Further, when the branched α-glucan mixture was subjected to molecular weight distribution analysis by gel filtration HPLC described in paragraph 0081 of WO 2008/136331, the weight average molecular weight (Mw) was 5,000 daltons (average Mw / Mn was 2.1 when converted to a glucose polymerization degree of about 30).

上記のとおり、本実験で使用した分岐α−グルカン混合物は、グルコースを構成糖とし、α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、イソマルトデキストラナーゼ消化によりイソマルトースを生成するという前記(A)乃至(C)の特徴を有するものであった。また、本実験で使用した分岐α−グルカン混合物は、イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり5質量%以上70質量%以下生成するという特徴、水溶性食物繊維含量が40質量%以上であるという前記(D)の特徴、及び、α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比が1:0.6乃至1:4の範囲にあり、α−1,4結合したグルコース残基とα−1,6結合したグルコース残基との合計が全グルコース残基の55%以上を占めるという前記(E)、(F)の特徴を満たすものであった。   As described above, the branched α-glucan mixture used in this experiment was composed of glucose as a constituent sugar, and a non-reducing terminal glucose residue of a linear glucan having a degree of polymerization of glucose of 3 or more linked via α-1,4 bond. (A) to (C), which have a branched structure having a degree of polymerization of glucose of 1 or more linked through a bond other than an α-1,4 bond, and produce isomaltose by digestion with isomaltodextranase. It had the following. Further, the branched α-glucan mixture used in this experiment is characterized in that isomaltose is produced by digestion with isomaltodextranase in an amount of 5% by mass or more and 70% by mass or less based on the solid matter of the digested matter. (D), wherein the ratio of α-1,4 linked glucose residues to α-1,6 linked glucose residues is 1: 0.6 to 1: 4. (E) and (F), wherein the total of glucose residues having α-1,4 bond and α-1,6 bond accounts for 55% or more of all glucose residues. Was satisfied.

さらに、前記分岐α−グルカン混合物は、α−1,3結合したグルコース残基が全グルコース残基の0.5%以上10%未満の範囲にあり、α−1,3,6結合したグルコース残基が全グルコース残基の0.5%以上の範囲にあるものであった。   Further, the branched α-glucan mixture has α-1,3 linked glucose residues in a range of 0.5% or more and less than 10% of the total glucose residues, and α-1,3,6 linked glucose residues. The groups were in the range of 0.5% or more of the total glucose residues.

なお、以下の実験では、実験動物としてラットを用い、飼料として、生体内フェノール化合物の原料となるアミノ酸であるチロシンを強化・配合した飼料(以下、「チロシン飼料」という。)を与え、また、飲用水として、水、又は水に上記分岐α−グルカン混合物を特定濃度になるよう溶解した分岐α−グルカン混合物水溶液を与えつつ一定期間飼育した後、ラットから採取した各種生体試料におけるフェノール化合物の量を測定した。   In the following experiments, rats were used as experimental animals, and a feed supplemented with and supplemented with tyrosine, an amino acid serving as a raw material of a phenol compound in a living body (hereinafter referred to as “tyrosine feed”), was given as a feed. As drinking water, water or a branched α-glucan mixture aqueous solution obtained by dissolving the above-mentioned branched α-glucan mixture at a specific concentration in water is fed for a certain period of time while feeding, and then the amount of phenolic compounds in various biological samples collected from rats. Was measured.

<実験1:チロシン飼料の給餌と分岐α−グルカン混合物の飲水投与によるラットの飼育>
Wistarラット(雄、6週齢、日本エスエルシー株式会社販売)24匹を購入し、通常飼料(「CE−2」、飼育繁殖用、日本クレア株式会社販売)を与えつつ5日間飼育し馴化させた。次いで、馴化させたラットを6匹ずつ4群に分け、各群のラットには下記表1に示す飼料、すなわち、後述するAIN−93G改変飼料及びチロシン飼料のいずれか、及び、同じく表1に示す飲用水、すなわち、水、又は水に上記で得た分岐α−グルカン混合物を2%(w/v)又は5%(w/v)になるよう溶解した水溶液(以下、それぞれ「2%分岐α−グルカン混合物液」、「5%分岐α−グルカン混合物液」という。)のいずれかを与えそれぞれ3週間飼育した。
<Experiment 1: Feeding of tyrosine feed and breeding of rats by drinking water of branched α-glucan mixture>
Twenty-four Wistar rats (male, 6 weeks old, sold by Japan SLC, Inc.) were purchased and reared for 5 days while being fed a normal feed ("CE-2", breeding and breeding, sold by Nippon Clea Co., Ltd.) to be acclimated. Was. Next, the acclimated rats were divided into four groups of six rats, and the rats of each group were fed as shown in Table 1 below, that is, any of the AIN-93G modified feed and the tyrosine feed described later, and also as shown in Table 1. Drinking water, that is, water or an aqueous solution obtained by dissolving the branched α-glucan mixture obtained above in water to 2% (w / v) or 5% (w / v) (hereinafter referred to as “2% branch, respectively”). α-glucan mixture ”or“ 5% branched α-glucan mixture ”) and bred for 3 weeks.

Figure 2018193897
Figure 2018193897

なお、表1に示す「AIN−93G改変飼料」及び「チロシン飼料」は、それぞれ下記表2に示す組成を有する飼料であり、日本クレア株式会社に外注し入手した。なお、AIN−93G改変飼料は、日本クレア株式会社が販売する標準飼料『AIN−93G』において、コーンスターチの組成が39.7486質量%であるところを51.9486質量%に改変し、且つ、α−コーンスターチの組成が13.2質量%であるところを1質量%に改変した以外はAIN−93Gと同じ組成のものである。また、表2に見られるとおり、チロシン飼料はAIN−93G改変飼料のコーンスターチの5質量%をチロシンに置換したものである。   The “AIN-93G modified feed” and “tyrosine feed” shown in Table 1 are feeds having the compositions shown in Table 2 below, respectively, and were obtained by outsourcing to CLEA Japan. The AIN-93G modified feed is a standard feed “AIN-93G” sold by CLEA Japan, where the composition of corn starch is 39.7486% by mass, modified to 51.9486% by mass, and α -The same composition as AIN-93G except that the composition of corn starch was changed from 13.2% by mass to 1% by mass. As shown in Table 2, the tyrosine feed was obtained by substituting 5% by mass of corn starch of the AIN-93G modified feed with tyrosine.

Figure 2018193897
Figure 2018193897

飼育期間中の各群のラットの体重、摂餌量、飲水量を表3に示した。さらに、飼育19〜20日の時点で代謝ゲージを用いて各ラット1匹からそれぞれ採取した1日分の糞便と尿の量を測定し、各群6匹の平均値と標準偏差として表4に示した。   Table 3 shows the weight, food consumption, and water consumption of the rats in each group during the breeding period. Furthermore, the amount of feces and urine for one day each collected from one rat was measured using a metabolic gauge on the 19th to 20th days of breeding. Table 4 shows the average value and standard deviation of 6 animals in each group. Indicated.

Figure 2018193897
Figure 2018193897

Figure 2018193897
Figure 2018193897

表3に示すとおり、試験した4群のラットは、体重、摂餌量、飲水量とも同程度の値を示し、各群間で有意な差は認められなかった。このことは、餌料としてAIN−93G改変飼料を、飲用水として水を与えて飼育した通常食群のラットと、餌料としてチロシン飼料を摂取させた対照群のラット、さらに、飲用水として特定濃度の分岐α−グルカン混合物液を摂取させた試験群のラットが、各群間で大きく差が生じることのない安定した試験系で飼育されたことを物語っている。なお、摂餌量から計算すると、チロシン飼料を摂取したラットにおけるチロシンの1日当たりの摂取量は約4g/kg−体重となった。また、分岐α−グルカン混合物水溶液を摂取させたラットに関していえば、飲水量から計算すると、分岐α−グルカン混合物の1日当たりの摂取量は、2%分岐α−グルカン混合物群では1.9g/kg−体重、5%分岐α−グルカン混合物群では5.1g/kg−体重であった。   As shown in Table 3, the rats in the four groups tested exhibited similar values in body weight, food consumption, and water consumption, and no significant difference was observed between the groups. This indicates that rats in the normal diet group fed with AIN-93G modified feed as feed and water as drinking water, rats in the control group fed with tyrosine feed as feed, and a specific concentration of drinking water This indicates that rats in the test group to which the branched α-glucan mixture was ingested were bred in a stable test system in which there was no significant difference between the groups. In addition, when calculated from the amount of food consumed, the daily intake of tyrosine in the rats that took the tyrosine feed was about 4 g / kg-body weight. In addition, regarding the rats that have been ingested with the aqueous solution of the branched α-glucan mixture, the daily intake of the branched α-glucan mixture is 1.9 g / kg in the 2% branched α-glucan mixture group, calculated from the amount of water consumed. -Body weight was 5.1 g / kg-body weight in the 5% branched α-glucan mixture group.

また、飼育中の糞便量と尿量に関しては、表4に示すとおり、チロシン飼料を与え、飲用水として水を与えて飼育した対照群が、他の群よりも糞便量で高い値を示したものの、各群間で有意な差は認められなかった。この結果は、表3で示した体重、摂餌量、飲水量の場合と同様に、ラットが、各群間で大きく差が生じることのない安定な試験系で飼育されたことを物語っている。   In addition, as for the amount of feces and urine during breeding, as shown in Table 4, the control group fed with a tyrosine feed and given water as drinking water showed higher values in the amount of feces than the other groups. However, no significant difference was observed between the groups. The results indicate that, as in the case of body weight, food consumption, and water consumption shown in Table 3, rats were bred in a stable test system in which there was no large difference between the groups. .

<実験2:ラットからの各種試料の採取、試料の前処理及びフェノール化合物の定量>
実験1で飼育した各群のラットから、種々の生体試料をそれぞれ採取し、それぞれに含まれるフェノール化合物の量を測定した。
<Experiment 2: Collection of various samples from rats, sample pretreatment and quantification of phenol compounds>
Various biological samples were collected from the rats of each group bred in Experiment 1, and the amount of phenol compounds contained in each sample was measured.

<実験2−1.ラットからの各種試料の採取>
実験1で飼育した4群、計24匹のラットは、それぞれペントバルビタール麻酔下で後大静脈より全血を採取し安楽死させた。安楽死させた後、解剖し盲腸及び肝臓を摘出、採取しそれぞれ重量を測定した。また、脇腹を剃毛した後、1cm角の大きさで2箇所から皮膚を採取し、皮下組織を除去して皮膚試料とした。採取した肝臓、盲腸組織及び盲腸内容物のそれぞれの重量、及び、盲腸内容物のpHを表5にまとめた。なお、盲腸内容物のpHは直接pHメーターにて測定した。
<Experiment 2-1. Collection of various samples from rats>
A total of 24 rats in 4 groups bred in Experiment 1 were each euthanized by collecting whole blood from the posterior vena cava under pentobarbital anesthesia. After euthanasia, the cecum and liver were dissected out, collected and weighed. After shaving the flank, the skin was collected from two places with a size of 1 cm square, and the subcutaneous tissue was removed to obtain a skin sample. Table 5 summarizes the weights of the collected liver, cecal tissue, and cecal contents, and the pH of the cecal contents. The pH of the cecal contents was measured directly with a pH meter.

Figure 2018193897
Figure 2018193897

表5に示すとおり、盲腸組織及び盲腸内容物の重量は、対照群に比較して2%分岐α−グルカン混合物群、5%分岐α−グルカン混合物群が有意に重かった。通常食群と対照群の盲腸内容物は緑色がかった色調を示し、一方、5%分岐α−グルカン混合物群の盲腸内容物は黄色がかった色調を示した。また、2%分岐α−グルカン混合物群では、盲腸内容物は、黄色がかった色調のものが4匹、緑色がかった色調のものが2匹の比率を示したことから、分岐α−グルカン混合物を摂取した群では腸内菌叢が変化していることが示唆された。また、分岐α−グルカン混合物を摂取させた群の盲腸内容物のpHは、対照群のそれよりも有意に低い値を示した。   As shown in Table 5, the weight of the cecal tissue and cecal contents was significantly heavier in the 2% branched α-glucan mixture group and the 5% branched α-glucan mixture group than in the control group. The cecal contents of the normal diet group and the control group showed a greenish color, while the cecal contents of the 5% branched α-glucan mixture group showed a yellowish color. In the 2% branched α-glucan mixture group, the caecal contents showed a ratio of 4 yellowish tones and 2 greenish tones, indicating that the branched α-glucan mixture was It was suggested that the intestinal flora had changed in the ingested group. In addition, the pH of the cecal contents of the group to which the branched α-glucan mixture was ingested was significantly lower than that of the control group.

<実験2−2.生体内フェノール化合物測定のための各採取試料の前処理>
実験1で採取した尿、糞便に加え、実験2−1で採取した各試料、すなわち、盲腸内容物、血液(血清)、皮膚、肝臓について、フェノール化合物測定のための前処理として、それぞれ以下に示す処理を行った。
<Experiment 2-2. Pretreatment of each sample for measurement of phenolic compounds in vivo>
In addition to the urine and feces collected in Experiment 1, each sample collected in Experiment 2-1, ie, cecal contents, blood (serum), skin, and liver, was used as a pretreatment for phenol compound measurement, respectively. The processing shown was performed.

<盲腸内容物>:採取後−80℃で凍結保存したものを解凍し、0.3gを秤取し、0.1Mリン酸緩衝液(pH5.5)を3mL加えて10倍希釈し、ポリテトラフルオロエチレン製ホモジナイザー(5mL容)を用いてホモジナイズし、遠心分離(3,000rpm、800×g、10分)して粗抽出液を調製し、−80℃で凍結保存した。
<血清>:採取した血液を遠心分離(3,000rpm、800×g、10分間)して血清を分離し、−80℃で凍結保存した。
<尿>:遠心分離(3,000rpm、800×g、10分間)して沈殿(飼料など)を除去した後、−80℃で凍結保存した。
<糞便>:採取後−80℃で凍結保存したものを解凍し、0.1Mリン酸緩衝液(pH5.5)で10倍希釈し、5分間程度撹拌した後、ポリテトラフルオロエチレン製ホモジナイザー(10mL容)を用いてホモジナイズし、遠心分離(3,000rpm、800×g、10分間)して粗抽出液を調製し、−80℃で凍結保存した。
<皮膚>:採取後−80℃で凍結保存したものを解凍し、0.2gを秤取し、ハサミで裁断した後、プラスチックチューブに取りリン酸緩衝液2mLを加えてホモジナイザー(「Polytron PT10−35」型)を使用しホモジナイズした。その後、XIVプロテアーゼ(Sigma社製)20mgを加えて55℃で3時間保持した。XIVプロテアーゼ処理液を遠心分離(3,000rpm、800×g、10分間)して上清を採取し、−80℃で凍結保存した。
<肝臓>:採取後−80℃で凍結保存したものを解凍し、肝臓の左外側葉0.2gを秤取し、1.5mLプラスチックチューブに取りリン酸緩衝液1mLを加えてポリテトラフルオロエチレン製ホモジナイザーにてホモジナイズし遠心分離(3,000rpm、800×g、10分間)して粗抽出液を調製し、−80℃で凍結保存した。
<Caecal contents>: Thawed frozen and stored at -80 ° C after collection, weighed 0.3 g, diluted 10-fold with 3 mL of 0.1 M phosphate buffer (pH 5.5), Using a homogenizer (5 mL) made of tetrafluoroethylene, the mixture was homogenized and centrifuged (3,000 rpm, 800 × g, 10 minutes) to prepare a crude extract, which was stored frozen at −80 ° C.
<Serum>: The collected blood was centrifuged (3,000 rpm, 800 × g, 10 minutes) to separate serum, and stored frozen at −80 ° C.
<Urine>: After centrifugation (3,000 rpm, 800 × g, 10 minutes) to remove precipitates (feed, etc.), the mixture was stored frozen at −80 ° C.
<Feces>: Thawed at -80 ° C after collection, thawed, diluted 10-fold with 0.1 M phosphate buffer (pH 5.5), stirred for about 5 minutes, and then homogenized with polytetrafluoroethylene ( (10 mL), and the mixture was centrifuged (3,000 rpm, 800 × g, 10 minutes) to prepare a crude extract, which was stored frozen at −80 ° C.
<Skin>: After collection, the cryopreserved at -80 ° C. was thawed, 0.2 g was weighed, cut with scissors, taken in a plastic tube, added with 2 mL of a phosphate buffer, and homogenized (“Polytron PT10-”). 35 "). Thereafter, 20 mg of XIV protease (manufactured by Sigma) was added, and the mixture was kept at 55 ° C. for 3 hours. The XIV protease-treated solution was centrifuged (3,000 rpm, 800 × g, 10 minutes) to collect a supernatant, which was frozen and stored at −80 ° C.
<Liver>: Thawed at −80 ° C. after collection, thawed, weighed 0.2 g of the left outer lobe of the liver, placed in a 1.5 mL plastic tube, added 1 mL of phosphate buffer, and added polytetrafluoroethylene. The mixture was homogenized with a homogenizer and centrifuged (3,000 rpm, 800 × g, 10 minutes) to prepare a crude extract, which was frozen and stored at −80 ° C.

<実験2−3.各試料におけるフェノール化合物の定量>
実験2−2で調製した前処理試料中のフェノール化合物は大半が配糖体の形態にあるため、前処理試料を塩酸で処理することにより、配糖体の形態にあるフェノール化合物を加水分解し、遊離型の形態に変えてフェノール化合物として測定した。すなわち、本測定においては、フェノールとp−クレゾールの2つのフェノール化合物を測定対象とし、生体内において配糖体の形態で存在するフェノール及びp−クレゾールと、遊離型の形態で存在するそれらを、酸処理を行うことにより、それぞれ遊離型のフェノール及びp−クレゾールとしてまとめて定量した。具体的な操作としては、上述した前処理試料を、遠心分離(4,700rpm、10分間)して上清を採取した後、ネジ付きのチューブに0.8mLとり(但し、尿の場合は220倍希釈液)、100μg/mLの濃度に調製した内部標準物質である4−エチルフェノール32μLと2N塩酸0.8mLを加え、60分間煮沸した。煮沸処理した液を室温で放冷した後に2N水酸化ナトリウムを約0.75mL加えて中和した。中和液0.8mLをプラスチックチューブに取り、アセトニトリル0.8mLを加えて撹拌し、遠心分離(12,000×g、5分間)して不溶物を除去し、0.3mLを0.45μmのフィルターでろ過し、HPLC試料とした。
<Experiment 2-3. Determination of phenol compounds in each sample>
Since most of the phenolic compounds in the pretreated sample prepared in Experiment 2-2 are in the form of glycosides, the phenolic compound in the form of glycosides is hydrolyzed by treating the pretreated sample with hydrochloric acid. Was measured as a phenolic compound after changing to the free form. That is, in this measurement, two phenol compounds of phenol and p-cresol were measured, and phenol and p-cresol which existed in the form of a glycoside in a living body and those which existed in a free form were determined. By performing the acid treatment, it was collectively determined as free phenol and p-cresol, respectively. As a specific operation, the pretreatment sample described above was centrifuged (4,700 rpm, 10 minutes) to collect a supernatant, and then 0.8 mL was taken into a tube with a screw (in the case of urine, 220 mL was used). (Double dilution)), 32 μL of 4-ethylphenol, an internal standard substance adjusted to a concentration of 100 μg / mL, and 0.8 mL of 2N hydrochloric acid were added, and the mixture was boiled for 60 minutes. After the solution subjected to the boiling treatment was allowed to cool at room temperature, about 0.75 mL of 2N sodium hydroxide was added to neutralize the solution. Take 0.8 mL of the neutralized solution into a plastic tube, add 0.8 mL of acetonitrile, stir, centrifuge (12,000 × g, 5 minutes) to remove insolubles, and add 0.3 mL to 0.45 μm The mixture was filtered with a filter to obtain an HPLC sample.

各種試料におけるフェノール及びp−クレゾールは、下記条件によるHPLCにて定量した。
(HPLC条件)
カラム:Shodex ODSpak F−411(φ4.6×150mm、昭和電工株式会社製);
装置:『Prominence』システム(株式会社島津製作所製)
解析ソフトウェアとして「LabSolutions」を使用;
ポンプ:LC−20AD 2台;
カラムヒーター:『CTO−20AC』;
デガッサー:『DGU−20A3R』;
オートサンプラー:『SIL−20AC』;
検出器:蛍光検出器 RF−20A(励起波長:260nm,蛍光波長:305nm)
移動相:水/アセトニトリル(70/30)にてイソクラティック溶出
カラム温度:30℃
試料注入量:10μL
なお、フェノール及びp−クレゾールの定量においては、いずれもフェノール及びp−クレゾールの試薬(シグマ・アルドリッチ製)を標準品とし、HPLCにおけるそれぞれについての検量線を作成し定量した。
Phenol and p-cresol in various samples were quantified by HPLC under the following conditions.
(HPLC conditions)
Column: Shodex ODspak F-411 (φ4.6 × 150 mm, manufactured by Showa Denko KK);
Equipment: "Prominence" system (manufactured by Shimadzu Corporation)
Use "LabSolutions" as analysis software;
Pump: LC-20AD 2 units;
Column heater: “CTO-20AC”;
Degasser: "DGU-20A 3R ";
Autosampler: "SIL-20AC";
Detector: Fluorescence detector RF-20A (excitation wavelength: 260 nm, fluorescence wavelength: 305 nm)
Mobile phase: Isocratic elution with water / acetonitrile (70/30) Column temperature: 30 ° C
Sample injection volume: 10 μL
In the determination of phenol and p-cresol, phenol and p-cresol reagents (manufactured by Sigma-Aldrich) were used as standard products, and calibration curves were prepared for HPLC and quantified.

各種試料におけるフェノール化合物(フェノール及びp−クレゾール)の定量値を表6及び表7にそれぞれ示す。   Tables 6 and 7 show quantitative values of phenol compounds (phenol and p-cresol) in various samples.

Figure 2018193897
Figure 2018193897

Figure 2018193897
Figure 2018193897

表6及び表7に示すとおり、AIN−93G改変飼料と水とで飼育した通常食群のラットでは、盲腸内容物、血清、尿、糞便、皮膚及び肝臓のいずれにおいてもフェノールは検出されず、また、p−クレゾールも盲腸内容物、尿、糞便において僅かに検出される程度であった。これに対し、チロシン飼料で飼育したラットでは、皮膚と肝臓以外ですべてフェノールが検出され、また、通常食群に比べp−クレゾールが多量に検出された。   As shown in Tables 6 and 7, in rats in the normal diet group bred with AIN-93G modified feed and water, phenol was not detected in any of the cecal contents, serum, urine, feces, skin and liver, Further, p-cresol was also slightly detected in cecal contents, urine, and feces. In contrast, in rats bred on a tyrosine diet, phenol was detected in all but the skin and liver, and p-cresol was detected in greater amounts than in the normal diet group.

表6に示すとおり、AIN−93G改変飼料と水を摂取させて飼育した通常食群のラットでは、盲腸内容物にフェノールは検出されず、盲腸内容物1g当たりのp−クレゾール量も40±28nmolとわずかであったのに対し、チロシン飼料と水を摂取させて飼育した対照群のラットの場合、盲腸内容物1g当たり、フェノール量は812±443nmol、p−クレゾール量は4522±1261nmolと多量のフェノール化合物の生成が認められた。一方、チロシン飼料と2%分岐α−グルカン混合物水溶液を摂取させて飼育した2%分岐α−グルカン混合物群の場合、盲腸内容物1g当たりフェノール量は334±435nmol、p−クレゾール量は2866±1652nmolと、対照群に比べ顕著に低いフェノール化合物量を示した。また、チロシン飼料と5%分岐α−グルカン混合物水溶液を摂取させて飼育した5%分岐α−グルカン混合物群の場合、盲腸内容物1g当たりフェノール量は12±3nmol、p−クレゾール量は397±128nmolと、対照群に比べ顕著に低いフェノール化合物量を示した。この結果は、チロシン飼料の摂取により盲腸内容物にフェノール化合物が産生されること、及び、フェノール化合物が産生されやすいチロシン飼料を摂取したとしても、一定量以上の分岐α−グルカン混合物を併せて摂取すれば、盲腸内容物中のフェノール化合物の量を顕著に低減できることを物語っている。   As shown in Table 6, in the normal diet group of rats fed the AIN-93G modified feed and water, phenol was not detected in the cecal contents, and the amount of p-cresol per 1 g of cecal contents was also 40 ± 28 nmol. In contrast, in the case of a control group of rats fed with tyrosine feed and water, the amount of phenol and the amount of p-cresol were as high as 812 ± 443 nmol and 4522 ± 1261 nmol, respectively, per 1 g of cecal content. Formation of a phenolic compound was observed. On the other hand, in the case of the 2% branched α-glucan mixture group fed and fed with a tyrosine feed and a 2% branched α-glucan mixture aqueous solution, the amount of phenol per 1 g of cecal content is 334 ± 435 nmol, and the amount of p-cresol is 2866 ± 1652 nmol. And a phenol compound amount significantly lower than that of the control group. In the case of the 5% branched α-glucan mixture group bred by ingesting a tyrosine feed and a 5% branched α-glucan mixture aqueous solution, the amount of phenol was 12 ± 3 nmol and the amount of p-cresol was 397 ± 128 nmol per 1 g of cecal content. And a phenol compound amount significantly lower than that of the control group. This result indicates that the ingestion of tyrosine feed produces a phenolic compound in the cecal contents, and that even when a tyrosine feed in which a phenolic compound is easily produced is ingested, a certain amount or more of the branched α-glucan mixture is also consumed. This indicates that the amount of the phenol compound in the cecal contents can be significantly reduced.

また、表6に示すとおり、AIN−93G改変飼料と水を摂取させて飼育した通常食群のラットでは、血清中にフェノール、p−クレゾールともに検出されなかったのに対し、チロシン飼料と水を摂取させて飼育した対照群のラットの場合、血清1mL当たり、フェノール量は27±30nmol、p−クレゾール量は136±35nmolとフェノール化合物の生成が認められた。一方、チロシン飼料と2%分岐α−グルカン混合物水溶液を摂取させて飼育した2%分岐α−グルカン混合物群の場合、血清1mL当たりのフェノール量は16±15nmol、p−クレゾール量は101±50nmolと、対照群に比べ大差ない結果となったものの、チロシン飼料と5%分岐α−グルカン混合物水溶液を摂取させて飼育した5%分岐α−グルカン混合物群の場合では、血清1mL当たりのフェノール量は5±0nmol、p−クレゾール量は15±4nmolと、対照群に比べ顕著に低いフェノール化合物量を示した。この結果は、チロシン飼料の摂取により血清中にフェノール化合物が検出されること、及び、フェノール化合物が産生されやすいチロシン飼料を摂取したとしても、一定量以上の分岐α−グルカン混合物を併せて摂取すれば、血清中のフェノール化合物の量を顕著に低減できることを物語っている。   In addition, as shown in Table 6, in the rats in the normal diet group bred with the AIN-93G modified feed and water, neither phenol nor p-cresol was detected in the serum, whereas the tyrosine feed and water were not detected. In the case of a control group of rats fed and raised, the amount of phenol was 27 ± 30 nmol and the amount of p-cresol was 136 ± 35 nmol per 1 mL of serum, indicating the formation of a phenol compound. On the other hand, in the case of the 2% branched α-glucan mixture group fed and fed with a tyrosine feed and a 2% branched α-glucan mixture aqueous solution, the amount of phenol per mL of serum was 16 ± 15 nmol, and the amount of p-cresol was 101 ± 50 nmol. Although the result was not much different from that of the control group, in the case of the 5% branched α-glucan mixture group fed and fed with a tyrosine feed and a 5% branched α-glucan mixture aqueous solution, the amount of phenol per mL of serum was 5%. The amount of phenol compound was ± 0 nmol and the amount of p-cresol was 15 ± 4 nmol, which was significantly lower than that of the control group. This result indicates that a phenolic compound is detected in serum by ingestion of a tyrosine feed, and that even if a tyrosine feed in which a phenolic compound is easily produced is ingested, a certain amount or more of a branched α-glucan mixture is also consumed. This indicates that the amount of phenolic compounds in serum can be significantly reduced.

さらに、各群において、ラット1匹から採取した1日分の尿を分析し、フェノール化合物の尿への1日当たりの排泄量としてμmol/日で示した。表6に示すとおり、通常食群のラットでは、尿中にフェノールは検出されず、p−クレゾール量も5±4μmol/日と僅かであったのに対し、対照群のラットの場合、フェノール量は42±15μmol/日、p−クレゾール量は208±41μmol/日と、多量のフェノール化合物が認められた。一方、2%分岐α−グルカン混合物群の場合、フェノール量は40±41μmol/日、p−クレゾール量は196±87μmol/日と、対照群に比べ大差ない結果となったものの、5%分岐α−グルカン混合物群の場合では、フェノール量は4±7μmol/日、p−クレゾール量は58±48μmol/日と、対照群に比べ顕著に少ない量を示した。この結果は、チロシン飼料の摂取により尿中にフェノール化合物が検出されること、及び、フェノール化合物が産生されやすいチロシン飼料を摂取したとしても、一定量以上の分岐α−グルカン混合物を併せて摂取すれば、尿中に認められるフェノール化合物の量が顕著に低減されることを物語っている。   Furthermore, in each group, urine for one day collected from one rat was analyzed, and the amount of phenolic compound excreted into urine per day was shown in μmol / day. As shown in Table 6, no phenol was detected in the urine and the amount of p-cresol was as small as 5 ± 4 μmol / day in the rats in the normal diet group, whereas the amount of phenol in the rats in the control group was small. Was 42 ± 15 μmol / day, and the amount of p-cresol was 208 ± 41 μmol / day, indicating a large amount of phenol compounds. On the other hand, in the case of the 2% branched α-glucan mixture group, the amount of phenol was 40 ± 41 μmol / day and the amount of p-cresol was 196 ± 87 μmol / day, which was not much different from the control group. In the case of the -glucan mixture group, the amount of phenol was 4 ± 7 μmol / day and the amount of p-cresol was 58 ± 48 μmol / day, which was significantly smaller than the control group. This result indicates that a phenolic compound is detected in urine by ingestion of a tyrosine feed, and that even when a tyrosine feed in which a phenolic compound is easily produced is ingested, a certain amount or more of a branched α-glucan mixture is also consumed. This indicates that the amount of phenolic compounds found in urine is significantly reduced.

さらに、各群においては、ラット1匹から採取した1日分の糞便を分析し、フェノール化合物の糞便への1日当たりの排泄量としてnmol/日で示した。表7に示すとおり、通常食群のラットでは、糞便中にフェノールは検出されず、p−クレゾール量も130±64nmol/日と僅かであったのに対し、対照群のラットの場合、フェノール量は240±247nmol/日、p−クレゾール量は568±218nmol/日と、多量のフェノール化合物が認められた。一方、2%分岐α−グルカン混合物群の場合、フェノール量は80±113nmol/日、p−クレゾール量は844±947nmol/日と、対照群に比べ大差ない結果となったものの、5%分岐α−グルカン混合物群の場合では、フェノール量は32±17nmol/日、p−クレゾール量は533±326nmol/日と、対照群に比べp−クレゾール量は違いがないものの、フェノールについては有意に低い値を示した。この結果は、チロシン飼料の摂取により糞便中にフェノール化合物が検出されること、及び、フェノール化合物が産生されやすいチロシン飼料を摂取したとしても、一定量以上の分岐α−グルカン混合物を併せて摂取すれば、糞便中に認められるフェノール化合物の量が低減されることを物語っている。   Furthermore, in each group, the feces for one day collected from one rat were analyzed, and the amount of phenol compound excreted into feces per day was shown as nmol / day. As shown in Table 7, no phenol was detected in the feces of the rats in the normal diet group, and the amount of p-cresol was as small as 130 ± 64 nmol / day. Was 240 ± 247 nmol / day and the amount of p-cresol was 568 ± 218 nmol / day, indicating a large amount of a phenol compound. On the other hand, in the case of the 2% branched α-glucan mixture group, the amount of phenol was 80 ± 113 nmol / day, and the amount of p-cresol was 844 ± 947 nmol / day. In the case of the -glucan mixture group, the amount of phenol was 32 ± 17 nmol / day, and the amount of p-cresol was 533 ± 326 nmol / day. Although the amount of p-cresol was not different from the control group, the value of phenol was significantly lower. showed that. This result indicates that a phenolic compound is detected in feces by ingestion of a tyrosine feed, and that even when a tyrosine feed in which a phenolic compound is easily produced is ingested, a certain amount or more of a branched α-glucan mixture is also consumed. This indicates that the amount of phenolic compounds found in feces is reduced.

また、表7に示すとおり、皮膚試料からはいずれの場合もフェノールは検出されなかった。これに対し、p−クレゾールについては、通常食群の皮膚試料からは検出されず、対照群及び2%分岐α−グルカン混合物群の皮膚試料からは、皮膚1g当たりに換算して、それぞれ29nmol/g及び27nmol/gとほぼ同程度のp−クレゾールが検出された。しかし、5%分岐α−グルカン混合物群の皮膚試料からはp−クレゾールは検出されず(皮膚1g当たりに換算して0nmol/g)、分岐α−グルカン混合物摂取によるp−クレゾールの低減効果が認められた。   In addition, as shown in Table 7, no phenol was detected in any of the skin samples. On the other hand, p-cresol was not detected in the skin sample of the normal diet group, and was 29 nmol / g in terms of per gram of skin from the control group and the skin sample of the 2% branched α-glucan mixture group. g and 27 nmol / g were detected at about the same level as p-cresol. However, p-cresol was not detected from the skin sample of the 5% branched α-glucan mixture group (0 nmol / g in terms of 1 g of skin), and the effect of reducing the p-cresol by ingesting the branched α-glucan mixture was recognized. Was done.

さらに、表7に示すとおり、肝臓試料からはいずれの場合もフェノールは検出されなかった。これに対し、p−クレゾールについては、通常食群の肝臓試料からは検出されず、対照群及び2%分岐α−グルカン混合物群の肝臓試料からは、肝臓1g当たりに換算して、それぞれ26nmol/g及び20nmol/gとほぼ同程度のp−クレゾールが検出された。しかし、5%分岐α−グルカン混合物群の肝臓試料からはp−クレゾールは検出されず(肝臓1g当たりに換算して0nmol/g)、分岐α−グルカン混合物摂取によるp−クレゾールの低減効果が認められた。   Furthermore, as shown in Table 7, no phenol was detected in any of the liver samples. On the other hand, p-cresol was not detected in the liver sample of the normal diet group, and was 26 nmol / g in terms of 1 g of liver from the control group and the liver sample of the 2% branched α-glucan mixture group. g and 20 nmol / g were detected at about the same level as p-cresol. However, p-cresol was not detected from the liver sample of the 5% branched α-glucan mixture group (0 nmol / g in terms of 1 g of liver), and the reduction effect of p-cresol by ingestion of the branched α-glucan mixture was recognized. Was done.

以上の実験結果に示されるとおり、通常飼料を摂取させて飼育した通常食群のラットの生体からはフェノール、p−クレゾールなどのフェノール化合物はあまり検出されなかったのに対し、チロシンを強化・配合したチロシン飼料を摂取させて飼育した対照群のラットの生体からは、フェノール化合物が顕著に検出されたが、分岐α−グルカン混合物を5%濃度になるよう溶解した水溶液を摂取させた5%分岐α−グルカン混合物摂取群のラットの生体からは、顕著に少ない量のフェノール化合物が検出された。このことは、ヒトが高蛋白食を摂取し、当該蛋白の構成アミノ酸であるチロシンから有害代謝産物であるフェノール化合物が生成し易い場合であっても、一定量の分岐α−グルカン混合物を摂取することにより、生体内のフェノール化合物を顕著に、効果的に低減することができることを物語っている。   As shown in the above experimental results, phenol compounds such as phenol and p-cresol were rarely detected in the living body of rats in the normal diet group bred by ingesting normal feed, whereas tyrosine was fortified / combined. A phenolic compound was remarkably detected from the living body of a control group of rats fed the prepared tyrosine feed, but a 5% branched solution in which an aqueous solution in which a branched α-glucan mixture was dissolved to a 5% concentration was ingested. Remarkably small amounts of phenol compounds were detected in the living body of the rats in the α-glucan mixture intake group. This means that even when humans consume a high protein diet and phenol compounds, which are harmful metabolites, are easily produced from tyrosine, which is a constituent amino acid of the protein, a certain amount of the branched α-glucan mixture is consumed. This indicates that phenol compounds in the living body can be significantly and effectively reduced.

<実験3:ラットの腸内菌叢に及ぼす分岐α−グルカン混合物摂取の影響>
本実験では、善玉菌としてのビフィドバクテリウム属細菌、バクテロイデス−プレボテラーポルフィロモナス属細菌、及び、バクテロイデス門細菌3種類の菌群をターゲットとして、分岐α−グルカン混合物の摂取が、腸内におけるこれら菌種・菌群の菌数に及ぼす影響を調べた。
<Experiment 3: Effect of ingestion of branched α-glucan mixture on intestinal flora of rats>
In this experiment, Bifidobacterium spp., Bacteroides-Prevotella porphyromonas spp., And Bacteroides spp. The effect of these species and groups on the number of bacteria was investigated.

実験1において飼育した通常食群、対照群、2%分岐α−グルカン混合物群、及び5%分岐α−グルカン混合物群のラットからそれぞれ採取した盲腸内容物よりDNA抽出を行った。抽出したDNAを鋳型として、菌種・菌群のrRNA遺伝子に含まれる特異的な配列部分を標的とするプライマーを用いてPCRを行った後、その増幅産物を検出する定量的PCR法(例えば、マツイ(Matsui)ら、アプライド・アンド・エンバイロメンタル・マイクロバイオロジー(Applied and Enviromental Microbiology)、第68巻、第11号、第5445頁−5451頁(2002年)参照)により、ビフィドバクテリウム属細菌、バクテロイデス−プレボテラーポルフィロモナス属細菌、及び、バクテロイデス門細菌のそれぞれの細菌数を測定した。   DNA was extracted from cecal contents collected from rats of the normal diet group, the control group, the 2% branched α-glucan mixture group, and the 5% branched α-glucan mixture group, which were bred in Experiment 1. After performing PCR using the extracted DNA as a template and primers targeting a specific sequence portion contained in the rRNA gene of the bacterial species / group, a quantitative PCR method for detecting the amplification product (for example, Matsui et al., Applied and Environmental Microbiology, Vol. 68, No. 11, pp. 5445-5451 (2002)), the genus of Bifidobacterium. The numbers of bacteria, Bacteroides-Prevotella porphyromonas, and Bacteroides phylum were measured.

上記の方法で求めた通常食群、対照群、2%分岐α−グルカン混合物群及び5%分岐α−グルカン混合物群の盲腸内容物におけるそれぞれの菌数(log(個/g−盲腸内容物))を表8に示した。   Bacterial count (log (cells / g-cecal content)) in the cecal contents of the normal diet group, the control group, the 2% branched α-glucan mixture group, and the 5% branched α-glucan mixture group determined by the above method ) Are shown in Table 8.

Figure 2018193897
Figure 2018193897

表8に見られるとおり、通常食群、対照群及び2%分岐α−グルカン混合物群のラットの盲腸内容物における腸内菌叢は、ビフィドバクテリウム属細菌、バクテロイデス−プレボテラーポルフィロモナス属細菌、及び、バクテロイデス門細菌の10を底とする対数で表した菌数(log(個/g−盲腸内容物))が、それぞれ、6.4〜6.7、10.3〜10.4、及び、10.6〜10.7の範囲(すなわち、106.4〜6.7、1010.3〜10.4、及び、1010.6〜10.7の範囲)に分布し、各群間で大差が認められなかったのに対し、5%分岐α−グルカン混合物群のラットの10を底とする対数で表した菌数(log(個/g−盲腸内容物))は8.0、11.1及び11.4(すなわち、108.0、1011.1、及び、1011.4)と、それぞれ約10倍以上に顕著に増加した。As shown in Table 8, the intestinal flora in the cecal contents of the rats in the normal diet group, the control group, and the 2% branched α-glucan mixture group were as follows: Bifidobacterium bacterium, Bacteroides-prevotella porphyromonas. The numbers of bacteria (log (cells / g-cecal contents)) expressed as a logarithm with base 10 of bacteria and Bacteroides phylum were 6.4 to 6.7 and 10.3 to 10.4, respectively. and, distributed in the range of 10.6 to 10.7 (i.e., 10 6.4 to 6.7, 10 10.3 to 10.4, and a range of 10 10.6 to 10.7), While no significant difference was observed between the groups, the number of bacteria (log (number / g-cecal contents)) expressed as a logarithm with a base of 10 of the rats of the 5% branched α-glucan mixture group was 8 .0,11.1 and 11.4 (i.e., 10 8.0, 10 1 .1, and a 10 11.4) were significantly increased about 10 times or more, respectively.

このように、5%分岐α−グルカン混合物群のラットでは、盲腸内のビフィドバクテリウム属細菌、バクテロイデス−プレボテラーポルフィロモナス属細菌、及び、バクテロイデス門細菌の菌数が顕著に増加しており、腸内菌叢が顕著に改善されたことが判明した。このことから、実験2における生体内フェノール化合物低減効果は、分岐α−グルカン混合物の摂取によるラットの盲腸内でのビフィドバクテリウム属細菌、バクテロイデス−プレボテラーポルフィロモナス属細菌、及び、バクテロイデス門細菌の菌数の増加、すなわち、腸内菌叢の改善に起因する作用効果であると推測された。ラットを用いた上記結果から、分岐α−グルカン混合物の摂取により、ヒトにおいても同様な作用が発揮されるものと考えられる。   Thus, in the rats of the 5% branched α-glucan mixture group, the numbers of Bifidobacterium, Bacteroides-Prevotella porphyromonas, and Bacteroides phylum in the cecum increased significantly. It was found that the intestinal flora was significantly improved. From this, the effect of reducing the in vivo phenolic compound in Experiment 2 was due to the fact that the ingestion of the branched α-glucan mixture showed that Bifidobacterium, Bacteroides-prevotella porphyromonas, and Bacteroides in the cecum of rats. It was presumed to be an effect resulting from an increase in the number of bacteria, that is, an improvement in the intestinal flora. From the above results using rats, it is considered that similar effects are exerted in humans by ingestion of the branched α-glucan mixture.

本分岐α−グルカン混合物が、どのように作用し腸内菌叢が改善され、生体内フェノール化合物が低減しているのかその詳細は不明であるが、本分岐α−グルカン混合物の、α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、イソマルトデキストラナーゼ消化によりイソマルトースを生成する構造的特徴を有すること、より好ましくはイソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり5質量%以上70質量%以下生成する構造的特徴を有することがその機能を発揮する上で重要な役割を果たしているのではないかと推定される。   The details of how the present branched α-glucan mixture acts to improve the intestinal flora and reduce the amount of phenolic compounds in the body are unknown, but the α-1 A non-reducing terminal glucose residue of a linear glucan having a degree of glucose polymerization of 3 or more linked via a 4 bond has a branched structure having a degree of glucose polymerization of 1 or more linked via a bond other than an α-1,4 bond. And has a structural feature of producing isomaltose by digestion with isomaltdextranase. More preferably, by digestion with isomaltodextranase, isomaltose is produced in an amount of 5% by mass or more and 70% by mass or less per solid matter of digested matter. It is presumed that having such structural features plays an important role in exerting its function.

なお、イソマルトデキストラナーゼ消化におけるイソマルトース生成量が5質量%未満の分岐α−グルカン混合物は、分岐構造の少ないマルトデキストリンに近い構造であるため腸内菌叢改善効果は小さいと推定される。一方、イソマルトデキストラナーゼ消化におけるイソマルトース生成量が70質量%超の分岐α−グルカン混合物は、α−1,6結合で連なったグルコースポリマーであるデキストランに近い構造となり、逆に分岐構造が単調になるため腸内菌叢改善効果が小さくなると推定される。また、本分岐α−グルカン混合物のうち高速液体クロマトグラフ法(酵素−HPLC法)により求めた水溶性食物繊維含量が40質量%以上であるものはそれ自体が消化され難く、大腸により到達し易いため、より好ましいと推定される。   It should be noted that the branched α-glucan mixture having less than 5% by mass of isomaltose in the isomaltodextranase digestion is presumed to have a small effect on improving the intestinal flora since it has a structure close to maltodextrin with a small number of branched structures. . On the other hand, a branched α-glucan mixture in which the amount of isomaltose produced in isomalt dextranase digestion exceeds 70% by mass has a structure close to dextran, which is a glucose polymer linked by α-1,6 bonds, and conversely has a branched structure. It is presumed that the effect of improving the intestinal flora is reduced because it becomes monotonous. Further, among the present branched α-glucan mixtures, those having a water-soluble dietary fiber content of 40% by mass or more as determined by high performance liquid chromatography (enzyme-HPLC method) are difficult to digest themselves and easily reach the large intestine. Therefore, it is estimated to be more preferable.

<実験4:チロシン飼料の給餌と分岐α−グルカン混合物の飲水投与によるヘアレスラットの飼育>
生体内でのフェノール化合物の生成が、皮膚の性状に及ぼす影響と分岐α−グルカン混合物の効果をより詳細に調べる目的で、実験1で用いたWistarラットをヘアレスラットに代えた以外は実験1とほぼ同様にしてヘアレスラットの飼育を行った。
<Experiment 4: Breeding of Hairless Rats by Feeding Tyrosine Feed and Administering Branched α-Glucan Mixture in Drinking Water>
Experiment 1 except that the Wistar rat used in Experiment 1 was replaced with a hairless rat in order to examine in more detail the effect of the formation of a phenolic compound in the living body on the skin properties and the effect of the branched α-glucan mixture. Hairless rats were bred in substantially the same manner.

ヘアレスラット(雄、6週齢、日本エスエルシー株式会社販売)24匹を購入し、AIN−93G改変飼料を与えつつ5日間飼育し馴化させた。次いで、馴化させたラットを6匹ずつ4群に分け、実験1の表1に示したと同じ4つの試験群、すなわち、通常食群、対照群、2%分岐α−グルカン混合物群、及び5%分岐α−グルカン混合物群として、それぞれ3週間飼育した。   Twenty-four hairless rats (male, 6 weeks old, sold by Nippon SLC Co., Ltd.) were purchased, bred for 5 days while being fed AIN-93G modified feed, and acclimated. The acclimated rats were then divided into four groups of six each, and the same four test groups as shown in Table 1 of Experiment 1, namely, the normal diet group, the control group, the 2% branched α-glucan mixture group, and 5% Each group was bred for 3 weeks as a branched α-glucan mixture group.

飼育期間中の各群のヘアレスラットの体重、摂餌量、飲水量を表9に示した。さらに、飼育19〜20日の時点で代謝ゲージを用いて各ラット1匹からそれぞれ採取した1日分の糞便と尿の量を測定し、各群6匹の平均値と標準偏差として表10に示した。   Table 9 shows the weight, food consumption, and water consumption of the hairless rats in each group during the breeding period. Furthermore, the amount of feces and urine for one day each collected from one rat was measured using a metabolic gauge on the 19th to 20th days of breeding. Table 10 shows the average value and standard deviation of 6 animals in each group. Indicated.

Figure 2018193897
Figure 2018193897

Figure 2018193897
Figure 2018193897

表9に示すとおり、試験した4群のヘアレスラットは、体重、飲水量では同程度の値を示し、各群間で有意な差は認められなかった。しかしながら、2%分岐α−グルカン混合物群及び5%分岐α−グルカン混合物群の一日当たりの摂餌量は、対照群の一日当たりの摂餌量に対してそれぞれ約95%及び約90%と有意に少なかった。摂餌量から計算すると、対照群のヘアレスラットにおけるチロシンの1日当たりの摂取量は約4.4g/kg−体重となった。また、分岐α−グルカン混合物水溶液を摂取させたラットに関していえば、飲水量から計算すると、分岐α−グルカン混合物の1日当たりの摂取量は、2%分岐α−グルカン混合物群では2.0g/kg−体重、5%分岐α−グルカン混合物群では5.1g/kg−体重であった。   As shown in Table 9, the four groups of hairless rats tested showed similar values in body weight and water consumption, and no significant differences were observed between the groups. However, the daily food consumption of the 2% branched α-glucan mixture group and the 5% branched α-glucan mixture group was about 95% and about 90%, respectively, significantly higher than that of the control group. Was few. Calculated from food consumption, the daily intake of tyrosine in the control group of hairless rats was approximately 4.4 g / kg-body weight. In addition, regarding the rats that have been ingested with the aqueous solution of the branched α-glucan mixture, the daily intake of the branched α-glucan mixture is 2.0 g / kg in the 2% branched α-glucan mixture group, calculated from the amount of water consumed. -Body weight was 5.1 g / kg-body weight in the 5% branched α-glucan mixture group.

また、飼育中の糞便量と尿量に関しては、表10に示すとおり、チロシン飼料を与え、飲用水として分岐α−グルカン混合物水溶液を与えて飼育した2%分岐α−グルカン混合物群及び5%分岐α−グルカン混合物群が、他の群よりも糞便量が少なく、尿量が多い傾向を示したものの、各群間での有意な差は認められなかった。   As shown in Table 10, the 2% branched α-glucan mixture group and the 5% branch which were fed with a tyrosine feed and a branched α-glucan mixture aqueous solution as drinking water were fed as shown in Table 10. Although the α-glucan mixture group tended to have a lower fecal volume and a higher urine volume than the other groups, no significant difference was observed between the groups.

表9及び表10の結果は、ヘアレスラットでは実験1のWistarラットの場合と異なり、飲用水として分岐α−グルカン混合物水溶液を摂取した群で摂餌量が若干少なくなったものの、飼育終了時の体重、飲水量、糞便量及び尿量に有意な差はなく、ヘアレスラットが、各群間で大きく差が生じることのない安定な試験系で飼育されたことを物語っている。   The results in Tables 9 and 10 show that the hairless rats differed from the Wistar rats of Experiment 1 in that the food intake was slightly reduced in the group in which the branched α-glucan mixture aqueous solution was ingested as drinking water, but at the end of breeding. There were no significant differences in body weight, water consumption, fecal volume and urine volume, indicating that hairless rats were kept in a stable test system with no significant differences between groups.

<実験5:ヘアレスラットから採取した各種生体試料におけるフェノール化合物の量>
本実験では、糞便と肝臓を測定対象としなかった以外は実験2と同様に生体から採取した各種試料におけるフェノール化合物の生成量を調べた。すなわち、実験1及び実験2−1の場合と同様に、4群のヘアレスラットから盲腸内容物、血液(血清)、尿、及び、皮膚をそれぞれ採取した。盲腸組織及び盲腸内容物のそれぞれの重量、及び、盲腸内容物のpHを表11にまとめた。
<Experiment 5: Amount of phenolic compound in various biological samples collected from hairless rats>
In this experiment, the amount of phenolic compounds produced in various samples collected from a living body was examined in the same manner as in Experiment 2, except that feces and liver were not measured. That is, as in Experiments 1 and 2-1, cecal contents, blood (serum), urine, and skin were collected from each of the four groups of hairless rats. Table 11 summarizes the weight of each of the cecal tissue and the cecal contents and the pH of the cecal contents.

Figure 2018193897
Figure 2018193897

表11に示すとおり、盲腸内容物の重量は、対照群に比較して2%分岐α−グルカン混合物群、5%分岐α−グルカン混合物群が有意に重かった。また、盲腸内容物のpHは2%分岐α−グルカン混合物群、5%分岐α−グルカン混合物群で有意に低かった。   As shown in Table 11, the weight of the cecal contents was significantly heavier in the 2% branched α-glucan mixture group and the 5% branched α-glucan mixture group than in the control group. The pH of the cecal contents was significantly lower in the 2% branched α-glucan mixture group and the 5% branched α-glucan mixture group.

次いで、上記で採取した盲腸内容物、血液(血清)、尿、及び、皮膚の各試料について、実験2−2と同様に各種試料におけるフェノール化合物(フェノール及びp−クレゾール)を定量した。測定結果を表12に纏めた。   Next, phenolic compounds (phenol and p-cresol) in various samples were quantified for each of the cecal contents, blood (serum), urine, and skin samples collected in the same manner as in Experiment 2-2. Table 12 summarizes the measurement results.

Figure 2018193897
Figure 2018193897

表12に示すとおり、ヘアレスラットでは、通常食群、対照群、2%分岐α−グルカン混合物群及び5%分岐α−グルカン混合物群のいずれの群においても、盲腸内容物、血清、尿、皮膚においてフェノールとp−クレゾールの両方が検出された。   As shown in Table 12, in the hairless rats, in the normal diet group, the control group, the 2% branched α-glucan mixture group, and the 5% branched α-glucan mixture group, the cecal contents, serum, urine, and skin were observed. In, both phenol and p-cresol were detected.

表12に示すとおり、AIN−93G改変飼料と水を摂取させて飼育した通常食群のラットでは、盲腸内容物の1g当たりのフェノール量が76±33nmol、同p−クレゾール量も14±11nmolとわずかであったのに対し、チロシン飼料と水を摂取させて飼育した対照群のヘアレスラットの場合、盲腸内容物1g当たり、フェノール量は629±230nmol、p−クレゾール量は165±164nmolと、それぞれ8倍以上及び11倍以上の多量のフェノール化合物の生成が認められた。一方、チロシン飼料と2%分岐α−グルカン混合物水溶液を摂取させて飼育した2%分岐α−グルカン混合物群の場合、盲腸内容物1g当たりフェノール量は222±109nmol、p−クレゾール量は70±92nmolと、対照群に比べ顕著に低いフェノール化合物量を示した。また、チロシン飼料と5%分岐α−グルカン混合物水溶液を摂取させて飼育した5%分岐α−グルカン混合物群の場合、盲腸内容物1g当たりフェノール量は109±66nmol、p−クレゾール量は89±55nmolと、対照群に比べ顕著に低いフェノール化合物量を示した。この結果は、実験2のWistarラットの場合と同様にヘアレスラットの場合でも、チロシン飼料の摂取により盲腸内容物にフェノール化合物が多量に産生されること、及び、フェノール化合物が産生されやすいチロシン飼料を摂取したとしても、一定量以上の分岐α−グルカン混合物を併せて摂取すれば、盲腸内容物中のフェノール化合物の量を顕著に低減できることを物語っている。   As shown in Table 12, in the normal diet group of rats fed with AIN-93G modified feed and water, the amount of phenol per g of cecal contents was 76 ± 33 nmol, and the amount of p-cresol was 14 ± 11 nmol. In contrast, in the case of hairless rats of the control group bred with tyrosine feed and water, the amount of phenol and the amount of p-cresol were 629 ± 230 nmol and 165 ± 164 nmol, respectively, per 1 g of cecal content. Generation of a large amount of phenolic compounds of 8 times or more and 11 times or more was observed. On the other hand, in the case of the 2% branched α-glucan mixture group fed and fed with a tyrosine feed and a 2% branched α-glucan mixture aqueous solution, the amount of phenol was 222 ± 109 nmol and the amount of p-cresol was 70 ± 92 nmol per 1 g of cecal content. And a phenol compound amount significantly lower than that of the control group. In the case of the 5% branched α-glucan mixture group fed and fed with a tyrosine feed and a 5% branched α-glucan mixture aqueous solution, the amount of phenol was 109 ± 66 nmol and the amount of p-cresol was 89 ± 55 nmol per 1 g of cecal content. And a phenol compound amount significantly lower than that of the control group. This result indicates that in the case of hairless rats as well as in the case of Wistar rats in Experiment 2, a large amount of a phenolic compound was produced in the cecal contents by ingestion of a tyrosine feed, and that a tyrosine feed in which a phenolic compound was easily produced was obtained. Even if it is ingested, it indicates that if a certain amount or more of the branched α-glucan mixture is ingested, the amount of the phenol compound in the cecal contents can be significantly reduced.

また、表12に示すとおり、ヘアレスラットでは、血清、尿、皮膚においても、通常食群に比べ対照群でフェノール量、p−クレゾール量がともに増加し、2%分岐α−グルカン混合物群、5%分岐α−グルカン混合物群でともに低下する結果若しくは傾向が認められた。この結果は、チロシン飼料を摂取したとしても、盲腸内容物の場合と同様に、一定量以上の分岐α−グルカン混合物を併せて摂取すれば、血清中、尿中及び皮膚中のフェノール化合物の量を顕著に低減できることを物語っている。   Further, as shown in Table 12, in the hairless rats, in the serum, urine, and skin, both the phenol amount and the p-cresol amount increased in the control group as compared with the normal diet group, and the 2% branched α-glucan mixture group and the 5% The results or tendency to decrease both were observed in the% branched α-glucan mixture group. This result shows that, even if a tyrosine feed was ingested, as in the case of cecal contents, if a certain amount or more of the branched α-glucan mixture was ingested, the amount of phenolic compounds in serum, urine and skin Can be significantly reduced.

なお、実験1及び2のWistarラットにおいては、フェノール化合物としてフェノールよりもp−クレゾールの方が多量に生成されていたのに対し、ヘアレスラットではフェノールの方がp−クレゾールよりも多量に生成されていた。この結果は、Wistarラットとヘアレスラットとでは腸内細菌叢が異なっており、そのためフェノール化合物の生成に差が生じたものと考えられる。   In the Wistar rats of Experiments 1 and 2, p-cresol was produced in a larger amount than phenol as a phenol compound, whereas in the hairless rat, phenol was produced in a larger amount than p-cresol. I was This result suggests that the intestinal flora is different between Wistar rats and hairless rats, resulting in a difference in the production of phenolic compounds.

<実験6:ヘアレスラットの皮膚性状の分析>
皮膚では、外界に接した外側の細胞が垢となってはがれ、内側の細胞が増殖し新しい細胞を供給するターンオーバー(皮膚の新陳代謝)を繰り返すことで恒常性が維持されている。皮膚のターンオーバーが速すぎると、角層細胞は十分に分化が進まず小さいまま皮膚表面に現れることから、化粧品分野では、角層細胞面積が皮膚の健康度の指標として用いられている。非特許文献2では、フェノール化合物がヘアレスマウスの皮膚に及ぼす悪影響の指標として、皮膚の角層細胞面積が測定されており、フェノールやp−クレゾールを投与したヘアレスマウスでは角層細胞面積が有意に低下したことが報告されている。本実験では、実験4で飼育したヘアレスラットについて、皮膚の角層細胞面積を測定した。
<Experiment 6: Analysis of skin properties of hairless rats>
In the skin, homeostasis is maintained by repeating turnover (skin metabolism) in which the outer cells in contact with the outside world are debris and peel off, and the inner cells proliferate and supply new cells. If the turnover of the skin is too fast, the stratum corneum cells do not sufficiently differentiate and appear on the skin surface in a small size. Therefore, in the cosmetics field, the stratum corneum cell area is used as an index of skin health. In Non-Patent Document 2, the horny cell area of the skin is measured as an index of the adverse effect of a phenol compound on the skin of a hairless mouse, and the horny cell area of a hairless mouse to which phenol or p-cresol is administered is significantly reduced. It has been reported that it has declined. In this experiment, the skin cell area of the skin was measured for the hairless rats raised in Experiment 4.

また、皮膚のターンオーバーにおいて、皮膚表皮の下にある基底膜に接している基底細胞と呼ばれる未分化の細胞群の分裂が亢進されると、角化細胞への分化が遅れ未成熟な角化細胞となることから、実験4で飼育したヘアレスラットについて、皮膚の基底細胞の分裂についても調べた。   In addition, during turnover of the skin, if the division of undifferentiated cells called basal cells in contact with the basement membrane below the skin epidermis is accelerated, differentiation into keratinocytes is delayed and immature keratin Since the cells became cells, hairless rats bred in Experiment 4 were also examined for division of skin basal cells.

<実験6−1:ヘアレスラットの皮膚の角層細胞面積の測定>
実験4で飼育した4群、計24匹のヘアレスラットについて、安楽死させる前のペントバルビタール麻酔下において、皮膚の角層を採取した。ヘアレスラットの右背中に角質採取用の粘着性テープ(商品名「角質チェッカー AST−01」、25×25mm、日本アッシュ株式会社販売)を数秒間押し付けて剥がすことによりテープ上に角質を採取し、ホルマリン蒸気にあてて固定した後、ヘマトキシリン・エオシン染色した。次いで、ヘマトキシリン・エオシン染色した角層細胞を顕微鏡下で観察し、ヘアレスラット1個体当たり30個以上の角層細胞について、顕微鏡用イメージングソフトウェア(商品名『cellSens Dimension』、オリンパス株式会社製)を用いて細胞面積を測定し、その平均値を算出した。結果を表13に示した。
<Experiment 6-1: Measurement of stratum corneum cell area of hairless rat skin>
The horny layer of the skin was collected from a total of 24 hairless rats bred in Experiment 4 under pentobarbital anesthesia before euthanasia. The keratin is collected on the tape by pressing an adhesive tape for exfoliation (trade name “Exfoliator Checker AST-01”, 25 × 25 mm, sold by Nippon Ash Co., Ltd.) on the right back of the hairless rat for a few seconds and peeling off. After fixation with formalin vapor, hematoxylin and eosin staining was performed. Next, the corneal cells stained with hematoxylin and eosin were observed under a microscope, and 30 or more horny cells per hairless rat were examined using a microscope imaging software (trade name “cellSens Dimension”, manufactured by Olympus Corporation). To measure the cell area, and the average value was calculated. The results are shown in Table 13.

Figure 2018193897
Figure 2018193897

表13に見られるとおり、AIN−93G改変飼料と水を摂取させて飼育した通常食群のヘアレスラットでは、角層細胞面積が1303±96μmであったのに対し、チロシン飼料と水を摂取させて飼育した対照群のヘアレスラットでは、1159±97μmと有意に低い値を示した。一方、チロシン飼料と2%分岐α−グルカン混合物水溶液を摂取させて飼育した2%分岐α−グルカン混合物群の場合、角層細胞面積は1286±86μmと対照群に比べ増加傾向を示し、チロシン飼料と5%分岐α−グルカン混合物水溶液を摂取させて飼育した5%分岐α−グルカン混合物群の場合、1331±72μmと対照群に比べ有意に高い値を示し、通常食群と同等の値を示した。この結果は、チロシン飼料を摂取したヘアレスラットでは生体内で生成したフェノール化合物が皮膚において角層細胞の分化を阻害するものの、分岐α−グルカン混合物を摂取することにより、生体内でのフェノール化合物の生成量が低下し、角層細胞の分化に影響を及ぼさなくなり、皮膚性状を改善できることを示している。As shown in Table 13, the hairless rats of the normal diet group bred with the AIN-93G modified feed and water were fed, whereas the horny cell area was 1303 ± 96 μm 2 , whereas the tyrosine feed and water were fed. The hairless rats of the control group bred and raised had a significantly lower value of 1159 ± 97 μm 2 . On the other hand, in the case of the 2% branched α-glucan mixture group fed and fed with a tyrosine feed and a 2% branched α-glucan mixture aqueous solution, the horny layer cell area was 1286 ± 86 μm 2 , showing an increasing tendency as compared with the control group. In the case of the 5% branched α-glucan mixture group fed and fed with a feed and a 5% branched α-glucan mixture aqueous solution, the value was 1331 ± 72 μm 2, which was significantly higher than that of the control group and equivalent to that of the normal diet group. showed that. This result indicates that in hairless rats fed a tyrosine feed, phenolic compounds generated in vivo inhibit differentiation of stratum corneum cells in the skin, but ingestion of a branched α-glucan mixture leads to This indicates that the amount of production is reduced, does not affect the differentiation of stratum corneum cells, and that skin properties can be improved.

<実験6−2:皮膚の基底細胞の分裂像の測定>
実験4で飼育した4群、計24匹のヘアレスラットについて、安楽死させた後に左背中皮膚を採取し、15%(v/v)ホルマリン液に浸漬して保存し、組織分析に供した。常法によりパラフィン包埋した組織切片をヘマトキシリン・エオシン染色し、顕微鏡下にて基底細胞層の分裂像をカウントした。結果を表14に示した。
<Experiment 6-2: Measurement of division image of skin basal cells>
The skin of the left back was collected after euthanized from four groups of 24 hairless rats bred in Experiment 4, and immersed and stored in a 15% (v / v) formalin solution for tissue analysis. Tissue sections embedded in paraffin by a conventional method were stained with hematoxylin and eosin, and the division images of the basal cell layer were counted under a microscope. The results are shown in Table 14.

Figure 2018193897
Figure 2018193897

表14に見られるとおり、AIN−93G改変飼料と水を摂取させて飼育した通常食群のヘアレスラットでは、基底細胞の分裂像が2.8±1.1個/cmであったのに対し、チロシン飼料と水を摂取させて飼育した対照群のヘアレスラットでは、5.7±1.8個/cmと有意に大きい値を示し、チロシン飼料の摂取により基底細胞の分裂が亢進したことが判明した。一方、チロシン飼料と2%分岐α−グルカン混合物水溶液を摂取させて飼育した2%分岐α−グルカン混合物群の場合、4.8±1.8個/cmと対照群に比べ低下傾向を示し、チロシン飼料と5%分岐α−グルカン混合物水溶液を摂取させて飼育した5%分岐α−グルカン混合物群の場合、3.2±0.8と対照群に比べ有意に低い値を示し、通常食群と同等の値であった。この結果は、チロシン飼料を摂取したヘアレスラットでは生体内で生成したフェノール化合物が皮膚において基底細胞の分裂を亢進、すなわち、角化細胞への分化を阻害したものの、チロシン飼料を摂取したヘアレスラットであっても、分岐α−グルカン混合物を摂取することにより、生体内でのフェノール化合物の生成量が低下し、その結果として角層細胞の分化に影響を及ぼさなくなり、皮膚性状を改善できることを示している。   As can be seen from Table 14, in the hairless rat of the normal diet group bred by ingesting the AIN-93G modified feed and water, the division image of the basal cells was 2.8 ± 1.1 cells / cm. In the control group of hairless rats fed a tyrosine diet and water, the control group showed a significantly large value of 5.7 ± 1.8 cells / cm, indicating that the basal cell division was enhanced by the intake of the tyrosine diet. found. On the other hand, in the case of the 2% branched α-glucan mixture group bred by ingesting the tyrosine feed and the 2% branched α-glucan mixture aqueous solution, 4.8 ± 1.8 cells / cm showed a decreasing tendency as compared with the control group, In the case of the 5% branched α-glucan mixture group bred by ingesting the tyrosine feed and the 5% branched α-glucan mixture aqueous solution, the group showed a significantly lower value of 3.2 ± 0.8 as compared to the control group, and showed a normal diet group. Was equivalent to This result shows that in hairless rats fed a tyrosine diet, phenolic compounds produced in vivo promoted division of basal cells in the skin, that is, inhibited differentiation into keratinocytes, but in hairless rats fed a tyrosine diet. Even if there is, the intake of the branched α-glucan mixture reduces the amount of phenolic compounds produced in the living body, and as a result, does not affect the differentiation of stratum corneum cells, indicating that skin properties can be improved. I have.

実験1乃至5の結果から、本分岐α−グルカン混合物は、摂取すると腸内菌叢を改善するとともに、腸内腐敗産物として知られる生体内のフェノール、p−クレゾールなどのフェノール化合物を顕著に低減できることが判明した。これら実験は、本分岐α−グルカン混合物が生体内フェノール低減剤の有効成分として顕著な作用効果を奏することを物語るものである。   From the results of Experiments 1 to 5, the present branched α-glucan mixture improves the intestinal flora when ingested and significantly reduces phenol compounds such as phenol and p-cresol in the body, which are known as intestinal putrefaction products. It turns out that it can be done. These experiments show that the present branched α-glucan mixture has a remarkable action and effect as an active ingredient of the in vivo phenol reducing agent.

また、実験6の結果から、本分岐α−グルカン混合物を摂取すると、フェノール化合物の皮膚への悪影響として報告されている角層細胞面積の低下が認められなくなり、また、基底細胞の分裂の亢進も見られなくなることが判明した。その理由として、本分岐α−グルカン混合物の摂取が生体内でのフェノール化合物の生成を抑制したため、吸収され皮膚に移行し悪影響を与えるフェノール化合物の量が低減されたためと考えられる。   In addition, from the results of Experiment 6, when the present branched α-glucan mixture was ingested, the decrease in the area of the stratum corneum reported as an adverse effect of the phenol compound on the skin was not observed, and the division of basal cells was also enhanced. It turned out to be unseen. It is considered that the reason for this is that the intake of the present branched α-glucan mixture suppressed the production of a phenol compound in the living body, and the amount of the phenol compound which was absorbed and transferred to the skin and had an adverse effect was reduced.

上記の結果は、本分岐α−グルカン混合物が、生体内フェノール化合物低減剤の有効成分として有利に利用できること、また、この生体内フェノール化合物低減剤を配合した飲食物は、生体内フェノール化合物低減用の飲食物として有利に利用できることを物語っている。加えて、実験6の結果は、上記の生体内フェノール化合物低減剤が、飲食物に起因し、生体内で生成するフェノール化合物の量を低減することにより、フェノール化合物の影響により起こる皮膚への悪影響、すなわち、角質細胞の成熟阻害を低減し、角質細胞を成熟化(角層細胞の細胞面積を増加)させることができるので、皮膚の健康状態を維持又は改善し、皮膚性状を改善する用途、より具体的には、皮膚ターンオーバーの改善用途に利用できることを示している。   The above results show that the present branched α-glucan mixture can be advantageously used as an active ingredient of an in vivo phenolic compound reducing agent. It is said that it can be used advantageously as food and drink. In addition, the result of Experiment 6 indicates that the above-mentioned in vivo phenolic compound reducing agent reduces the amount of phenolic compound generated in the living body due to food and drink, thereby causing an adverse effect on the skin caused by the effect of the phenolic compound. In other words, it can reduce the inhibition of maturation of keratinocytes and maturate keratinocytes (increase the cell area of stratum corneum cells), thereby maintaining or improving skin health and improving skin properties. More specifically, it shows that it can be used for improving skin turnover.

以下、本発明を実施例に基づいてより詳細に説明する。しかしながら、本発明は、これら実施例によりなんら限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by these examples.

<生体内フェノール化合物低減剤>
国際公開第WO2008/136331号パンフレットの実施例5に記載された方法に従い、分岐α−グルカン混合物粉末を調製し、生体内フェノール化合物低減剤とした。なお、得られた分岐α−グルカン混合物粉末は、以下の(a)乃至(g)の特徴を有していた。
(a)グルコースを構成糖とし、
(b)α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(c)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり35質量%生成し、
(d)水溶性食物繊維含量が80.8質量%であり、
(e)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比が1:2.2であり、
(f)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基との合計が全グルコース残基の72.9%であり、
(g)平均グルコース重合度が31であり、Mw/Mnが2.0である。
<Biological phenol compound reducing agent>
According to the method described in Example 5 of International Publication WO 2008/136331, a branched α-glucan mixture powder was prepared and used as an in vivo phenol compound reducing agent. The obtained branched α-glucan mixture powder had the following characteristics (a) to (g).
(A) glucose as a constituent sugar;
(B) A non-reducing terminal glucose residue at one end of a linear glucan having a degree of polymerization of glucose of 3 or more linked via an α-1,4 bond was linked via a bond other than the α-1,4 bond. Having a branched structure having a glucose polymerization degree of 1 or more,
(C) isomaltose dextranase digestion produces isomaltose at 35% by mass per solid of the digest,
(D) a water-soluble dietary fiber content of 80.8% by mass;
(E) the ratio of α-1,4 linked glucose residues to α-1,6 linked glucose residues is 1: 2.2,
(F) the sum of α-1,4 linked glucose residues and α-1,6 linked glucose residues is 72.9% of all glucose residues,
(G) The average degree of glucose polymerization is 31, and Mw / Mn is 2.0.

本品は、有効成分である分岐α−グルカン混合物の含量が100質量%の生体内フェノール化合物低減剤である。本品は、それ自体が低甘味ないし無味であり、異臭がなく、室温下でも吸湿、変色することなく、1年以上に亘って安定である。本品は、そのまま、或いは、水、お茶、コーヒーなどの飲料に溶解して摂取するか、食品又は飲料に添加して摂取すればよく、本品を摂取することにより、生体内フェノール化合物を低減することができる。また、本品に、必要に応じて、水、ミネラル、着香料、安定化剤、賦形剤、増量剤、pH調整剤などから選ばれる1種又は2種以上の成分を配合することも有利に実施できる。   This product is an in vivo phenolic compound reducing agent containing 100% by mass of a branched α-glucan mixture as an active ingredient. The product itself is low in sweetness or tasteless, has no off-flavor, is stable at room temperature without moisture absorption or discoloration for one year or more. This product may be taken as it is, or dissolved in a beverage such as water, tea, coffee, etc., or added to a food or beverage and taken.The consumption of this product reduces phenol compounds in the body. can do. In addition, it is also advantageous to mix one or more components selected from water, minerals, flavors, stabilizers, excipients, extenders, pH adjusters, etc., with the product, if necessary. Can be implemented.

<生体内フェノール化合物低減剤>
国際公開第WO2008/136331号パンフレットの実験2−2に記載された方法に従い、固形分濃度30質量%の分岐α−グルカン混合物溶液を調製し、その後、常法に従って噴霧乾燥して分岐α−グルカン混合物粉末を得、これを生体内フェノール化合物低減剤とした。なお、得られた分岐α−グルカン混合物粉末は、以下の(a)乃至(g)の特徴を有していた。
(a)グルコースを構成糖とし、
(b)α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(c)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり27.2質量%生成し、
(d)水溶性食物繊維含量が41.8質量%であり、
(e)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比が1:0.6であり、
(f)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基との合計が全グルコース残基の83.0%であり、
(g)平均グルコース重合度が405であり、Mw/Mnが16.2である。
<Biological phenol compound reducing agent>
According to the method described in Experiment 2-2 of International Publication WO2008 / 136331, a branched α-glucan mixture solution having a solid content of 30% by mass was prepared, and then spray-dried according to a conventional method to obtain a branched α-glucan. A mixture powder was obtained and used as a phenolic compound reducing agent in a living body. The obtained branched α-glucan mixture powder had the following characteristics (a) to (g).
(A) glucose as a constituent sugar;
(B) A non-reducing terminal glucose residue at one end of a linear glucan having a degree of polymerization of glucose of 3 or more linked via an α-1,4 bond was linked via a bond other than the α-1,4 bond. Having a branched structure having a glucose polymerization degree of 1 or more,
(C) isomaltose dextranase digestion to produce isomaltose 27.2% by mass per solid of the digest,
(D) a water-soluble dietary fiber content of 41.8% by mass;
(E) the ratio of α-1,4 linked glucose residues to α-1,6 linked glucose residues is 1: 0.6,
(F) the sum of α-1,4 linked glucose residues and α-1,6 linked glucose residues is 83.0% of all glucose residues,
(G) The average degree of polymerization of glucose is 405, and Mw / Mn is 16.2.

本品は、有効成分である分岐α−グルカン混合物の含量が100質量%の生体内フェノール化合物低減剤である。本品は、それ自体が低甘味ないし無味であり、異臭がなく、室温下でも吸湿、変色することなく、1年以上に亘って安定である。本品は、そのまま、或いは、水、お茶、コーヒーなどの飲料に溶解して摂取するか、食品又は飲料に添加して摂取すればよく、本品を摂取することにより、生体内フェノール化合物を低減することができる。また、本品に、必要に応じて、水、ミネラル、着香料、安定化剤、賦形剤、増量剤、pH調整剤などから選ばれる1種又は2種以上の成分を配合することも有利に実施できる。   This product is an in vivo phenolic compound reducing agent containing 100% by mass of a branched α-glucan mixture as an active ingredient. The product itself is low in sweetness or tasteless, has no off-flavor, is stable at room temperature without moisture absorption or discoloration for one year or more. This product may be taken as it is, or dissolved in a beverage such as water, tea, coffee, etc., or added to a food or beverage and taken.The consumption of this product reduces phenol compounds in the body. can do. In addition, it is also advantageous to mix one or more components selected from water, minerals, flavors, stabilizers, excipients, extenders, pH adjusters, etc., with the product, if necessary. Can be implemented.

<生体内フェノール化合物低減剤>
国際公開第WO2008/136331号パンフレットの実施例6に記載された方法に従い、分岐α−グルカン混合物粉末を調製し、生体内フェノール化合物低減剤とした。なお、得られた分岐α−グルカン混合物粉末は、(a)乃至(g)の特徴を有していた。
(a)グルコースを構成糖とし、
(b)α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(c)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり40.6質量%生成し、
(d)水溶性食物繊維含量が77.0質量%であり、
(e)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比が1:4であり、
(f)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基との合計が全グルコース残基の67.9%であり、
(g)平均グルコース重合度が18であり、Mw/Mnが2.0である。
<Biological phenol compound reducing agent>
According to the method described in Example 6 of International Publication WO2008 / 136331, a branched α-glucan mixture powder was prepared and used as an in vivo phenol compound reducing agent. In addition, the obtained branched α-glucan mixture powder had the characteristics of (a) to (g).
(A) glucose as a constituent sugar;
(B) A non-reducing terminal glucose residue at one end of a linear glucan having a degree of polymerization of glucose of 3 or more linked via an α-1,4 bond was linked via a bond other than the α-1,4 bond. Having a branched structure having a glucose polymerization degree of 1 or more,
(C) isomaltose dextranase digestion to produce 40.6% by mass of isomaltose per solid of the digest,
(D) a water-soluble dietary fiber content of 77.0% by mass;
(E) the ratio of α-1,4 linked glucose residues to α-1,6 linked glucose residues is 1: 4,
(F) the sum of α-1,4 linked glucose residues and α-1,6 linked glucose residues is 67.9% of all glucose residues,
(G) The average degree of glucose polymerization is 18, and Mw / Mn is 2.0.

本品は、有効成分である分岐α−グルカン混合物の含量が100質量%の生体内フェノール化合物低減剤である。本品は、それ自体が低甘味ないし無味であり、異臭がなく、室温下でも吸湿、変色することなく、1年以上に亘って安定である。本品は、そのまま、或いは、水、お茶、コーヒーなどの飲料に溶解して摂取するか、食品又は飲料に添加して摂取すればよく、本品を摂取することにより、生体内フェノール化合物を低減することができる。また、本品に、必要に応じて、水、ミネラル、着香料、安定化剤、賦形剤、増量剤、pH調整剤などから選ばれる1種又は2種以上の成分を配合することも有利に実施できる。   This product is an in vivo phenolic compound reducing agent containing 100% by mass of a branched α-glucan mixture as an active ingredient. The product itself is low in sweetness or tasteless, has no off-flavor, is stable at room temperature without moisture absorption or discoloration for one year or more. This product may be taken as it is, or dissolved in a beverage such as water, tea, coffee, etc., or added to a food or beverage and taken.The consumption of this product reduces phenol compounds in the body. can do. In addition, it is also advantageous to mix one or more components selected from water, minerals, flavors, stabilizers, excipients, extenders, pH adjusters, etc., with the product, if necessary. Can be implemented.

<生体内フェノール化合物低減剤>
トウモロコシ澱粉液化液に、さらにマルトテトラオース生成アミラーゼを固形物1グラム当たり2単位添加した以外は、国際公開第WO2008/136331号パンフレットの実施例5に記載された方法に従い、分岐α−グルカン混合物粉末を調製し、生体内フェノール化合物低減剤とした。なお、得られた分岐α−グルカン混合物粉末は、(a)乃至(g)の特徴を有していた。
(a)グルコースを構成糖とし、
(b)α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(c)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり41.9質量%生成し、
(d)水溶性食物繊維含量が69.1質量%であり、
(e)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比が1:2.4であり、
(f)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基との合計が全グルコース残基の64.2%であり、
(g)平均グルコース重合度が13であり、Mw/Mnが2.0である。
<Biological phenol compound reducing agent>
The branched α-glucan mixture powder was prepared according to the method described in Example 5 of WO 2008/136331, except that maltotetraose-forming amylase was further added to the corn starch liquefied liquid in an amount of 2 units per gram of solid matter. Was prepared and used as an in vivo phenolic compound reducing agent. In addition, the obtained branched α-glucan mixture powder had the characteristics of (a) to (g).
(A) glucose as a constituent sugar;
(B) A non-reducing terminal glucose residue at one end of a linear glucan having a degree of polymerization of glucose of 3 or more linked via an α-1,4 bond was linked via a bond other than the α-1,4 bond. Having a branched structure having a glucose polymerization degree of 1 or more,
(C) Isomaltose is produced by digestion with isomaltodextranase at 41.9% by mass per solid matter of digested matter,
(D) a water-soluble dietary fiber content of 69.1% by mass;
(E) the ratio of α-1,4 linked glucose residues to α-1,6 linked glucose residues is 1: 2.4,
(F) The sum of α-1,4 linked glucose residues and α-1,6 linked glucose residues is 64.2% of all glucose residues,
(G) The average degree of polymerization of glucose is 13, and Mw / Mn is 2.0.

本品は、有効成分である分岐α−グルカン混合物の含量が100質量%の生体内フェノール化合物低減剤である。本品は、それ自体が低甘味ないし無味であり、異臭がなく、室温下でも吸湿、変色することなく、1年以上に亘って安定である。本品は、そのまま、或いは、水、お茶、コーヒーなどの飲料に溶解して摂取するか、食品又は飲料に添加して摂取すればよく、本品を摂取することにより、生体内フェノール化合物を低減することができる。また、本品に、必要に応じて、水、ミネラル、着香料、安定化剤、賦形剤、増量剤、pH調整剤などから選ばれる1種又は2種以上の成分を配合することも有利に実施できる。   This product is an in vivo phenolic compound reducing agent containing 100% by mass of a branched α-glucan mixture as an active ingredient. The product itself is low in sweetness or tasteless, has no off-flavor, is stable at room temperature without moisture absorption or discoloration for one year or more. This product may be taken as it is, or dissolved in a beverage such as water, tea, coffee, etc., or added to a food or beverage and taken.The consumption of this product reduces phenol compounds in the body. can do. In addition, it is also advantageous to mix one or more components selected from water, minerals, flavors, stabilizers, excipients, extenders, pH adjusters, etc., with the product, if necessary. Can be implemented.

<生体内フェノール化合物低減剤>
実施例1に記載された方法で得られた分岐α−グルカン混合物にアミログルコシダーゼ(グルコアミラーゼ)を作用させ、分解されなかった成分をゲル濾過クロマトグラフィーを用いて分取した。その後、常法に従って精製及び噴霧乾燥して分岐α−グルカン混合物粉末を調製し、生体内フェノール化合物低減剤とした。なお、得られた分岐α−グルカン混合物は、(a)乃至(g)の特徴を有していた。
(a)グルコースを構成糖とし、
(b)α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(c)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり21質量%生成し、
(d)水溶性食物繊維含量が94.4質量%であり、
(e)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比が1:1.9であり、
(f)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基との合計が全グルコース残基の64%であり、
(g)グルコース重合度が22であり、Mw/Mnが1.7である。
<Biological phenol compound reducing agent>
Amyloglucosidase (glucoamylase) was allowed to act on the branched α-glucan mixture obtained by the method described in Example 1, and the undegraded components were separated using gel filtration chromatography. Thereafter, the mixture was purified and spray-dried according to a conventional method to prepare a branched α-glucan mixture powder, which was used as an in vivo phenol compound reducing agent. In addition, the obtained branched α-glucan mixture had the characteristics of (a) to (g).
(A) glucose as a constituent sugar;
(B) A non-reducing terminal glucose residue at one end of a linear glucan having a degree of polymerization of glucose of 3 or more linked via an α-1,4 bond was linked via a bond other than the α-1,4 bond. Having a branched structure having a glucose polymerization degree of 1 or more,
(C) isomaltose dextranase digestion to produce isomaltose at 21% by mass per solid of the digest,
(D) a water-soluble dietary fiber content of 94.4% by mass;
(E) the ratio of α-1,4 linked glucose residues to α-1,6 linked glucose residues is 1: 1.9,
(F) the sum of α-1,4 linked glucose residues and α-1,6 linked glucose residues is 64% of all glucose residues,
(G) The glucose polymerization degree is 22, and Mw / Mn is 1.7.

本品は、有効成分である分岐α−グルカン混合物の含量が100質量%の生体内フェノール化合物低減剤である。本品は、それ自体が低甘味ないし無味であり、異臭がなく、室温下でも吸湿、変色することなく、1年以上に亘って安定である。本品は、そのまま、或いは、水、お茶、コーヒーなどの飲料に溶解して摂取するか、食品又は飲料に添加して摂取すればよく、本品を摂取することにより、生体内フェノール化合物を低減することができる。また、本品に、必要に応じて、水、ミネラル、着香料、安定化剤、賦形剤、増量剤、pH調整剤などから選ばれる1種又は2種以上の成分を配合することも有利に実施できる。   This product is an in vivo phenolic compound reducing agent containing 100% by mass of a branched α-glucan mixture as an active ingredient. The product itself is low in sweetness or tasteless, has no off-flavor, is stable at room temperature without moisture absorption or discoloration for one year or more. This product may be taken as it is, or dissolved in a beverage such as water, tea, coffee, etc., or added to a food or beverage and taken.The consumption of this product reduces phenol compounds in the body. can do. In addition, it is also advantageous to mix one or more components selected from water, minerals, flavors, stabilizers, excipients, extenders, pH adjusters, etc., with the product, if necessary. Can be implemented.

<経口組成物(粉末ジュース)>
噴霧乾燥により製造したオレンジ果汁粉末33質量部に対して、実施例5に記載された方法で得られた生体内フェノール化合物低減剤10質量部、グルコース20質量部、無水結晶マルチトール20質量部、無水クエン酸0.65質量部、リンゴ酸0.1質量部、2−O−α−グルコシル−L−アスコルビン酸0.2質量部、クエン酸ソーダ0.1質量部、及び粉末香料の適量をよく混合攪拌し、粉砕し微粉末にして、これを流動層造粒機に仕込み、排風温度40℃とし、これに実施例1の方法で得た分岐α−グルカン粉末を水に溶解して得た溶液をバインダーとして適量スプレーし、30分間造粒し、計量し、包装して製品を得た。本品は、果汁含有率約30%の粉末ジュースである。本品は、生体内フェノール化合物低減剤を含有しているので、腸内菌叢を改善するとともに、生体内フェノール化合物を低減できる粉末ジュースである。また、本品は、異味、異臭がなく、ジュースとして商品価値の高いものである。
<Oral composition (powder juice)>
33 parts by mass of orange juice powder produced by spray drying, 10 parts by mass of an in vivo phenolic compound reducer obtained by the method described in Example 5, 20 parts by mass of glucose, 20 parts by mass of anhydrous crystalline maltitol, 0.65 parts by weight of citric anhydride, 0.1 part by weight of malic acid, 0.2 part by weight of 2-O-α-glucosyl-L-ascorbic acid, 0.1 part by weight of sodium citrate, and an appropriate amount of powdered flavor Mix well and stir, pulverize to a fine powder, charge it in a fluid bed granulator, set the exhaust air temperature to 40 ° C, and dissolve the branched α-glucan powder obtained by the method of Example 1 in water. An appropriate amount of the obtained solution was sprayed as a binder, granulated for 30 minutes, weighed, and packaged to obtain a product. This product is a powdered juice having a fruit juice content of about 30%. This product is a powdered juice that contains an in vivo phenolic compound reducing agent, so that it can improve intestinal flora and reduce in vivo phenolic compounds. In addition, the product has no off-flavor or odor, and has high commercial value as a juice.

<経口組成物(カスタードクリーム)>
コーンスターチ100質量部、実施例4に記載された方法で得られた生体内フェノール化合物低減剤30質量部、トレハロース含水結晶70質量部、グルコース40質量部、および食塩1質量部を充分に混合し、鶏卵280質量部を加えて攪拌し、これに沸騰した牛乳1、000質量部を徐々に加え、更に火にかけて攪拌を続け、コーンスターチが完全に糊化して全体が半透明になった時に火を止め、これを冷却して適量のバニラ香料を加え、計量、充填、包装して製品を得た。本品は、生体内フェノール化合物低減剤を含有しているので、腸内菌叢を改善するとともに、生体内フェノール化合物を低減できるカスタードクリームである。また、本品は、なめらかな光沢を有し、風味良好で、高品質のカスタードクリームである。
<Oral composition (custard cream)>
100 parts by mass of corn starch, 30 parts by mass of a phenolic compound reducing agent in vivo obtained by the method described in Example 4, 70 parts by mass of trehalose hydrated crystal, 40 parts by mass of glucose, and 1 part by mass of sodium chloride are sufficiently mixed, Add 280 parts by mass of chicken egg and stir, add 1,000 parts by mass of boiled milk gradually, continue to heat and continue stirring, stop the fire when corn starch is completely gelatinized and the whole becomes translucent After cooling, an appropriate amount of vanilla flavor was added, followed by weighing, filling, and packaging to obtain a product. This product is a custard cream that contains an in vivo phenolic compound reducing agent, and thus can improve intestinal flora and reduce in vivo phenolic compounds. The product is a high-quality custard cream having a smooth luster, good flavor and good taste.

<経口組成物(栄養補助食品)>
グルコース247g、実施例3に記載された方法で得られた生体内フェノール化合物低減剤217g、ピロリン酸鉄懸濁液(太陽化学社製商品名サンアクティブFeM)8g、ビタミンプレミックス15g、アスコルビン酸ナトリウム3g、亜鉛酵母0.5g、クロム酵母0.3g、スクラロース0.2gを造粒原末として造粒装置に投入した。一方、造粒調整用水100mL中にコーヒー抽出粉末15g、硫酸マグネシウム10gを溶解させた。造粒原末を装置内で混合させているところに造粒調整液をノズルの先から少しずつ噴霧して顆粒化し、1パック5.15gもしくは1パック10.3gとなるようアルミ袋に窒素ガス充填した。本品は生体内フェノール化合物低減剤を含有する栄養補助食品であり、腸内菌叢を改善するとともに、生体内フェノール化合物を低減することができる。また、本品は、異味、異臭がなく、栄養補助食品として商品価値の高いものである。
<Oral composition (dietary supplement)>
247 g of glucose, 217 g of an in vivo phenolic compound reducer obtained by the method described in Example 3, 8 g of an iron pyrophosphate suspension (Sunactive FeM manufactured by Taiyo Kagaku Co., Ltd.), 15 g of vitamin premix, sodium ascorbate 3 g, zinc yeast 0.5 g, chromium yeast 0.3 g, and sucralose 0.2 g were put into a granulating apparatus as raw granules. On the other hand, 15 g of coffee extracted powder and 10 g of magnesium sulfate were dissolved in 100 mL of granulation adjusting water. The granulation adjustment liquid is sprayed little by little from the tip of the nozzle into the place where the raw granulation powder is mixed in the apparatus, and granulated. Nitrogen gas is placed in an aluminum bag so as to be 5.15 g per pack or 10.3 g per pack. Filled. This product is a dietary supplement containing a phenolic compound reducing agent in the living body, and can improve the intestinal flora and reduce the phenolic compound in the living body. The product has no off-flavor or odor and has high commercial value as a dietary supplement.

<経口組成物(紅茶飲料)>
実施例1に記載された方法で得られた生体内フェノール化合物低減剤を用いて紅茶を製造した。茶葉15gに対して沸騰水1Lを加え、茶葉を濾過して紅茶抽出液1Lを得た。紅茶抽出液1Lに異性化糖を60g加え、さらに生体内フェノール化合物低減剤を重量比で2%、3%、4%添加した紅茶を、それぞれ紅茶飲料A、B、Cとした。また、生体内フェノール化合物低減剤を添加しない点以外は、上記と同様の方法で得た紅茶飲料を対照とした。20〜50代の男女10名で官能評価を行ったところ、紅茶飲料に含有するポリフェノール特有の苦みや渋みをマスキングする効果があることが分かった。さらに、紅茶飲料A、B、Cは、室温に保存しても、対照と比較してクリームダウン現象(紅茶を徐々に冷やすと白く濁る現象)が抑制されることが分かった。
<Oral composition (tea drink)>
Black tea was produced using the in vivo phenolic compound reducing agent obtained by the method described in Example 1. 1 L of boiling water was added to 15 g of tea leaves, and the tea leaves were filtered to obtain 1 L of black tea extract. 60 g of isomerized saccharide was added to 1 L of the black tea extract, and 2%, 3%, and 4% by weight of an in vivo phenolic compound reducing agent were added to black tea beverages A, B, and C, respectively. In addition, a black tea beverage obtained by the same method as described above was used as a control except that no in vivo phenol compound reducing agent was added. A sensory evaluation was conducted by 10 men and women in their 20s and 50s. As a result, it was found that there was an effect of masking the bitterness and astringency peculiar to the polyphenol contained in the black tea beverage. Further, it was found that the cream-down phenomenon (the phenomenon that the black tea became cloudy when the black tea was gradually cooled) was suppressed in the black tea beverages A, B, and C even when stored at room temperature as compared with the control.

本品は、生体内フェノール化合物低減剤を含有しているので、腸内菌叢を改善するとともに、生体内フェノール化合物を低減できる紅茶飲料である。また、本品は、異味、異臭がなく、紅茶飲料として商品価値の高いものである。   This product is a black tea beverage that contains an in vivo phenolic compound reducing agent, thereby improving the intestinal flora and reducing the amount of phenolic compounds in the living body. In addition, the product has no off-flavor or odor, and has high commercial value as a black tea beverage.

以上説明したとおり、本分岐α−グルカン混合物を有効成分とする本発明の生体内フェノール化合物低減剤によれば、有効成分である本分岐α−グルカン混合物それ自体が低甘味ないし無味であるため、利用範囲が広く、また、摂取することにより、腸内菌叢を改善するとともに、腸内腐敗産物として知られている生体内のフェノール化合物を顕著に低減することができるので、皮膚の健康、美容の維持、さらには生体の健康維持に有用である。また、本発明の生体内フェノール化合物低減剤を含んでなる飲食物は、日常的な食生活において摂取することにより、腸内菌叢を改善し、効果的に生体内のフェノール化合物を低減することができるという利点を有している。本発明は、斯界に多大の貢献をする、誠に意義のある発明である。   As described above, according to the in vivo phenolic compound reducing agent of the present invention containing the present branched α-glucan mixture as an active ingredient, the present branched α-glucan mixture itself as an active ingredient is low in sweetness or tasteless. It can be used in a wide range, and when ingested, it can improve the intestinal flora and significantly reduce phenolic compounds in the body, which are known as intestinal spoilage products. Is useful for the maintenance of the health of the living body. In addition, foods and drinks comprising the in vivo phenolic compound reducing agent of the present invention improve intestinal flora by ingesting in a daily diet, and effectively reduce in vivo phenolic compounds. It has the advantage that it can be done. The present invention is a truly significant invention that makes a great contribution to the art.

Claims (10)

下記(A)乃至(C)の特徴を有する分岐α−グルカン混合物を有効成分とする生体内フェノール化合物低減剤:
(A)グルコースを構成糖とし、
(B)α−1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα−1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(C)イソマルトデキストラナーゼ消化により、イソマルトースを生成する。
An in vivo phenolic compound reducing agent comprising a branched α-glucan mixture having the following characteristics (A) to (C) as an active ingredient:
(A) glucose as a constituent sugar;
(B) A non-reducing terminal glucose residue located at one end of a linear glucan having a degree of polymerization of glucose of 3 or more linked via an α-1,4 bond was linked via a bond other than the α-1,4 bond. Having a branched structure having a glucose polymerization degree of 1 or more,
(C) Isomaltose is produced by isomalt dextranase digestion.
生体内フェノール化合物が、フェノール及び/又はp−クレゾールである請求項1記載の生体内フェノール化合物低減剤。   The in vivo phenol compound reducing agent according to claim 1, wherein the in vivo phenol compound is phenol and / or p-cresol. 前記分岐α−グルカン混合物が、イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり5質量%以上70質量%以下生成する分岐α−グルカン混合物であることを特徴とする請求項1又は2記載の生体内フェノール化合物低減剤。   2. The branched α-glucan mixture which produces isomaltose by digestion with isomaltodextranase in an amount of 5% by mass or more and 70% by mass or less based on the solid matter of the digested substance. Or the in vivo phenolic compound reducing agent according to 2. 前記分岐α−グルカン混合物が、下記(D)の特徴を有する分岐α−グルカン混合物である請求項1乃至3のいずれかに記載の生体内フェノール化合物低減剤:
(D)高速液体クロマトグラフ法(酵素−HPLC法)により求めた水溶性食物繊維含量が40質量%以上である。
The in vivo phenolic compound reducing agent according to any one of claims 1 to 3, wherein the branched α-glucan mixture is a branched α-glucan mixture having the following characteristic (D):
(D) The content of water-soluble dietary fiber determined by high performance liquid chromatography (enzyme-HPLC method) is 40% by mass or more.
前記分岐α−グルカン混合物が、下記(E)及び(F)の特徴を有する分岐α−グルカン混合物である請求項1乃至4のいずれかに記載の生体内フェノール化合物低減剤:
(E)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基の比が1:0.6乃至1:4の範囲にある;及び
(F)α−1,4結合したグルコース残基とα−1,6結合したグルコース残基との合計が全グルコース残基の55%以上を占める。
The in vivo phenolic compound reducing agent according to any one of claims 1 to 4, wherein the branched α-glucan mixture is a branched α-glucan mixture having the following features (E) and (F):
(E) the ratio of α-1,4 linked glucose residues to α-1,6 linked glucose residues is in the range of 1: 0.6 to 1: 4; and (F) α-1,4 The combined glucose residues and α-1,6 linked glucose residues account for 55% or more of all glucose residues.
前記分岐α−グルカン混合物の平均グルコース重合度が、8乃至500であることを特徴とする請求項1乃至5のいずれかに記載の生体内フェノール化合物低減剤。   The in vivo phenolic compound reducing agent according to any one of claims 1 to 5, wherein the average glucose polymerization degree of the branched α-glucan mixture is from 8 to 500. 腸内菌叢を改善する作用を有する請求項1乃至6のいずれかに記載の生体内フェノール化合物低減剤。   The in vivo phenolic compound reducing agent according to any one of claims 1 to 6, which has an action of improving intestinal flora. 請求項1乃至7のいずれかに記載の生体内フェノール化合物低減剤を含有してなる生体内フェノール化合物低減用の飲食物。   A food or beverage for reducing a phenolic compound in a living body, comprising the agent for reducing a phenolic compound in a living body according to any one of claims 1 to 7. 皮膚性状の改善に用いられる請求項1乃至7のいずれかに記載の生体内フェノール化合物低減剤又は請求項8記載の生体内フェノール化合物低減用の飲食物。   The in vivo phenolic compound reducing agent according to any one of claims 1 to 7, which is used for improving skin properties, or the food or beverage for reducing an in vivo phenolic compound according to claim 8. 皮膚性状の改善が、皮膚ターンオーバーの改善である請求項9記載の生体内フェノール化合物低減剤又は生体内フェノール化合物低減用の飲食物。   10. The in vivo phenolic compound reducing agent or the food or beverage for reducing in vivo phenolic compounds according to claim 9, wherein the improvement in skin properties is an improvement in skin turnover.
JP2019513560A 2017-04-21 2018-04-09 In vivo phenol compound reducing agent Active JP7141387B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017084608 2017-04-21
JP2017084608 2017-04-21
PCT/JP2018/014905 WO2018193897A1 (en) 2017-04-21 2018-04-09 In vivo phenol compound reducing agent

Publications (2)

Publication Number Publication Date
JPWO2018193897A1 true JPWO2018193897A1 (en) 2020-02-27
JP7141387B2 JP7141387B2 (en) 2022-09-22

Family

ID=63856710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019513560A Active JP7141387B2 (en) 2017-04-21 2018-04-09 In vivo phenol compound reducing agent

Country Status (3)

Country Link
JP (1) JP7141387B2 (en)
TW (1) TWI786105B (en)
WO (1) WO2018193897A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320891A (en) * 2006-05-31 2007-12-13 Im Press Kk Oral composition for promoting skin beauty
WO2008136331A1 (en) * 2007-04-26 2008-11-13 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo BRANCHED α-GLUCAN, α-GLUCOSYLTRANSFERASE PRODUCING THE SAME, METHOD FOR PRODUCING THE SAME AND USE THEREOF
JP2014148467A (en) * 2013-01-31 2014-08-21 Morinaga Milk Ind Co Ltd Agent for reducing the level of cresol in blood
WO2016136624A1 (en) * 2015-02-25 2016-09-01 株式会社林原 Immunomodulator and use of same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320891A (en) * 2006-05-31 2007-12-13 Im Press Kk Oral composition for promoting skin beauty
WO2008136331A1 (en) * 2007-04-26 2008-11-13 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo BRANCHED α-GLUCAN, α-GLUCOSYLTRANSFERASE PRODUCING THE SAME, METHOD FOR PRODUCING THE SAME AND USE THEREOF
JP2014148467A (en) * 2013-01-31 2014-08-21 Morinaga Milk Ind Co Ltd Agent for reducing the level of cresol in blood
WO2016136624A1 (en) * 2015-02-25 2016-09-01 株式会社林原 Immunomodulator and use of same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE CHINESE NUTRITION SOCIETY, vol. 19, no. 3, JPN6018022694, 1994, pages 221 - 232, ISSN: 0004729905 *
MICROBIAL ECOLOGY IN HEALTH AND DISEASE, vol. 21, JPN6018022690, 2009, pages 50 - 56, ISSN: 0004729902 *
MICROBIAL ECOLOGY IN HEALTH AND DISEASE, vol. 21, JPN6018022691, 2009, pages 221 - 227, ISSN: 0004729903 *
日本家政学会誌, vol. 44, no. 4, JPN6018022695, 1993, pages 245 - 254, ISSN: 0004729906 *
表面科学, vol. 28, no. 3, JPN6018022692, 2007, pages 164 - 168, ISSN: 0004729904 *
難消化性デキストリンの特性と用途[ONLINE], JPN6018022689, 10 September 2015 (2015-09-10), ISSN: 0004729901 *

Also Published As

Publication number Publication date
WO2018193897A1 (en) 2018-10-25
TWI786105B (en) 2022-12-11
JP7141387B2 (en) 2022-09-22
TW201902491A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
Ibrahim Functional oligosaccharides: Chemicals structure, manufacturing, health benefits, applications and regulations
Sawale et al. Isomaltulose (palatinose)–an emerging carbohydrate
EP2977052B1 (en) Agent for lifestyle-related disease and oral composition comprising same
EP1513942B1 (en) Galactosyl isomalt, method for production and use thereof
AU2002364298B2 (en) Stimulation of the immune system with polydextrose
JP2002533107A (en) Α-Amylase resistant starch for food and drug production
JP2006502103A (en) Condensed palatinose and method for producing the same
JP2010100583A (en) Lipid metabolism improver
JP5442243B2 (en) Renal disorder inhibitor
JP2006512298A (en) Hydrogenated condensed palatinose
TW200410702A (en) Agent for inhibiting rise in blood glucose level, agent for inhibiting body fat accumulation and edible material
JP2018024619A (en) Endurance improver
JP7141387B2 (en) In vivo phenol compound reducing agent
JP2015514411A (en) Combination of β-glucan and arabinoxylan
JP7217089B2 (en) Blood sugar elevation inhibitor and oral composition containing the same
JP2008280466A (en) Non-digestible amylose particle, its preparation, food and drink, drug, and quasi drug containing it
JP2003040781A (en) Food, drink and pharmaceutical preparation
EP4249052A1 (en) Composition for improving intestinal bacterial flora and composition for suppressing production of substances by intestinal putrefaction
JP2022130294A (en) Intestinal environment improver and composition
JPH04281763A (en) Composition for food and intestinal function-controlling food
JP2020158440A (en) Secondary bile acid generation inhibitor
Sawalea et al. Food Bioscience
IL165448A (en) Galactosyl isomalt compositions and methods for producing galactosyl isomalt

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220909

R150 Certificate of patent or registration of utility model

Ref document number: 7141387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150