JPWO2018029488A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2018029488A5
JPWO2018029488A5 JP2019507213A JP2019507213A JPWO2018029488A5 JP WO2018029488 A5 JPWO2018029488 A5 JP WO2018029488A5 JP 2019507213 A JP2019507213 A JP 2019507213A JP 2019507213 A JP2019507213 A JP 2019507213A JP WO2018029488 A5 JPWO2018029488 A5 JP WO2018029488A5
Authority
JP
Japan
Prior art keywords
antennas
medical imaging
imaging system
microwave
antenna array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019507213A
Other languages
Japanese (ja)
Other versions
JP7134164B2 (en
JP2019531773A (en
Publication date
Priority claimed from GB1613879.4A external-priority patent/GB2552837A/en
Application filed filed Critical
Publication of JP2019531773A publication Critical patent/JP2019531773A/en
Publication of JPWO2018029488A5 publication Critical patent/JPWO2018029488A5/ja
Application granted granted Critical
Publication of JP7134164B2 publication Critical patent/JP7134164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上述のように、図4~図6に示される配置は傾斜させられた切り嵌め細工の半球形内への投影である。傾斜させられた切り嵌め細工は、逆メルカトル投影(inverse Mercator projection)または他のマップ投影を用いて半球形に変換することができる。したがって、アンテナアレイ6のその軸の周りの回転は、半波長基準を満たす有効間隔を伴う実質的に均一な密度を有する実際上のアレイを定めるように、アンテナ16が、アンテナ16の元の位置間の、間隔を空けられた新しい位置を占めるようにする。図7は、互いに重なる各々の配置のアンテナ16の位置を示し、それ故に、実際上のアレイの密度を示す。 As mentioned above, the arrangements shown in FIGS. 4-6 are projections of the beveled inset work into a hemisphere. Inclined incisions can be transformed into a hemisphere using inverse Mercator projection or other map projections. Thus, the antenna 16 is in its original position with the antenna 16 so that rotation around its axis of the antenna array 6 defines a practical array with a substantially uniform density with effective spacing that meets the half-wave reference. Try to occupy a new, spaced position in between. FIG. 7 shows the location of the antennas 16 in each arrangement that overlaps each other and therefore shows the density of the actual array.

Claims (12)

互いに間隔を空けられた複数のアンテナを備えるマイクロ波アンテナアレイであって、前記複数のアンテナは送信アンテナおよび受信アンテナを定め、前記送信アンテナは患者の身体部分を照射するようにマイクロ波信号を送信するように構成され、前記受信アンテナは前記身体部分内での散乱後の前記マイクロ波信号を受信するように構成される、医用撮像システムであって、
前記マイクロ波アンテナアレイは、前記身体部分に対して相対的に前記複数のアンテナの位置を定める複数の配置を有し、各々の配置において、前記複数のアンテナが、他の配置においては占められない位置に置かれ、
前記医用撮像システムは、
前記複数のアンテナを以前には占められていない位置に位置決めするように、前記複数の配置の間で前記マイクロ波アンテナアレイを動かすように構成されたアクチュエータと、
前記マイクロ波アンテナアレイの前記複数の配置の各々において生成された前記マイクロ波信号に関するデータセットを取得し、前記データセットの連結から前記身体部分の内部構造を示す出力を生成するように構成されたプロセッサと、
をさらに備え、
前記複数のアンテナの間の物理的間隔は、前記マイクロ波信号の波長の半分よりも大きく、前記複数の配置によって定められる位置において、前記複数のアンテナの間の有効間隔は、前記マイクロ波信号の前記波長の半分よりも小さい、
医用撮像システム。
A microwave antenna array with a plurality of antennas spaced apart from each other, wherein the plurality of antennas define a transmitting antenna and a receiving antenna, and the transmitting antenna transmits a microwave signal so as to illuminate a part of the patient's body. The receiving antenna is a medical imaging system configured to receive the microwave signal after scattering within the body portion.
The microwave antenna array has a plurality of arrangements that determine the positions of the plurality of antennas relative to the body part, and in each arrangement, the plurality of antennas are not occupied in other arrangements. Placed in position,
The medical imaging system is
An actuator configured to move the microwave antenna array between the plurality of arrangements so as to position the plurality of antennas in a previously unoccupied position.
Data sets for the microwave signals generated in each of the plurality of arrangements of the microwave antenna array were acquired and configured to generate an output showing the internal structure of the body part from the concatenation of the data sets. With the processor
Further prepare
The physical spacing between the plurality of antennas is greater than half the wavelength of the microwave signal, and at positions defined by the plurality of arrangements, the effective spacing between the plurality of antennas is that of the microwave signal. Less than half of the wavelength,
Medical imaging system.
前記マイクロ波アンテナアレイは基板の上に形成され、前記基板は前記身体部分に一致するように形取られるかまたは形取り可能である、請求項1に記載の医用撮像システム。 The medical imaging system according to claim 1, wherein the microwave antenna array is formed on a substrate, and the substrate is shaped or can be shaped to match the body portion. 前記基板は半球形である、請求項2に記載の医用撮像システム。 The medical imaging system according to claim 2, wherein the substrate is hemispherical. 前記アクチュエータは、前記マイクロ波アンテナアレイを前記身体部分に対して相対的に回転させるように構成される、請求項1~3のいずれか一項に記載の医用撮像システム。 The medical imaging system according to any one of claims 1 to 3, wherein the actuator is configured to rotate the microwave antenna array relative to the body portion. 前記複数のアンテナは、前記複数のアンテナの移動方向に対して傾斜させられた多角形の規則的な切り嵌め細工から形成される構造体内に位置決めされる、請求項1~4のいずれか一項に記載の医用撮像システム。 One of claims 1 to 4, wherein the plurality of antennas are positioned within a structure formed of regular incision work of polygons inclined with respect to the direction of movement of the plurality of antennas. The medical imaging system described in. 前記複数のアンテナは、前記規則的な切り嵌め細工の逆メルカトル投影(inverse Mercator projection)から形成される構造体内に位置決めされる、請求項5に記載の医用撮像システム。 The medical imaging system of claim 5, wherein the plurality of antennas are positioned within a structure formed from the inverted Mercator projection of the regular incision . 前記多角形は正方形である、請求項5または6に記載の医用撮像システム。 The medical imaging system according to claim 5 or 6, wherein the polygon is a square. 前記構造体は、20度と35度との間の角度で傾斜させられる、請求項5~7のいずれか一項に記載の医用撮像システム。 The medical imaging system according to any one of claims 5 to 7, wherein the structure is tilted at an angle between 20 degrees and 35 degrees. 前記構造体は、27度の角度で傾斜させられる、請求項8に記載の医用撮像システム。 The medical imaging system according to claim 8, wherein the structure is tilted at an angle of 27 degrees. (a)互いに間隔を空けられた複数のアンテナを備えるマイクロ波アンテナアレイを提供するステップであって、前記複数のアンテナは送信アンテナおよび受信アンテナを定める、ステップと、
前記送信アンテナによって発せられるマイクロ波信号で、患者の身体部分を照射するステップと、
)データセットを取得するために、前記身体部分内での散乱後の前記マイクロ波信号を、前記受信アンテナにおいて受信するステップと、
)前記アンテナが以前には占められていなかった位置に置かれるように、前記複数のアンテナの位置を前記身体部分に対して相対的に動かすステップ、並びにステップ()および()を繰り返すステップと、
)取得された前記データセットを連結するステップ、および前記身体部分の内部構造を示す出力を前記連結されたデータセットから生成するステップと、
を含み、
前記複数のアンテナの間の物理的間隔は、前記マイクロ波信号の波長の半分よりも大きく、前記複数のアンテナを以前には占められていなかった位置に動かすことにより達成される前記複数のアンテナの間の有効間隔は、前記マイクロ波信号の前記波長の半分よりも小さい、
医用撮像方法。
(A) A step of providing a microwave antenna array including a plurality of antennas spaced apart from each other, wherein the plurality of antennas define a transmitting antenna and a receiving antenna.
( B ) A step of irradiating a patient's body part with a microwave signal emitted by the transmitting antenna.
( C ) A step of receiving the microwave signal after scattering in the body part at the receiving antenna in order to acquire a data set.
( D ) Steps of moving the positions of the plurality of antennas relative to the body part, and steps ( b ) and ( c ) so that the antennas are placed in positions that were not previously occupied. Repeating steps and
( E ) A step of concatenating the acquired data set, and a step of generating an output showing the internal structure of the body part from the concatenated data set.
Including
The physical spacing between the plurality of antennas is greater than half the wavelength of the microwave signal and is achieved by moving the plurality of antennas to a previously unoccupied position of the plurality of antennas. The effective interval between them is less than half of the wavelength of the microwave signal.
Medical imaging method.
前記複数のアンテナは、前記マイクロ波アンテナアレイに接続されたアクチュエータを使用して動かされる、請求項10に記載の医用撮像方法。 The medical imaging method according to claim 10, wherein the plurality of antennas are moved by using an actuator connected to the microwave antenna array. 前記アクチュエータは、前記マイクロ波アンテナアレイを、前記身体部分に対して相対的に回転させるように構成される、請求項11に記載の医用撮像方法。 The medical imaging method according to claim 11, wherein the actuator is configured to rotate the microwave antenna array relative to the body portion.
JP2019507213A 2016-08-12 2017-08-11 Medical imaging system and method Active JP7134164B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1613879.4 2016-08-12
GB1613879.4A GB2552837A (en) 2016-08-12 2016-08-12 A medical imaging system and method
EP17160388.9A EP3281583B1 (en) 2016-08-12 2017-03-10 A medical imaging system and method
EP17160388.9 2017-03-10
PCT/GB2017/052375 WO2018029488A1 (en) 2016-08-12 2017-08-11 A medical imaging system and method

Publications (3)

Publication Number Publication Date
JP2019531773A JP2019531773A (en) 2019-11-07
JPWO2018029488A5 true JPWO2018029488A5 (en) 2022-06-22
JP7134164B2 JP7134164B2 (en) 2022-09-09

Family

ID=56985834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019507213A Active JP7134164B2 (en) 2016-08-12 2017-08-11 Medical imaging system and method

Country Status (5)

Country Link
US (1) US20190175095A1 (en)
EP (1) EP3281583B1 (en)
JP (1) JP7134164B2 (en)
GB (1) GB2552837A (en)
WO (1) WO2018029488A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7105471B2 (en) * 2018-02-16 2022-07-25 国立大学法人広島大学 Abnormal tissue detector
FR3122765B1 (en) * 2021-05-04 2023-04-21 Mvg Ind Method for the morphological processing of microwave radar images in the medical field using different hypotheses on the medium traversed by the microwave signals.
EP4173559A1 (en) * 2021-10-28 2023-05-03 Micrima Limited Medical examination system with signal artefact compensation

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005916A (en) * 1992-10-14 1999-12-21 Techniscan, Inc. Apparatus and method for imaging with wavefields using inverse scattering techniques
US5713356A (en) * 1996-10-04 1998-02-03 Optosonics, Inc. Photoacoustic breast scanner
US6057761A (en) * 1997-01-21 2000-05-02 Spatial Dynamics, Ltd. Security system and method
US6216025B1 (en) * 1999-02-02 2001-04-10 Optosonics, Inc. Thermoacoustic computed tomography scanner
US20040077943A1 (en) * 2002-04-05 2004-04-22 Meaney Paul M. Systems and methods for 3-D data acquisition for microwave imaging
US8089417B2 (en) * 2007-06-01 2012-01-03 The Royal Institution For The Advancement Of Learning/Mcgill University Microwave scanning system and miniaturized microwave antenna
US20100113921A1 (en) * 2008-06-02 2010-05-06 Uti Limited Partnership Systems and Methods for Object Surface Estimation
US20120083683A1 (en) * 2009-06-10 2012-04-05 National University Corp. Shizuoka University Diagnosis apparatus
WO2012048020A1 (en) * 2010-10-05 2012-04-12 Joint Vue, LLC Uwb microwave imaging system with a novel calibration approach for breast cancer detection
WO2013012631A1 (en) * 2011-07-17 2013-01-24 Grzegorczyk Tomasz M Fast tomographic microwave imaging
WO2014141268A1 (en) * 2013-03-14 2014-09-18 Vayyar Imaging Ltd. Microwave imaging resilient to background and skin clutter
FR3006576B1 (en) * 2013-06-06 2016-08-19 Satimo Ind MEDICAL EMITTING / RECEPTION MICROWAVE IMAGING SYSTEM
CN104473617B (en) * 2014-11-10 2017-08-01 南方科技大学 Bio-tissue detection device, system and method

Similar Documents

Publication Publication Date Title
KR101505828B1 (en) Symmetric and preferentially steered random arrays for ultrasound therapy
EP2210128B1 (en) An insonification device that includes a three-dimensional network of emitters arranged in at least two concentric spirals, which are designed to generate a beam of high- intens i ty focussed waves
US6102860A (en) Ultrasound transducer for three-dimensional imaging
EP3086844B1 (en) Device for treatment of a tissue
JP4605594B2 (en) Ultrasonic transducer and underwater detector
JPH02183189A (en) Three-dimensional focusing apparatus for ultrasonic beam
US6488630B1 (en) Arrays of quasi-randomly distributed ultrasound transducers
JP2010521650A (en) Transducer array placement and operation for soda applications
US5893832A (en) Transducer element alignment structure in two-dimensional transducer array for forming ultra-sonic three-dimensional images
CN106456137A (en) Scattering tomography method and scattering tomography device
JPWO2018029488A5 (en)
KR20140107846A (en) Method for Compensating Focal Point, Ultrasound Medical Apparatus Therefor
JP6598667B2 (en) Subject information acquisition apparatus and control method thereof
Roux et al. Validation of optimal 2D sparse arrays in focused mode: Phantom experiments
JP7134164B2 (en) Medical imaging system and method
CN208334642U (en) Submarine target acoustic imaging apparatus based on spheric array
CN109031318A (en) Submarine target acoustic imaging method based on spheric array
Sarvazyan et al. A comparative study of systems used for dynamic focusing of ultrasound
RU2528136C1 (en) Multibeam scanning mirror antenna
JP6950098B2 (en) Ultrasonic transducer, focused ultrasonic therapy device
CN115515650A (en) Systems and methods for electromagnetic virus inactivation
Roux et al. Spiral array inspired multi-depth cost function for 2D sparse array optimization
Scott et al. Energy efficient antenna arrays for indoor 3-D microwave imaging
KR102486572B1 (en) Focused ultrasound apparatus and method for treatment sequence of focused ultrasound using the same
TWI766507B (en) Emulation system of radar echo data simulation