JPWO2018101293A1 - Measuring device, setting device, setting method, correction method, and program - Google Patents
Measuring device, setting device, setting method, correction method, and program Download PDFInfo
- Publication number
- JPWO2018101293A1 JPWO2018101293A1 JP2018554176A JP2018554176A JPWO2018101293A1 JP WO2018101293 A1 JPWO2018101293 A1 JP WO2018101293A1 JP 2018554176 A JP2018554176 A JP 2018554176A JP 2018554176 A JP2018554176 A JP 2018554176A JP WO2018101293 A1 JPWO2018101293 A1 JP WO2018101293A1
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- unit
- measurement
- light source
- irradiated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims description 71
- 238000012937 correction Methods 0.000 title claims description 43
- 238000005259 measurement Methods 0.000 claims abstract description 172
- 230000003287 optical effect Effects 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 14
- 230000001678 irradiating effect Effects 0.000 abstract description 6
- 238000003860 storage Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 16
- 238000004891 communication Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
計測装置(200)は、計測部(202)及び制御部(204)を有する。計測部(202)は、電磁波を照射し、照射した電磁波の反射波を受信することで、物体の走査を行う。制御部(204)は、計測部(202)による物体の走査を制御する。具体的には、制御部(204)は、計測部(202)において受信される電磁波の強さが所定レベル以上になる回数が、計測部(202)による1回の走査につき所定回数未満となるように、計測部(202)による電磁波の照射を制御する。The measurement device (200) includes a measurement unit (202) and a control unit (204). The measurement unit (202) scans an object by irradiating an electromagnetic wave and receiving a reflected wave of the irradiated electromagnetic wave. The control unit (204) controls scanning of the object by the measurement unit (202). Specifically, in the control unit (204), the number of times that the intensity of the electromagnetic wave received by the measurement unit (202) is equal to or higher than a predetermined level is less than the predetermined number of times for one scan by the measurement unit (202). As described above, the irradiation of electromagnetic waves by the measurement unit (202) is controlled.
Description
本発明は、電磁波を照射して計測を行う技術に関する。 The present invention relates to a technique for performing measurement by irradiating electromagnetic waves.
電磁波を照射して物体を走査することで障害物などの検出を行う技術が開発されている。特許文献1は、自動車等に設置される装置において、レーザ光を照射して目標領域内でスキャンを行うことで、障害物などの検出を行う技術を開示している。また特許文献1では、自動車の操舵角度に応じて、スキャン領域の横方向の中心軸を変更する技術が開示されている。
A technique for detecting an obstacle by irradiating an electromagnetic wave and scanning an object has been developed.
計測装置の内部では、光源から照射された電磁波が光学系を通過する。この際、光学系によって電磁波の一部が反射されたりすることにより、迷光が発生することがある。このような迷光は、計測装置による計測の精度を下げる要因となる。 Inside the measuring device, electromagnetic waves emitted from the light source pass through the optical system. At this time, stray light may be generated when a part of the electromagnetic wave is reflected by the optical system. Such stray light is a factor that lowers the accuracy of measurement by the measurement device.
本発明は、上述の課題鑑みてなされたものであり、計測装置における迷光の発生を抑制する技術を提供することを一つの目的とする。 This invention is made | formed in view of the above-mentioned subject, and it aims at providing the technique which suppresses generation | occurrence | production of the stray light in a measuring device.
請求項1に記載の発明は、計測装置の発明である。当該計測装置は、(1)光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された前記電磁波を受信することで走査を行う計測部と、(2)前記計測部から前記電磁波が照射される方向を制御する制御部と、有する。
前記計測部による1回の走査において所定値以上の強さで受信される電磁波を前記計測部が照射する回数は所定回数未満である。The invention described in
The number of times that the measurement unit irradiates the electromagnetic wave received with a strength of a predetermined value or more in one scan by the measurement unit is less than the predetermined number.
請求項2に記載の発明は、計測装置の設定を行う設定装置の発明である。
前記計測装置は、光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された前記電磁波を受信することで走査を行う計測部と、駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、有する。
当該設定装置は、(1)所定の信号が前記駆動信号として設定された前記計測装置を動作させて、前記計測装置による計測結果を取得し、(2)前記計測装置によって所定値以上の強さで受信される電磁波について前記所定の駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にする。The invention according to claim 2 is an invention of a setting device for setting a measuring device.
The measurement device uses a measurement unit that performs scanning by receiving the electromagnetic wave irradiated from the light source through the optical system and reflected by a reflector, and a driving signal. And a control unit that controls a direction in which the electromagnetic wave is irradiated from the measurement unit.
The setting device (1) operates the measurement device in which a predetermined signal is set as the drive signal, acquires a measurement result by the measurement device, and (2) the strength of a predetermined value or more by the measurement device. By changing the irradiation timing indicated by the predetermined drive signal with respect to the electromagnetic wave received in
請求項5に記載の発明は、計測装置の設定方法の発明である。
前記計測装置は、光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された前記電磁波を受信することで走査を行う計測部と、駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、有する。
当該設定方法は、(1)所定の信号が前記駆動信号として設定された前記計測装置を動作させて、前記計測装置による計測結果を取得するステップと、(2)前記計測装置によって所定値以上の強さで受信される電磁波について前記所定の駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にするステップと、を有する。The invention according to claim 5 is an invention of a setting method of a measuring device.
The measurement device uses a measurement unit that performs scanning by receiving the electromagnetic wave irradiated from the light source through the optical system and reflected by a reflector, and a driving signal. And a control unit that controls a direction in which the electromagnetic wave is irradiated from the measurement unit.
The setting method includes the steps of (1) operating the measurement device in which a predetermined signal is set as the drive signal to obtain a measurement result by the measurement device, and (2) a predetermined value or more by the measurement device. By changing the irradiation timing indicated by the predetermined drive signal with respect to the electromagnetic wave received with intensity, the number of times of irradiation of the electromagnetic wave received with an intensity of a predetermined value or more in one scan by the measurement unit is less than the predetermined number. And a step of.
請求項6に記載の発明は、請求項5に記載の設定方法の各ステップをコンピュータに実行させるプログラムの発明である。 The invention according to claim 6 is an invention of a program for causing a computer to execute each step of the setting method according to claim 5.
請求項7に記載の発明は、計測装置の発明である。
当該計測装置は、(1)光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された前記電磁波を受信することで走査を行う計測部と、(2)駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、(3)前記駆動信号を修正する修正部と、を有する。
前記修正部は、前記計測部によって所定値以上の強さで受信される電磁波について前記駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にする。The invention according to claim 7 is an invention of a measuring device.
The measurement apparatus includes (1) a measurement unit that performs scanning by receiving the electromagnetic wave irradiated from the light source through the optical system and reflected by the reflector, and (2) driving. A control unit that controls a direction in which the electromagnetic wave is emitted from the measurement unit using a signal; and (3) a correction unit that corrects the drive signal.
The correction unit changes the irradiation timing indicated by the drive signal for the electromagnetic wave received by the measurement unit with a strength of a predetermined value or more, so that the correction unit has a strength of a predetermined value or more in one scan by the measurement unit. The number of irradiation times of the received electromagnetic wave is made less than a predetermined number.
請求項10に記載の発明は、計測装置によって実行される修正方法の発明である。
前記計測装置は、光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された前記電磁波を受信することで走査を行う計測部と、駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、を有する。
当該修正方法は、前記計測装置によって所定値以上の強さで受信される電磁波について前記駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にするステップを有する。The invention described in
The measurement device uses a measurement unit that performs scanning by receiving the electromagnetic wave irradiated from the light source through the optical system and reflected by a reflector, and a driving signal. A control unit that controls a direction in which the electromagnetic wave is irradiated from the measurement unit.
In the correction method, by changing the irradiation timing indicated by the drive signal for the electromagnetic wave received by the measurement device with an intensity greater than or equal to a predetermined value, the intensity is greater than or equal to a predetermined value in one scan by the measurement unit. A step of setting the number of irradiation times of the received electromagnetic wave to less than a predetermined number.
請求項11に記載の発明は、請求項10に記載の修正方法の各ステップをコンピュータに実行させるプログラムの発明である。
The invention according to claim 11 is an invention of a program for causing a computer to execute each step of the correction method according to
請求項12に記載の発明は、計測装置の発明である。
当該計測装置は、(1)光源と、前記光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された前記電磁波を受信する受信部と、を有する計測部と、(2)前記計測部から前記電磁波が照射される方向を制御する制御部と、を有する。
前記制御部は、前記光源から照射された前記電磁波が前記光学系において反射された反射光を、前記受信部が所定以上の強さで受信した場合に、前記計測部の照射タイミングを変更する。The invention described in
The measurement device includes: (1) a measurement unit including a light source, and a reception unit that receives the electromagnetic wave that is irradiated from the light source through the optical system and is reflected to the outside and reflected by the reflector. (2) a control unit that controls a direction in which the electromagnetic wave is emitted from the measurement unit.
The control unit changes the irradiation timing of the measurement unit when the reception unit receives reflected light, which is reflected from the optical system by the electromagnetic wave irradiated from the light source, with a predetermined intensity or more.
請求項14に記載の発明は、計測装置の発明である。
当該計測装置は、(1)光源と、前記光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された前記電磁波を受信する受信部と、を有する計測部と、(2)前記受信部が前記光源から照射された前記電磁波が前記光学系にて反射された反射光を所定以上の強さで受信した場合に、前記電磁波の照射タイミングを変更する処理を実行する制御部と、を有する。
前記制御部は、当該計測装置の周辺であってなおかつ前記電磁波が照射される方向に、前記電磁波を反射する物体が存在しない状況下であると判断した場合に、前記処理を実行する。
The invention described in
The measurement device includes: (1) a measurement unit including a light source, and a reception unit that receives the electromagnetic wave that is irradiated from the light source through the optical system and is reflected to the outside and reflected by the reflector. (2) When the receiving unit receives the reflected light reflected by the optical system from the light source at a predetermined intensity or more, executes a process of changing the irradiation timing of the electromagnetic wave A control unit.
The control unit executes the process when it is determined that there is no object that reflects the electromagnetic wave in the vicinity of the measurement apparatus and in the direction in which the electromagnetic wave is irradiated.
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings.
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
図1は、実施形態1に係る計測装置200を例示するブロック図である。図1において、各ブロックは、ハードウエア単位の構成ではなく、機能単位の構成を表している。計測装置200のハードウエア構成については、図4から図6を用いて後述する。
FIG. 1 is a block diagram illustrating a
計測装置200は、計測部202及び制御部204を有する。計測部202は、電磁波を照射し、照射した電磁波の反射波を受信することで、物体の走査を行う。制御部204は、計測部202による物体の走査を制御する。さらに制御部204は、計測部202によって電磁波が照射されてからその電磁波の反射波が受信されるまでの時間を測定する。
The
ここで計測部202は、高さ方向と横方向の2次元において電磁波の照射方向を変えながら、物体の走査を行う。なお、高さ方向は略鉛直方向を意味する。また、横方向は略水平方向を意味する。
Here, the
図2は、計測部202による走査の様子を例示する図である。この例では、走査範囲224内でラスタスキャンが行われている。このラスタスキャンにおいて、主走査方向は横方向であり、副走査方向は高さ方向である。
FIG. 2 is a diagram illustrating a state of scanning by the
軌跡1は、計測部202による走査の軌跡を表している。照射器10による電磁波の照射方向は、軌跡1に沿って時間と共に変化する。各×印は、照射器10から照射された電磁波が通過する位置を表している。つまり、照射器10からは、各×印を通過するタイミングで電磁波が照射されている。
A
計測部202は、照射器10、光学系20、及び受信器50を有する。照射器10は、照射方向を変えながら電磁波を照射する。光学系20は、照射器10から照射された電磁波を収束させる。受信器50は電磁波を受信する。
The
ここで、受信器50は、計測部202から照射された電磁波が物体に反射されたもの(以下、反射波)を受信するために設けられている。しかし受信器50が受信する電磁波には、計測部202から照射された電磁波の反射波以外も含まれうる。例えば受信器50が受信する電磁波には、照射器10から照射された電磁波が光学系20の表面などで反射されたもの(いわゆる迷光)なども含まれうる。
Here, the
受信器50によって受信される迷光の強さは、照射器10から電磁波が照射される方向によって異なる。照射器10から電磁波が照射される方向により、電磁波が光学系20に進入する角度や、電磁波が光学系20に進入する位置などが異なるためである。
The intensity of stray light received by the
図3は、受信器50によって受信される迷光の強さを例示する図である。照射器10は、横方向を主走査方向とするラスタスキャンを行っている(図2参照)。また、照射器10は電磁波を所定の間隔で(グラフ60参照)発光している。さらに、計測装置200の周囲に物体が存在しないとする。
FIG. 3 is a diagram illustrating the intensity of stray light received by the
グラフ60は、照射器10から電磁波が照射されるタイミングをパルス信号で表している。具体的には、グラフ60において信号の値が0から1に変化するタイミングで、照射器10から電磁波が照射される。グラフ62は、受信器50によって受信された電磁波の強さを表している。
The
計測装置200の周囲に物体が存在しないため、物体によって反射された電磁波が受信器50によって受信されることはほとんど無い。そのため、グラフ62では、ほとんどの時点において、受信器50によって受信される電磁波の強さがほぼゼロである。
Since there is no object around the measuring
ところが、いくつかの時点では、受信器50によって受信される電磁波の強さが強くなっている。これは、特定のタイミングで照射される電磁波(特定の方向へ照射される電磁波)によって迷光が発生し、その迷光が受信器50によって受信されたためである。
However, at some points in time, the intensity of the electromagnetic wave received by the
例えば時点 t1 において、受信器50によって迷光が受信されている。この迷光は、時点 t2 において照射器10から照射された電磁波によって発生したものであると言える。なぜなら、照射器10と光学系20との距離は短いため、迷光の原因となる照射器10が照射されるタイミングと、その迷光が受信器50によって受信されるタイミングとの時間差は短いと考えられるためである。
For example, stray light is received by the
このように受信器50によって迷光が受信されると、計測装置200の計測結果が不正確になってしまう。例えば計測装置200が、所定値以上の強さの電磁波を受信した場合に、物体によって反射された反射波を受信したと判定するとする。この場合、計測装置200は、迷光を受信した場合に、物体によって反射された反射波を受信したと誤判定してしまう。
When stray light is received by the
そこで本実施形態の計測装置200では、迷光が発生するタイミングを避けて照射器10から電磁波が照射されるように、照射器10から電磁波が照射されるタイミングを制御する。具体的には、「どのタイミングで電磁波を照射すると迷光が発生してしまうか」を予め把握しておき、そのタイミングを避けて電磁波を照射するようにする。言い換えれば、「どの方向へ電磁波を照射すると迷光が発生してしまうか」を予め把握しておき、その方向には電磁波が照射されないようにする。
Therefore, in the
より具体的には、本実施形態の制御部204は、計測部202において受信される電磁波の強さが所定レベル以上になる回数が、計測部202による1回の走査(例えば1回のラスタスキャン)につき所定回数未満となるように、計測部202による電磁波の照射を制御する。
More specifically, the
こうすることで、本実施形態の計測装置200によれば、照射器10から照射される電磁波によって迷光が発生することを防ぐことができる。よって、計測装置200による計測の精度が向上する。
By doing so, according to the measuring
以下、本実施形態の計測装置200についてさらに詳細に説明する。
Hereinafter, the measuring
<計測装置200のハードウエア構成の例>
<Example of Hardware Configuration of
計測装置200の各機能構成部は、各機能構成部を実現するハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、計測装置200の各機能構成部がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。
Each functional component of the measuring
<<制御部204のハードウエア構成の例>>
<< Example of Hardware Configuration of
図4は、制御部204のハードウエア構成を例示する図である。集積回路100は、制御部204を実現する集積回路である。例えば、集積回路100は SoC(System On Chip)である。
FIG. 4 is a diagram illustrating a hardware configuration of the
集積回路100は、バス102、プロセッサ104、メモリ106、ストレージデバイス108、入出力インタフェース110、及びネットワークインタフェース112を有する。バス102は、プロセッサ104、メモリ106、ストレージデバイス108、入出力インタフェース110、及びネットワークインタフェース112が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ104などを互いに接続する方法は、バス接続に限定されない。プロセッサ104は、マイクロプロセッサなどを用いて実現される演算処理装置である。メモリ106は、RAM(Random Access Memory)などを用いて実現される主記憶装置である。ストレージデバイス108は、ROM(Read Only Memory)やフラッシュメモリなどを用いて実現される補助記憶装置である。
The
入出力インタフェース110は、集積回路100を周辺デバイスと接続するためのインタフェースである。図4において、入出力インタフェース110には照射器の駆動回路30が接続されている。照射器の駆動回路30については後述する。
The input /
ネットワークインタフェース112は、集積回路100を通信網に接続するためのインタフェースである。この通信網は、例えば CAN(Controller Area Network)通信網である。なお、ネットワークインタフェース112が通信網に接続する方法は、無線接続であってもよいし、有線接続であってもよい。
The
ストレージデバイス108は、制御部204の機能を実現するためのプログラムモジュールを記憶している。プロセッサ104は、このプログラムモジュールをメモリ106に読み出して実行することで、制御部204の機能を実現する。
The
集積回路100のハードウエア構成は図4に示した構成に限定されない。例えば、プログラムモジュールはメモリ106に格納されてもよい。この場合、集積回路100は、ストレージデバイス108を備えていなくてもよい。
The hardware configuration of the
<<計測部202のハードウエア構成例>>
<< Hardware Configuration Example of
図5は、計測部202のハードウエア構成を例示する図である。計測部202は、照射器10、光学系20、照射器の駆動回路30、及び受信器50を有する。照射器10は、物体の走査に用いる電磁波を照射する。ここで、照射器10は照射方向が可変な構成となっており、様々な方向へ電磁波を照射することができる。照射器の駆動回路30は、照射器10を駆動させる回路である。より具体的には、照射器の駆動回路30は、電磁波を照射する機構(例えば光源)を駆動する回路、及び照射器10の照射方向を変更する機構(例えばミラー)を駆動する回路を含む。光学系20は、照射器10から照射された電磁波を収束させる。受信器50は、計測装置200の外部へ照射された電磁波の反射波を受信する。
FIG. 5 is a diagram illustrating a hardware configuration of the
制御部204は、受信器50によって反射波が受信されたことを検出する。例えば受信器50は、反射波を受信したことに応じて制御部204へ所定の信号を送信するように構成される。制御部204は、この所定の信号を受信することにより、受信器50によって反射波が受信されたことを検出する。
The
制御部204は、照射器10から電磁波が照射されてからその電磁波の反射波が受信器50によって受信されるまでの経過時間を計測し、その計測時間を電磁波の照射方向(電磁波の照射タイミング)と対応づけて記憶装置(例えばストレージデバイス108)に記憶させる。この経過時間は、例えば照射器10から電磁波が照射されてからその電磁波の反射波が受信されるまでの間にカウントされたクロック信号の数にクロック周期を乗算した値で表される。また例えば、この経過時間は、上記カウントされたクロック信号の数で表されてもよい。この経過時間に基づいて、例えば、走査された物体と計測装置200との距離を算出することができる。
The
照射器10によって照射される電磁波は、レーザ光などの光であってもよいし、ミリ波などの電波であってもよい。以下、照射器10が光を照射する場合における計測部202のハードウエア構成について例示する。照射器10が電磁波を照射する場合の計測部202についても、同様の構成を採用することが可能である。
The electromagnetic wave irradiated by the
図6は、光を照射する計測部202のハードウエア構成を例示する図である。図6の投光器12及び投光器の駆動回路32はそれぞれ、図5における照射器10及び照射器の駆動回路30の一例である。投光器12は、光源14及び可動反射部16を有する。投光器の駆動回路32は光源の駆動回路34及び可動反射部の駆動回路36を有する。
FIG. 6 is a diagram illustrating a hardware configuration of the
光源14は、光を照射する任意の光源である。光源の駆動回路34は、光源14への電力の供給を制御することによって光源14を駆動させる回路である。光源14によって照射される光は、例えばレーザ光である。この場合、例えば光源14は、レーザ光を照射する半導体レーザである。
The
可動反射部16は、光源14から照射された光を反射する。可動反射部16によって反射された光は、レンズ22を通過した後、計測装置200の外部へ照射される。レンズ22は、図5における光学系20の一例である。
The
可動反射部の駆動回路36は、可動反射部16を駆動させる回路である。例えば可動反射部16は、少なくとも高さ方向と横方向の2方向それぞれについて回転可能に構成されている1つのミラーを有する。このミラーは、例えば MEMS(Micro Electro Mechanical System)ミラーである。
The movable reflection
可動反射部16の構成は、図6に示す構成に限定されない。例えば可動反射部16は、回転軸が互いに交わる2つのミラーで構成されていてもよい。
The configuration of the movable reflecting
光源の駆動回路34及び可動反射部の駆動回路36の動作は、制御部204によって制御される。具体的には、制御部204は、光源の駆動回路34に対し、光源14の駆動を指示する駆動信号を送信する。この駆動信号は、例えばストレージデバイス108から読み出される。光源の駆動回路34は、受信した駆動信号に基づいて、光源14を駆動させる。例えば駆動信号がハイとローという2値で構成されるパルス信号である場合、光源の駆動回路34は、パルス信号がローからハイに変化するタイミングで光源14を駆動させる(光源14から光を照射させる)。
The operations of the light
同様に、制御部204は、可動反射部の駆動回路36に対し、可動反射部16の駆動を指示する駆動信号を送信する。この駆動信号も、例えばストレージデバイス108から読み出される。可動反射部の駆動回路36は、この駆動信号に基づいて、可動反射部16の姿勢を制御する。この制御により、光の照射方向が制御される。例えば光の照射方向は、図2の軌跡1のように制御される。
Similarly, the
さらに計測部202は、受光器52を有する。受光器52は、図5における受信器50の一例である。例えば受光器52は、APD(Avalanche Photodiode)を用いて構成される。
Further, the measuring
なお、計測部202の構成は図5や図6に示す構成に限定されない。例えば図6において、計測部202は、光源14から照射された光を可動反射部16によって反射することにより、様々な方向へ光を照射できるように構成されている。しかし、様々な方向へ光を照射する構成は、図6に示す構成に限定されない。例えば、光源14自体が、高さ方向及び横方向に回転する機構を有していてもよい。この場合、計測部202は、光源14の姿勢を制御することによって様々な方向へ光を照射できる。またこの場合、計測部202は、可動反射部16及び可動反射部の駆動回路36を有さなくてもよい。さらにこの場合、光源の駆動回路34は、光源14に光を照射させる駆動回路と、光源14の姿勢を変更する駆動回路とを含む。
Note that the configuration of the
なお、制御部204を実現するハードウエア(図4参照)と計測部202を実現するハードウエア(図5や図6参照)は、同一の筐体にパッケージされていてもよいし、別々の筐体にパッケージされていてもよい。 Note that the hardware that implements the control unit 204 (see FIG. 4) and the hardware that implements the measurement unit 202 (see FIG. 5 and FIG. 6) may be packaged in the same housing, or separate housings. It may be packaged in the body.
以下の説明では、特に断らない限り、計測部202のハードウエア構成が図6で表されるケースについて説明する。
In the following description, a case where the hardware configuration of the
<計測部202が電磁波を照射するタイミングの決定方法について>
<About the determination method of the timing which the
前述したように、本実施形態の計測装置200では、計測部202から電磁波が照射されるタイミングを予め適切に設定しておくことで、迷光の発生を抑制する。この設定は、例えば計測装置200の運用開始前(例えば計測装置200の出荷前)に行っておく。
As described above, in the
上記設定は、光源の駆動回路34に対して送信する駆動信号(以下、光源駆動信号)を適切に生成しておくことで実現する。生成した光源駆動信号は、例えばストレージデバイス108に記憶させておく。制御部204は、このように予め適切に生成しておいた光源駆動信号をストレージデバイス108から読み出し、光源の駆動回路34へ送信する。こうすることで、迷光が発生しない適切なタイミングで照射器10から電磁波が照射される。
The above setting is realized by appropriately generating a drive signal (hereinafter, a light source drive signal) to be transmitted to the light
以下、この光源駆動信号の生成方法を具体的に説明する。以下の説明において、計測部202はラスタスキャンを行うとする。また、光源の駆動回路34に対して送信される光源駆動信号は、前述したパルス信号であるとする。
Hereinafter, a method of generating the light source driving signal will be specifically described. In the following description, it is assumed that the
さらに以下の説明において、光源駆動信号の生成は、計算機によって行われる。光源駆動信号を生成する計算機を、設定装置300と呼ぶ。設定装置300は、PC(Personal Computer)、サーバ装置、又は携帯端末などの任意の計算機を用いて実現される。なお、光源駆動信号は、設定装置300によって実行される一連の処理と同様の処理を人手で行うことで生成されてもよい。 Further, in the following description, the light source drive signal is generated by a computer. A computer that generates a light source drive signal is referred to as a setting device 300. The setting device 300 is realized using an arbitrary computer such as a PC (Personal Computer), a server device, or a mobile terminal. The light source drive signal may be generated by manually performing a process similar to a series of processes executed by the setting device 300.
光源駆動信号の生成は、計測装置200をテスト環境で動作させることで行われる。テスト環境は、計測装置200から照射される電磁波の反射波が受信器50によって受信されない環境か、又は受信される反射波の強さが無視できる程度に小さい環境であることが好適である。
The generation of the light source drive signal is performed by operating the
<<光源駆動信号を生成する手順の例1>> << Example 1 of Procedure for Generating Light Source Driving Signal >>
図7は、光源駆動信号を生成する手順の流れを例示する第1のフローチャートである。設定装置300は、制御部204が計測部202の制御に用いる光源駆動信号として、デフォルト信号を設定する(S102)。具体的には、設定装置300は、制御部204が有するストレージデバイス108に、デフォルト信号を記憶させる。
FIG. 7 is a first flowchart illustrating the flow of the procedure for generating the light source drive signal. The setting device 300 sets a default signal as a light source driving signal used by the
デフォルト信号は、制御部204に初期設定を施すために予め定義されている任意の駆動信号である。例えばデフォルト信号は、1回の主走査(軌跡1における横方向1行の走査)で行われる複数回の電磁波の照射が、等しい時間間隔で行われるように定義されている。この時間間隔の長さを p クロックとおく(p は正の整数)。図8は、デフォルト信号を例示する図である。なお、デフォルト信号を定義する情報(デフォルト信号そのものでもよい)は、設定装置300が有する記憶装置に予め記憶させておく。
The default signal is an arbitrary drive signal that is defined in advance in order to perform initial setting on the
設定装置300は計測装置200に計測を実行させる(S104)。ここでは、デフォルト信号に従って計測部202から電磁波が照射される。
The setting device 300 causes the
設定装置300は、計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S106)。具体的には、まず設定装置300は、受信器50によって所定値以上の強さの電磁波(迷光)が受信された時点を特定する。そして設定装置300は、その時点で受信された迷光の発生源である電磁波の照射タイミングを特定する。
The setting apparatus 300 acquires the measurement result obtained by the
図9は、迷光の発生源である電磁波の照射タイミングを特定する方法を説明するための図である。図9において、時点 c1 クロックで、所定値以上の強さの電磁波(迷光)が受信されている。そこで設定装置300は、この迷光の発生源である電磁波の照射タイミングを特定する。 FIG. 9 is a diagram for explaining a method of specifying the irradiation timing of an electromagnetic wave that is a generation source of stray light. In FIG. 9, an electromagnetic wave (stray light) having a strength greater than or equal to a predetermined value is received at the time c1 clock. Therefore, the setting device 300 identifies the irradiation timing of the electromagnetic wave that is the source of this stray light.
ここで、連続する2つの電磁波の照射タイミングの時間間隔である p クロックは、電磁波が照射器10から照射された時点とその電磁波により生じた迷光が受信器50によって受信される時点との時間間隔よりも十分長い。そのため、迷光の発生源である電磁波の照射タイミングは、迷光が受信された時点 c1 よりも前の照射タイミングのうち、最も遅い照射タイミングである時点 c2 クロックであると推定できる。
Here, p clock, which is the time interval between the irradiation timings of two consecutive electromagnetic waves, is the time interval between the time when the electromagnetic wave is irradiated from the
そこで設定装置300は、迷光の発生源である電磁波の照射タイミングとして、c2 クロックを特定する。 Therefore, the setting device 300 specifies the c2 clock as the irradiation timing of the electromagnetic wave that is the source of stray light.
なお、1回の走査(軌跡1で表される一連の電磁波の照射)で迷光が複数回発生する場合、「受信器50によって所定値以上の強さの電磁波が受信された時点」が複数個存在する。この場合、設定装置300は、これら複数個の時点それぞれから、迷光を発生させた複数の電磁波それぞれの照射タイミングを特定する。
When stray light is generated a plurality of times in one scan (a series of irradiation of electromagnetic waves represented by the locus 1), there are a plurality of “time points when the
設定装置300は、S106において、迷光を発生させた電磁波の照射タイミングが1つ以上特定されたか否かを判定する(S108)。迷光を発生させた電磁波の照射タイミングが1つも特定されていない場合(S108:NO)、図7の処理は終了する。よって、制御部204に設定される光源駆動信号は、デフォルト信号のままとなる。このケースでは、制御部204がデフォルト信号で計測部202を制御しても、迷光が発生していない。そのため、制御部204は、運用時においてもデフォルト信号を用いて計測部202を制御する。
The setting apparatus 300 determines whether or not one or more irradiation timings of the electromagnetic wave that generated stray light have been specified in S106 (S108). If no irradiation timing of the electromagnetic wave causing the stray light is specified (S108: NO), the process of FIG. 7 ends. Therefore, the light source drive signal set in the
一方、迷光を発生させた電磁波の照射タイミングが1つ以上特定された場合(S108:YES)、設定装置300は、デフォルト信号の一部を変更することで、制御部204に設定する光源駆動信号を生成する(S110)。具体的には、設定装置300は、デフォルト信号における電磁波の照射タイミングのうち、迷光が発生した電磁波の照射タイミングのみを変更することで、制御部204に設定する光源駆動信号を生成する。つまり、制御部204に設定する光源駆動信号は、(1)デフォルト信号において迷光を発生させた電磁波の照射タイミングについては、デフォルト信号における照射タイミングから所定クロック k ずれており、(2)それ以外の電磁波の照射タイミングについては、デフォルト信号における照射タイミングと一致している。
On the other hand, when one or more irradiation timings of electromagnetic waves that generate stray light are specified (S108: YES), the setting device 300 changes a part of the default signal to change the light source drive signal set in the
なお、図7の例では、S108において、迷光を発生させた電磁波の照射タイミングが1つでも特定されれば、デフォルト信号の変更が行われる。しかしながら、設定装置300は、S108において、迷光を発生させた電磁波の照射タイミングがN個(Nは2以上の整数)以上特定された場合に、デフォルト信号の一部を変更するように構成されてもよい。この場合、迷光を発生させた電磁波の照射タイミングがN個未満であれば、迷光が計測に与える影響は小さいと判断し、デフォルトの信号から変更しないようにすることができる。 In the example of FIG. 7, if at least one irradiation timing of the electromagnetic wave that generated stray light is specified in S108, the default signal is changed. However, the setting device 300 is configured to change a part of the default signal when the irradiation timing of the electromagnetic wave that generated the stray light is specified in N (N) (N is an integer of 2 or more). Also good. In this case, if the irradiation timing of the electromagnetic wave that generated the stray light is less than N, it can be determined that the influence of the stray light on the measurement is small, and the default signal is not changed.
また、S110において、迷光が発生した電磁波の照射タイミングを変更することに変えて、当該迷光が発生した電磁波の照射タイミングにおいては、電磁波を照射しないようにすることとしてもよい。こうすることにより、より簡易な処理で迷光による影響を低減させることができる。なお、この方法では、デフォルト信号を用いる場合と比較して電磁波の照射回数が減るものの、迷光を発生させた電磁波の照射タイミングが多くなければ、実使用上においての影響は小さいと考えられる。 In S110, instead of changing the irradiation timing of the electromagnetic wave in which the stray light is generated, the electromagnetic wave may not be irradiated in the irradiation timing of the electromagnetic wave in which the stray light is generated. By doing so, the influence of stray light can be reduced by simpler processing. In this method, although the number of times of irradiation of electromagnetic waves is reduced as compared with the case of using a default signal, if the irradiation timing of electromagnetic waves that generate stray light is not large, the influence on actual use is considered to be small.
図10は、制御部204に設定する光源駆動信号とデフォルト信号を比較する図である。図10における受信波の強さとデフォルト信号の関係は、図9と同様である。そのため、デフォルト信号に従って照射器10から電磁波を照射すると、時点 c2 クロックにおいて照射される電磁波によって迷光が発生する。そこで設定装置300は、デフォルト信号において時点 c2 クロックで照射される電磁波の照射タイミングを、制御部204に設定する光源駆動信号においては時点 c2+k クロックに変更している。
FIG. 10 is a diagram comparing the light source drive signal set in the
ここで、電磁波の照射タイミングの時間間隔は p クロックであるため、所定クロック k は、-p/2 ≦ k ≦ p/2 を満たすように定めておく。なお、p/2 が整数でない場合、k の範囲の下限値を -p/2 以上の最小の整数とし、k の範囲の上限値を p/2 以下の最大の整数とする。 Here, since the time interval of the irradiation timing of the electromagnetic wave is p clock, the predetermined clock k is determined to satisfy −p / 2 ≦ k ≦ p / 2. If p / 2 is not an integer, the lower limit of the k range is the smallest integer greater than -p / 2, and the upper limit of the k range is the largest integer less than p / 2.
そして設定装置300は、制御部204が計測部202の制御に用いる光源駆動信号として、S110で生成した光源駆動信号を設定する(S112)。具体的には、設定装置300は、S110で生成した光源駆動信号を、制御部204が有するストレージデバイス108に記憶させる。
Then, the setting device 300 sets the light source drive signal generated in S110 as the light source drive signal used by the
<<光源駆動信号を生成する手順の例2>> << Example 2 of Procedure for Generating Light Source Drive Signal >>
この例において、設定装置300は、デフォルト信号における電磁波の照射タイミングを全体的にシフトさせることで、制御部204に設定する光源駆動信号を生成する。例えばデフォルト信号を関数 f(t) と表すと、デフォルト信号を全体的に k クロックシフトさせた信号は f(t-k) で表される。
In this example, the setting device 300 generates a light source driving signal to be set in the
ただし、このようにデフォルト信号を全体的にシフトさせた信号を光源駆動信号にすると、デフォルト信号では迷光を発生させなかった電磁波によって、新たに迷光が発生するようになってしまう可能性がある。そこで設定装置300は、例えば以下の手順で光源駆動信号を生成する。 However, if a signal obtained by shifting the default signal as a whole is used as a light source drive signal, stray light may be newly generated by electromagnetic waves that did not generate stray light with the default signal. Therefore, the setting device 300 generates a light source drive signal by the following procedure, for example.
図11は、光源駆動信号を生成する手順の流れを例示する第2のフローチャートである。この処理において、設定装置300は、迷光を発生させる電磁波の照射タイミングの数が所定値未満となる光源駆動信号を、制御部204に設定する。この所定値は、設定装置300が有する記憶装置に予め記憶されているものとする。なお、図11のS102及びS106はそれぞれ、図7のS102及びS104と同じ処理である。そこで、以下ではS202以降の処理について説明する。
FIG. 11 is a second flowchart illustrating the flow of the procedure for generating the light source drive signal. In this processing, the setting device 300 sets a light source driving signal that causes the number of irradiation timings of electromagnetic waves that generate stray light to be less than a predetermined value in the
設定装置300は、シフト量を表す変数 i に初期値1を設定する(S202)。S204からS222は、迷光を発生させる電磁波の照射タイミングの数が所定値以上である間繰り返し実行されるループ処理Aである。S204において、設定装置300は、迷光を発生させる電磁波の照射タイミングの数が所定値以上であるか否かを判定する。迷光を発生させる電磁波の照射タイミングの数が所定値以上でない場合、図11の処理は終了する。一方、迷光を発生させる電磁波の照射タイミングの数が所定値以上である場合、図11の処理はS206に進む。
The setting device 300 sets an
S206において、設定装置300は、デフォルト信号を全体的に +i クロックシフトさせた信号を、光源駆動信号として制御部204に設定する。設定装置300は、計測装置200に計測を実行させる(S208)。設定装置300は、計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S210)。
In S206, the setting apparatus 300 sets a signal obtained by shifting the default signal as a whole by + i clocks in the
設定装置300は、迷光を発生させる電磁波の照射タイミングの数が所定値以上であるか否かを判定する(S212)。迷光を発生させる電磁波の照射タイミングの数が所定値以上でない場合(S212:NO)、図11の処理は終了する。一方、迷光を発生させる電磁波の照射タイミングの数が所定値以上である場合(S212:YES)、図11の処理はS214に進む。 The setting apparatus 300 determines whether or not the number of irradiation timings of electromagnetic waves that generate stray light is equal to or greater than a predetermined value (S212). When the number of irradiation timings of electromagnetic waves that generate stray light is not equal to or greater than a predetermined value (S212: NO), the process of FIG. 11 ends. On the other hand, if the number of irradiation timings of electromagnetic waves that generate stray light is equal to or greater than a predetermined value (S212: YES), the process of FIG. 11 proceeds to S214.
S214において、設定装置300は、デフォルト信号を全体的に -i クロックシフトさせた信号を、光源駆動信号として制御部204に設定する。設定装置300は、計測装置200を動作させる(S216)。設定装置300は、計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S218)。設定装置300は、シフト量 i に1を加算する(S220)。
In S214, the setting device 300 sets a signal obtained by shifting the default signal as a whole by -i clocks in the
S222は、ループ処理Aの終端である。そこで、図11の処理はS204に進む。 S222 is the end of loop processing A. Therefore, the processing in FIG. 11 proceeds to S204.
<設定装置300のハードウエア構成の例> <Example of Hardware Configuration of Setting Device 300>
設定装置300の各機能構成部は、各機能構成部を実現するハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、設定装置300の各機能構成部がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。 Each functional component of the setting device 300 may be realized by hardware (eg, a hard-wired electronic circuit) that implements each functional component, or a combination of hardware and software (eg, electronic A combination of a circuit and a program for controlling the circuit may be realized. Hereinafter, a case where each functional component of the setting device 300 is realized by a combination of hardware and software will be further described.
図12は、設定装置300を実現するための計算機400を例示する図である。計算機400は任意の計算機である。例えば計算機400は、Personal Computer(PC)、サーバマシン、タブレット端末、又はスマートフォンなどである。計算機400は、設定装置300を実現するために設計された専用の計算機であってもよいし、汎用の計算機であってもよい。
FIG. 12 is a diagram illustrating a
計算機400は、バス402、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410、及びネットワークインタフェース112を有する。バス402は、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410、及びネットワークインタフェース412が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ404などを互いに接続する方法は、バス接続に限定されない。プロセッサ404は、CPU(Central Processing Unit)や GPU(Graphics Processing Unit)などの演算装置である。メモリ406は、RAM(Random Access Memory)などを用いて実現される主記憶装置である。ストレージデバイス408は、ハードディスク、SSD(Solid State Drive)、メモリカード、又は ROM(Read Only Memory)などを用いて実現される補助記憶装置である。ただし、ストレージデバイス408は、RAM など、主記憶装置を構成するハードウエアと同様のハードウエアで構成されてもよい。
The
入出力インタフェース410は、計算機400と入出力デバイスとを接続するためのインタフェースである。ネットワークインタフェース412は、計算機400を通信網に接続するためのインタフェースである。この通信網は、例えば LAN(Local Area Network)や WAN(Wide Area Network)である。ネットワークインタフェース412が通信網に接続する方法は、無線接続であってもよいし、有線接続であってもよい。
The input /
例えば計算機400は、入出力インタフェース410又はネットワークインタフェース412を介して、計測装置200と接続されている。
For example, the
ストレージデバイス408は、設定装置300の各機能を実現するプログラムモジュールを記憶している。プロセッサ404は、このプログラムモジュールをメモリ406に読み出して実行することで、このプログラムモジュールに対応する機能を実現する。
The
<計測装置200の設置例>
<Installation example of measuring
計測装置200は、例えば自動車や電車などの移動体に設置される。移動体に設置される計測装置200は、例えばライダ(LIDAR: Light Detection and Ranging)として実現される。
The measuring
図13は、移動体に設置されている計測装置200を例示する図である。図13において、計測装置200は、移動体240の上部に固定されている。また、計測装置200は制御装置244と接続されている。制御装置244は、移動体240を制御する制御装置である。例えば制御装置244は、ECU(Electronic Control Unit)である。
FIG. 13 is a diagram illustrating a measuring
ここで制御部204は、移動体240を制御する制御装置244の一部として実現されてもよい。この場合、制御装置244が有するストレージデバイスに、前述した制御部204を実現するプログラムモジュールが記憶される。
Here, the
なお、計測装置200が設置される場所は移動体240の上部に限定されない。例えば計測装置200は、移動体240の内部(例えば室内)に設置されてもよい。また計測装置200は、移動しない物体に設置されてもよい。
In addition, the place where the measuring
[実施形態2] [Embodiment 2]
図14は、実施形態2の計測装置200を例示するブロック図である。以下で説明する事項を除き、実施形態2の計測装置200は、実施形態1の計測装置200と同様の機能を有する。
FIG. 14 is a block diagram illustrating a
実施形態2の計測装置200は、計測装置200の運用中、動的に電磁波の照射タイミングを変更することで、迷光の発生を抑制する。そのために、実施形態2の計測装置200は修正部206を有する。
The
修正部206は、計測装置200における迷光の発生を検出し、迷光の影響を抑制するように、照射器10に電磁波を照射させるタイミングを変更する。具体的には、修正部206は、受信器50によって所定以上の強さの電磁波が受信された場合に、照射器10の照射タイミングを変更する。言い換えれば、修正部206は、迷光を発生させる電磁波の照射タイミングを特定し、特定した照射タイミングに基づいて、制御部204に設定されている光源駆動信号(ストレージデバイス108に記憶されている光源駆動信号)を修正する。
The
ここで、図7のフローチャートで説明したように受信器(受光器)の受信強度に基づいて迷光の発生源である電磁波の照射タイミングを特定する動作を実行する場合には、移動体240(又は計測装置200)の周辺に、電磁波を反射する物体(例えば、地物や歩行者や他車両等)が存在しない状況下で実行することが望ましい。例えば、計測装置200が計測可能は範囲内に、電磁波を反射する物体が存在しない状況下で実行することが望ましい。
Here, as described in the flowchart of FIG. 7, when the operation of specifying the irradiation timing of the electromagnetic wave that is the generation source of stray light based on the reception intensity of the receiver (light receiver) is executed, the moving object 240 (or It is desirable to execute in a situation where there is no object (for example, a feature, a pedestrian, another vehicle, etc.) that reflects electromagnetic waves around the measuring device 200). For example, it is desirable that the
従って、以下に記載するとおりに、図15のフローチャートに示す動作を実行するのに適した場所を特定し、当該場所において図15のフローチャートに示す動作を実行するようにしてもよい。図17は、この場合における計測装置200を例示するブロック図を図17に示す。
Therefore, as described below, a location suitable for executing the operation shown in the flowchart of FIG. 15 may be specified, and the operation shown in the flowchart of FIG. 15 may be executed at the location. FIG. 17 is a block diagram illustrating the
現在位置取得部208は、例えば GPS(Global Positioning System)等で構成され、移動体240(又は計測装置200)の現在位置に関する現在位置情報を取得する。なお、現在位置取得部は図示しない外部の装置から通信等により当該現在位置情報を取得するような構成であってもよい。
The current
地図情報取得部210は、例えば通信によって、外部の地図情報配信サーバ等から地図情報を取得する。なお、計測装置200は、当該取得した地図情報を記憶する地図情報記憶部を備えるようにしてもよい。また、地図情報記憶部は、予め所定の地図情報が記憶されるようにしてもよい。
The map
ここで、地図情報記憶部が記憶する地図情報には、地物に関する様々な情報を含んだ地物情報が含まれる。また、当該地物情報は、地図情報とは別に管理・記憶されるような構成であってもよい。地物情報には、少なくとも、当該地物が存在する位置に関する情報が含まれている。 Here, the map information stored in the map information storage unit includes feature information including various information related to the features. The feature information may be managed and stored separately from the map information. The feature information includes at least information regarding the position where the feature exists.
実行位置特定部212は、現在位置取得部208によって取得された現在位置情報と、地図情報取得部210が取得した地図情報に含まれる地物情報と、に基づいて、後述する「迷光を発生させた電磁波の照射タイミングを特定する処理」を実行するのに適した位置又は領域を特定する。具体的には、現在位置周辺であってなおかつ電磁波が照射される方向に、電磁波を反射する地物が存在しない位置を、当該処理を実行するのに適した位置又は領域として特定する。
Based on the current position information acquired by the current
ここで、修正部206が制御部204に設定されている光源駆動信号を修正する方法は、実施形態1の設定装置300が制御部204に設定する光源駆動信号を生成する方法と同様である。以下、修正部206が光源駆動信号を修正する方法を例示する。
Here, the method of correcting the light source drive signal set in the
<光源駆動信号を修正する方法の例1>
図15は、光源駆動信号を生成する手順の流れを例示する第1のフローチャートである。図15のフローチャートに示す動作は、例えば所定の頻度(例えば1分間に1回の頻度)で繰り返し実行される。なお、図15のフローチャートにおいて光源駆動信号を修正する方法は、図7のフローチャートにおいてデフォルト信号から制御部204に設定する光源駆動信号を生成する方法と同様である。<Example 1 of Method for Correcting Light Source Drive Signal>
FIG. 15 is a first flowchart illustrating the flow of a procedure for generating a light source drive signal. The operation shown in the flowchart of FIG. 15 is repeatedly executed, for example, at a predetermined frequency (for example, once per minute). The method for correcting the light source drive signal in the flowchart of FIG. 15 is the same as the method of generating the light source drive signal to be set in the
また、図15のフローチャートに示す動作は、上述した実行位置特定部212によって特定された位置又は領域に移動体240(又は計測装置200)が到達したときに、所定の頻度で繰り返し実行されるようにしてもよい。例えば、本動作を開始する前に、予め実行位置特定部212が「迷光を発生させた電磁波の照射タイミングを特定する処理」を実行するのに適した位置又は領域を特定しておき、現在位置取得部208が取得した現在位置情報が示す現在位置が、当該特定した位置と一致したとき(又は特定した領域内に含まれることとなったとき)に、図15のフローチャートに示す動作を開始する。なお、計測装置200は、現在位置が特定した位置又は領域外となった場合に、当該動作を停止するように構成されていてもよい。
Further, the operation shown in the flowchart of FIG. 15 is repeatedly executed at a predetermined frequency when the mobile object 240 (or the measuring device 200) reaches the position or area specified by the execution
修正部206は、計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S302)。S302において修正部206が行う具体的な処理は、S106において設定装置300が行う処理と同様である。
The
修正部206は、S302において、迷光を発生させた電磁波の照射タイミングが1つ以上特定されたか否かを判定する(S304)。迷光を発生させた電磁波の照射タイミングが1つも特定されていない場合(S304:NO)、図15の処理は終了する。このケースでは、現状の光源駆動信号を用いた制御において迷光が発生していない。そのため、光源駆動信号の修正は行われない。
The correcting
一方、迷光を発生させた電磁波の照射タイミングが1つ以上特定された場合(S304:YES)、修正部206は、現在制御部204に設定されている光源駆動信号の一部を修正する(S306)。具体的には、修正部206は、修正前の光源駆動信号における電磁波の照射タイミングのうち、迷光が発生した電磁波の照射タイミングのみを変更したものを、修正後の光源駆動信号とする。つまり、修正後の光源駆動信号は、(1)修正前の光源駆動信号において迷光を発生させた電磁波の照射タイミングについては、修正ませの光源駆動信号における照射タイミングから所定クロック k ずれており、(2)それ以外の電磁波の照射タイミングについては、修正前の光源駆動信号における照射タイミングと一致している。このように、S306における修正前の光源駆動信号と修正後の光源駆動信号との関係は、図7のS110におけるデフォルト信号と制御部204に設定する光源駆動信号との関係と同様である。
On the other hand, when one or more irradiation timings of electromagnetic waves that generate stray light are specified (S304: YES), the
<光源駆動信号を修正する方法の例2> <Example 2 of Method for Correcting Light Source Drive Signal>
図16は、光源駆動信号を生成する手順の流れを例示する第2のフローチャートである。図16のフローチャートに示す動作は、例えば所定の頻度(例えば1分間に1回の頻度)で繰り返し実行される。なお、図16のフローチャートにおいて光源駆動信号を修正する方法は、図11のフローチャートにおいてデフォルト信号から制御部204に設定する光源駆動信号を生成する方法と同様である。
FIG. 16 is a second flowchart illustrating the flow of the procedure for generating the light source drive signal. The operation shown in the flowchart of FIG. 16 is repeatedly executed, for example, at a predetermined frequency (for example, once per minute). Note that the method of correcting the light source drive signal in the flowchart of FIG. 16 is the same as the method of generating the light source drive signal to be set in the
修正部206は、計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S402)。修正部206は、シフト量を表す変数 i に初期値1を設定する(S404)。S406からS418は、迷光を発生させる電磁波の照射タイミングの数が所定値以上である間繰り返し実行されるループ処理Bである。S406において、修正部206は、迷光を発生させる電磁波の照射タイミングの数が所定値以上であるか否かを判定する。迷光を発生させる電磁波の照射タイミングの数が所定値以上でない場合、図16の処理は終了する。一方、迷光を発生させる電磁波の照射タイミングの数が所定値以上である場合、図16の処理はS408に進む。
The
S408において、修正部206は、修正前の光源駆動信号を全体的に +i クロックシフトさせた信号を、修正後の光源駆動信号として制御部204に設定する。修正部206は、上記光源駆動信号を用いて動作した計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S410)。
In step S <b> 408, the
修正部206は、迷光を発生させる電磁波の照射タイミングの数が所定値以上であるか否かを判定する(S412)。迷光を発生させる電磁波の照射タイミングの数が所定値以上でない場合(S412:NO)、図16の処理は終了する。一方、迷光を発生させる電磁波の照射タイミングの数が所定値以上である場合(S412:YES)、図11の処理はS414に進む。
The correcting
S414において、修正部206は、修正前の光源駆動信号を全体的に -i クロックシフトさせた信号を、修正後の光源駆動信号として制御部204に設定する。修正部206は、上記光源駆動信号を用いて動作した計測装置200による計測結果を取得し、迷光を発生させた電磁波の照射タイミングを特定する(S416)。修正部206は、i に1を加算する(S418)。
In S414, the
S420は、ループ処理Bの終端である。そこで、図11の処理はS406に進む。 S420 is the end of the loop process B. Therefore, the processing in FIG. 11 proceeds to S406.
本実施形態の計測装置200によれば、計測装置200の運用中(例えば自動運転モードで走行中の自動車において計測装置200が利用されている最中)に、計測部202の内部で発生している迷光を抑制することができる。
According to the
ここで、計測装置200の運用開始前に、迷光が発生しないように計測装置200を適切に設定したとしても、計測装置200を運用している間に、計測装置200の内部で迷光が発生してしまう可能性がある。例えば、計測装置200に加わる振動などの影響により、照射器10と光学系20との位置関係がずれてしまうことにより、迷光が発生しうる。
Here, even if the measuring
そこで本実施形態の計測装置200は、計測装置200の運用中に迷光の発生を検出して、光源駆動信号を修正する。こうすることで、計測装置200の内部における迷光の発生をより確実に抑制することができる。また、当該修正を、移動体(計測装置)の周辺に地物がない状況下で行なうことで、適切な修正を行なうことが可能となる。
Therefore, the
<ハードウエア構成の例> <Example of hardware configuration>
実施形態2の計測装置200のハードウエア構成は、実施形態1の計測装置200のハードウエア構成と同様に、例えば図4から図6で表される。また本実施形態において、前述したストレージデバイス108に記憶されるプログラムモジュールには、本実施形態で説明した機能を実現するプログラムがさらに含まれる。
The hardware configuration of the
なお図14において、修正部206と制御部204は別々の機能構成部として記載されているものの、修正部206は制御部204の内部に含まれる機能構成部であってもよい。この場合、前述した修正部206によって行われる処理は、制御部204によって行われる処理であるとも表現できる。
In FIG. 14, the
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記各実施形態の組み合わせ、又は上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment of this invention was described with reference to drawings, these are illustrations of this invention, The combination of said each embodiment or various structures other than the above can also be employ | adopted.
この出願は、2016年11月30日に出願された日本出願特願2016−232162号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2006-232162 for which it applied on November 30, 2016, and takes in those the indications of all here.
Claims (14)
前記計測部から前記電磁波が照射される方向を制御する制御部と、有し、
前記計測部による1回の走査において所定値以上の強さで受信される電磁波を前記計測部が照射する回数は所定回数未満である、計測装置。A measuring unit that scans by receiving the electromagnetic wave that is irradiated from the light source through the optical system and is irradiated to the outside and reflected by the reflector;
A control unit that controls a direction in which the electromagnetic wave is irradiated from the measurement unit;
The measurement device, wherein the number of times the measurement unit irradiates the electromagnetic wave received with a strength of a predetermined value or more in one scan by the measurement unit is less than the predetermined number.
前記計測装置は、
光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された前記電磁波を受信することで走査を行う計測部と、
駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、有し、
当該設定装置は、
所定の信号が前記駆動信号として設定された前記計測装置を動作させて、前記計測装置による計測結果を取得し、
前記計測装置によって所定値以上の強さで受信される電磁波について前記所定の駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にする、設定装置。A setting device for setting a measurement device,
The measuring device is
A measuring unit that scans by receiving the electromagnetic wave that is irradiated from the light source through the optical system and is irradiated to the outside and reflected by the reflector;
A control unit that controls a direction in which the electromagnetic wave is emitted from the measurement unit using a drive signal;
The setting device
Operate the measurement device in which a predetermined signal is set as the drive signal, obtain a measurement result by the measurement device,
By changing the irradiation timing indicated by the predetermined drive signal for the electromagnetic wave received by the measurement device with an intensity of a predetermined value or more, it is received with an intensity of a predetermined value or more in one scan by the measurement unit. A setting device that makes the number of irradiation times of electromagnetic waves less than a predetermined number.
前記所定の信号に示される電磁波の照射タイミングのうち、前記特定されたタイミングのみを所定クロック前又は後ろに変更した信号を、前記駆動信号として前記制御部に設定する、請求項2に記載の設定装置。Using the acquired measurement result, specify the timing at which the measurement device irradiates the electromagnetic wave received with a strength of a predetermined value or more by the measurement device,
The setting according to claim 2, wherein a signal obtained by changing only the specified timing before or after a predetermined clock among the irradiation timing of the electromagnetic wave indicated by the predetermined signal is set as the drive signal in the control unit. apparatus.
前記回数が前記所定回数以上であると判定された場合に、前記所定の信号全体を所定クロック前又は後ろにシフトさせた信号を、前記駆動信号として前記制御部に設定する、請求項2に記載の設定装置。It is determined whether or not the number of times the measurement unit irradiates electromagnetic waves received with a strength of a predetermined value or more in a single scan by the measurement unit is a predetermined number of times,
3. The control unit according to claim 2, wherein when the number of times is determined to be equal to or greater than the predetermined number, a signal obtained by shifting the entire predetermined signal forward or backward by a predetermined clock is set as the drive signal in the control unit. Setting device.
前記計測装置は、
光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された前記電磁波を受信することで走査を行う計測部と、
駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、有し、
当該設定方法は、
所定の信号が前記駆動信号として設定された前記計測装置を動作させて、前記計測装置による計測結果を取得するステップと、
前記計測装置によって所定値以上の強さで受信される電磁波について前記所定の駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にするステップと、を有する設定方法。A measuring device setting method,
The measuring device is
A measuring unit that scans by receiving the electromagnetic wave that is irradiated from the light source through the optical system and is irradiated to the outside and reflected by the reflector;
A control unit that controls a direction in which the electromagnetic wave is emitted from the measurement unit using a drive signal;
The setting method is
Operating the measurement device in which a predetermined signal is set as the drive signal, and obtaining a measurement result by the measurement device;
By changing the irradiation timing indicated by the predetermined drive signal for the electromagnetic wave received by the measurement device with an intensity of a predetermined value or more, it is received with an intensity of a predetermined value or more in one scan by the measurement unit. Setting the number of times of irradiation of electromagnetic waves less than a predetermined number of times.
駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、
前記駆動信号を修正する修正部と、を有し、
前記修正部は、
前記計測部によって所定値以上の強さで受信される電磁波について前記駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にする、計測装置。A measuring unit that scans by receiving the electromagnetic wave that is irradiated from the light source through the optical system and is irradiated to the outside and reflected by the reflector;
A control unit that controls a direction in which the electromagnetic wave is emitted from the measurement unit using a drive signal;
A correction unit for correcting the drive signal,
The correction unit is
By changing the irradiation timing indicated by the drive signal for the electromagnetic wave received by the measurement unit with an intensity of a predetermined value or more, the electromagnetic wave received with the intensity of a predetermined value or more in one scan by the measurement unit A measuring device that makes the number of irradiations less than a predetermined number.
前記計測装置は、
光源から照射された電磁波が光学系を通過して外部へ照射され、反射物によって反射された前記電磁波を受信することで走査を行う計測部と、
駆動信号を用いて、前記計測部から前記電磁波が照射される方向を制御する制御部と、を有し、
当該修正方法は、前記計測装置によって所定値以上の強さで受信される電磁波について前記駆動信号が示す照射タイミングを変更することで、前記計測部による1回の走査において所定値以上の強さで受信される電磁波の照射回数を所定回数未満にするステップを有する、修正方法。A correction method executed by a measuring device,
The measuring device is
A measuring unit that scans by receiving the electromagnetic wave that is irradiated from the light source through the optical system and is irradiated to the outside and reflected by the reflector;
A control unit that controls a direction in which the electromagnetic wave is emitted from the measurement unit using a drive signal;
In the correction method, by changing the irradiation timing indicated by the drive signal for the electromagnetic wave received by the measurement device with an intensity greater than or equal to a predetermined value, the intensity is greater than or equal to a predetermined value in one scan by the measurement unit. The correction method which has the step which makes the frequency | count of irradiation of the received electromagnetic waves less than predetermined times.
前記計測部から前記電磁波が照射される方向を制御する制御部と、を有し、
前記制御部は、前記光源から照射された前記電磁波が前記光学系において反射された反射光を、前記受信部が所定以上の強さで受信した場合に、前記計測部の照射タイミングを変更する、計測装置。A measuring unit having a light source, and a receiving unit that receives the electromagnetic wave irradiated from the light source through the optical system and reflected by a reflector;
A control unit that controls a direction in which the electromagnetic wave is irradiated from the measurement unit,
The control unit changes the irradiation timing of the measurement unit when the reception unit receives the reflected light reflected by the optical system from the light source with the intensity of a predetermined level or more. Measuring device.
前記制御部は、前記所定の信号に示される電磁波の照射タイミングのうち、前記特定されたタイミングでは前記光源から前記電磁波が照射されないように前記計測部を制御する、請求項2に記載の設定装置。Using the acquired measurement result, specify the timing at which the measurement device irradiates the electromagnetic wave received with a strength of a predetermined value or more by the measurement device,
The setting device according to claim 2, wherein the control unit controls the measurement unit so that the electromagnetic wave is not irradiated from the light source at the specified timing among the irradiation timings of the electromagnetic wave indicated by the predetermined signal. .
前記受信部が前記光源から照射された前記電磁波が前記光学系にて反射された反射光を所定以上の強さで受信した場合に、前記電磁波の照射タイミングを変更する処理を実行する制御部と、
を有し、
前記制御部は、当該計測装置の周辺であってなおかつ前記電磁波が照射される方向に、前記電磁波を反射する物体が存在しない状況下であると判断した場合に、前記処理を実行する、計測装置。A measuring unit having a light source, and a receiving unit that receives the electromagnetic wave irradiated from the light source through the optical system and reflected by a reflector;
A control unit that executes a process of changing the irradiation timing of the electromagnetic wave when the receiving unit receives the reflected light reflected by the optical system with the intensity of the electromagnetic wave emitted from the light source; ,
Have
The control unit executes the processing when it is determined that there is no object that reflects the electromagnetic wave in a direction around the measurement apparatus and in the direction in which the electromagnetic wave is irradiated. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021214557A JP7379455B2 (en) | 2016-11-30 | 2021-12-28 | Measuring device, setting device, setting method, correction method, and program |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016232162 | 2016-11-30 | ||
JP2016232162 | 2016-11-30 | ||
PCT/JP2017/042728 WO2018101293A1 (en) | 2016-11-30 | 2017-11-29 | Measuring device, setting device, setting method, correcting method, and program |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021214557A Division JP7379455B2 (en) | 2016-11-30 | 2021-12-28 | Measuring device, setting device, setting method, correction method, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2018101293A1 true JPWO2018101293A1 (en) | 2019-10-24 |
Family
ID=62242518
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018554176A Ceased JPWO2018101293A1 (en) | 2016-11-30 | 2017-11-29 | Measuring device, setting device, setting method, correction method, and program |
JP2021214557A Active JP7379455B2 (en) | 2016-11-30 | 2021-12-28 | Measuring device, setting device, setting method, correction method, and program |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021214557A Active JP7379455B2 (en) | 2016-11-30 | 2021-12-28 | Measuring device, setting device, setting method, correction method, and program |
Country Status (2)
Country | Link |
---|---|
JP (2) | JPWO2018101293A1 (en) |
WO (1) | WO2018101293A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113835444A (en) * | 2021-10-11 | 2021-12-24 | 广州穿越千机创新科技有限公司 | Ground magnetic field automatic detection system and method for formation unmanned aerial vehicle |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1184003A (en) * | 1997-09-04 | 1999-03-26 | Nikon Corp | Light wave distance-measuring device |
JPH11142519A (en) * | 1997-11-06 | 1999-05-28 | Omron Corp | Optical range finder |
JP2001074842A (en) * | 1999-09-07 | 2001-03-23 | Minolta Co Ltd | Range finder |
JP2008164477A (en) * | 2006-12-28 | 2008-07-17 | Hokuyo Automatic Co | Device for detecting optical window contamination of scanning type distance measuring apparatus |
JP2009229255A (en) * | 2008-03-24 | 2009-10-08 | Hokuyo Automatic Co | Scanning range finder |
JP2011214926A (en) * | 2010-03-31 | 2011-10-27 | Hokuyo Automatic Co | Multi-signal processing apparatus, range finder, and multi-distance measuring system |
JP2012093312A (en) * | 2010-10-28 | 2012-05-17 | Denso Corp | Radar device |
JP2012118266A (en) * | 2010-11-30 | 2012-06-21 | Sanyo Electric Co Ltd | Beam irradiation device |
-
2017
- 2017-11-29 WO PCT/JP2017/042728 patent/WO2018101293A1/en active Application Filing
- 2017-11-29 JP JP2018554176A patent/JPWO2018101293A1/en not_active Ceased
-
2021
- 2021-12-28 JP JP2021214557A patent/JP7379455B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1184003A (en) * | 1997-09-04 | 1999-03-26 | Nikon Corp | Light wave distance-measuring device |
JPH11142519A (en) * | 1997-11-06 | 1999-05-28 | Omron Corp | Optical range finder |
JP2001074842A (en) * | 1999-09-07 | 2001-03-23 | Minolta Co Ltd | Range finder |
JP2008164477A (en) * | 2006-12-28 | 2008-07-17 | Hokuyo Automatic Co | Device for detecting optical window contamination of scanning type distance measuring apparatus |
JP2009229255A (en) * | 2008-03-24 | 2009-10-08 | Hokuyo Automatic Co | Scanning range finder |
JP2011214926A (en) * | 2010-03-31 | 2011-10-27 | Hokuyo Automatic Co | Multi-signal processing apparatus, range finder, and multi-distance measuring system |
JP2012093312A (en) * | 2010-10-28 | 2012-05-17 | Denso Corp | Radar device |
JP2012118266A (en) * | 2010-11-30 | 2012-06-21 | Sanyo Electric Co Ltd | Beam irradiation device |
Also Published As
Publication number | Publication date |
---|---|
JP7379455B2 (en) | 2023-11-14 |
JP2022034072A (en) | 2022-03-02 |
WO2018101293A1 (en) | 2018-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9046599B2 (en) | Object detection apparatus and method | |
JP2015078925A (en) | Periphery monitoring device and periphery monitoring system | |
CN107728131B (en) | Laser radar and laser radar control method | |
JP6645254B2 (en) | Object recognition device | |
JP2006349694A (en) | Object detection device and method | |
JP2024114870A (en) | How to determine the scanning method | |
JP7379455B2 (en) | Measuring device, setting device, setting method, correction method, and program | |
US11892539B2 (en) | Measurement device, measurement method, and non-transitory storage medium | |
JP2022107543A (en) | Control device | |
JP2024091986A (en) | Control device, irradiation device, measurement device, control method, and computer program | |
JP2023076825A (en) | Measurement device | |
US12099143B2 (en) | Measuring device, control method, program, and storage medium | |
US11761764B2 (en) | Method and laser tracking system for using laser level to track detector | |
US20230108583A1 (en) | Distance measurement device | |
US20230113547A1 (en) | Recognition processing system, recognition processing device, and recognition processing method | |
JP2022042771A (en) | Distance measuring system | |
CN116413680A (en) | Scanning method and detection system based on laser radar and millimeter wave radar | |
US20230066857A1 (en) | Dynamic laser emission control in light detection and ranging (lidar) systems | |
US20230079909A1 (en) | Dynamic laser emission control in light detection and ranging (lidar) systems | |
JP2019078688A (en) | Feature data structure, storage device, controller, method for control, program, and storage medium | |
US20220155416A1 (en) | Laser emission control in light detection and ranging (lidar) systems | |
WO2018139525A1 (en) | Detection device, method for detecting distance to object, program, and storage medium | |
CN115201786A (en) | Synchronous control device and method for laser radar | |
JP2021181980A (en) | Optical range finder | |
JP2024144495A (en) | Light Control Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190527 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210302 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210409 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210701 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211214 |
|
A045 | Written measure of dismissal of application [lapsed due to lack of payment] |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20220426 |