JPWO2018003347A1 - Textile treatment agent and its use - Google Patents

Textile treatment agent and its use Download PDF

Info

Publication number
JPWO2018003347A1
JPWO2018003347A1 JP2018524956A JP2018524956A JPWO2018003347A1 JP WO2018003347 A1 JPWO2018003347 A1 JP WO2018003347A1 JP 2018524956 A JP2018524956 A JP 2018524956A JP 2018524956 A JP2018524956 A JP 2018524956A JP WO2018003347 A1 JPWO2018003347 A1 JP WO2018003347A1
Authority
JP
Japan
Prior art keywords
fiber
treatment agent
acid
compound
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018524956A
Other languages
Japanese (ja)
Other versions
JP6397601B2 (en
Inventor
鈴木 堅大郎
堅大郎 鈴木
武圭 中山
武圭 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Application granted granted Critical
Publication of JP6397601B2 publication Critical patent/JP6397601B2/en
Publication of JPWO2018003347A1 publication Critical patent/JPWO2018003347A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/372Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen containing etherified or esterified hydroxy groups ; Polyethers of low molecular weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)

Abstract

繊維に対して高い浸透性をもち、アミノ変性シリコーンのゲル化を抑える繊維処理剤を提供する。アミノ変性シリコーン(A)と、界面活性剤(B)と、下記化学式(1)に示される化合物(C1)及び下記化合物(C2)から選ばれる少なくとも1種である化合物(C)とを含む、繊維処理剤。【化1】(式(1)中、R1は有機基、R2は有機基、A1Oは、炭素数2〜4のオキシアルキレン基を示す。mは1〜50の数を示す。)化合物(C2):分子内にポリオキシアルキレン基及び2つ以上の1級アミン基を有するアミン化合物Provided is a fiber treatment agent that has high permeability to fibers and suppresses gelation of amino-modified silicone. An amino-modified silicone (A), a surfactant (B), and a compound (C) that is at least one selected from the following compound (C1) and the following compound (C2) represented by the following chemical formula (1): Fiber treatment agent. (In formula (1), R1 represents an organic group, R2 represents an organic group, A1O represents an oxyalkylene group having 2 to 4 carbon atoms, and m represents a number of 1 to 50.) Compound (C2 ): Amine compound having a polyoxyalkylene group and two or more primary amine groups in the molecule

Description

本発明は繊維処理剤及びその利用に関する。   The present invention relates to a fiber treatment agent and use thereof.

繊維を製造する上において、摩擦抵抗が低く、繊維に対して高い親和性を持つことからアミノ変性シリコーンを繊維に付着させ、工程通過性や風合い向上を行うことが良く知られている(引用文献1)。このようなアミノ変性シリコーンの付着方法としては、一般的にアミノ変性シリコーンオイルを水系エマルジョン化したものに繊維を浸漬させ、その後水分を熱により除去する乾燥工程を通過させる必要がある。これらの熱処理工程で熱架橋性の高いアミノ変性シリコーン系処理剤は架橋反応が繊維上もしくは乾燥ローラー上で起こり皮膜化もしくは粘着剤化しやすく、処理剤が繊維束内部に移動できない、液状成分低下による風合いの低下、工程通過性の低下等の問題が生じる。また、浸漬させる時間は非常に短いため、アミノ変性シリコーンエマルションの繊維への浸透性が低い場合、繊維に対して均一にアミノ変性シリコーン系処理剤が付着出来ない問題がある。   In producing fibers, it is well known that amino-modified silicone is attached to the fibers to improve process passability and texture because of low frictional resistance and high affinity for the fibers. 1). As a method for attaching such amino-modified silicone, it is generally necessary to immerse the fiber in an aqueous emulsion of amino-modified silicone oil, and then pass through a drying step in which moisture is removed by heat. In these heat treatment processes, amino-modified silicone-based treatment agents with high heat-crosslinkability tend to form a film or a pressure-sensitive adhesive on the fiber or on the drying roller, and the treatment agent cannot move into the fiber bundle. Problems such as a decrease in texture and a decrease in process passability occur. Moreover, since the time to immerse is very short, when the permeability of the amino-modified silicone emulsion to the fiber is low, there is a problem that the amino-modified silicone-based treatment agent cannot uniformly adhere to the fiber.

特に炭素繊維を製造する場合には上記架橋による被膜化および繊維への浸透性が重要となる。炭素繊維の製造方法としては、まずプレカーサーを製造する(このプレカーサーの製造工程を製糸工程と称することがある)。このプレカーサーを200〜300℃の酸化性雰囲気中で耐炎化繊維に転換し(この工程を以下、耐炎化処理工程と称することがある)、続いて300〜2000℃の不活性雰囲気中で炭素化する(この工程を以下、炭素化処理工程と称することがある)方法が一般的である(以下、耐炎化処理工程と炭素化処理工程をあわせて、焼成工程と称することがある)。このプレカーサーの製造には通常のアクリル繊維と比較しても高倍率に延伸される延伸工程を経る。そのため、アミノ変性シリコーンを付着させてないと、繊維同士の膠着が起こり易く、均一に高倍率延伸が行われない為に、不均一なプレカーサーとなり、焼成して得られる炭素繊維は十分な強度が得られないという問題がある。また、プレカーサーの焼成時には、単繊維同士の融着が発生し、得られた炭素繊維の品質、品位を低下させるという問題がある。このような、問題を解決するためにアミノ変性シリコーン系処理剤をプレカーサーに付与する技術が多数提案されている(特許文献1〜2参照)が、上記アミノ変性シリコーンの被膜化および浸透性が良好でない場合、焼成後の炭素繊維強度が不足するという不具合が発生する。   In particular, when carbon fibers are produced, the above-mentioned film formation by cross-linking and fiber permeability are important. As a method for producing carbon fiber, a precursor is first produced (this precursor production process may be referred to as a yarn-making process). This precursor is converted to flame-resistant fibers in an oxidizing atmosphere at 200 to 300 ° C. (this process may be referred to as a flame-resistant treatment process hereinafter), followed by carbonization in an inert atmosphere at 300 to 2000 ° C. (This process may hereinafter be referred to as a carbonization treatment process) is generally used (hereinafter, the flameproofing treatment process and the carbonization treatment process may be collectively referred to as a firing process). The precursor is manufactured through a drawing process that is drawn at a high magnification even when compared with a normal acrylic fiber. Therefore, if amino-modified silicone is not adhered, the fibers tend to stick together and are not uniformly stretched at a high magnification, resulting in a non-uniform precursor, and the carbon fiber obtained by firing has sufficient strength. There is a problem that it cannot be obtained. Further, when the precursor is fired, there is a problem that the single fibers are fused with each other, and the quality and quality of the obtained carbon fibers are deteriorated. In order to solve such problems, many techniques for applying an amino-modified silicone-based treatment agent to a precursor have been proposed (see Patent Documents 1 and 2), but the above-mentioned amino-modified silicone has good coating and permeability. If not, the problem of insufficient carbon fiber strength after firing occurs.

日本国特開2001−271477号公報Japanese Unexamined Patent Publication No. 2001-271477 日本国特開2002−129481号公報Japanese Patent Laid-Open No. 2002-129482

かかる従来の技術背景に鑑み、本発明の目的は、繊維に対して高い浸透性をもち、アミノ変性シリコーンのゲル化を抑える繊維処理剤を提供することにある。   In view of the conventional technical background, an object of the present invention is to provide a fiber treatment agent that has high permeability to fibers and suppresses gelation of amino-modified silicone.

本発明者らは、上記課題を解決するために鋭意検討した結果、アミノ変性シリコーンと1級アミノ基とオキシアルキレン基とを有する化合物と、界面活性剤とを併用することで、繊維に対する浸透性およびアミノ変性シリコーンのゲル化を抑制することができることを見出し、本発明に到達した。
すなわち、本発明の繊維処理剤は、アミノ変性シリコーン(A)と、界面活性剤(B)と、下記化学式(1)に示される化合物(C1)及び下記化合物(C2)から選ばれる少なくとも1種である化合物(C)とを含む、繊維処理剤である。

Figure 2018003347
(式(1)中、Rは有機基、Rは有機基、AOは、炭素数2〜4のオキシアルキレン基を示す。mは1〜50の数を示す。)
化合物(C2):分子内にポリオキシアルキレン基及び2つ以上の1級アミン基を有するアミン化合物As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a compound having an amino-modified silicone, a primary amino group, and an oxyalkylene group, and a surfactant in combination, so that the permeability to fibers can be improved. The inventors have found that the gelation of amino-modified silicone can be suppressed and have reached the present invention.
That is, the fiber treatment agent of the present invention is at least one selected from the amino-modified silicone (A), the surfactant (B), the compound (C1) represented by the following chemical formula (1), and the following compound (C2). It is a fiber processing agent containing the compound (C) which is.
Figure 2018003347
(In the formula (1), R 1 represents an organic group, R 2 is an organic group, A 1 O is, .m showing an oxyalkylene group having 2 to 4 carbon atoms is a number of 1 to 50.)
Compound (C2): amine compound having a polyoxyalkylene group and two or more primary amine groups in the molecule

カルボン酸化合物(D)をさらに含むと好ましい。
前記AOがオキシエチレン基であると好ましい。
前記処理剤の不揮発分に占める前記化合物(C)の重量割合が0.1〜15重量%であると好ましい。
前記界面活性剤(B)がポリオキシエチレン骨格を有すると好ましい。
アクリル繊維用であると好ましい。
It is preferable to further contain a carboxylic acid compound (D).
The A 1 O is preferably an oxyethylene group.
It is preferable that the weight ratio of the compound (C) in the nonvolatile content of the treatment agent is 0.1 to 15% by weight.
It is preferable that the surfactant (B) has a polyoxyethylene skeleton.
It is preferable for acrylic fibers.

本発明の炭素繊維製造用アクリル繊維は、炭素繊維製造用アクリル繊維の原料アクリル繊維に、上記繊維処理剤を付着させてなる。   The acrylic fiber for carbon fiber production of the present invention is obtained by adhering the fiber treatment agent to the raw acrylic fiber of the acrylic fiber for carbon fiber production.

本発明の炭素繊維の製造方法は、炭素繊維製造用アクリル繊維の原料アクリル繊維に、上記繊維処理剤を付着させて製糸する製糸工程と、200〜300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300〜2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含む。   The carbon fiber production method of the present invention includes a yarn production process in which the fiber treatment agent is attached to a raw acrylic fiber for producing carbon fiber, and a flame resistant fiber in an oxidizing atmosphere at 200 to 300 ° C. It includes a flameproofing treatment step to be converted, and a carbonization treatment step of carbonizing the flameproofed fiber in an inert atmosphere at 300 to 2000 ° C.

本発明の繊維処理剤は、アミノ変性シリコーン(A)と、界面活性剤(B)と、化合物(C)とを含む。各成分について詳細に説明する。   The fiber treatment agent of the present invention contains an amino-modified silicone (A), a surfactant (B), and a compound (C). Each component will be described in detail.

(アミノ変性シリコーン(A))
本発明の処理剤は、アミノ変性シリコーン(A)を必須に含有する。アミノ変性シリコーンの変性基であるアミノ基(アミノ基を有する有機基を含む)は、主鎖であるシリコーンの側鎖と結合していてもよいし、末端と結合していてもよいし、また両方と結合していてもよいが、耐炎化処理工程での繊維保護の観点から、側鎖と結合している(側鎖にアミノ基を有する)方が好ましい。また、そのアミノ基は、モノアミン型、ジアミン型、ポリアミン型のいずれであってもよく、1分子中に両者が併存していてもよいが、耐炎化処理工程で繊維束内部にまで処理剤を均一に付与し、かつ、処理剤を皮膜化させて繊維を保護する点から、モノアミン型またはジアミン型が好ましい。
(Amino-modified silicone (A))
The treatment agent of the present invention essentially contains an amino-modified silicone (A). The amino group (including an organic group having an amino group) that is a modified group of the amino-modified silicone may be bonded to the side chain of the silicone that is the main chain, or may be bonded to the terminal. It may be bonded to both, but is preferably bonded to a side chain (having an amino group in the side chain) from the viewpoint of fiber protection in the flameproofing treatment step. Further, the amino group may be any of monoamine type, diamine type, and polyamine type, and both may coexist in one molecule. A monoamine type or a diamine type is preferable from the viewpoints of imparting it uniformly and protecting the fiber by forming a film of the treatment agent.

アミノ変性シリコーン(A)の25℃での動粘度は、本願効果を発揮させる点から、50〜5000mm/sが好ましく、50〜4000mm/sがより好ましく、50〜3000mm/sがさらに好ましく、50〜2500mm/sが特に好ましい。動粘度が50mm/s未満の場合、処理剤が飛散しやすくなり、また水系乳化した際にエマルジョンの溶液安定性が悪くなり、処理剤を繊維へ均一に付与することができなくなることがある。その結果、繊維の融着を防止できないことがある。動粘度が5000mm/s超の場合、粘着性に起因するガムアップが問題となることがある。The kinematic viscosity at 25 ° C. of the amino-modified silicone (A) is preferably 50 to 5000 mm 2 / s, more preferably 50 to 4000 mm 2 / s, and even more preferably 50 to 3000 mm 2 / s from the point of exerting the effect of the present application. 50 to 2500 mm 2 / s is particularly preferable. When the kinematic viscosity is less than 50 mm 2 / s, the treatment agent is likely to be scattered, and when the aqueous emulsification is performed, the solution stability of the emulsion is deteriorated, and the treatment agent may not be uniformly applied to the fibers. . As a result, fiber fusion may not be prevented. When the kinematic viscosity is more than 5000 mm 2 / s, gum-up due to adhesiveness may be a problem.

アミノ変性シリコーン(A)のアミノ当量は、繊維間の膠着や融着の防止の点から、300〜10000g/molが好ましく、500〜10000g/molがより好ましく、1000〜9000g/molがさらに好ましい。該アミノ当量が300g/mol未満の場合、耐炎化処理工程の初期で処理剤が熱架橋するため処理剤を均一に繊維束内部にまで付与することができないことがある。また、該アミノ当量が10000g/mol以上の場合、耐炎化処理工程の後期で処理剤の熱架橋が起こらないために繊維保護が出来ないことがある。   The amino equivalent of the amino-modified silicone (A) is preferably from 300 to 10,000 g / mol, more preferably from 500 to 10,000 g / mol, and even more preferably from 1,000 to 9000 g / mol from the viewpoint of preventing sticking and fusion between fibers. When the amino equivalent is less than 300 g / mol, the treatment agent is thermally crosslinked at the initial stage of the flameproofing treatment step, and thus the treatment agent may not be uniformly applied to the inside of the fiber bundle. Further, when the amino equivalent is 10,000 g / mol or more, the fiber may not be protected because thermal crosslinking of the treatment agent does not occur later in the flameproofing treatment step.

アミノ変性シリコーン(A)は、アミノ当量や動粘度(25℃)の異なる複数のアミノ変性シリコーンを併用してもよい。2種以上のアミノ変性シリコーンを用いる場合、上記アミノ当量はアミノ変性シリコーン全体(混合物)のアミノ当量を意味し、上記の25℃における動粘度はアミノ変性シリコーン全体(混合物)の動粘度を意味する。   As the amino-modified silicone (A), a plurality of amino-modified silicones having different amino equivalents and different kinematic viscosities (25 ° C.) may be used in combination. When two or more amino-modified silicones are used, the amino equivalent means the amino equivalent of the whole amino-modified silicone (mixture), and the kinematic viscosity at 25 ° C. means the kinematic viscosity of the whole amino-modified silicone (mixture). .

上記アミノ変性シリコーンとしては、例えば、下記一般式(2)で示す化合物を挙げることができる。

Figure 2018003347
(式(2)中、Rは炭素数が1〜20のアルキル基又はアリール基を示す。Rは下記化学式(3)で示される基である。Rは、R、R又は−OR11(R11は水素原子又は炭素数が1〜6のアルキル基)である。pは10≦p≦10000、qは0.1≦q≦1000である。)As said amino modified silicone, the compound shown by following General formula (2) can be mentioned, for example.
Figure 2018003347
(In formula (2), R 3 represents an alkyl group or aryl group having 1 to 20 carbon atoms. R 4 is a group represented by the following chemical formula (3). R 5 represents R 3 , R 4 or -OR 11 (R 11 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. P is 10 ≦ p ≦ 10000, and q is 0.1 ≦ q ≦ 1000.)

式(2)中、Rは炭素数が1〜20のアルキル基又はアリール基を示す。Rは、好ましくは炭素数が1〜10のアルキル基又はアリール基であり、より好ましくは炭素数1〜5のアルキル基であり、さらに好ましくはメチル基である。なお、式(2)における複数のRは、同一であってもよく異なっていてもよい。Rは下記一般式(3)で示される基である。Rは、R、R又は−OR11で示される基であり、好ましくはRである。なお、式(2)における複数のRは、同一であってもよく異なっていてもよい。
11は、水素原子又は炭素数が1〜6のアルキル基であり、好ましくは水素原子又は炭素数1〜4のアルキル基であり、さらに好ましくは水素原子又はメチル基である。pは、10〜10000の数であり、好ましくは50〜5000であり、さらに好ましくは100〜2000である。qは、0.1〜1000の数であり、好ましくは0.5〜500であり、さらに好ましくは1〜100である。
In formula (2), R 3 represents an alkyl group or aryl group having 1 to 20 carbon atoms. R 3 is preferably an alkyl group having 1 to 10 carbon atoms or an aryl group, more preferably an alkyl group having 1 to 5 carbon atoms, and further preferably a methyl group. In addition, several R < 3 > in Formula (2) may be the same, and may differ. R 4 is a group represented by the following general formula (3). R 5 is a group represented by R 3 , R 4 or —OR 11 , and preferably R 3 . In addition, several R < 5 > in Formula (2) may be the same, and may differ.
R 11 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and more preferably a hydrogen atom or a methyl group. p is a number of 10 to 10000, preferably 50 to 5000, and more preferably 100 to 2000. q is a number of 0.1 to 1000, preferably 0.5 to 500, and more preferably 1 to 100.

Figure 2018003347
Figure 2018003347

式(3)中、R及びRは、それぞれ独立して、炭素数が1〜6のアルキレン基であり、好ましくは炭素数1〜3のアルキレン基である。R、R及びR10は、それぞれ独立して、水素原子、炭素数が1〜10のアルキル基又はアリール基であり、好ましくは水素原子又は炭素数1〜5のアルキル基であり、さらに好ましくは水素原子である。rは0〜6の数であり、好ましくは0〜3であり、さらに好ましくは0〜1である。In formula (3), R 6 and R 8 are each independently an alkylene group having 1 to 6 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms. R 7 , R 9 and R 10 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group, preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, Preferably it is a hydrogen atom. r is a number of 0-6, preferably 0-3, more preferably 0-1.

処理剤の不揮発分に占めるアミノ変性シリコーン(A)の重量割合は、50〜95重量%であることが好ましく、60〜90重量%がより好ましく、65〜90重量%がさらに好ましい。該重量割合が50重量%未満の場合、耐炎化処理工程で処理剤の耐熱性が不足する場合がある。一方、該重量割合が95重量%超の場合、処理剤を水系乳化した際に安定な水系乳化物を得ることができない場合がある。   The weight ratio of the amino-modified silicone (A) in the nonvolatile content of the treatment agent is preferably 50 to 95% by weight, more preferably 60 to 90% by weight, and still more preferably 65 to 90% by weight. When the weight ratio is less than 50% by weight, the heat resistance of the treatment agent may be insufficient in the flameproofing treatment step. On the other hand, when the weight ratio exceeds 95% by weight, a stable aqueous emulsion may not be obtained when the treatment agent is water-based emulsified.

〔界面活性剤(B)〕
本発明のアクリル繊維処理剤は、界面活性剤(B)を必須に含有する。界面活性剤は、乳化剤、制電剤等として使用される。界面活性剤としては、特に限定されず、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤及び両性界面活性剤から、公知のものを適宜選択して使用することができる。界面活性剤は、1種でもよく、2種以上を併用してもよい。
[Surfactant (B)]
The acrylic fiber treatment agent of the present invention essentially contains a surfactant (B). Surfactants are used as emulsifiers, antistatic agents and the like. The surfactant is not particularly limited, and a known one can be appropriately selected from nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants. One type of surfactant may be used, or two or more types may be used in combination.

非イオン性界面活性剤としては、例えば、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンヘプチルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンテトラデシルエーテル、ポリオキシエチレンセチルエーテル等のポリオキシアルキレン直鎖アルキルエーテル;ポリオキシエチレン2−エチルヘキシルエーテル、ポリオキシエチレンイソセチルエーテル、ポリオキシエチレンイソステアリルエーテル等のポリオキシアルキレン分岐第一級アルキルエーテル;ポリオキシエチレン1−ヘキシルヘキシルエーテル、ポリオキシエチレン1−オクチルヘキシルエーテル、ポリオキシエチレン1−ヘキシルオクチルエーテル、ポリオキシエチレン1−ペンチルへプチルエーテル、ポリオキシエチレン1−へプチルペンチルエーテル、ポリオキシエチレン1−ヘキシルヘプチルエーテル、ポリオキシエチレン1−ヘプチルヘキシルエーテル、ポリオキシエチレン1−ペンチルカプチルエーテル、ポリオキシエチレン1−カプチルペンチルエーテル等のポリオキシアルキレン分岐第二級アルキルエーテル;ポリオキシエチレンオレイルエーテル等のポリオキシアルキレンアルケニルエーテル;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル等のポリオキシアルキレンアルキルフェニルエーテル;ポリオキシエチレントリスチリルフェニルエーテル、ポリオキシエチレンジスチリルフェニルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンジベンジルフェニルエーテル、ポリオキシエチレンベンジルフェニルエーテル等のポリオキシアルキレンアルキルアリールフェニルエーテル;ポリオキシエチレンモノラウレート、ポリオキシエチレンモノオレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノミリスチレート、ポリオキシエチレンジラウレート、ポリオキシエチレンジオレート、ポリオキシエチレンジミリスチレート、ポリオキシエチレンジステアレート等のポリオキシアルキレン脂肪酸エステル;ソルビタンモノパルミテート、ソルビタンモノオレート等のソルビタンエステル;ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレート等のポリオキシアルキレンソルビタン脂肪酸エステル;グリセリンモノステアレート、グリセリンモノラウレート、グリセリンモノパルミテート等のグリセリン脂肪酸エステル;ポリオキシアルキレンソルビトール脂肪酸エステル;ショ糖脂肪酸エステル;ポリオキシエチレンひまし油エーテル等のポリオキシアルキレンひまし油エーテル;ポリオキシエチレン硬化ひまし油エーテル等のポリオキシアルキレン硬化ひまし油エーテル;ポリオキシエチレンラウリルアミノエーテル、ポリオキシエチレンステアリルアミノエーテル等のポリオキシアルキレンアルキルアミノエーテル;オキシエチレン−オキシプロピレンブロックまたはランダム共重合体;オキシエチレン−オキシプロピレンブロックまたはランダム共重合体の末端ショ糖エーテル化物;ポリオキシエチレンラウリルアミド、ポリオキシエチレンステアリルアミド等のポリオキシアルキレンアルキルアミド;等を挙げることができる。非イオン性界面活性剤の重量平均分子量は、2000以下が好ましく、200〜1800がより好ましく、300〜1500がより好ましく、500〜1000がさらに好ましい。   Examples of the nonionic surfactant include polyoxyethylene hexyl ether, polyoxyethylene heptyl ether, polyoxyethylene octyl ether, polyoxyethylene decyl ether, polyoxyethylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyethylene Polyoxyalkylene linear alkyl ethers such as ethylene tetradecyl ether and polyoxyethylene cetyl ether; polyoxyalkylene branched primary such as polyoxyethylene 2-ethylhexyl ether, polyoxyethylene isocetyl ether and polyoxyethylene isostearyl ether Alkyl ether; polyoxyethylene 1-hexyl hexyl ether, polyoxyethylene 1-octyl hexyl ether, polyoxyethylene 1- Xyloctyl ether, polyoxyethylene 1-pentyl heptyl ether, polyoxyethylene 1-heptyl pentyl ether, polyoxyethylene 1-hexyl heptyl ether, polyoxyethylene 1-heptyl hexyl ether, polyoxyethylene 1-pentyl captil ether Polyoxyalkylene branched secondary alkyl ethers such as polyoxyethylene 1-captylpentyl ether; polyoxyalkylene alkenyl ethers such as polyoxyethylene oleyl ether; polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene Polyoxyalkylene alkyl phenyl ethers such as oxyethylene dodecyl phenyl ether; polyoxyethylene tristyryl phenyl ether Polyoxyalkylene alkyl aryl phenyl ethers such as polyoxyethylene distyryl phenyl ether, polyoxyethylene styryl phenyl ether, polyoxyethylene tribenzyl phenyl ether, polyoxyethylene dibenzyl phenyl ether, polyoxyethylene benzyl phenyl ether; polyoxyethylene Monolaurate, polyoxyethylene monooleate, polyoxyethylene monostearate, polyoxyethylene monomyristate, polyoxyethylene dilaurate, polyoxyethylene dioleate, polyoxyethylene dimyristate, polyoxyethylene distearate Polyoxyalkylene fatty acid esters such as sorbitan monopalmitate, sorbitan esters such as sorbitan monooleate Polyoxyalkylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monostearate and polyoxyethylene sorbitan monooleate; glycerin fatty acid esters such as glycerin monostearate, glycerin monolaurate and glycerin monopalmitate; polyoxyalkylene sorbitol fatty acid esters Sucrose fatty acid ester; polyoxyalkylene castor oil ether such as polyoxyethylene castor oil ether; polyoxyalkylene cured castor oil ether such as polyoxyethylene hydrogenated castor oil ether; polyoxyethylene lauryl amino ether, polyoxyethylene stearyl amino ether and other poly Oxyalkylene alkylamino ether; oxyethylene-oxypropylene block or random copolymer Coalescing; oxyethylene - terminus sucrose ethers of polyoxypropylene block or random copolymer; polyoxyethylene lauryl amide, polyoxyalkylene alkylamide such as polyoxyethylene stearyl amide; and the like can be given. The weight average molecular weight of the nonionic surfactant is preferably 2000 or less, more preferably 200 to 1800, more preferably 300 to 1500, and still more preferably 500 to 1000.

アニオン性界面活性剤としては、例えば、オレイン酸、パルミチン酸、オレイン酸ナトリウム塩、パルミチン酸カリウム塩、オレイン酸トリエタノールアミン塩等の脂肪酸(塩);ヒドロキシ酢酸、ヒドロキシ酢酸カリウム塩、乳酸、乳酸カリウム塩等のヒドロキシル基含有カルボン酸(塩);ポリオキシエチレントリデシルエーテル酢酸(ナトリウム塩)等のポリオキシアルキレンアルキルエーテル酢酸(塩);トリメリット酸カリウム、ピロメリット酸カリウム等のカルボキシル基多置換芳香族化合物の塩;ドデシルベンゼンスルホン酸(ナトリウム塩)等のアルキルベンゼンスルホン酸(塩);ポリオキシエチレン2−エチルヘキシルエーテルスルホン酸(カリウム塩)等のポリオキシアルキレンアルキルエーテルスルホン酸(塩);ステアロイルメチルタウリン(ナトリウム)、ラウロイルメチルタウリン(ナトリウム)、ミリストイルメチルタウリン(ナトリウム)、パルミトイルメチルタウリン(ナトリウム)等の高級脂肪酸アミドスルホン酸(塩);ラウロイルサルコシン酸(ナトリウム)等のN−アシルサルコシン酸(塩);オクチルホスホネート(カリウム塩)等のアルキルホスホン酸(塩);フェニルホスホネート(カリウム塩)等の芳香族ホスホン酸(塩);2−エチルヘキシルホスホネートモノ2−エチルヘキシルエステル(カリウム塩)等のアルキルホスホン酸アルキルリン酸エステル(塩);アミノエチルホスホン酸(ジエタノールアミン塩)等の含窒素アルキルホスホン酸(塩);2−エチルヘキシルサルフェート(ナトリウム塩)等のアルキル硫酸エステル(塩);ポリオキシエチレン2−エチルヘキシルエーテルサルフェート(ナトリウム塩)等のポリオキシアルキレン硫酸エステル(塩);ジ−2−エチルヘキシルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム等の長鎖スルホコハク酸塩、N−ラウロイルグルタミン酸モノナトリウム、N−ステアロイル−L−グルタミン酸ジナトリウム等の長鎖N−アシルグルタミン酸塩;等を挙げる事ができる。   Examples of the anionic surfactant include fatty acids (salts) such as oleic acid, palmitic acid, sodium oleate, potassium palmitate, triethanolamine oleate; hydroxyacetic acid, potassium potassium hydroxyacetate, lactic acid, lactic acid Hydroxyl group-containing carboxylic acid (salt) such as potassium salt; polyoxyalkylene alkyl ether acetic acid (salt) such as polyoxyethylene tridecyl ether acetic acid (sodium salt); and many carboxyl groups such as potassium trimellitic acid and potassium pyromellitic acid Substituted aromatic compound salts; alkylbenzene sulfonic acid (salt) such as dodecylbenzene sulfonic acid (sodium salt); polyoxyalkylene alkyl ether sulfonic acid (salt) such as polyoxyethylene 2-ethylhexyl ether sulfonic acid (potassium salt); Higher fatty acid amide sulfonic acid (salt) such as theauroylmethyl taurine (sodium), lauroyl methyl taurine (sodium), myristoyl methyl taurine (sodium), palmitoyl methyl taurine (sodium); N-acyl such as lauroyl sarcosine acid (sodium) Sarcosine acid (salt); alkyl phosphonic acid (salt) such as octyl phosphonate (potassium salt); aromatic phosphonic acid (salt) such as phenyl phosphonate (potassium salt); 2-ethylhexyl phosphonate mono 2-ethylhexyl ester (potassium salt) Alkylphosphonic acid esters (salts) such as alkylphosphonic acid; nitrogen-containing alkylphosphonic acid (salt) such as aminoethylphosphonic acid (diethanolamine salt); alkylsulfuric acid such as 2-ethylhexyl sulfate (sodium salt) Esters (salts); polyoxyalkylene sulfate esters (salts) such as polyoxyethylene 2-ethylhexyl ether sulfate (sodium salt); long-chain sulfosuccinates such as sodium di-2-ethylhexyl sulfosuccinate and sodium dioctyl sulfosuccinate; N -Long-chain N-acyl glutamates such as monosodium lauroyl glutamate and disodium N-stearoyl-L-glutamate;

カチオン性界面活性剤としては、例えば、ラウリルトリメチルアンモニウムクロライド、ミリスチルトリメチルアンモニウムクロライド、パルミチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、オレイルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、ヤシ油アルキルトリメチルアンモニウムクロライド、牛脂アルキルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムブロマイド、ヤシ油アルキルトリメチルアンモニウムブロマイド、セチルトリメチルアンモニウムメトサルフェート、オレイルジメチルエチルアンモニウムエトサルフェート、ジオクチルジメチルアンモニウムクロライド、ジラウリルジメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、オクタデシルジエチルメチルアンモニウムサルフェート、等のアルキル第四級アンモニウム塩;(ポリオキシエチレン)ラウリルアミノエーテル乳酸塩、ステアリルアミノエーテル乳酸塩、ジ(ポリオキシエチレン)ラウリルメチルアミノエーテルジメチルホスフェート、ジ(ポリオキシエチレン)ラウリルエチルアンモニウムエトサルフェート、ジ(ポリオキシエチレン)硬化牛脂アルキルエチルアミンエトサルフェート、ジ(ポリオキシエチレン)ラウリルメチルアンモニウムジメチルホスフェート、ジ(ポリオキシエチレン)ステアリルアミン乳酸塩等の(ポリオキシアルキレン)アルキルアミノエーテル塩;N−(2−ヒドロキシエチル)−N,N−ジメチル−N−ステアロイルアミドプロピルアンモニウムナイトレート、ラノリン脂肪酸アミドプロピルエチルジメチルアンモニウムエトサルフェート、ラウロイルアミドエチルメチルジエチルアンモニウムメトサルフェート等のアシルアミドアルキル第四級アンモニウム塩;ジパルミチルポリエテノキシエチルアンモニウムクロライド、ジステアリルポリエテノキシメチルアンモニウムクロライド等のアルキルエテノキシ第四級アンモニウム塩;ラウリルイソキノリニウムクロライド等のアルキルイソキノリニウム塩;ラウリルジメチルベンジルアンモニウムクロライド、ステアリルジメチルベンジルアンモニウムクロライド等のベンザルコニウム塩;ベンジルジメチル{2−[2−(p−1,1,3,3−テトラメチルブチルフェノオキシ)エトオキシ]エチル}アンモニウムクロライド等のベンゼトニウム塩;セチルピリジニウムクロライド等のピリジニウム塩;オレイルヒドロキシエチルイミダゾリニウムエトサルフェート、ラウリルヒドロキシエチルイミダゾリニウムエトサルフェート等のイミダゾリニウム塩;N−ココイルアルギニンエチルエステルピロリドンカルボン酸塩、N−ラウロイルリジンエチルエチルエステルクロライド等のアシル塩基性アミノ酸アルキルエステル塩;ラウリルアミンクロライド、ステアリルアミンブロマイド、硬化牛脂アルキルアミンクロライド、ロジンアミン酢酸塩等の第一級アミン塩;セチルメチルアミンサルフェート、ラウリルメチルアミンクロライド、ジラウリルアミン酢酸塩、ステアリルエチルアミンブロマイド、ラウリルプロピルアミン酢酸塩、ジオクチルアミンクロライド、オクタデシルエチルアミンハイドロオキサイド等の第二級アミン塩;ジラウリルメチルアミンサルフェート、ラウリルジエチルアミンクロライド、ラウリルエチルメチルアミンブロマイド、ジエタノールステアリルアミドエチルアミントリヒドロキシエチルホスフェート塩、ステアリルアミドエチルエタノールアミン尿素重縮合物酢酸塩等の第三級アミン塩;脂肪酸アミドグアニジニウム塩;ラウリルトリエチレングリコールアンモニウムハイドロオキサイド等のアルキルトリアルキレングリコールアンモニウム塩等を挙げることができる。   Examples of the cationic surfactant include lauryl trimethyl ammonium chloride, myristyl trimethyl ammonium chloride, palmityl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, oleyl trimethyl ammonium chloride, cetyl trimethyl ammonium chloride, behenyl trimethyl ammonium chloride, coconut oil alkyl trimethyl. Ammonium chloride, tallow alkyltrimethylammonium chloride, stearyltrimethylammonium bromide, coconut oil alkyltrimethylammonium bromide, cetyltrimethylammonium methosulfate, oleyldimethylethylammonium ethosulphate, dioctyldimethylammonium chloride, dill Alkyl quaternary ammonium salts such as ril dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, octadecyl diethyl methyl ammonium sulfate; (polyoxyethylene) lauryl amino ether lactate, stearyl amino ether lactate, di (polyoxyethylene) lauryl Methylaminoether dimethyl phosphate, di (polyoxyethylene) laurylethylammonium ethosulphate, di (polyoxyethylene) -cured tallow alkylethylamine ethosulphate, di (polyoxyethylene) laurylmethylammonium dimethylphosphate, di (polyoxyethylene) stearyl (Polyoxyalkylene) alkylamino ether salts such as amine lactate; N- (2-hydroxyethyl)- Acylamide alkyl quaternary ammonium salts such as N, N-dimethyl-N-stearoylamidopropylammonium nitrate, lanolin fatty acid amidopropylethyldimethylammonium etosulphate, lauroylamidoethylmethyldiethylammonium methosulfate; Alkylethenoxy quaternary ammonium salts such as ammonium chloride and distearyl polyethenoxymethylammonium chloride; alkylisoquinolinium salts such as laurylisoquinolinium chloride; lauryldimethylbenzylammonium chloride, stearyldimethylbenzylammonium chloride and the like Benzalkonium salt; benzyldimethyl {2- [2- (p-1,1,3,3-tetramethylbutylphenol) Benzethonium salts such as nooxy) ethoxy] ethyl} ammonium chloride; pyridinium salts such as cetylpyridinium chloride; imidazolinium salts such as oleyl hydroxyethyl imidazolinium etsulfate, lauryl hydroxyethyl imidazolinium etsulfate; N-cocoyl arginine ethyl Acyl basic amino acid alkyl ester salts such as ester pyrrolidone carboxylate and N-lauroyllysine ethyl ethyl ester chloride; Primary amine salts such as laurylamine chloride, stearylamine bromide, hardened beef tallow alkylamine chloride, rosinamine acetate; cetyl Methylamine sulfate, laurylmethylamine chloride, dilaurylamine acetate, stearylethylamine bromide, laur Secondary amine salts such as rupropylamine acetate, dioctylamine chloride, octadecylethylamine hydroxide; dilaurylmethylamine sulfate, lauryldiethylamine chloride, laurylethylmethylamine bromide, diethanol stearylamide ethylamine trihydroxyethyl phosphate salt, stearylamide Examples include tertiary amine salts such as ethyl ethanolamine urea polycondensate acetate; fatty acid amidoguanidinium salts; alkyltrialkylene glycol ammonium salts such as lauryl triethylene glycol ammonium hydroxide.

両性界面活性剤としては、例えば、2−ウンデシル−N,N−(ヒドロキシエチルカルボキシメチル)−2−イミダゾリンナトリウム、2−ココイル−2−イミダゾリニウムヒドロキサイド−1−カルボキシエチロキシ2ナトリウム塩等のイミダゾリン系両性界面活性剤;2−ヘプタデシル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、アルキルベタイン、アミドベタイン、スルホベタイン等のベタイン系両性界面活性剤;N−ラウリルグリシン、N−ラウリルβ−アラニン、N−ステアリルβ−アラニン等のアミノ酸型両性界面活性剤等が挙げられる   Examples of amphoteric surfactants include 2-undecyl-N, N- (hydroxyethylcarboxymethyl) -2-imidazoline sodium, 2-cocoyl-2-imidazolinium hydroxide-1-carboxyethyloxy disodium salt, and the like. Imidazoline-based amphoteric surfactants; 2-heptadecyl-N-carboxymethyl-N-hydroxyethylimidazolium betaine, lauryldimethylaminoacetic acid betaine, alkylbetaines, amide betaines, sulfobetaine, and other betaine-based amphoteric surfactants; N- Amino acid type amphoteric surfactants such as lauryl glycine, N-lauryl β-alanine, N-stearyl β-alanine and the like can be mentioned.

処理剤の不揮発分に占める界面活性剤(B)の重量割合は、2〜25重量%であることが好ましく、5〜20重量%がより好ましく、10〜20重量%がさらに好ましい。該重量割合が2重量%未満の場合、処理剤を水系乳化した際に安定な水系乳化物を得ることができない場合がある。一方、該重量割合が25量%超の場合、耐炎化処理工程で処理剤の耐熱性が不足する場合がある。   The weight ratio of the surfactant (B) in the nonvolatile content of the treatment agent is preferably 2 to 25% by weight, more preferably 5 to 20% by weight, and still more preferably 10 to 20% by weight. When the weight ratio is less than 2% by weight, a stable aqueous emulsion may not be obtained when the treatment agent is water-based emulsified. On the other hand, when the weight ratio exceeds 25% by weight, the heat resistance of the treatment agent may be insufficient in the flameproofing treatment step.

本発明の処理剤の不揮発分におけるアミノ変性シリコーン(A)と界面活性剤(B)の重量比(アミノ変性シリコーン(A)/界面活性剤(B))は75/25〜98/2が好ましく、80/20〜95/5がより好ましく、80/20〜90/10が更に好ましい。該重量割合が98/2超の場合、処理剤を水系乳化した際に安定な水系乳化物を得ることができない場合がある。一方、75/25未満の場合、耐炎化処理工程で処理剤の耐熱性が不足する場合がある。   The weight ratio of amino-modified silicone (A) and surfactant (B) (amino-modified silicone (A) / surfactant (B)) in the nonvolatile content of the treatment agent of the present invention is preferably 75/25 to 98/2. 80/20 to 95/5 is more preferable, and 80/20 to 90/10 is still more preferable. When the weight ratio is more than 98/2, a stable aqueous emulsion may not be obtained when the treatment agent is aqueous-emulsified. On the other hand, if it is less than 75/25, the heat resistance of the treating agent may be insufficient in the flameproofing treatment step.

〔化合物(C)〕
本発明の繊維処理剤は、上記化学式(1)に示される化合物(C1)及び上記化合物(C2)から選ばれる少なくとも1種である化合物(C)を必須に含む。
化合物(C)は、上記アミノ変性シリコーン(A)のゲル化を抑える成分である。
[Compound (C)]
The fiber treatment agent of the present invention essentially contains at least one compound (C) selected from the compound (C1) represented by the chemical formula (1) and the compound (C2).
The compound (C) is a component that suppresses gelation of the amino-modified silicone (A).

(化合物(C1))
化合物(C1)は、上記化学式(1)に示される化合物である。
上記式(1)中、Rは有機基、Rは有機基、AOは、炭素数2〜4のオキシアルキレン基を示す。mは0〜50の数を示す。
は有機基であれば、特に限定されないが、アミノ変性シリコーン(A)のゲル化を抑える観点から、エチレン基またはプロピレン基が好ましい。
は有機基であれば、特に限定されないが、アミノ変性シリコーン(A)のゲル化を抑える観点から、エチレン基またはプロピレン基が好ましい。
(Compound (C1))
Compound (C1) is a compound represented by the above chemical formula (1).
In the above formula (1), R 1 represents an organic group, R 2 represents an organic group, and A 1 O represents an oxyalkylene group having 2 to 4 carbon atoms. m shows the number of 0-50.
R 1 is not particularly limited as long as it is an organic group, but is preferably an ethylene group or a propylene group from the viewpoint of suppressing gelation of the amino-modified silicone (A).
R 2 is not particularly limited as long as it is an organic group, but is preferably an ethylene group or a propylene group from the viewpoint of suppressing gelation of the amino-modified silicone (A).

Oは、炭素数2〜4のオキシアルキレン基を示し、中でも、アミノ変性シリコーン(A)のゲル化を抑える観点から、炭素数2のオキシエチレン基が好ましい。
mはAOの平均付加モル数を示し、1〜50の数であり、1〜40が好ましく、2〜30がより好ましく、3〜20がさらに好ましく、4〜15が特に好ましい。50を超えると、アミノ変性シリコーン(A)のゲル化の抑制効果が弱い。
(AO)mは、炭素数2〜4のオキシアルキレン基がnモル付加したポリオキシアルキレン基を示す。AOは、1種又は2種以上であってもよい。2種以上の場合、ブロック付加体、交互付加体、またはランダム付加体のいずれを構成してもよい。AOは、アミノ変性シリコーン(A)のゲル化を抑える観点から、オキシエチレン基を必須に含有することが好ましい。オキシアルキレン基全体に占めるオキシエチレン基の割合は、40モル%以上が好ましく、50モル%がより好ましく、60モル%以上がさらに好ましく、80モル%以上が特に好ましい。
A 1 O represents an oxyalkylene group having 2 to 4 carbon atoms, and among them, an oxyethylene group having 2 carbon atoms is preferable from the viewpoint of suppressing gelation of the amino-modified silicone (A).
m represents an average addition number of moles of A 1 O, is a number from 1 to 50, 1 to 40, more preferably 2 to 30, more preferably 3 to 20, particularly preferably from 4 to 15. If it exceeds 50, the effect of suppressing the gelation of the amino-modified silicone (A) is weak.
(A 1 O) m represents a polyoxyalkylene group obtained by adding n moles of an oxyalkylene group having 2 to 4 carbon atoms. A 1 O may be one or two or more. In the case of two or more types, any of a block adduct, an alternating adduct, or a random adduct may be configured. A 1 O preferably contains an oxyethylene group essentially from the viewpoint of suppressing the gelation of the amino-modified silicone (A). The proportion of the oxyethylene group in the entire oxyalkylene group is preferably 40 mol% or more, more preferably 50 mol%, further preferably 60 mol% or more, and particularly preferably 80 mol% or more.

(化合物(C2))
化合物(C2)は、分子内にポリオキシアルキレン基及び2つ以上の1級アミン基を有するアミン化合物である。
化合物(C2)は、分子内にポリオキシアルキレン基及び2つ以上の1級アミン基を有するアミン化合物であれば、特に限定されないが、アミノ変性シリコーン(A)のゲル化を抑える観点から、下記式(4)の構造を有すると好ましい。
化合物(C2)は1級アミンを2つ以上有し、2〜4つが好ましく、2又は3つがより好ましく、2つが特に好ましい。

Figure 2018003347
は有機基であれば、特に限定されないが、アミノ変性シリコーン(A)のゲル化を抑える観点から、エチレン基またはプロピレン基が好ましい。
有機基であれば、特に限定されないが、アミノ変性シリコーン(A)のゲル化を抑える観点から、エチレン基またはプロピレン基が好ましい。
nはAOの平均付加モル数を示し、1〜50の数であり、1〜40が好ましく、2〜30がより好ましく、3〜20がさらに好ましく、4〜15が特に好ましい。50を超えると、アミノ変性シリコーン(A)のゲル化の抑制効果が弱い。
(AO)nは、炭素数2〜4のオキシアルキレン基がnモル付加したポリオキシアルキレン基を示す。AOは、1種又は2種以上であってもよい。2種以上の場合、ブロック付加体、交互付加体、またはランダム付加体のいずれを構成してもよい。AOは、アミノ変性シリコーン(A)のゲル化を抑える観点から、オキシエチレン基を必須に含有することが好ましい。オキシアルキレン基全体に占めるオキシエチレン基の割合は、40モル%以上が好ましく、50モル%がより好ましく、60モル%以上がさらに好ましく、80モル%以上が特に好ましい。(Compound (C2))
The compound (C2) is an amine compound having a polyoxyalkylene group and two or more primary amine groups in the molecule.
Although it will not specifically limit if a compound (C2) is an amine compound which has a polyoxyalkylene group and two or more primary amine groups in a molecule | numerator, from a viewpoint of suppressing gelatinization of amino modified silicone (A), it is the following. It is preferable to have the structure of formula (4).
Compound (C2) has two or more primary amines, preferably 2 to 4, more preferably 2 or 3, and particularly preferably 2.
Figure 2018003347
Ra is not particularly limited as long as it is an organic group, but is preferably an ethylene group or a propylene group from the viewpoint of suppressing gelation of the amino-modified silicone (A).
Although it will not specifically limit if it is Rb organic group, From a viewpoint of suppressing gelatinization of amino modified silicone (A), an ethylene group or a propylene group is preferable.
n represents an average addition number of moles of A 2 O, is a number from 1 to 50, 1 to 40, more preferably 2 to 30, more preferably 3 to 20, particularly preferably from 4 to 15. If it exceeds 50, the effect of suppressing the gelation of the amino-modified silicone (A) is weak.
(A 2 O) n represents a polyoxyalkylene group obtained by adding n moles of an oxyalkylene group having 2 to 4 carbon atoms. A 2 O may also be one or more. In the case of two or more types, any of a block adduct, an alternating adduct, or a random adduct may be configured. A 2 O preferably contains an oxyethylene group essentially from the viewpoint of suppressing the gelation of the amino-modified silicone (A). The proportion of the oxyethylene group in the entire oxyalkylene group is preferably 40 mol% or more, more preferably 50 mol%, further preferably 60 mol% or more, and particularly preferably 80 mol% or more.

本発明の処理剤の不揮発分におけるアミノ変性シリコーン(A)と化合物(C)の重量比(アミノ変性シリコーン(A)/化合物(C))は75/25〜99.9/0.1が好ましく、80/20〜99.5/0.5がより好ましく、80/20〜99/1が更に好ましい。該重量割合が75/25超の場合、処理剤を水系乳化した際に安定な水系乳化物を得ることができない場合がある。一方、99.9/0.1未満の場合、ゲル化抑制機能が不足する場合がある。   The weight ratio of the amino-modified silicone (A) to the compound (C) (amino-modified silicone (A) / compound (C)) in the nonvolatile content of the treatment agent of the present invention is preferably 75/25 to 99.9 / 0.1. 80/20 to 99.5 / 0.5 is more preferable, and 80/20 to 99/1 is still more preferable. When the weight ratio is more than 75/25, a stable aqueous emulsion may not be obtained when the treatment agent is water-based emulsified. On the other hand, if it is less than 99.9 / 0.1, the gelation suppressing function may be insufficient.

〔カルボン酸化合物(D)〕
本発明の繊維処理剤は、カルボン酸化合物(D)を含むと、ゲル化の抑制ならびにエマルションの安定性が向上される観点から、好ましい。
カルボン酸化合物(D)としては、カルボン酸を有する化合物であれば特に限定されないが、脂肪族モノカルボン酸、脂肪族ポリカルボン酸、芳香族カルボン酸、芳香族ポリカルボン酸等が挙げられる。
脂肪族モノカルボン酸としては、酪酸、クロトン酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ミリストレイン酸、ペンタデカン酸、パルミチン酸、パルミトレイン酸、イソセチル酸、マルガリン酸、ステアリン酸、イソステアリン酸、オレイン酸、エライジン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、イソエイコサ酸、ガドレイン酸、エイコセン酸、ドコサン酸、イソドコサン酸、エルカ酸、テトラコサン酸、イソテトラコサン酸、ネルボン酸、セロチン酸、モンタン酸、メリシン酸等が挙げられる。
[Carboxylic acid compound (D)]
When the fiber treatment agent of the present invention contains a carboxylic acid compound (D), it is preferable from the viewpoint of suppressing gelation and improving the stability of the emulsion.
Although it will not specifically limit if it is a compound which has carboxylic acid as a carboxylic acid compound (D), Aliphatic monocarboxylic acid, aliphatic polycarboxylic acid, aromatic carboxylic acid, aromatic polycarboxylic acid, etc. are mentioned.
Aliphatic monocarboxylic acids include butyric acid, crotonic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, myristoleic acid, pentadecanoic acid, palmitic acid, palmitoleic acid, Isocetyl acid, margaric acid, stearic acid, isostearic acid, oleic acid, elaidic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, isoeicosaic acid, gadoleic acid, eicosenoic acid, docosanoic acid, isodocosanoic acid, erucic acid, tetracosanoic acid , Isotetracosanoic acid, nervonic acid, serotic acid, montanic acid, melicic acid and the like.

脂肪族ポリカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバチン酸、ウンデンカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、およびこれらの誘導体が挙げられる。   Aliphatic polycarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid, undencanic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid , Pentadecanedioic acid, and derivatives thereof.

芳香族モノカルボン酸としては、安息香酸、ケイ皮酸、ナフトエ酸、トルイル酸、およびこれらの誘導体が挙げられる。   Aromatic monocarboxylic acids include benzoic acid, cinnamic acid, naphthoic acid, toluic acid, and derivatives thereof.

芳香族ポリカルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸およびピロメリット酸、およびこれらの誘導体などが挙げられる。   Examples of the aromatic polycarboxylic acid include phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid and pyromellitic acid, and derivatives thereof.

(その他成分)
本発明の繊維処理剤は、本発明の効果を阻害しない範囲で、上記した成分以外の他の成分を含有してもよい。他の成分としては、酸性リン酸エステル、フェノール系、アミン系、硫黄系、リン系、キノン系等の酸化防止剤;高級アルコール・高級アルコールエーテルの硫酸エステル塩、スルホン酸塩、高級アルコール・高級アルコールエーテルのリン酸エステル塩、第4級アンモニウム塩型カチオン系界面活性剤、アミン塩型カチオン系界面活性剤等の制電剤;高級アルコールのアルキルエステル、高級アルコールエーテル、ワックス類等の平滑剤;抗菌剤;防腐剤;防黴剤;および吸湿剤等が挙げられる。
(Other ingredients)
The fiber treatment agent of the present invention may contain other components in addition to the components described above as long as the effects of the present invention are not impaired. Other components include acid phosphate esters, phenolic, amine-based, sulfur-based, phosphorus-based and quinone-based antioxidants; sulfates of higher alcohols and higher alcohol ethers, sulfonates, higher alcohols and higher alcohols Antistatic agents such as phosphate salts of alcohol ethers, quaternary ammonium salt type cationic surfactants, amine salt type cationic surfactants; smoothing agents such as alkyl esters of higher alcohols, higher alcohol ethers, waxes, etc. Antibacterial agents; antiseptics; antifungal agents; and hygroscopic agents.

また、本発明の繊維処理剤は、本発明の効果を阻害しない範囲で、上記のアミノ変性シリコーン以外の変性シリコーンを含んでいてもよい。変性シリコーンとしては、例えば、アミノポリエーテル変性シリコーン、アマイド変性シリコーン、アマイドポリエーテル変性シリコーン、エポキシ変性シリコーン、ポリエーテル変性シリコーン、エポキシポリエーテル変性シリコーン(例えば、特許4616934号参照)、カルビノール変性シリコーン、アルキル変性シリコーン、フェノール変性シリコーン、メタクリレート変性シリコーン、アルコキシ変性シリコーン、フッ素変性シリコーンなどが挙げられ、一種類の変性シリコーンを用いてもよいし、複数の変性シリコーンを併用してもよい。   Moreover, the fiber treatment agent of this invention may contain modified silicones other than said amino modified silicone in the range which does not inhibit the effect of this invention. Examples of the modified silicone include amino polyether-modified silicone, amide-modified silicone, amide-polyether-modified silicone, epoxy-modified silicone, polyether-modified silicone, epoxy-polyether-modified silicone (see, for example, Japanese Patent No. 4616934), carbinol-modified silicone. Alkyl-modified silicone, phenol-modified silicone, methacrylate-modified silicone, alkoxy-modified silicone, fluorine-modified silicone, and the like. One type of modified silicone may be used, or a plurality of modified silicones may be used in combination.

また、本発明の繊維処理剤は、本発明の効果を阻害しない範囲で、エステル化合物を含有してもよい。エステル化合物としては、例えば、再公表WO2007/066517号公報に記載されている、分子内に3個以上のエステル基を有するエステル化合物や、国際出願PCT/JP2013/75081に記載されている含硫黄エステル化合物等を挙げることができる。   Moreover, the fiber treatment agent of this invention may contain an ester compound in the range which does not inhibit the effect of this invention. Examples of ester compounds include ester compounds having 3 or more ester groups in the molecule described in republished WO 2007/066517, and sulfur-containing esters described in international application PCT / JP2013 / 75081. A compound etc. can be mentioned.

本発明の繊維処理剤は、アミノ変性シリコーン、ポリオキシアルキレンアルキルエーテルが水に溶解、可溶化、乳化又は分散された状態であることが好ましい。
繊維処理剤全体に占める水の重量割合、不揮発分の重量割合については、特に限定はない。例えば、本発明のアクリル繊維処理剤を輸送する際の輸送コストや、エマルジョン粘度に因るところの取扱い性等を考慮して適宜決定すればよい。繊維処理剤全体に占める水の重量割合は、0.1〜99.9重量%が好ましく、10〜99.5重量%がさらに好ましく、50〜99重量%が特に好ましい。繊維処理剤全体に占める不揮発分の重量割合(濃度)は、0.01〜99.9重量%が好ましく、0.5〜90重量%がさらに好ましく、1〜50重量%が特に好ましい。
The fiber treatment agent of the present invention is preferably in a state in which amino-modified silicone and polyoxyalkylene alkyl ether are dissolved, solubilized, emulsified or dispersed in water.
There is no particular limitation on the weight ratio of water and the weight ratio of non-volatile content in the entire fiber treatment agent. For example, what is necessary is just to determine suitably in consideration of the transport cost at the time of transporting the acrylic fiber processing agent of this invention, the handleability etc. resulting from emulsion viscosity, etc. The weight ratio of water in the entire fiber treatment agent is preferably 0.1 to 99.9% by weight, more preferably 10 to 99.5% by weight, and particularly preferably 50 to 99% by weight. The weight ratio (concentration) of the non-volatile content in the entire fiber treatment agent is preferably 0.01 to 99.9% by weight, more preferably 0.5 to 90% by weight, and particularly preferably 1 to 50% by weight.

本発明の繊維処理剤は、上記で説明した成分を混合することによって製造することができる。上記で説明した成分を乳化・分散させる方法については特に限定されず、公知の手法が採用できる。このような方法としては、たとえば、繊維処理剤を構成する各成分を攪拌下の温水中に投入して乳化分散する方法や、繊維処理剤を構成する各成分を混合し、ホモジナイザー、ホモミキサー、ボールミル等を用いて機械せん断力を加えつつ、水を徐々に投入して転相乳化する方法等が挙げられる。   The fiber treatment agent of the present invention can be produced by mixing the components described above. The method for emulsifying and dispersing the components described above is not particularly limited, and a known method can be employed. As such a method, for example, each component constituting the fiber treatment agent is poured into warm water under stirring and emulsified and dispersed, and each component constituting the fiber treatment agent is mixed, a homogenizer, a homomixer, Examples of the method include phase inversion emulsification by gradually adding water while applying a mechanical shearing force using a ball mill or the like.

本発明の繊維処理剤は、炭素繊維製造用アクリル繊維(プレカーサー)の処理剤(プレカーサー処理剤)として好適に使用できる。アクリル繊維以外の紡糸油剤として使用してもよい。   The fiber treatment agent of the present invention can be suitably used as a treatment agent (precursor treatment agent) for acrylic fibers (precursor) for producing carbon fibers. You may use it as spinning oil agents other than an acrylic fiber.

プレカーサー製糸工程や耐炎化処理工程における良好な繊維束の集束性を付与できる点から、本発明の繊維処理剤の不揮発分の25℃における粘度は、10〜10000mPa・sが好ましく、10〜5000mPa・sがより好ましく、50〜1000mPa・sがさらに好ましい。該粘度が10mPa・s未満になると、プレカーサー製糸工程や耐炎化処理工程における繊維束の集束性が悪化する場合がある。また、該粘度が10000mPa・sを超えると、プレカーサー製糸工程や耐炎化処理工程における良好な繊維束の集束性を付与できても、処理剤の粘度が高くなり過ぎ、処理剤の取扱い性が悪化する場合がある   The viscosity at 25 ° C. of the non-volatile content of the fiber treatment agent of the present invention is preferably 10 to 10000 mPa · s, and preferably 10 to 5000 mPa · s, from the viewpoint of imparting good fiber bundle convergence in the precursor yarn making process and flameproofing process. s is more preferable, and 50 to 1000 mPa · s is more preferable. When the viscosity is less than 10 mPa · s, fiber bundles may be deteriorated in the precursor yarn making process or the flameproofing process. Moreover, when the viscosity exceeds 10,000 mPa · s, the viscosity of the treating agent becomes too high and the handling property of the treating agent is deteriorated even if good fiber bundle convergence property can be imparted in the precursor yarn forming process and the flameproofing process. May

[炭素繊維製造用アクリル繊維、その製造方法及び炭素繊維の製造方法]
本発明の炭素繊維製造用アクリル繊維(プレカーサー)は、プレカーサーの原料アクリル繊維に上記のアクリル繊維処理剤を付着させて製糸したものである。本発明のプレカーサーの製造方法は、プレカーサーの原料アクリル繊維に上記のアクリル繊維処理剤を付着させて製糸する製糸工程を含むものである。
本発明の炭素繊維の製造方法は、プレカーサーの原料アクリル繊維に上記のアクリル繊維処理剤を付着させて、プレカーサーを製糸する製糸工程と、その製糸工程で製造されたプレカーサーを200〜300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300〜2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含むものである。
本発明の炭素繊維の製造方法によれば、本発明のアクリル繊維処理剤を用いているので、耐炎化処理工程の初期で繊維束内部にまで処理剤を均一に付与することができ、耐炎化処理工程の後期で処理剤を皮膜化させて繊維保護することができるため、繊維間の融着や毛羽発生を抑制でき高品質の炭素繊維を製造できる。
[Acrylic fiber for producing carbon fiber, method for producing the same, and method for producing carbon fiber]
The acrylic fiber for carbon fiber production (precursor) of the present invention is produced by attaching the above-mentioned acrylic fiber treatment agent to the precursor acrylic fiber of the precursor. The method for producing a precursor according to the present invention includes a yarn production step in which the acrylic fiber treatment agent is attached to the raw material acrylic fiber of the precursor to produce a yarn.
The carbon fiber production method of the present invention includes a spinning process in which the above acrylic fiber treatment agent is attached to the precursor acrylic fiber to produce the precursor, and the precursor produced in the spinning process is oxidized at 200 to 300 ° C. A flameproofing process for converting to a flameproofed fiber in a neutral atmosphere, and a carbonization process for carbonizing the flameproofed fiber in an inert atmosphere at 300 to 2000 ° C.
According to the carbon fiber production method of the present invention, since the acrylic fiber treatment agent of the present invention is used, the treatment agent can be uniformly applied to the inside of the fiber bundle at the initial stage of the flame resistance treatment step, and the flame resistance is improved. Since the treatment agent can be made into a film at a later stage of the treatment process to protect the fiber, fusion between fibers and generation of fluff can be suppressed, and high-quality carbon fiber can be produced.

製糸工程は、プレカーサーの原料アクリル繊維にアクリル繊維処理剤を付着させてプレカーサーを製糸する工程であり、付着処理工程と延伸工程とを含む。
付着処理工程は、プレカーサーの原料アクリル繊維を紡糸した後、アクリル繊維処理剤を付着させる工程である。つまり、付着処理工程でプレカーサーの原料アクリル繊維にアクリル繊維処理剤を付着させる。またこのプレカーサーの原料アクリル繊維は紡糸直後から延伸されるが、付着処理工程後の高倍率延伸を特に「延伸工程」と呼ぶ。延伸工程は高温水蒸気をもちいた湿熱延伸法でもよいし、熱ローラーをもちいた乾熱延伸法でもよい。
The yarn making process is a process of making a precursor by attaching an acrylic fiber treatment agent to the precursor raw acrylic fiber, and includes an adhesion treatment process and a stretching process.
The adhesion treatment process is a process of adhering the acrylic fiber treatment agent after spinning the precursor raw acrylic fiber. That is, the acrylic fiber treatment agent is adhered to the precursor raw acrylic fiber in the adhesion treatment step. The precursor raw acrylic fiber is stretched immediately after spinning, and the high-strength stretching after the adhesion treatment step is particularly called a “stretching step”. The stretching process may be a wet heat stretching method using high temperature steam or a dry heat stretching method using a hot roller.

プレカーサーは、少なくとも95モル%以上のアクリロニトリルと、5モル%以下の耐炎化促進成分とを共重合させて得られるポリアクリロニトリルを主成分とするアクリル繊維から構成される。耐炎化促進成分としては、アクリロニトリルに対して共重合性を有するビニル基含有化合物が好適に使用できる。プレカーサーの単繊維繊度については、特に限定はないが、性能と製造コストのバランスから、好ましくは0.1〜2.0dTexである。また、プレカーサーの繊維束を構成する単繊維の本数についても特に限定はないが、性能と製造コストのバランスから、好ましくは1,000〜96,000本である。   A precursor is comprised from the acrylic fiber which has as a main component the polyacrylonitrile obtained by copolymerizing at least 95 mol% or more of acrylonitrile and 5 mol% or less of a flame-resistant acceleration | stimulation component. As the flame resistance promoting component, a vinyl group-containing compound having copolymerizability with acrylonitrile can be suitably used. Although there is no limitation in particular about the single fiber fineness of a precursor, from the balance of a performance and manufacturing cost, Preferably it is 0.1-2.0 dTex. Further, the number of single fibers constituting the precursor fiber bundle is not particularly limited, but is preferably 1,000 to 96,000 from the balance between performance and production cost.

アクリル繊維処理剤は、製糸工程のどの段階でプレカーサーの原料アクリル繊維に付着させてもよいが、延伸工程前に一度付着させておくことが好ましい。延伸工程前の段階であればどの段階でも、例えば紡糸直後に付着させてもよい。さらに延伸工程後のどの段階で再度付着させてもよく、例えば、延伸工程直後に再度付着させてもよいし、巻取り段階で再度付着させてもよいし、耐炎化処理工程の直前に再度付着させてもよい。その付着方法に関しては、ローラー等を使用して付着してもよいし、浸漬法、スプレー法等で付着してもよい。   The acrylic fiber treatment agent may be attached to the precursor raw acrylic fiber at any stage of the yarn production process, but is preferably attached once before the drawing process. It may be attached at any stage before the stretching process, for example, immediately after spinning. Further, it may be reattached at any stage after the stretching process, for example, it may be reattached immediately after the stretching process, it may be reattached at the winding stage, or it may be reattached immediately before the flameproofing process. You may let them. As for the attachment method, it may be attached using a roller or the like, or may be attached by a dipping method, a spray method or the like.

付着処理工程において、アクリル繊維処理剤の付与率は、繊維−繊維間の膠着防止効果や融着防止効果を得ることと、炭素化処理工程において処理剤のタール化物によって炭素繊維の品質低下を防止することとのバランスからは、プレカーサーの重量に対して好ましくは0.1〜2重量%であり、さらに好ましくは0.3〜1.5重量%である。アクリル繊維処理剤の付与率が0.1重量%未満であると、単繊維間の膠着、融着を十分に防止できず、得られる炭素繊維の強度が低下することがある。一方、アクリル繊維処理剤の付与率が2重量%超であると、アクリル繊維処理剤が単繊維間を必要以上に覆うため、耐炎化処理工程において繊維への酸素の供給が妨げられ、得られる炭素繊維の強度が低下することがある。なお、ここでいうアクリル繊維処理剤の付与率とは、プレカーサー重量に対するアクリル繊維処理剤の付着した不揮発分重量の百分率で定義される。   In the adhesion treatment process, the application rate of the acrylic fiber treatment agent obtains the effect of preventing fiber-to-fiber sticking and the prevention of fusion, and prevents the deterioration of the quality of the carbon fiber due to the tar product of the treatment agent in the carbonization treatment process. From the balance with the content of the precursor, it is preferably 0.1 to 2% by weight, more preferably 0.3 to 1.5% by weight, based on the weight of the precursor. When the application rate of the acrylic fiber treatment agent is less than 0.1% by weight, sticking and fusion between single fibers cannot be sufficiently prevented, and the strength of the obtained carbon fibers may be lowered. On the other hand, when the application rate of the acrylic fiber treatment agent is more than 2% by weight, the acrylic fiber treatment agent covers more than necessary between the single fibers, so that the supply of oxygen to the fibers is hindered in the flameproofing treatment step, and thus obtained. The strength of the carbon fiber may decrease. In addition, the provision rate of an acrylic fiber processing agent here is defined with the percentage of the non volatile matter weight to which the acrylic fiber processing agent adhered with respect to the precursor weight.

耐炎化処理工程は、アクリル繊維処理剤が付着したプレカーサーを200〜300℃の酸化性雰囲気中で耐炎化繊維に転換する工程である。酸化性雰囲気とは、通常、空気雰囲気であればよい。酸化性雰囲気の温度は好ましくは230〜280℃である。耐炎化処理工程では、付着処理後のアクリル繊維に対して、延伸比0.90〜1.10(好ましくは0.95〜1.05)の張力をかけながら、20〜100分間(好ましくは30〜60分間)にわたって熱処理が行われる。この耐炎化処理では、分子内環化および環への酸素付加を経て、耐炎化構造を持つ耐炎化繊維が製造される。   The flameproofing treatment step is a step of converting the precursor with the acrylic fiber treating agent attached thereto into flameproofing fibers in an oxidizing atmosphere at 200 to 300 ° C. The oxidizing atmosphere is usually an air atmosphere. The temperature of the oxidizing atmosphere is preferably 230 to 280 ° C. In the flameproofing treatment step, the acrylic fiber after the adhesion treatment is applied for 20 to 100 minutes (preferably 30) while applying a tension ratio of 0.90 to 1.10 (preferably 0.95 to 1.05). Heat treatment is performed for ˜60 minutes. In this flameproofing treatment, a flameproof fiber having a flameproof structure is produced through intramolecular cyclization and oxygen addition to the ring.

炭素化処理工程は、耐炎化繊維をさらに300〜2000℃の不活性雰囲気中で炭化させる工程である。炭素化処理工程では、まず、窒素、アルゴン等の不活性雰囲気中、300℃から800℃まで温度勾配を有する焼成炉で、耐炎化繊維に対して、延伸比0.95〜1.15の張力をかけながら、数分間熱処理して、予備炭素化処理工程(第一炭素化処理工程)を行うのが好ましい。その後、より炭素化を進行させ、且つグラファイト化を進行させるために、窒素、アルゴン等の不活性雰囲気中で、第一炭素化処理工程に対して延伸比0.95〜1.05の張力をかけながら、数分間熱処理して、第二炭素化処理工程を行い、耐炎化繊維が炭素化される。第二炭素化処理工程における熱処理温度の制御については、温度勾配をかけながら、最高温度を1000℃以上(好ましくは1000〜2000℃)とすることがよい。この最高温度は、所望する炭素繊維の要求特性(引張強度、弾性率等)に応じて適宜選択して決定される。   The carbonization treatment step is a step of carbonizing the flameproof fiber in an inert atmosphere of 300 to 2000 ° C. In the carbonization treatment step, first, in a firing furnace having a temperature gradient from 300 ° C. to 800 ° C. in an inert atmosphere such as nitrogen or argon, a tension ratio of 0.95 to 1.15 is applied to the flameproof fiber. It is preferable to carry out a pre-carbonization treatment step (first carbonization treatment step) by applying heat treatment for several minutes while applying. Thereafter, in order to further promote carbonization and advance graphitization, a tension ratio of 0.95 to 1.05 is applied to the first carbonization treatment step in an inert atmosphere such as nitrogen or argon. While being applied, heat treatment is performed for several minutes to perform the second carbonization treatment step, and the flame resistant fiber is carbonized. About control of the heat processing temperature in a 2nd carbonization process process, it is good to make maximum temperature into 1000 degreeC or more (preferably 1000-2000 degreeC), applying a temperature gradient. This maximum temperature is appropriately selected and determined according to the required characteristics (tensile strength, elastic modulus, etc.) of the desired carbon fiber.

本発明の炭素繊維の製造方法では、弾性率がさらに高い炭素繊維が所望される場合は、炭素化処理工程に引き続いて、黒鉛化処理工程を行うこともできる。黒鉛化処理工程は、通常、窒素、アルゴン等の不活性雰囲気中、炭素化処理工程で得られた繊維に対して張力をかけながら、2000〜3000℃の温度で行われる。   In the carbon fiber manufacturing method of the present invention, when a carbon fiber having a higher elastic modulus is desired, the graphitization treatment step can be performed subsequent to the carbonization treatment step. The graphitization treatment step is usually performed at a temperature of 2000 to 3000 ° C. while applying tension to the fiber obtained in the carbonization treatment step in an inert atmosphere such as nitrogen or argon.

このようにして得られた炭素繊維には、目的に応じて、複合材料とした時のマトリックス樹脂との接着強度を高めるための表面処理を行うことができる。表面処理方法としては、気相または液相処理を採用でき、生産性の観点からは、酸、アルカリなどの電解液による液相処理が好ましい。さらに、炭素繊維の加工性、取り扱い性を向上させるために、マトリックス樹脂に対して相溶性の優れる各種サイジング剤を付与することもできる。   The carbon fiber thus obtained can be subjected to a surface treatment for increasing the adhesive strength with the matrix resin when made into a composite material, depending on the purpose. As the surface treatment method, gas phase or liquid phase treatment can be adopted, and from the viewpoint of productivity, liquid phase treatment with an electrolytic solution of acid, alkali or the like is preferable. Furthermore, various sizing agents having excellent compatibility with the matrix resin can be added to improve the processability and handleability of the carbon fiber.

以下、実施例により本発明を具体的に説明するが、ここに記載した実施例に限定されるものではない。なお、以下の実施例に示されるパーセント(%)、部は特に限定しない限り、「重量%」、「重量部」を示す。各特性値の測定は以下に示す方法に基づいて行った。

下記(A−1〜E−1)の各成分を用い、表1及び2に記載の比率(重量部)で混合を行い、実施例1〜12、比較例1〜6に係る繊維処理剤をそれぞれ得た。
なお、POE(10)は10モルのエチレンオキシド付加、PEGはポリエチレングリコール、PPGはポリプロピレングリコールを意味する。
A−1:ジアミン変性シリコーン 粘度:1,200mm/s、アミン当量:1,750g/mol
A−2:モノアミン変性シリコーン 粘度:1,700mm/s、アミン当量:3,800g/mol
B−1 POE(3〜12)炭素数8〜16のアルキルエーテル
C1−1:PEG/PPGブロック体(分子量1000)の片末端に2−アミノプロピル基が付加したもの
C2−1:PEG(分子量600)のPEG両末端に3−アミノプロピル基が付加したもの。
C2−2:PEG(分子量1000)のPEG両末端に3−アミノプロピル基が付加したもの。
C2−3:PEG(分子量400)のPEG両末端に3−アミノプロピル基が付加したもの。
C2−4:PEG(分子量200)のPEG両末端に3−アミノプロピル基が付加したもの。
C2−5:PPG(分子量400)の両末端に2−アミノプロピル基が付加したもの。
C2−6:PPG/PEG/PPGブロック体(分子量2300)の両末端に2−アミノプロピル基が付加したもの。
D−1 :酢酸
E−1 :水
X−1 :ジエタノールアミン
X−2 :ジエチレントリアミン
X−3 :POE(10)ステアリルアミノエーテル
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to the Example described here. In addition, the percentage (%) and part shown in the following examples indicate “% by weight” and “part by weight” unless otherwise specified. Each characteristic value was measured based on the following method.

Using each component of the following (A-1 to E-1), mixing is performed at the ratio (parts by weight) described in Tables 1 and 2, and the fiber treatment agents according to Examples 1 to 12 and Comparative Examples 1 to 6 are used. I got each.
POE (10) means 10 moles of ethylene oxide addition, PEG means polyethylene glycol, and PPG means polypropylene glycol.
A-1: Diamine-modified silicone Viscosity: 1,200 mm 2 / s, amine equivalent: 1,750 g / mol
A-2: Monoamine-modified silicone Viscosity: 1,700 mm 2 / s, amine equivalent: 3,800 g / mol
B-1 POE (3-12) alkyl ether having 8 to 16 carbon atoms C1-1: PEG / PPG block (molecular weight 1000) with one end added with 2-aminopropyl group C2-1: PEG (molecular weight 600) with 3-aminopropyl groups added to both ends of PEG.
C2-2: PEG (molecular weight 1000) with 3-aminopropyl groups added to both ends of PEG.
C2-3: A compound in which 3-aminopropyl groups are added to both ends of PEG (molecular weight 400).
C2-4: A PEG (molecular weight of 200) with both amino acid groups added with 3-aminopropyl groups.
C2-5: A compound in which 2-aminopropyl groups are added to both ends of PPG (molecular weight 400).
C2-6: A PPG / PEG / PPG block (molecular weight 2300) with 2-aminopropyl groups added to both ends.
D-1: Acetic acid E-1: Water X-1: Diethanolamine X-2: Diethylenetriamine X-3: POE (10) stearylaminoether

(浸透性評価)
浸透性の評価を次のフェルト沈降試験にて実施した。
2cm×2cmに切断したニッケ社製オリフェルトS20(No.103)を有効成分2%に希釈した各エマルション100mLに浮かべ、沈降するまでの時間(秒数)を計測し、浸透性の評価を行った。温度:23℃。沈降するまでの時間が短い程浸透性に優れることを意味する。
指標は次の通りで、◎及び○を合格とした。
非常に良好(◎):7秒以下
良好 (○):7秒超13秒以下
やや不良 (△):13秒超14秒以下
不良 (×):14秒超
(Permeability evaluation)
The permeability was evaluated by the following felt sedimentation test.
Nikke Orifelt S20 (No. 103) cut to 2 cm x 2 cm is floated on 100 mL of each emulsion diluted to 2% active ingredient, and the time (seconds) until settling is measured to evaluate permeability. It was. Temperature: 23 ° C. The shorter the time until settling, the better the permeability.
The indicators are as follows, and ◎ and ○ are acceptable.
Very good (◎): 7 seconds or less Good (○): Over 7 seconds to 13 seconds or less Somewhat bad (△): Over 13 seconds to 14 seconds or less Poor (×): Over 14 seconds

(ゲル化性)
ステンレス板を160℃に加熱し、その上に各エマルションを2滴滴下し、所定の時間ごとに液状かゲル状かを確認した。ゲル状になると粘着性が発現し、断糸等が起こるためゲル化し難いものほど優れていることを意味する。
指標は次の通りで、◎及び○を合格とした。
非常に良好(◎):160℃30分で液状
良好 (○):160℃20分で液状かつ160℃30分で一部ゲルもしくはゲル
不良 (×):160℃20分でゲルもしくは一部ゲル
(Gelability)
The stainless steel plate was heated to 160 ° C., and two drops of each emulsion were dropped on it, and it was confirmed whether it was liquid or gel every predetermined time. When it becomes a gel, stickiness is expressed, and thread breakage or the like occurs.
The indicators are as follows, and ◎ and ○ are acceptable.
Very good (◎): liquid at 160 ° C for 30 minutes Good (○): liquid at 160 ° C for 20 minutes and partial gel or gel at 160 ° C for 30 minutes Poor (X): gel or partial gel at 160 ° C for 20 minutes

(安定性)
各エマルションを密閉容器に入れ、50℃で1週間静置した。その際にエマルション崩壊に伴う分離等が見られたら不合格(×)とし、分離が無ければ合格(○)とした。
(Stability)
Each emulsion was placed in a closed container and allowed to stand at 50 ° C. for 1 week. At that time, if separation or the like accompanying emulsion collapse was observed, it was judged as unacceptable (x), and if there was no separation, it was judged as acceptable (◯).

Figure 2018003347
Figure 2018003347

Figure 2018003347
Figure 2018003347

以上、表1及び表2から分かるように、実施例に係る繊維処理剤は、アミノ変性シリコーン(A)と、界面活性剤(B)と、上記化学式(1)に示される化合物(C1)及び上記化合物(C2)から選ばれる少なくとも1種である化合物(C)とを含むので、いずれもアミノ変性シリコーンのゲル化を抑制することができていることが分かる。
一方、アミノ基を持たないポリオキシアルキレン誘導体(比較例2)、ポリオキシアルキレン構造を持たないアミン化合物(比較例3、4)及びアミノ基を1つかつ末端ではない部分に有するポリオキシアルキレン化合物(比較例5)は、いずれも化合物(C)に該当しないので、本願の課題であるアミノ変性シリコーンのゲル化を抑えることができていない。
As described above, as can be seen from Tables 1 and 2, the fiber treatment agent according to the examples includes the amino-modified silicone (A), the surfactant (B), the compound (C1) represented by the chemical formula (1), and Since it contains the compound (C) which is at least 1 sort (s) chosen from the said compound (C2), it turns out that all have suppressed the gelatinization of amino-modified silicone.
On the other hand, a polyoxyalkylene derivative having no amino group (Comparative Example 2), an amine compound having no polyoxyalkylene structure (Comparative Examples 3 and 4), and a polyoxyalkylene compound having one amino group at a non-terminal portion Since (Comparative Example 5) does not correspond to the compound (C), gelation of the amino-modified silicone that is the subject of the present application cannot be suppressed.

Claims (8)

アミノ変性シリコーン(A)と、界面活性剤(B)と、下記化学式(1)に示される化合物(C1)及び下記化合物(C2)から選ばれる少なくとも1種である化合物(C)とを含む、繊維処理剤。
Figure 2018003347
(式(1)中、Rは有機基、Rは有機基、AOは、炭素数2〜4のオキシアルキレン基を示す。mは1〜50の数を示す。)
化合物(C2):分子内にポリオキシアルキレン基及び2つ以上の1級アミン基を有するアミン化合物
An amino-modified silicone (A), a surfactant (B), and a compound (C) that is at least one selected from the following compound (C1) and the following compound (C2) represented by the following chemical formula (1): Fiber treatment agent.
Figure 2018003347
(In the formula (1), R 1 represents an organic group, R 2 is an organic group, A 1 O is, .m showing an oxyalkylene group having 2 to 4 carbon atoms is a number of 1 to 50.)
Compound (C2): amine compound having a polyoxyalkylene group and two or more primary amine groups in the molecule
カルボン酸化合物(D)をさらに含む、請求項1に記載の繊維処理剤。   The fiber treatment agent according to claim 1, further comprising a carboxylic acid compound (D). 前記AOがオキシエチレン基である、請求項1又は2に記載の繊維処理剤。The fiber treatment agent according to claim 1 or 2, wherein the A 1 O is an oxyethylene group. 前記処理剤の不揮発分に占める前記化合物(C)の重量割合が0.1〜15重量%である、請求項1〜3のいずれかに記載の繊維処理剤。   The fiber processing agent in any one of Claims 1-3 whose weight ratio of the said compound (C) to the non volatile matter of the said processing agent is 0.1 to 15 weight%. 前記界面活性剤がポリオキシエチレン骨格を有する、請求項1〜4のいずれかに記載の繊維処理剤   The fiber treatment agent according to any one of claims 1 to 4, wherein the surfactant has a polyoxyethylene skeleton. アクリル繊維用である、請求項1〜5のいずれかに記載の繊維処理剤。   The fiber treatment agent according to any one of claims 1 to 5, which is used for acrylic fibers. 炭素繊維製造用アクリル繊維の原料アクリル繊維に、請求項1〜6のいずれかに記載の繊維処理剤を付着させてなる、炭素繊維製造用アクリル繊維。   The acrylic fiber for carbon fiber manufacture formed by making the fiber treatment agent in any one of Claims 1-6 adhere to the raw material acrylic fiber of the acrylic fiber for carbon fiber manufacture. 炭素繊維製造用アクリル繊維の原料アクリル繊維に、請求項1〜6のいずれかに記載の繊維処理剤を付着させて製糸する製糸工程と、200〜300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300〜2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含む、炭素繊維の製造方法。   A yarn-making process in which the fiber treatment agent according to any one of claims 1 to 6 is attached to a raw acrylic fiber for acrylic fiber for carbon fiber production, and a flame-resistant fiber in an oxidizing atmosphere at 200 to 300 ° C. A method for producing carbon fiber, comprising: a flameproofing treatment step to be converted; and a carbonization treatment step of carbonizing the flameproofed fiber in an inert atmosphere at 300 to 2000 ° C.
JP2018524956A 2016-06-30 2017-05-23 Textile treatment agent and its use Active JP6397601B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016129826 2016-06-30
JP2016129826 2016-06-30
PCT/JP2017/019134 WO2018003347A1 (en) 2016-06-30 2017-05-23 Fiber treatment agent and use thereof

Publications (2)

Publication Number Publication Date
JP6397601B2 JP6397601B2 (en) 2018-09-26
JPWO2018003347A1 true JPWO2018003347A1 (en) 2018-11-22

Family

ID=60787095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524956A Active JP6397601B2 (en) 2016-06-30 2017-05-23 Textile treatment agent and its use

Country Status (4)

Country Link
JP (1) JP6397601B2 (en)
CN (1) CN109072541B (en)
TW (1) TWI720217B (en)
WO (1) WO2018003347A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020059799A (en) * 2018-10-10 2020-04-16 旭化成ワッカーシリコーン株式会社 Silicone oil composition, gelation time control additive, silicone oil and method for designing silicone oil composition
KR102073588B1 (en) * 2019-05-17 2020-02-05 강인숙 Highly water repellent self-emulsified type softener and manufacturing method thereof
JP7491673B2 (en) * 2019-08-30 2024-05-28 帝人株式会社 Manufacturing method of carbon fiber bundle
CN111691012B (en) * 2020-07-29 2020-12-25 常州市宏发纵横新材料科技股份有限公司 Electric control type polyacrylonitrile precursor microwave pre-oxidation process
JP6957070B1 (en) 2021-06-04 2021-11-02 竹本油脂株式会社 Treatment agent for synthetic fibers and synthetic fibers
JP2023136173A (en) * 2022-03-16 2023-09-29 竹本油脂株式会社 Composition containing acrylic synthetic fiber treatment agent, preparation method of diluted solution of acrylic synthetic fiber treatment agent, treatment method of acrylic synthetic fiber, and acrylic synthetic fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220723A (en) * 1993-01-25 1994-08-09 Sumika Hercules Kk Oiling agent composition for precursor for high-performance carbon fiber and precursor
JPH0742613B2 (en) * 1988-04-12 1995-05-10 日本石油株式会社 Method for manufacturing pitch-based carbon fiber
JP2004149983A (en) * 2002-11-01 2004-05-27 Toho Tenax Co Ltd Acrylic fiber for carbon fiber production
JP2016084563A (en) * 2014-10-28 2016-05-19 松本油脂製薬株式会社 Acrylic fiber treatment agent and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291225A (en) * 1988-09-27 1990-03-30 Toray Ind Inc Production of raw material yarn for carbon yarn
GB9004627D0 (en) * 1990-03-01 1990-04-25 Dow Corning Composition for treating carbon fibre precursors and precursors treated therewith
JPH07238472A (en) * 1994-02-25 1995-09-12 Toray Dow Corning Silicone Co Ltd Straight finishing oil composition for fibrous material
JP4039749B2 (en) * 1998-10-05 2008-01-30 ライオン株式会社 Liquid finish composition for textile products
WO2001075218A1 (en) * 2000-04-04 2001-10-11 Lion Corporation Liquid finishing agent composition for textile product
GB0209131D0 (en) * 2002-04-22 2002-05-29 Procter & Gamble Fiber treatment blend
EP2821544B1 (en) * 2012-03-02 2018-05-16 Matsumoto Yushi-Seiyaku Co., Ltd. Acrylic-fiber finish for carbon-fiber production, acrylic fiber for carbon-fiber production, and carbon-fiber production method
JP6220723B2 (en) 2014-03-31 2017-10-25 株式会社松風 Novel silane coupling agent and dental composition containing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742613B2 (en) * 1988-04-12 1995-05-10 日本石油株式会社 Method for manufacturing pitch-based carbon fiber
JPH06220723A (en) * 1993-01-25 1994-08-09 Sumika Hercules Kk Oiling agent composition for precursor for high-performance carbon fiber and precursor
JP2004149983A (en) * 2002-11-01 2004-05-27 Toho Tenax Co Ltd Acrylic fiber for carbon fiber production
JP2016084563A (en) * 2014-10-28 2016-05-19 松本油脂製薬株式会社 Acrylic fiber treatment agent and application thereof

Also Published As

Publication number Publication date
TW201807061A (en) 2018-03-01
CN109072541A (en) 2018-12-21
WO2018003347A1 (en) 2018-01-04
TWI720217B (en) 2021-03-01
CN109072541B (en) 2021-06-18
JP6397601B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6397601B2 (en) Textile treatment agent and its use
CN110291245B (en) Treating agent for acrylic fiber and use thereof
JP5914780B1 (en) Acrylic fiber treatment agent and its use
WO2017169632A1 (en) Acrylic fiber treatment agent and use thereof
KR101653160B1 (en) Oil agent for acrylic fibers for production of carbon fibers, acrylic fibers for production of carbon fibers, and method for producing carbon fibers
JP5528649B1 (en) Acrylic fiber treatment agent for carbon fiber production and its use
JP5309280B1 (en) Acrylic fiber treatment agent for producing carbon fiber, acrylic fiber for producing carbon fiber, and method for producing carbon fiber
JP6190673B2 (en) Acrylic fiber treatment agent for carbon fiber production and its use
JP6488104B2 (en) Acrylic fiber treatment agent and its use
JP2012102429A (en) Oil agent for acrylic fiber for producing carbon fiber, acrylic fiber for producing carbon fiber and method for producing carbon fiber
JP6752075B2 (en) Acrylic fiber treatment agent and its uses
JP5592676B2 (en) Acrylic fiber oil for carbon fiber production, acrylic fiber for carbon fiber production, and method for producing carbon fiber
JP6914745B2 (en) Acrylic fiber treatment agent and its uses
JP7448735B1 (en) Treatment agents for acrylic fibers and their uses
JP6204211B2 (en) Acrylic fiber treatment agent and its use
WO2024057740A1 (en) Treatment agent for acrylic fibers and use of same
JP2013159868A (en) Treatment agent for acrylic fiber for producing carbon fiber, acrylic fiber for producing carbon fiber and method for producing carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180719

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180831

R150 Certificate of patent or registration of utility model

Ref document number: 6397601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250