JPWO2017221905A1 - Melanin pigment non-producing or low-producing β-glucan-producing bacterium, its artificial production method, and β-glucan produced using the same, and its production method - Google Patents

Melanin pigment non-producing or low-producing β-glucan-producing bacterium, its artificial production method, and β-glucan produced using the same, and its production method Download PDF

Info

Publication number
JPWO2017221905A1
JPWO2017221905A1 JP2018524095A JP2018524095A JPWO2017221905A1 JP WO2017221905 A1 JPWO2017221905 A1 JP WO2017221905A1 JP 2018524095 A JP2018524095 A JP 2018524095A JP 2018524095 A JP2018524095 A JP 2018524095A JP WO2017221905 A1 JPWO2017221905 A1 JP WO2017221905A1
Authority
JP
Japan
Prior art keywords
producing
glucan
strain
melanin
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018524095A
Other languages
Japanese (ja)
Other versions
JP6585295B2 (en
Inventor
鈴木 利雄
利雄 鈴木
憲司 北村
憲司 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2017221905A1 publication Critical patent/JPWO2017221905A1/en
Application granted granted Critical
Publication of JP6585295B2 publication Critical patent/JP6585295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract


【課題】 一般のβグルカン産生菌から変異させ、メラニン色素の産生能力がゼロまたは変異処理前の初期状態より低くかつβグルカン産生を行う能力を備えたメラニン色素非産生または低産生のβグルカン産生菌を提供する。
【解決手段】Aureobasidium pullulans(黒酵母菌)に対して遺伝子の変異を生じせしめる物理的処置または化学的処置による変異処理を施す遺伝子変異処理工程と、遺伝子変異処理工程により得られた変異株に対して、チロシナーゼ経路阻害剤を施用した培養およびポリケタイド経路阻害剤を施用した培養において、メラニン生成の見られない株をスクリーニングする変異株選定工程を含むものである。このダブルスクリーニングによりメラニン色素産生が抑制され、かつβグルカン産生を行う能力を備えたメラニン色素非産生または低産生βグルカン産生株を製造する。例えば、変異処理としてガンマー線の放射線照射処理とする。
【選択図】図7

PROBLEM TO BE SOLVED: To produce β-glucan that is non-producing or low-producing melanin pigment that is mutated from a general β-glucan-producing bacterium and has the ability to produce β-glucan with zero or lower melanin-producing ability than the initial state before the mutation treatment Provide fungus.
[MEANS FOR SOLVING PROBLEMS] A gene mutation treatment step for carrying out a mutation treatment by a physical treatment or a chemical treatment for causing a gene mutation in Aureobasidium pullulans (black yeast), and a mutant obtained by the gene mutation treatment step In addition, in the culture applied with the tyrosinase pathway inhibitor and the culture applied with the polyketide pathway inhibitor, a mutant strain selection step of screening a strain in which no melanin production is observed is included. By this double screening, a melanin non-producing or low-producing β-glucan producing strain with the ability to suppress melanin pigment production and to produce β-glucan is produced. For example, a gamma ray irradiation process is used as the mutation process.
[Selection] Figure 7

Description

本発明は、βグルカン産生不完全菌であり、発酵過程でメラニン色素を産生してしまうAureobasidium属微生物から人工的手法により得たメラニン色素非産生または低産生のβグルカン産生菌、およびその人工的製造方法、さらに、そのメラニン色素非産生または低産生変異株のグルカン産生微生物を用いたβ-1,3結合に対するβ-1,6結合の分岐度が50〜100%であるβ−1,3−1,6−グルカンおよびその生産方法に関する。   The present invention is a β-glucan-producing incomplete bacterium, a melanin-nonproducing or low-producing β-glucan-producing bacterium obtained by an artificial technique from a microorganism belonging to the genus Aureobasidium that produces melanin pigment in the fermentation process, and its artificial Β-1,3 in which the degree of branching of β-1,6 bond is 50-100% with respect to β-1,3 bond using a glucan-producing microorganism that is a melanin non-producing or low-producing mutant strain thereof The present invention relates to a 1,6-glucan and a production method thereof.

一般にβグルカンは、β−1,3−結合を有するグルコースポリマー主鎖を有するグルカンの総称で、中にはある割合でβ−1,6−分岐のグルコース基あるいはβ−1,6−分岐のβ−1,3−鎖グルコースポリマーを有するもの(β−1,3−1,6−グルカン)やβ−1,4−結合を部分的に有するもの(β−1,3−1,4−グルカン)も知られている。これらのβグルカンは、細菌からキノコなどの担子菌類、酵母やカビなどの真菌類、藻類や原生動物、大麦やカラスムギなどの植物などの高等生物に至るまでに広く分布している(非特許文献1)。
β-グルカンの中でもβ−1,3−1,6−グルカン等は自然界に生息するキノコ(担子菌の子実体)に多く含まれる成分(β−1,6−分岐の割合が、数%から50%程度まで)であり、それらの子実体だけでなく培養菌糸体にも含まれていることが知られている。
In general, β-glucan is a generic name for a glucan having a glucose polymer main chain having a β-1,3-linkage, and in some proportion, β-1,6-branched glucose group or β-1,6-branched Those having a β-1,3-chain glucose polymer (β-1,3-1,6-glucan) and those having a β-1,4-bond partially (β-1,3-1,4- Glucan) is also known. These β-glucans are widely distributed from bacteria to basidiomycetes such as mushrooms, fungi such as yeast and mold, algae and protozoa, and higher organisms such as plants such as barley and oats (non-patent literature). 1).
Among β-glucans, β-1,3-1,6-glucan and the like are components (β-1,6-branch ratios) that are abundant in mushrooms (basidiomycetes) that inhabit the natural world. It is known that it is contained not only in their fruit bodies but also in cultured mycelium.

βグルカンは有用物質であり、抗腫瘍活性があることが知られている(非特許文献1)。
例えば、スエヒロタケ、シイタケから抽出されたシゾフィランやレンチナンに代表されるそれぞれのβ−1,3−1,6−グルカンは、抗がん剤として承認された経緯があり、現在も化学療法との併用で注射薬の医薬品として認可されており、免疫賦活効果や抗腫瘍などの生理活性が高い化合物であることが報告されている(非特許文献2)。
β-glucan is a useful substance and is known to have antitumor activity (Non-patent Document 1).
For example, each β-1,3-1,6-glucan represented by schizophyllan and lentinan extracted from Suehirotake and Shiitake has been approved as an anticancer agent, and is still used in combination with chemotherapy. It is reported as a compound having high physiological activity such as immunostimulatory effect and antitumor (Non-patent Document 2).

βグルカンを生産する方法の一つとして不完全菌であるAureobasidium属微生物を利用する手法が知られている。Aureobasidium属微生物として、たとえばAureobasidium pullulans(黒酵母菌)を利用する手法が知られている。Aureobasidium pullulansは可溶性のβ−1,3−1,6−グルカンを培養液中に産生(β−1,6−分岐の割合が50%以上)することが知られている(非特許文献1)。すなわちAureobasidium pullulansを培養する過程においてβ−1,3−1,6−グルカンを不溶性の細胞壁中の成分としてではなく、培養液中の可溶性成分として生産することができるため、注目すべき生産技術である。
得られたβ−1,3−1,6−グルカンは、既に食品や化粧品素材として利用されており、またその特異な3重螺旋構造から難水溶性の化合物の包接基剤としての研究も行われている。
As one of the methods for producing β-glucan, a method using an Aureobasidium genus microorganism which is an incomplete bacterium is known. As a microorganism belonging to the genus Aureobasidium, for example, a technique using Aureobasidium pullulans (black yeast) is known. Aureobasidium pullulans is known to produce soluble β-1,3-1,6-glucan in the culture solution (the ratio of β-1,6-branch is 50% or more) (Non-patent Document 1). . That is, in the process of culturing Aureobasidium pullulans, β-1,3-1,6-glucan can be produced not as an insoluble cell wall component but as a soluble component in the culture solution. is there.
The obtained β-1,3-1,6-glucan has already been used as a food or cosmetic material, and research on the inclusion base of poorly water-soluble compounds due to its unique triple helical structure Has been done.

特開2004−329077号公報JP 2004-329077 A 特許第4573611号公報Japanese Patent No. 4573611 特許第3722522号公報Japanese Patent No. 3722522 特開平7−51082号公報JP-A-7-51082 βグルカンの基礎と応用 シーエムシー出版Basics and applications of β-glucan CMC Publishing キノコの化学・生化学 学会出版センターMushroom Chemistry and Biochemistry Academic Publishing Center 高分子加工, 36号, 61(1987)Polymer processing, 36, 61 (1987) Bioresource Technology, 99, 7480 (2008)Bioresource Technology, 99, 7480 (2008) Food Function, 2,45 (2006)Food Function, 2,45 (2006) 機能性糖質素材の開発と食品への応用 シーエムシー出版Development of functional carbohydrate materials and application to foods Acta Biochimica Polonica, 53, 429 (2006)Acta Biochimica Polonica, 53, 429 (2006) J Coating Tech, 53, 23 (1981)J Coating Tech, 53, 23 (1981) BMC Genomics, 15, 549 (2014)BMC Genomics, 15, 549 (2014) J Biosci Bioeng, 97, 400 (2004)J Biosci Bioeng, 97, 400 (2004) 生物工学会誌,90,115 (2012)Journal of Biotechnology, 90, 115 (2012) Medical Mycology, 53, 10-18 (2014)Medical Mycology, 53, 10-18 (2014) H. Ishida et al., Appl. Microbiol. Biotechonol., 57, 131H. Ishida et al., Appl. Microbiol. Biotechonol., 57, 131 村上英也,河合美登利:醸協, 53, 88 (1958))Hideya Murakami, Tori Kawai: Brewery, 53, 88 (1958)) 原 昌道,菅間誠之助:醸協, 70, 169 (1975)Masamichi Hara, Seinosuke Hatama: Brewery, 70, 169 (1975) 飯塚広,山口辰良、日本農芸化学会誌、26 (1952) No. 2 ,71-74Hiroshi Iizuka, Akira Yamaguchi, Journal of Japanese Society for Agricultural Chemistry, 26 (1952) No. 2, 71-74 宮脇ら、日本農芸化学会 2007年度大会要旨集Miyawaki et al., Japanese Agricultural Chemistry Society Annual Report 2007 Int. Immunopharmcol., 7,963 (2007).Int. Immunopharmcol., 7,963 (2007). Agri.Biol.Chem., 47,1167 (1983)Agri.Biol.Chem., 47,1167 (1983) BioTechiniques, 21, 1030 (1996)BioTechiniques, 21, 1030 (1996) 科学と工業64, 131(1990)Science and industry 64, 131 (1990)

しかしながら、従来技術におけるβ−1,3−1,6−グルカン生産菌であるAureobasidium属微生物を用いたβグルカンの生産方法には改善すべき点があった。それは培養過程においてメラニン色素が生成されてしまい、βグルカンに黒色色素が混入してしまうという問題である。
黒酵母菌を用いたβグルカンは培養中期から後期にかけてβグルカンの生成とともに黒色のメラニン色素も産生してしまう。そのため、色素が含まれていない高純度のβ−1,3−1,6−グルカンが得られない。
However, the β glucan production method using Aureobasidium microorganisms which are β-1,3-1,6-glucan producing bacteria in the prior art has a point to be improved. This is a problem that melanin pigment is generated during the culture process, and black pigment is mixed into β-glucan.
Β-glucan using black yeasts produces black melanin pigments along with the production of β-glucan from the middle to the late stage of culture. Therefore, a high-purity β-1,3-1,6-glucan containing no pigment cannot be obtained.

従来技術において、Aureobasidium pullulansを用いたβグルカンの培養生産工程において培養液中のメラニン産生を抑制する方法として幾通りかのアプローチが知られている。
第1には、培養液中に高濃度のビタミンCやシュウ酸などを添加する方法が知られている(非特許文献3)。
第2には、培養液中の窒素源を制御する方法が知られている(非特許文献4)。
第3には、培養時の窒素源の制御と過剰な通気量制御により厚膜胞子形態菌体の誘導を同調・制御するなどの特殊な培養制御方法が知られている(特許文献1)。
しかし、上記従来のいずれの方法においても、コスト増を招き、特殊な生産装置が必要となる上、高純度なβグルカンを量産することができなかった。
In the prior art, several approaches are known as a method for suppressing melanin production in a culture solution in a β-glucan culture production process using Aureobasidium pullulans.
First, a method of adding a high concentration of vitamin C, oxalic acid, or the like to the culture solution is known (Non-patent Document 3).
Secondly, a method for controlling a nitrogen source in a culture solution is known (Non-Patent Document 4).
Thirdly, a special culture control method is known in which the induction of thick spore spore cells is synchronized and controlled by controlling the nitrogen source during culture and controlling the excess aeration amount (Patent Document 1).
However, in any of the above conventional methods, the cost is increased, a special production apparatus is required, and high-purity β-glucan cannot be mass-produced.

一方、従来技術では、培養後の回収精製工程でも問題があった。
従来の回収生成技術としては、培養液の粘度がβ−1,3−1,6−グルカンの生産に伴って数千cP以上の高粘度となるため、高温処理や物理的高撹拌処理、アルカリpH処理(水酸化ナトリウム等を培養液に添加するなど)を施して、物理的あるいは化学的に粘度を低下させるなどの回収精製法が知られている(特許文献2、非特許文献5)。
しかしながら、これらはβグルカンの低分子化など招き、本来の物性を損なわせるものである。また、高濃度のビタミンCを培養中に添加した場合、高温処理や酸化、さらにpHをアルカリにするとビタミンCが変性してしまい、培養液全体の色が黄色から褐色に変化するため、その色素成分を除去するために透析や活性炭等で除去したりするなど、煩雑で過剰な精製工程が必要となっていた。加えて、完全に色素を除去することは難しく、得られた粉末は褐色になってしまうという問題があった(非特許文献6)。
On the other hand, the conventional technique has a problem even in the recovery and purification step after the culture.
As a conventional recovery and production technique, the viscosity of the culture solution becomes a high viscosity of several thousand cP or more with the production of β-1,3-1,6-glucan. A recovery and purification method is known (such as adding sodium hydroxide or the like to the culture solution) to physically or chemically lower the viscosity (Patent Document 2, Non-Patent Document 5).
However, these cause a decrease in the molecular weight of β-glucan and damage the original physical properties. In addition, when high-concentration vitamin C is added during culture, vitamin C is denatured when subjected to high-temperature treatment or oxidation, and further pH is alkalinized, and the color of the whole culture solution changes from yellow to brown. In order to remove the components, complicated and excessive purification steps such as dialysis, activated carbon and the like are required. In addition, it is difficult to completely remove the pigment, and there is a problem that the obtained powder turns brown (Non-Patent Document 6).

ここで、もし、今までに知られていない特殊なβグルカン産生菌であって、βグルカンの培養生産工程において培養液中にメラニン産生がないまたは微量しか産生しない、つまり"メラニン色素非産生または低産生"という特性を持つβグルカン産生菌が人為的に得られれば、メラニン色素混濁のない高純度なβグルカンの培養生産が可能となる。   Here, if it is a special β-glucan-producing bacterium that has not been known so far, there is no melanin production or only a trace amount in the culture solution in the β-glucan culture production process. If β-glucan-producing bacteria having the characteristic of “low production” can be artificially obtained, it is possible to culture and produce high-purity β-glucan free from melanin pigment turbidity.

本発明は、そのメラニン色素非産生または低産生βグルカン産生菌に関するものであり、一般のβグルカン産生菌から変異させ、“メラニン色素非産生または低産生”という特性があるβグルカン産生菌を提供することを目的とする。また、本発明は、その“メラニン色素非産生または低産生βグルカン産生菌”の人工的製造方法、およびそれを利用して産生したβグルカンおよびその生産方法を提供するものである。   The present invention relates to a melanin non-producing or low-producing β-glucan-producing bacterium, and provides a β-glucan-producing bacterium that is mutated from a general β-glucan-producing bacterium and has the characteristic of “melanin pigment non-producing or low production” The purpose is to do. The present invention also provides a method for artificially producing the “non-melanin-producing or low-producing β-glucan-producing bacterium”, a β-glucan produced using the method, and a method for producing the same.

本発明者は、“メラニン色素非産生または低産生βグルカン産生菌”の研究にあたり、まず、黒酵母菌などのβグルカン産生菌におけるメラニン産生のメカニズムに関して研究した。
一般に微生物の生体内での主要なメラニン合成経路として2つの経路が知られている。1つは、チロシン又はフェニルアラニンが酸化されたDOPA (3,4-dihydroxyphenylalanine)を中間体とするチロシナーゼ経路であり、もう一つはマロニルCoAがポリケタイド合成酵素で変換されたDHN (1,8-dihydroxynaphthalene)を経由するポリケタイド経路である(非特許文献7)。
しかし、従来技術においてこれらはまだ研究が十分に進んでおらず、十分に解明されたとは言えない状況である。
In the study of “melanin pigment non-producing or low-producing β-glucan-producing bacteria”, the present inventor first studied the mechanism of melanin production in β-glucan-producing bacteria such as black yeast.
In general, two pathways are known as the main melanin synthesis pathways of microorganisms in vivo. One is a tyrosinase pathway with DOPA (3,4-dihydroxyphenylalanine) as an intermediate in which tyrosine or phenylalanine is oxidized, and the other is DHN (1,8-dihydroxynaphthalene) in which malonyl-CoA is converted by polyketide synthase. ) Via a polyketide route (Non-patent Document 7).
However, in the prior art, these have not yet been fully researched and cannot be said to have been fully elucidated.

ここで、Aureobasidium属微生物のメラニン合成経路が報告されている知見として、Aureobasidium属微生物はポリケタイド経路でメラニンを合成するとの報告がある(非特許文献8)。
また、性質が異なる4種のAureobasidium pullulansを含むAureobasidium属微生物のゲノム配列を決定した文献(非特許文献9)でもメラニン合成経路に関する記述があり、同文献によるとAureobasidium属には4種の系統があり(Aureobasidium pullulans, Aureobasidium melanogenum, Aureobasidium subglaciale, Aureobasidium namibiae)、4種の菌株ゲノムのいずれにもポリケタイド経路を構成する様々な酵素蛋白質群の遺伝子が同定できたことが記載されている。
このように、黒酵母菌などのβグルカン産生菌の生体内には、ポリケタイド経路のメラニン合成経路が存在していることが示唆されている。
Here, as a finding that the melanin synthesis pathway of microorganisms belonging to the genus Aureobasidium is reported, there is a report that microorganisms belonging to the genus Aureobasidium synthesize melanin through the polyketide pathway (Non-patent Document 8).
There is also a description of the melanin synthesis pathway in the literature (Non-patent Document 9) that has determined the genome sequence of microorganisms belonging to the genus Aureobasidium including four different Aureobasidium pullulans. According to the same literature, there are four strains in the genus Aureobasidium. Yes (Aureobasidium pullulans, Aureobasidium melanogenum, Aureobasidium subglaciale, Aureobasidium namibiae), it is described that genes of various enzyme proteins constituting the polyketide pathway could be identified in any of the four strain genomes.
Thus, it has been suggested that a melanin synthesis pathway of a polyketide pathway exists in the living body of β-glucan producing bacteria such as black yeast.

その一方、チロシナーゼ経路のメラニン合成経路の存在を予見させる知見もある。
例えば、日本酒醸造時のメラニン生成による酒粕の黒化現象は、製造に用いる麹菌(Aspergillus oryzae)のチロシナーゼmelB(チロシナーゼ経路の必須酵素)の働きに起因しているとする報告がある(非特許文献10、非特許文献11)。さらに、清酒製造時の麹菌では、固体培養(静置培養)と液体培養でメラニン産生の有無があることも知られている(非特許文献13)。
また、他種の菌であるが、病原性Aspergillus属の5種の株では、メラニン合成経路としてチロシナーゼ経路、ポリケタイド経路の両方があり、メラニン色素が生成される際にいずれの経路により産生されるかという条件は、種によって異なることが示されている(非特許文献12)。
On the other hand, there is also knowledge that predicts the existence of the melanin synthesis pathway of the tyrosinase pathway.
For example, there is a report that the blackening phenomenon of sake lees due to melanin production during sake brewing is caused by the action of tyrosinase melB (essential enzyme of tyrosinase pathway) of Aspergillus oryzae used for production (non-patent literature) 10, Non-Patent Document 11). Furthermore, it is also known that the koji mold at the time of sake production has the presence or absence of melanin production in solid culture (stationary culture) and liquid culture (Non-patent Document 13).
Moreover, although it is another kind of fungi, five strains of the genus Aspergillus have both tyrosinase pathway and polyketide pathway as melanin synthesis pathways, and they are produced by any pathway when melanin pigment is produced. It has been shown that this condition varies depending on the species (Non-patent Document 12).

そこで、発明者は、Aureobasidium属微生物におけるメラニン産生経路として、既知のポリケタイド経路のみならず、チロシナーゼ経路が関与しているという推論のもと検証実験を行った。すなわちチロシナーゼ酵素遺伝子の存在を調べるために、チロシナーゼ遺伝子の同定・単離と塩基配列決定を行った。   Therefore, the inventor conducted a verification experiment based on the inference that not only the known polyketide pathway but also the tyrosinase pathway is involved as a melanin production pathway in microorganisms belonging to the genus Aureobasidium. That is, in order to examine the presence of the tyrosinase enzyme gene, the tyrosinase gene was identified and isolated and its base sequence was determined.

[Aureobasidium属微生物のチロシナーゼ遺伝子の同定]
まず、既にゲノム配列が解読されているAureobasidium pullulans株のゲノム情報を利用して、チロシナーゼ酵素遺伝子の有無を確認した。
GenBank(米国National Center for Biotechnology Information (NCBI)の公共データベース)に登録されているゲノム配列情報を基に、NCBIのBlastプログラムサーバーを使って相同性検索を行った。
Aureobasidium pullulansとその関連株のゲノム配列を対象に、チロシナーゼ相同蛋白質の有無について、麹菌Aspergillus oryzaeのチロシナーゼmelB蛋白質のアミノ酸配列をquery配列としてprotein blast検索を行ったところ、Aureobasidium pullulans EXF-150株のゲノム配列の中にチロシナーゼドメインを有する蛋白質(accession number, KEQ79607)が見つかった。
[Identification of tyrosinase gene of Aureobasidium microorganism]
First, the presence or absence of the tyrosinase enzyme gene was confirmed using the genome information of the Aureobasidium pullulans strain whose genome sequence was already decoded.
Based on genome sequence information registered in GenBank (public database of National Center for Biotechnology Information (NCBI) in the United States), homology search was performed using NCBI's Blast program server.
Using the amino acid sequence of the tyrosinase melB protein of Aspergillus oryzae as a query sequence for the presence or absence of tyrosinase homologous protein in the genome sequence of Aureobasidium pullulans and related strains, the genome of Aureobasidium pullulans EXF-150 was analyzed. A protein with a tyrosinase domain (accession number, KEQ79607) was found in the sequence.

次に、このAureobasidium pullulans EXF-150株の蛋白質配列自体をquery配列として、再度、Aureobasidium pullulansとその関連株のゲノム配列を対象にしたprotein blast検索を行ったところ、Aureobasidium melanogenum, Aureobasidium subglaciale, Aureobasidium namibiae株にもそれぞれ相同蛋白質の存在が確認できた(図20におけるaccession numberは各々KEQ58869, XP_013348277, XP_013426151)。
ゲノム配列情報が利用可能なこれら4株については、他に有意な相同性を示す蛋白質は見つからないため、各々の株に単独のチロシナーゼ遺伝子が存在すると考えられる。これら検索で見つかった個々の相同蛋白質の情報にリンクされているゲノム配列情報から、蛋白質翻訳部分(ORF)とその前後の部分を含めた各々の塩基配列を入手した。
Next, a protein blast search was performed on the genome sequence of Aureobasidium pullulans and its related strains again using the protein sequence of the Aureobasidium pullulans EXF-150 strain as a query sequence.Aureobasidium pullulans and Aureobasidium subglaciale, Aureobasidium namibiae The presence of homologous proteins was also confirmed in each strain (accession numbers in FIG. 20 are KEQ58869, XP_013348277, XP_013426151).
For these 4 strains for which genome sequence information is available, no other proteins showing significant homology were found, and it is considered that each strain has a single tyrosinase gene. From the genome sequence information linked to the information of individual homologous proteins found by these searches, the respective base sequences including the protein translation part (ORF) and the parts before and after it were obtained.

相同蛋白質検索により見出した4株のチロシナーゼ遺伝子全長の塩基配列のアラインメント比較解析を行い、配列の保存性の高い箇所を中心に複数のPCR用プライマー配列を設定した。以下a,b,c,dの4箇所のプライマー(図21)によるPCR反応産物について、最終的に塩基配列を決定した。
その結果、発明者らは、Aureobasidium属微生物に麹菌のチロシナーゼ遺伝子(mel B)の相同蛋白質が存在することを見出した。
An alignment comparison analysis of the base sequences of the four tyrosinase genes found by homologous protein search was performed, and a plurality of PCR primer sequences were set centering on the highly conserved portions of the sequences. The base sequences of the PCR reaction products using the four primers a, b, c and d (FIG. 21) were finally determined.
As a result, the inventors found that a homologous protein of the tyrosinase gene (mel B) of Aspergillus exists in microorganisms belonging to the genus Aureobasidium.

この発明者の得た知見により、Aureobasidium 属微生物を用いてβグルカンを生産するにあたり、メラニン色素が混入しない高純度のβグルカンを得るためには、メラニン産生経路であるポリケタイド経路およびチロシナーゼ経路の2つの経路を阻害するか、または生体内でこの2つのメラニン産生経路が機能しなくするか、毀損されて存在しない変異株を得る必要があることを突き止めた。
つまり、Aureobasidium 属微生物のメラニン色素の産生がβ−1,3−1,6−グルカンの発酵生産と同調して起こってしまった場合、やはりメラニン色素が混入してしまい、精製物における純度低下や着色が問題となる。
そこで本発明者は、メラニン色素が混入しない高純度のβグルカンを得るため、2つのメラニン産生経路が不活性化されている変異株に関して研究を進めた。
Based on the knowledge obtained by this inventor, in producing β-glucan using microorganisms belonging to the genus Aureobasidium, in order to obtain high-purity β-glucan not contaminated with melanin pigment, the polyketide pathway and tyrosinase pathway, which are melanin production pathways, can be obtained. It has been determined that it is necessary to inhibit one of the pathways, or to make these two melanin production pathways fail in vivo, or to obtain a mutant strain that is impaired and does not exist.
In other words, when the production of melanin pigments of microorganisms belonging to the genus Aureobasidium occurs in synchronism with the fermentation production of β-1,3-1,6-glucan, melanin pigments are also mixed in, and the purity of the purified product is reduced. Coloring becomes a problem.
Therefore, the present inventor conducted research on a mutant strain in which two melanin production pathways are inactivated in order to obtain a high-purity β-glucan not contaminated with a melanin pigment.

一般に、微生物変異において、EMS(エタンスルホン酸メチル)やNTG(ニトロソグアニジン)などの化学的な変異剤処理や紫外線処理による変異法はよく知られている。
従来技術におけるAureobasidium属微生物のメラニン色素の非産生または低産生株の関連研究として数少ないが報告がある。
第1には紫外線処理によるメラニン非産生または低産生株を作出しようとした実験の報告がある(非特許文献14、非特許文献15、非特許文献16)。これは米麹由来の酒粕の褐変問題の解決を目的としたものである。
第2には化学変異剤処理でのメラニン非産生または低産生株を作出しようとした実験の報告がある(非特許文献17、特許文献3)。これは、黒酵母菌の培養液を中心とする食品添加物における褐変問題の解決を目的としたものである。
In general, for microbial mutation, chemical mutagen treatment such as EMS (methyl ethanesulfonate) and NTG (nitrosoguanidine) and mutation methods by ultraviolet treatment are well known.
There have been few reports on related research on non-producing or low-producing strains of melanin pigments of microorganisms belonging to the genus Aureobasidium in the prior art.
First, there are reports of experiments that attempted to produce melanin non-producing or low-producing strains by ultraviolet treatment (Non-Patent Document 14, Non-Patent Document 15, Non-Patent Document 16). This is intended to solve the browning problem of sake lees derived from rice bran.
Secondly, there is a report of an experiment that attempted to produce a melanin non-producing or low-producing strain by chemical mutagen treatment (Non-patent Document 17, Patent Document 3). This is intended to solve the browning problem in food additives centering on the culture solution of black yeast.

しかし、これら第1の紫外線処理によるメラニン非産生または低産生株作出、第2の化学変異剤処理でのメラニン非産生または低産生株作出のいずれも、安定したメラニン非産生または低産生株の取得には至っていない。実態として、その再現性が難しいのが現状であり、数多くの変異菌株の中からメラニンを産生するか否かを試行錯誤的に目視でスクリーニングを繰り返すことが必要であり、実際にはメラニン非産生または低産生株を安定に育種量産できず、工業的利用が不可能な方法と言わざるを得ない。
上記従来における実験報告は、試行錯誤的に行った実験の域を出ておらず、2つのメラニン生成経路を不活性化または破壊した安定的に育種量産され得るメラニン非産生または低産生株の報告は存在しない。
However, the production of a melanin non-producing or low-producing strain by the first ultraviolet treatment and the production of a melanin non-producing or low-producing strain by the second chemical mutagen treatment both obtain a stable melanin non-producing or low producing strain. It has not reached. The reality is that the reproducibility is difficult, and it is necessary to repeat screening by trial and error to determine whether or not to produce melanin from a large number of mutant strains. Or a low production strain cannot be stably bred and mass-produced, and it must be said that it cannot be used industrially.
The above-mentioned conventional experimental report does not go beyond the scope of experiments conducted by trial and error, and reports on melanin-non-producing or low-producing strains that can be stably bred and mass-produced by inactivating or destroying two melanin production pathways. Does not exist.

そこで、発明者は、Aureobasidium属微生物に対する効果的な変異方法の研究を鋭意継続し、メラニン非産生または低産生株を効果的に取得する方法を見出した。
すなわち、チロシナーゼ経路あるいはポリケタイド経路の両経路あるいはいずれかのメラニン生産経路に損傷を与える変異処理を施したのち、それぞれの経路の阻害剤存在下でメラニン非産生または低産生株をスクリーニングする選択法を組み合わせた効果的な変異株の生成法を見出した。
具体的には、Aureobasidium属微生物に対して、変異処理として、放射線照射処理、化学変異剤処理、紫外線処理のいずれか、またはそれらの組み合わせの変異処理を施したのち、チロシナーゼ経路およびポリケタイド経路のそれぞれの経路の阻害剤を基にしたメラニン非産生または低産生株の選択法を組み合わせた方法でメラニン非産生または低産生株を得た。さらにそのメラニン非産生または低産生株を用いて、その発酵制御面や培地の組成面で簡便かつ安価な高純度のβ−1,3−1,6−グルカンの生産に成功した。
Therefore, the inventor has earnestly continued research on effective mutation methods for microorganisms belonging to the genus Aureobasidium, and has found a method for effectively obtaining a melanin non-producing or low-producing strain.
In other words, after performing mutation treatment that damages both the tyrosinase pathway or the polyketide pathway or any of the melanin production pathways, a selection method for screening non-melanin producing or low producing strains in the presence of inhibitors of each pathway We found an effective method for generating combined mutants.
Specifically, the Aureobasidium genus microorganism is subjected to a mutation treatment of any one of irradiation treatment, chemical mutagen treatment, ultraviolet treatment, or a combination thereof, as a mutation treatment, and then each of the tyrosinase pathway and the polyketide pathway. Melanin non-producing or low-producing strains were obtained by a combination of methods for selecting melanin non-producing or low-producing strains based on inhibitors of the above pathway. Furthermore, by using the non-melanin-producing or low-producing strain, high-purity β-1,3-1,6-glucan that was simple and inexpensive in terms of fermentation control and medium composition was successfully produced.

なお、変異処理として、放射線変異法の場合は、その照射線の種類やその大きさなどを科学的、定性的、かつ定量的に把握でき、その再現性も高い。一例として、ガンマー線照射による変異処理を用い、その死滅率を指標にすることで効果的にメラニン非産生または低産生株の取得に成功した。
本発明者が解析したように、Aureobasidium属微生物のメラニンはポリケタイド経路のみならず、チロシナーゼ経路の関与もあることから、それらの2つのメラニン産生経路を不活性化する技術を確立し、2つのメラニン産生経路が不活性化されたメラニン色素非産生または低産生βグルカン産生株を生成することに成功した。
In the case of the radiation mutation method as the mutation treatment, the type and size of the irradiation beam can be grasped scientifically, qualitatively and quantitatively, and the reproducibility is high. As an example, a mutation treatment by gamma ray irradiation was used, and the melanin non-producing or low-producing strain was successfully obtained by using the death rate as an index.
As analyzed by the present inventor, since melanin of microorganisms belonging to the genus Aureobasidium is involved not only in the polyketide pathway but also in the tyrosinase pathway, a technique for inactivating these two melanin production pathways was established, and two melanins were established. We succeeded in producing a melanin non-producing or low producing β-glucan producing strain in which the production pathway was inactivated.

本発明のメラニン色素非産生または低産生βグルカン産生株の製造方法は、
Aureobasidium属微生物に対して遺伝子の変異を生じせしめる物理的処置または化学的処置による変異処理を施す遺伝子変異処理工程と、前記遺伝子変異処理工程により得られた変異株に対して、チロシナーゼ経路阻害剤を施用した培養およびポリケタイド経路阻害剤を施用した培養を行い、メラニン生成の見られない株をスクリーニングする変異株選定工程を含み、メラニン色素の産生能力がゼロまたは変異処理前の初期状態より低くかつβグルカン産生を行う能力を備えた変異株を得るものである。
The method for producing a melanin non-producing or low-producing β-glucan producing strain of the present invention,
A genetic mutation treatment step for carrying out a mutation treatment by a physical treatment or a chemical treatment for causing a gene mutation in an Aureobasidium genus microorganism, and a tyrosinase pathway inhibitor for a mutant strain obtained by the gene mutation treatment step And a mutant selection step of screening a strain in which melanin production is not observed by performing the applied culture and the polyketide pathway inhibitor, and the production ability of melanin pigment is zero or lower than the initial state before the mutation treatment and β A mutant strain having an ability to produce glucan is obtained.

ここで、遺伝子変異処理工程における変異処理としては、放射線照射処理が挙げられる。放射線照射処理には電磁波線(ガンマー線)、粒子線(α線、β線、イオンビーム)がある。一例としてはコバルト60によるガンマー線照射処理で良い。死滅率を基準にメラニン非産生または低産生変異株を選択することができる。
また、遺伝子変異処理工程における変異処理としては、紫外線照射による変異処理、化学変異剤の投与による変異処理、または、それらを混合したものを含めることもできる。
Here, examples of the mutation treatment in the gene mutation treatment step include radiation irradiation treatment. The radiation treatment includes electromagnetic radiation (gamma rays) and particle rays (α rays, β rays, ion beams). As an example, a gamma ray irradiation treatment with cobalt 60 may be used. Melanin non-producing or low-producing mutants can be selected based on the death rate.
In addition, the mutation treatment in the gene mutation treatment step may include a mutation treatment by ultraviolet irradiation, a mutation treatment by administration of a chemical mutagen, or a mixture thereof.

本発明のメラニン色素非産生または低産生βグルカン産生株は、上記製造方法により変異株として育種生成したものである。チロシナーゼ経路阻害剤を施用した培養およびポリケタイド経路阻害剤を施用した培養においてメラニン生成の見られない株をスクリーニングすることにより、メラニン色素を生成する経路がすべて不活性化されているのでメラニン色素が混入しない高純度のβグルカン産生を行う能力を備えたものとなる。
この変異株を用いれば、通常の培地を用いた黒酵母菌の発酵工程にてメラニン色素が混入しない高純度のβ−1,3−1,6−グルカンを得ることができる。
The melanin non-producing or low producing β-glucan producing strain of the present invention is bred and produced as a mutant strain by the above production method. Screening for strains that do not produce melanin in cultures with tyrosinase pathway inhibitors and cultures with polyketide pathway inhibitors, so that all pathways that produce melanin are inactivated, so melanin contamination It has the ability to produce high-purity β-glucan.
By using this mutant strain, it is possible to obtain high-purity β-1,3-1,6-glucan in which melanin pigments are not mixed in the fermentation process of black yeast using a normal medium.

本発明によれば、Aureobasidium属微生物のメラニン非産生または低産生変異株が安定かつ効率的に得られ、そのメラニン非産生または低産生変異株を用いて高純度のβ−1,3−1,6−グルカンを簡便かつ安価に生産することができる。すなわち本発明のメラニン非産生または低産生変異株を用いたβ−1,3−1,6−グルカンの発酵生産方法によれば、メラニン色素が混入しないため、従来技術は必要とされた複雑な培養制御方法が不要となり、また、培地成分にビタミンC等を含まない通常の培地を使用できるため、安価かつ容易にβ−1,3−1,6−グルカンを製造することができる。本発明の生産方法で得られたβ−1,3−1,6−グルカンおよびその溶液には褐変などがなく、白色でありながら安全性が高く、医薬・化粧品、食品として利用可能なものである。   According to the present invention, a melanin-non-producing or low-producing mutant strain of a microorganism belonging to the genus Aureobasidium is stably and efficiently obtained, and a high-purity β-1,3-1, using the non-melanin-producing or low-producing mutant strain is obtained. 6-glucan can be produced easily and inexpensively. That is, according to the method for fermentative production of β-1,3-1,6-glucan using the melanin non-producing or low-producing mutant strain of the present invention, since the melanin pigment is not mixed, the conventional technique is required to be complicated. A culture control method is not required, and a normal medium that does not contain vitamin C or the like can be used as a medium component. Therefore, β-1,3-1,6-glucan can be produced inexpensively and easily. The β-1,3-1,6-glucan and its solution obtained by the production method of the present invention have no browning and the like, are white and highly safe, and can be used as pharmaceuticals, cosmetics, and foods. is there.

本発明のメラニン色素非産生または低産生βグルカン産生株の製造方法、高純度βグルカン製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of the melanin non-production or the low production beta glucan production strain of this invention, and a high purity beta glucan production method. β−1,3−1,6−グルカンとプルランを混合したもののNMR測定値の例を示した図である。It is the figure which showed the example of the NMR measurement value of what mixed (beta) -1,3-1,6-glucan and pullulan. 固体培地である寒天培地の組成例を示す図である。It is a figure which shows the example of a composition of the agar medium which is a solid medium. 放射線量と菌の生存率の関係を示すグラフである。It is a graph which shows the relationship between a radiation dose and the survival rate of a microbe. ダブルスクリーニングの結果得られた菌株の様子を示す図である。It is a figure which shows the mode of the strain obtained as a result of double screening. メラニン非産生または低産生変異株のスクリーニングで得られたものの多糖生産と粘度を一覧にした図である。It is the figure which listed the polysaccharide production and viscosity of what was obtained by the screening of a melanin non-production or a low production mutant. チロシナーゼ経路、ポリケタイド経路、それぞれの経路の阻害剤存在下における各菌株のメラニン産生の様子を示す図である。It is a figure which shows the mode of melanin production of each strain in presence of the tyrosinase pathway, the polyketide pathway, and the inhibitor of each pathway. シード用の液体培地の組成例を示す図である。It is a figure which shows the example of a composition of the liquid medium for seeds. 本培養組成の培地の組成例を示す図である。It is a figure which shows the example of a composition of the culture medium of this culture composition. K−1親株および変異株1(TS−1株)の培養結果を示す図である。It is a figure which shows the culture result of K-1 parent strain and mutant 1 (TS-1 strain). K−1親株および変異株1(TS−1株)の培養結果で得られた培養液の色を観察した図である。It is the figure which observed the color of the culture solution obtained by the culture result of K-1 parent strain and mutant 1 (TS-1 strain). 変異株1(TS−1株)由来のβ−1、3−1,6−グルカンのNMR分析測定を行った結果を示す図である。It is a figure which shows the result of having performed the NMR analysis measurement of (beta) -1,3-1,6-glucan derived from the mutant 1 (TS-1 strain). 放射線照射により変異させて得た、他のメラニン色素の産生能力がゼロのβグルカン産生菌(変異株3(TS−5株)、変異株4(TS−9株))の様子を示す図であるIt is a figure which shows the mode of the beta glucan producing bacteria (mutant strain 3 (TS-5 strain), mutant strain 4 (TS-9 strain)) obtained by mutating by irradiation and having no other melanin pigment producing ability. is there 実施例2にかかる化学変異剤処理法において培養の結果得られた菌株(K−1W株)の様子を示す図である。It is a figure which shows the mode of the strain (K-1W strain | stump | stock) obtained as a result of culture | cultivation in the chemical mutation agent processing method concerning Example 2. FIG. K−1W株を用いてチロシナーゼ経路、ポリケタイド経路の阻害剤存在下における各菌株のメラニン産生の有無を確認した図である。It is the figure which confirmed the presence or absence of the melanin production of each strain in presence of the inhibitor of a tyrosinase pathway and a polyketide pathway using K-1W strain | stump | stock. K−1W株を基にして、さらに工程1の化学変異剤処理および工程2の菌株の選択処理を継続した様子を示す図である。It is a figure which shows a mode that the chemical mutation agent process of the process 1 and the selection process of the strain of the process 2 were continued based on the K-1W strain. K−1W株を基にして得られたメラニン非産生または低産生株の様子を示す図である。It is a figure which shows the mode of the melanin non-production or low production strain obtained based on the K-1W strain. 化学処理剤により変異させて得た、他のメラニン色素非産生または低産生βグルカン産生菌の様子を示す図である。It is a figure which shows the mode of the other melanin pigment non-production or low production beta-glucan production microbe obtained by making it mutate with a chemical processing agent. 実施例1で得られた変異株1(TS−1株)、変異株2(TS−2株)、変異株3(TS−5株)、変異株4(TS−9株)と、実施例2で得られた変異株5(K−1ww株)、実施例3で得られた変異株6(UV−1株)に関する性質をまとめた図である。Mutant strain 1 (TS-1 strain), mutant strain 2 (TS-2 strain), mutant strain 3 (TS-5 strain), mutant strain 4 (TS-9 strain) obtained in Example 1 and Examples It is the figure which put together the property regarding the mutant 5 (K-1ww strain) obtained in 2, and the mutant 6 (UV-1 strain) obtained in Example 3. Aureobasidium 属におけるチロシナーゼ相同タンパク質のblast検索結果を示す図である。It is a figure which shows the blast search result of the tyrosinase homologous protein in Aureobasidium genus. Aureobasidium 属4株のチロシナーゼ遺伝子配列の比較、および遺伝子増幅用PCRプライマーを示す図である。It is a figure which shows the PCR primer for gene comparison of the tyrosinase gene sequence of Aureobasidium genus 4 strain, and gene amplification.

以下、本発明のメラニン色素非産生または低産生株のβグルカン産生菌、その人工的製造方法、およびそれを利用して産生したβグルカンの生産方法の実施形態を説明する。以下の実施形態、実施例は一例に過ぎず、本発明の範囲を制限するものではない。
本発明のメラニン色素非産生または低産生βグルカン産生株の製造方法、高純度βグルカン製造方法には、図1に示す各工程がある。各工程を説明する。
Hereinafter, embodiments of a β-glucan-producing bacterium that is a melanin non-producing or low-producing strain of the present invention, an artificial production method thereof, and a production method of β-glucan produced using the same will be described. The following embodiments and examples are merely examples, and do not limit the scope of the present invention.
The method for producing a melanin non-producing or low-producing β-glucan producing strain and the method for producing a high-purity β-glucan of the present invention include the steps shown in FIG. Each process will be described.

[工程1]遺伝子変異処理
工程1として、Aureobasidium属微生物に対して遺伝子の変異を生じせしめる物理的処置または化学的処置による変異処理(遺伝子変異処理工程)を施す。
[工程2]生存した菌株から候補の絞り込み
次に、工程1の「遺伝子変異処理工程」を施した後、工程2として工程1で生存した株の中で培養してもメラニン色素により褐変しない株を選択する。
[工程3]ダブルスクリーニング
次に、工程3として、2次選択した変異株に対して、チロシナーゼ経路阻害剤を施用した培養およびポリケタイド経路阻害剤を施用した培養において、メラニン生成の見られない株をスクリーニングする(ダブルスクリーニング)。
[工程4]高純度β−1,3−1,6−グルカンの生産
工程4として、工程3の結果得られた菌株を単離して育種調製したメラニン色素非産生または低産生株のβグルカン産生菌を用いて高純度かつ高生産に[TS1]β−1,3−1,6−グルカンを生産する。この工程4は安定に繰り返すことができ、メラニン色素の産生能力がゼロまたは変異処理前の初期状態より低くかつβグルカン産生を行う能力を備えたβグルカン産生菌を用いて高純度かつ高生産にβ−1,3−1,6−グルカンを生産することができる。
以下、各工程順に説明する。
[Step 1] Gene mutation treatment As step 1, a mutation treatment (gene mutation treatment step) is performed by physical treatment or chemical treatment that causes a gene mutation in a microorganism belonging to the genus Aureobasidium.
[Step 2] Selection of candidates from surviving strains Next, after performing the “gene mutation treatment step” in step 1, strains that do not brown due to melanin even if cultured in the strain that survived in step 1 as step 2 Select.
[Step 3] Double screening Next, in Step 3, a strain in which melanin production is not observed in a culture in which a tyrosinase pathway inhibitor is applied and in a culture in which a polyketide pathway inhibitor is applied to a secondarily selected mutant strain. Screen (double screening).
[Step 4] Production of high-purity β-1,3-1,6-glucan As step 4, melanin non-producing or low-producing β-glucan produced by isolation and breeding of the strain obtained as a result of step 3 [TS1] β-1,3-1,6-glucan is produced with high purity and high production using bacteria. This step 4 can be stably repeated, and it is possible to achieve high purity and high production using a β-glucan producing bacterium having a melanin pigment production ability of zero or lower than the initial state before the mutation treatment and the ability to produce β-glucan. β-1,3-1,6-glucan can be produced.
Hereinafter, it demonstrates in order of each process.

[工程1]遺伝子変異処理
Aureobasidium属微生物に対して遺伝子の変異を生じせしめる物理的処置または化学的処置による変異処理を施す遺伝子変異処理工程の例を示す。なお、ここでは一例として放射線照射処理による変異処理を例に挙げたが、他の化学変異剤処理、紫外線照射処理などの変異法を組み合わせてもよい。
[Step 1] Gene mutation treatment
The example of the gene mutation process process which performs the mutation process by the physical treatment or chemical treatment which makes the gene mutation with respect to Aureobasidium microbe is shown. In addition, although the mutation process by a radiation irradiation process was mentioned as an example here as an example, you may combine mutation methods, such as another chemical mutation agent process and an ultraviolet irradiation process.

[変異処理に用いた菌株]
変異処理に供するAureobasidium属微生物は、β−1,3−1,6−グルカンを産生する菌株ならいずれでもよいが、以下の2点から選ぶ。
菌株の第1の条件は、できるかぎりプルランを産生しないものである。
菌株によりプルラン(αグルカン)などの多糖類を同時に多量に産生する菌株があるため、高純度のβ−1,3−1,6−グルカンを得るためには、できるかぎりプルランを産生しない菌株が好ましい。
そこで、プルランをほとんど産生せず、β−1,3−1,6−グルカンを産生する菌株を用いることが好ましい。
[Strain used for mutation treatment]
The Aureobasidium genus microorganism to be subjected to the mutation treatment may be any strain that produces β-1,3-1,6-glucan, but is selected from the following two points.
The first condition of the strain is that which produces as little pullulan as possible.
Since there are strains that simultaneously produce a large amount of polysaccharides such as pullulan (α-glucan) depending on the strain, in order to obtain highly pure β-1,3-1,6-glucan, a strain that does not produce pullulan as much as possible preferable.
Therefore, it is preferable to use a strain that produces little pullulan and produces β-1,3-1,6-glucan.

菌株の産生物はNMR測定にて評価できる。
図2はβ−1,3−1,6−グルカンとプルランを混合したもののNMR測定値の例を示したものである。
β−1,3−1,6−グルカンは、1N水酸化ナトリウム重水溶液を溶媒とする溶液の1HのNMRスペクトルが約4.75ppm及び約4.55ppmの2つのシグナルを示す。これらのシグナルは、それぞれβ-1,3-結合とβ-1,6-結合に起因する。なお、NMRの測定値は温度条件の微妙な変化によって変化し、また誤差を伴うことは周知のことであることから、ここで言う「約4.75ppm」「約4.55ppm」は、通常予測される範囲の測定値の変動幅(例えば±0.2)を含む数値を意味する。
一方、プルランなどのαグルカンは1N水酸化ナトリウム重水溶液を溶媒とする溶液の1HのNMRスペクトルにおいておおよそ4.9ppm〜5.4ppmの間に3つピーク(4.95ppm、5.20ppm,5.28ppm)を示す。
つまり、このNMRの測定値を調べることにより、菌株の培養により得られる産生物の中におけるプルランなどのαグルカンの多寡を評価することができる。加えて、産生するβ-1,3-1,6-グルカンの分岐度は、β-1,6-結合/β-1,3-結合のシグナル比から推定することができる。
The product of the strain can be evaluated by NMR measurement.
FIG. 2 shows an example of NMR measurement values of a mixture of β-1,3-1,6-glucan and pullulan.
β-1,3-1,6-glucan shows two signals of about 4.75 ppm and about 4.55 ppm in 1H NMR spectrum of a solution using 1N sodium hydroxide heavy aqueous solution as a solvent. These signals are attributed to β-1,3-linkage and β-1,6-linkage, respectively. In addition, since it is well known that the measured value of NMR changes due to a slight change in temperature condition and is accompanied by an error, “about 4.75 ppm” and “about 4.55 ppm” here are usually predicted. It means a numerical value including a fluctuation range (for example, ± 0.2) of a measured value within a range.
On the other hand, α-glucan such as pullulan has 3 peaks (4.95 ppm, 5.20 ppm, and 5.20 ppm) between about 4.9 ppm and 5.4 ppm in 1 H NMR spectrum of a solution using 1N sodium hydroxide heavy aqueous solution as a solvent. 28 ppm).
That is, by examining the measured value of NMR, the amount of α-glucan such as pullulan in the product obtained by culturing the strain can be evaluated. In addition, the degree of branching of β-1,3-1,6-glucan produced can be estimated from the signal ratio of β-1,6-bond / β-1,3-bond.

菌株の第2の条件は、培養により得られるβ-1,3-1,6-グルカンが菌体外の培養液中に分泌されることである。
キノコ類やパン酵母菌は、細胞壁中にβ-1,3-1,6-グルカンを生成するが、細胞壁内からβ-1,3-1,6-グルカンを回収して精製することは手間であり、また菌体の細胞壁を破壊するため菌株の継続的利用ができない。例えば、βー1,3-1,6-グルカンの連続的な発酵生産ができない。
The second condition of the strain is that β-1,3-1,6-glucan obtained by culture is secreted into the culture solution outside the cells.
Mushrooms and baker's yeast produce β-1,3-1,6-glucan in the cell wall, but it is troublesome to collect and purify β-1,3-1,6-glucan from the cell wall. Moreover, since the cell wall of a microbial cell is destroyed, a continuous utilization of a strain is impossible. For example, continuous fermentation production of β-1,3-1,6-glucan is impossible.

Aureobasidium属微生物は、培養によりβ-1,3-1,6-グルカンを菌体外の培養液中に分泌する性質がある。そのためβ-1,3-1,6-グルカンの回収が容易で、菌体を傷つけないため内容物が漏出せず高純度である。また水溶性である点で好ましいものである。
Aureobasidium属微生物であれば、上記の50−100%のβ-1,6−分岐の分岐度を有するβ-1,3-1,6-グルカンを得ることができ、分子量が100万以上の高分子量のβグルカンから分子量が数万程度の低分子のβグルカンまでを培養条件に応じて産生することができる。
中でも、オーレオバシジウム・プルランス(Aureobasidium pullulans)が産生するβ-1,3-1,6-グルカンが好ましい。
なお、後述する実施例において、地方独立行政法人大阪産業技術研究所森ノ宮センターより入手したAureobasidium pullulansのK-1株を用いてメラニン色素非産生または低産生βグルカン産生菌の育種製造例を示す。
The microorganism belonging to the genus Aureobasidium has the property of secreting β-1,3-1,6-glucan into the culture solution outside the cells by culturing. Therefore, β-1,3-1,6-glucan can be easily recovered, and the contents are not leaked because the cells are not damaged, and the purity is high. Moreover, it is preferable at the point which is water-soluble.
If it is an Aureobasidium genus microorganism, β-1,3-1,6-glucan having the degree of branching of 50-100% β-1,6-branch described above can be obtained, and the molecular weight is as high as 1 million or more. From a β-glucan having a molecular weight to a low-molecular β-glucan having a molecular weight of about several tens of thousands can be produced according to the culture conditions.
Of these, β-1,3-1,6-glucan produced by Aureobasidium pullulans is preferable.
In the examples described later, examples of breeding and production of melanin-non-producing or low-producing β-glucan-producing bacteria using Aureobasidium pullulans K-1 strain obtained from the Morinomiya Center, Osaka Industrial Technology Research Institute are shown.

[遺伝子変異処理]
遺伝子変異処理として、放射線照射処理による変異処理、化学変異剤処理による変異処理、紫外線照射処理による変異処理などがある。なお、それらの変異処理を組み合わせて用いても本発明を適用できる。
まず、放射線照射処理による変異処理の例について説明する。
変異処理に用いる放射線は遺伝子変異を起こさせるものであれば良い。放射線としては電磁波線(ガンマー線)、粒子線(α線、β線、イオンビーム)などがあり得る。例えば、γ線を用いるものがある。γ線の供給源は、安定してγ線を放射するものであれば特に限定されない。例えば、コバルト60などがある。
照射線量(吸収線量)は1kGy以上30kGy以下でよい。好ましくは、5kGy以上20kGy以下とする。さらに好ましくは、8kGy以上15kGy以下とする。例えば、照射線量の目安として被照射処理微生物の生存率が10−6程度になる照射線量とする。
照射時の温度は、黒酵母菌が生育できる温度ないしはそれ以下であればよく、40℃以下、好ましくは30℃以下、さらに好ましくは25℃以下がよい。なお凍結を避けるため4℃以上とする。
上記条件で放射線照射により黒酵母菌に対する変異処理を施し、生存した株を取り出せば良い。
次に、化学変異剤処理による変異処理の例について説明する。
変異処理に用いる化学変異剤は遺伝子変異を起こさせるものであれば良い。例えば、エチルメタンスルホン酸(EMS)を用いる例がある。Aureobasidium pullulans K−1株を植菌した培養液を調整し、エチルメタンスルホン酸(EMS)を添加し、被添加処理した微生物の生存率が99%程度を指標として変異を起こさせる。上記条件で化学変異剤の投与により黒酵母菌に対する変異処理を施し、生存した株を取り出せば良い。
次に、紫外線照射処理による変異処理の例について説明する。
変異処理に用いる紫外線は遺伝子変異を起こさせる強度とする。紫外線の強さと照射時間は遺伝子変異を起こさせるものであれば良い。例えば、15ワットで波長260nmのものを用いて2分間照射する。紫外線照射処理は無菌実験台(クリーンベンチ)を用いて行うことが好ましい。被照射処理微生物の生存率が99%程度を指標として変異を起こさせる。上記条件で紫外線照射により黒酵母菌に対する変異処理を施し、生存した株を取り出せば良い。
上記したように、遺伝子変異処理として、放射線照射処理による変異処理、化学変異剤処理による変異処理、紫外線照射処理による変異処理、それらの組み合わせなどにより黒酵母菌に対する変異処理を施し、生存した株を取り出す。
[Gene mutation treatment]
Examples of gene mutation treatment include mutation treatment by irradiation treatment, mutation treatment by chemical mutagen treatment, and mutation treatment by ultraviolet irradiation treatment. It should be noted that the present invention can be applied even if these mutation treatments are used in combination.
First, an example of mutation processing by radiation irradiation processing will be described.
The radiation used for the mutation treatment may be anything that causes gene mutation. The radiation may include electromagnetic radiation (gamma rays), particle rays (α rays, β rays, ion beams) and the like. For example, there is one using γ rays. The supply source of γ rays is not particularly limited as long as it stably emits γ rays. An example is cobalt 60.
The irradiation dose (absorbed dose) may be 1 kGy or more and 30 kGy or less. Preferably, it is 5 kGy or more and 20 kGy or less. More preferably, it is 8 kGy or more and 15 kGy or less. For example, an irradiation dose at which the survival rate of the irradiated microorganism is about 10 −6 is used as a guide for the irradiation dose.
The temperature at the time of irradiation may be a temperature at which black yeast can grow or lower, and is 40 ° C. or lower, preferably 30 ° C. or lower, more preferably 25 ° C. or lower. To avoid freezing, keep it at 4 ° C or higher.
What is necessary is just to perform the variation | mutation process with respect to a black yeast by radiation irradiation on the said conditions, and to take out the surviving strain.
Next, an example of the mutation process by the chemical mutation agent process will be described.
The chemical mutagen used for the mutation treatment may be any one that causes gene mutation. For example, there is an example using ethyl methanesulfonic acid (EMS). A culture solution inoculated with Aureobasidium pullulans K-1 strain is prepared, ethyl methanesulfonic acid (EMS) is added, and the survival rate of the treated microorganism is caused to mutate with an index of about 99%. The surviving strain may be taken out by applying a mutation treatment to black yeast by administration of a chemical mutation agent under the above conditions.
Next, an example of the mutation process by the ultraviolet irradiation process will be described.
The ultraviolet light used for the mutation treatment has a strength that causes a gene mutation. The intensity of the ultraviolet rays and the irradiation time may be anything that causes genetic mutation. For example, irradiation is performed for 2 minutes using 15 watts and a wavelength of 260 nm. The ultraviolet irradiation treatment is preferably performed using an aseptic laboratory bench (clean bench). Mutation is caused with the survival rate of irradiated microorganisms as an index of about 99%. The surviving strain may be taken out by subjecting the black yeast to mutation treatment by ultraviolet irradiation under the above conditions.
As described above, mutation treatment for radiation treatment, mutation treatment by chemical mutagen treatment, mutation treatment by ultraviolet irradiation treatment, mutation treatment for black yeast by combinations thereof, etc. Take out.

[工程2]生存した菌株から候補の選択
取り出された変異株を用いて培養を行い、培養により褐変しない株、つまりメラニンを生成しない菌株を、次段階のダブルスクリーニングに掛ける候補の菌株として選択する。
この候補選択の培養処理の段階(固体培養および液体培養)で褐変するものはメラニン生成経路が活性化してメラニン色素生成能力が発現しているため除外される。なお、この候補選択の培養処理において褐変しないものについてすべてのメラニン生成経路が活性を失っているとはこの時点ではまだ断定できない。つまり、この候補選択の培養処理において褐変しないものはメラニン生成経路が一時的に活性を見せていない状態にあるが、その中には、チロシナーゼ経路のみが不活性化されているがポリケタイド経路が活性を失っていないもの、ポリケタイド経路が不活性化されているがチロシナーゼ経路が活性を失っていないもの、チロシナーゼ経路とポリケタイド経路ともに不活性化しているものの3通りがあり得る。
[Step 2] Selection of candidates from surviving strains The selected mutant strain is cultured, and a strain that does not turn brown by culture, that is, a strain that does not produce melanin, is selected as a candidate strain to be subjected to the next double screening. .
Those that turn brown at this candidate selection stage (solid culture and liquid culture) are excluded because the melanin production pathway is activated and the ability to produce melanin is expressed. In addition, at this time, it cannot be determined that all melanin production pathways have lost activity for those that do not brown in this candidate selection culture treatment. In other words, those that do not brown in this candidate selection culture treatment are in a state where the melanin production pathway is not temporarily active, but only the tyrosinase pathway is inactivated, but the polyketide pathway is active. There are three types: those in which the polyketide pathway is inactivated but the tyrosinase pathway has not lost activity, and those in which both the tyrosinase pathway and the polyketide pathway are inactivated.

候補選択の培養に用いる炭素源としては、シュークロースあるいはグルコースあるいはフラクトース等を炭素源とするのがよい。炭素源の添加方法は、培養開始時に適量を添加してもよいし連続的あるいは段階的に流加添加してもよい。
候補選択の培養に用いる窒素源としては、硝酸塩やアンモニウム塩などの無機塩、あるいはペプトン、酵母エキス、ポテトエキスなどの有機窒素源を用いることができる。また、それぞれを混合してもよい。その他、リン酸塩、ミネラル、ビタミン類を適宜添加することができる。
As a carbon source used for candidate selection culture, sucrose, glucose, fructose or the like is preferably used as a carbon source. As a method for adding a carbon source, an appropriate amount may be added at the start of culture, or fed continuously or stepwise.
As a nitrogen source used for the candidate culture, an inorganic salt such as nitrate or ammonium salt, or an organic nitrogen source such as peptone, yeast extract or potato extract can be used. Moreover, you may mix each. In addition, phosphates, minerals, and vitamins can be added as appropriate.

候補選択の培養に用いる培地として、半合成培地やポテトデキストロース培地など黒酵母菌が生育できる培地であればよい。例えば、シュークロースを炭素源とするチャペック培地などが好適である。
候補選択の培養条件として、好気的条件とする。pHはpH3.0〜6.5の範囲がよく、好ましくはpH3.5〜5.0までがよい。pHの調節制御は特に必要ないが、培養初期にはpHが上昇傾向にあるため、クエン酸などの有機酸や塩酸、リン酸などの無機酸を用いたpHスタットにて培養することもできる。温度は、32℃までならよく、好ましくは20℃〜30℃、さらに好ましくは26℃から28℃がよい。
変異処理に用いる菌体の培養フェーズ(培養時間)は、対数増殖期から安定期のものがよい。
As a medium used for candidate selection, any medium that can grow black yeast such as a semi-synthetic medium or a potato dextrose medium may be used. For example, a Chapek medium using sucrose as a carbon source is suitable.
The aerobic conditions are used as the candidate culture conditions. The pH is preferably in the range of pH 3.0 to 6.5, preferably pH 3.5 to 5.0. Although pH control is not particularly required, since the pH tends to increase at the beginning of the culture, it can be cultured in a pH stat using an organic acid such as citric acid or an inorganic acid such as hydrochloric acid or phosphoric acid. The temperature may be up to 32 ° C, preferably 20 ° C to 30 ° C, more preferably 26 ° C to 28 ° C.
The cell culture phase (culture time) used for the mutation treatment is preferably from the logarithmic growth phase to the stable phase.

[工程3]ダブルスクリーニング
チロシナーゼ経路の阻害剤によるスクリーニング
候補として絞られたメラニン非産生または低産生株を、チロシナーゼ経路の阻害剤であるコウジ酸(Kojic acid,1000μg/ml)の含有培地に塗布して培養し、褐変しないメラニン非産生または低産生株(ポリケタイド経路不活性化株)をスクリーニングする。このチロシナーゼ経路の阻害剤によるスクリーニングによりポリケタイド経路が不活性化されている菌株が選別でき、ポリケタイド経路の活性が失われていないものは除外できる。
[Step 3] Double screening Screening with tyrosinase pathway inhibitors Strained non-producing or low-producing melanin strains are applied to a medium containing kojic acid (1000 μg / ml), an inhibitor of tyrosinase pathway. The melanin non-producing or low-producing strain (polyketide pathway inactivated strain) that does not brown is screened. By screening with an inhibitor of the tyrosinase pathway, a strain in which the polyketide pathway is inactivated can be selected, and those in which the activity of the polyketide pathway is not lost can be excluded.

ポリケタイド経路の阻害剤によるスクリーニング
ポリケタイド経路の阻害剤であるフタリド(Phthalide,250μg/ml)の含有培地に塗布して培養し、褐変しないメラニン非産生または低産生株(チロシナーゼ経路不活性化株)をスクリーニングする。なお、ポリケタイド経路の阻害剤としてトリシクラゾール(Tricyclazole)を使用することもできる。
このポリケタイド経路の阻害剤によるスクリーニングによりチロシナーゼ経路が不活性化されている菌株が選別でき、チロシナーゼ経路の活性が失われていないものは除外できる。
Screening with Polyketide Pathway Inhibitors Applying to a medium containing phthalide (Phthalide, 250 μg / ml), an inhibitor of the polyketide pathway, and cultivating it, a non-brown melanin-producing or low-producing strain (tyrosinase pathway inactivated strain) Screen. Tricyclazole can also be used as an inhibitor of the polyketide pathway.
By screening with an inhibitor of the polyketide pathway, strains in which the tyrosinase pathway is inactivated can be selected, and those in which the activity of the tyrosinase pathway is not lost can be excluded.

上記した2つのスクリーニングを、シリアルに実施、つまり、一方のスクリーニングを先に行い、その後選別された菌株に対してもう一方のスクリーニングを行うという手順でも良いし、パラレルに実施、つまり、同じ菌株から株分けして実験株を2つ用意し、それぞれを用いて両方のスクリーニングをパラレルに行っても良い。
上記した2つのスクリーニング、つまり、チロシナーゼ経路の阻害剤によるスクリーニングおよびポリケタイド経路の阻害剤によるスクリーニングの双方のスクリーニングで残った菌株は、ポリケタイド経路およびチロシナーゼ経路の両経路ともに不活性化されている菌株であることが確認される。
この菌株が本発明のメラニン色素非産生または低産生βグルカン産生菌となる。
この工程3の段階で、本発明のメラニン色素の産生能力がゼロまたは変異処理前の初期状態より低くかつβグルカン産生を行う能力を備えたβグルカン産生菌が得られている。
The above two screenings may be performed serially, that is, one of the screenings may be performed first, and then the other screening may be performed on the selected strain, or may be performed in parallel, that is, from the same strain. Two experimental strains may be prepared by dividing the stock, and both screenings may be performed in parallel using each.
The strains remaining in the two screenings described above, ie, screening with inhibitors of the tyrosinase pathway and screening with inhibitors of the polyketide pathway, are strains that are inactivated in both the polyketide pathway and the tyrosinase pathway. It is confirmed that there is.
This strain is the melanin non-producing or low-producing β-glucan producing bacterium of the present invention.
At the stage of Step 3, a β-glucan producing bacterium having the ability to produce the melanin pigment of the present invention is zero or lower than the initial state before the mutation treatment and capable of producing β-glucan is obtained.

[工程4]本発明のメラニン色素の非産生または低産生βグルカン産生菌を用いた高純度β−1,3−1,6−グルカンの生産
次に、上記した製造方法にて製造した本発明のメラニン色素の非産生または低産生βグルカン産生菌を用いたβグルカンの生産について併せて説明しておく。
上記工程1〜3で得られた本発明のメラニン色素非産生または低産生βグルカン産生菌を用いてβ-1,3-1,6-グルカン生産培地で培養し、高純度のβ-1,3-1,6-グルカンを得る。
ここでは、特別な培養方法は特段求められず、Aureobasidium属微生物によるβ-1,3-1,6-グルカンの生産方法を適用すれば良い。
[Step 4] Production of high-purity β-1,3-1,6-glucan using non-producing or low-producing β-glucan-producing bacteria of the melanin of the present invention Next, the present invention manufactured by the above-described manufacturing method The production of β-glucan using non-producing or low-producing β-glucan-producing bacteria is also described.
Culturing in a β-1,3-1,6-glucan production medium using the non-producing or low-producing β-glucan-producing bacterium of the present invention obtained in the above steps 1 to 3, and producing a highly pure β-1, 3-1,6-glucan is obtained.
Here, a special culture method is not particularly required, and a production method of β-1,3-1,6-glucan by a microorganism belonging to the genus Aureobasidium may be applied.

Aureobasidium属微生物を培養して、β-1,3-1,6-グルカンを産生させる方法は種々報告されている。本項では培地容量として数Lスケール以上の培地を用いて、撹拌型のジャーファーメンター培養基を用いて撹拌通気培養を行うことを想定して説明する。   Various methods for culturing Aureobasidium microorganisms to produce β-1,3-1,6-glucan have been reported. In this section, it is assumed that the culture volume is several L or more as the culture medium volume and that the agitated aeration culture is performed using the agitated jar fermenter culture medium.

培養培地に使用できる炭素源としては、シュークロース、グルコース、フラクトース、グルコン酸、キシロースなどの炭水化物で良い。窒素源としては、硫酸アンモニウムや硝酸ナトリウム、硝酸カリウムなどの無機窒素源やペプトンや酵母エキスなどの有機栄養源などで良い。これらを併用することも可能である。またβグルカンの産生量を上昇させるために適宜、塩化ナトリウム、塩化カリウム、リン酸塩、マグネシウム塩、カルシウム塩などの無機塩、更には鉄、銅、マンガンなどの微量金属塩やビタミン類などを添加するのも有効な方法である。   The carbon source that can be used in the culture medium may be carbohydrates such as sucrose, glucose, fructose, gluconic acid, and xylose. The nitrogen source may be an inorganic nitrogen source such as ammonium sulfate, sodium nitrate or potassium nitrate, or an organic nutrient source such as peptone or yeast extract. These can also be used in combination. In order to increase the production of β-glucan, inorganic salts such as sodium chloride, potassium chloride, phosphate, magnesium salt, calcium salt, trace metal salts such as iron, copper, manganese, vitamins, etc. The addition is also an effective method.

Aureobasidium属微生物の培養において、炭素源としてシュークロースを含むチャペック培地に高濃度のアスコルビン酸を添加した培地を用いた場合、メラニン生産を制御しながら、かつ、高濃度のβ-1,3-1,6-グルカンを産生することが報告されている(非特許文献19、非特許文献21、特許文献4)。しかし、今回得られたメラニン非産生または低産生株はメラニン色素の産生能力がゼロまたは変異処理前の初期状態より低いため、培地組成は、微生物が生育し、β-1,3-1,6-グルカンを生産するものなら特に限定されない。必要に応じて、少量のビタミンCなどのビタミンや、酵母エキスやペプトンなどの有機栄養源を添加してもよい。
Aureobasidium属微生物を上記培地で好気培養するための条件としては、10〜45℃程度、好ましくは20〜35℃程度、さらに好ましくは25℃〜30℃の温度条件、加えて3〜7程度、好ましくは3.5〜5程度のpH条件などが挙げられる。
In the culture of microorganisms belonging to the genus Aureobasidium, when a medium in which a high concentration of ascorbic acid is added to a chapec medium containing sucrose as a carbon source is used, a high concentration of β-1,3-1 is controlled while controlling melanin production. , 6-glucan is reported to be produced (Non-patent document 19, Non-patent document 21, Patent document 4). However, since the melanin non-producing or low-producing strain obtained this time has zero or lower melanin production ability than the initial state before the mutation treatment, the medium composition is such that the microorganism grows and β-1,3-1,6 -No particular limitation as long as it produces glucan. If necessary, a small amount of vitamins such as vitamin C and organic nutrient sources such as yeast extract and peptone may be added.
As conditions for aerobic cultivation of microorganisms belonging to the genus Aureobasidium in the above medium, about 10 to 45 ° C, preferably about 20 to 35 ° C, more preferably about 25 to 30 ° C, in addition, about 3 to 7, Preferably, a pH condition of about 3.5 to 5 is used.

効果的に培養pHを制御するためにアルカリ、あるいは酸で培養液のpHを制御することも可能である。更に培養液の消泡のために適宜、消泡剤を添加してもよい。培養時間は通常1〜10日間程度、好ましくは1〜6日間程度であり、これによりβグルカンを産生することが可能である。なお、βグルカンの産生量を測定しながら培養時間を決めてもよい。   In order to effectively control the culture pH, it is also possible to control the pH of the culture solution with an alkali or an acid. Furthermore, you may add an antifoamer suitably for the defoaming of a culture solution. The culture time is usually about 1 to 10 days, preferably about 1 to 6 days, and thereby β-glucan can be produced. The culture time may be determined while measuring the production amount of β-glucan.

上記条件下Aureobasidium属微生物を4〜6日間程度通気攪拌培養すると、培養液にはβ-1,3-1,6-グルカンを主成分とするβ-グルカン多糖が0.1%(w/v)〜数%(w/v)含有されている。この培養を遠心分離操作等で処理して得られる上清に例えば有機溶媒を添加することにより、β-1,3-1,6-グルカンを沈殿物として得ることができる。さらに活性炭やイオン交換樹脂などでさらに生成することもできる。   When Aureobasidium microorganisms are cultured under aeration and agitation for about 4 to 6 days under the above conditions, β-glucan polysaccharide containing β-1,3-1,6-glucan as a main component is 0.1% (w / v) in the culture solution. ) To several percent (w / v). Β-1,3-1,6-glucan can be obtained as a precipitate by adding, for example, an organic solvent to a supernatant obtained by treating this culture with a centrifugation operation or the like. Further, it can be further produced with activated carbon, ion exchange resin or the like.

実施例1として、変異処理(工程1)において放射線照射法を用いた例を示す。
実験に用いる菌株は、地方独立行政法人大阪産業技術研究所森ノ宮センターより入手したAureobasidium pullulansのK-1株とした。
このAureobasidium pullulansのK-1株は、分子量200万以上と100万程度の2種類のβ-1,3-1,6-グルカンを産生する能力がある。
なお、オーレオバシジウム属微生物は、独立行政法人製品基盤技術機構(NITE)やAmerican Type Culture Collection (ATCC)などを通じて他の種類の菌株タイプカルチャーを入手することができるため、K−1株に限定されるものではなく、Aureobasidium属微生物に幅広くわたって利用可能である。
As Example 1, an example using a radiation irradiation method in the mutation treatment (Step 1) is shown.
The strain used in the experiment was Aureobasidium pullulans K-1 strain obtained from the Morinomiya Center, Osaka Industrial Technology Research Institute.
The K-1 strain of Aureobasidium pullulans has the ability to produce two types of β-1,3-1,6-glucan having a molecular weight of 2 million or more and about 1 million.
Aureobasidium microorganisms are limited to K-1 strains because other types of strain type cultures can be obtained through the National Institute of Technology (NITE), American Type Culture Collection (ATCC), etc. It is not used, but can be used over a wide range of microorganisms belonging to the genus Aureobasidium.

ここで、利用するAureobasidium pullulans K−1株において、チロシナーゼ遺伝子があることを確認した。
Aureobasidium pullulans K−1株から、塩化ベンジルによる蛋白質変性と、段階的なアルコール沈殿により多糖を除去する方法(文献20)によりゲノムDNAを調製した。このゲノムDNAを鋳型として、オリゴヌクレオチドプライマー(aとcのペアおよびbとdのペア)によるPCR反応を行い、チロシナーゼ候補遺伝子を増幅した。PCR産物の塩基配列を決定した結果、親株のAureobasidium pullulans K−1株にチロシナーゼ遺伝子が存在していることが確認でき、その具体的な塩基配列が判明した。
Here, it was confirmed that the Aureobasidium pullulans K-1 strain to be used has a tyrosinase gene.
Genomic DNA was prepared from Aureobasidium pullulans K-1 strain by protein denaturation with benzyl chloride and a method of removing polysaccharides by stepwise alcohol precipitation (Reference 20). Using this genomic DNA as a template, PCR reaction was performed with oligonucleotide primers (a and c pairs and b and d pairs) to amplify tyrosinase candidate genes. As a result of determining the base sequence of the PCR product, it was confirmed that the tyrosinase gene was present in the parent strain Aureobasidium pullulans K-1, and the specific base sequence was revealed.

[工程1:遺伝子変異処理]
ポテトデキストロース培地の60ml(pH 5.0)を300ml容積のバッフル付三角フラスコに入れ、121℃で蒸気殺菌処理した培地を作製した。この培地を実験に用いるAureobasidium pullulans K−1株 (黒酵母菌)の生育用の培地とした。培養は27℃、振とう培養で好気的に行った。
菌体が生育し濁度OD660で10以上になり対数増殖期に至った微生物を放射線変異法のための供試菌とした。菌体を図3に示す無菌培地(シュークロースを除いた培地、pHは塩酸でpH5.0に調整)で洗浄し、遠心分離操作(5000rpm,10分間)により集菌後に、再度同培地(炭素源を含まない無菌培地)に菌体の濁度OD660が1程度になるように懸濁した。この菌体希釈液に放射線コバルト60を10kGy−18kGyになるように照射した。この放射線量の範囲での菌の生存率は約10−6であった。図4は放射線量と菌の生存率の関係を示すグラフである。
[Step 1: Gene mutation treatment]
60 ml (pH 5.0) of a potato dextrose medium was placed in a 300 ml-volume baffled Erlenmeyer flask to prepare a medium that was steam sterilized at 121 ° C. This medium was used as a medium for growing Aureobasidium pullulans K-1 strain (black yeast) used in the experiment. The culture was aerobically performed at 27 ° C. with shaking culture.
Microorganisms in which the cells grew and the turbidity OD660 reached 10 or more and reached the logarithmic growth phase were used as test bacteria for the radiation mutation method. The cells were washed with a sterile medium (medium excluding sucrose, pH was adjusted to pH 5.0 with hydrochloric acid) shown in FIG. 3, and after collection by centrifugation (5000 rpm, 10 minutes), the same medium (carbon In a sterile medium not containing a source), the cells were suspended so that the turbidity OD660 of the cells was about 1. This bacterial cell diluted solution was irradiated with radiation cobalt 60 so as to be 10 kGy-18 kGy. The survival rate of the bacteria in this radiation dose range was about 10-6. FIG. 4 is a graph showing the relationship between the radiation dose and the survival rate of bacteria.

[工程2]生存した菌株から候補の選択
生存した菌株から候補を固体培地(静置培養)と液体培地で培養して候補を選択した。固体培地として上記の図3に示す寒天培地を用いた(寒天を2%量添加)。pHは塩酸で5に調製した。
この固体培地に菌体を塗布して1週間から10日程度27℃のインキュベータ内で静置培養した。
[Step 2] Selection of candidates from surviving strains Candidates were selected from surviving strains by culturing them in a solid medium (stationary culture) and a liquid medium. The agar medium shown in FIG. 3 was used as the solid medium (added 2% amount of agar). The pH was adjusted to 5 with hydrochloric acid.
The cells were applied to the solid medium and statically cultured in an incubator at 27 ° C. for about 1 week to 10 days.

図5は固体培養と液体培養のダブルスクリーニングにおける培養の結果得られた菌株の様子を示す図である。得られた菌株のうち白色株のみを選別した(図5(a))。
また、引き続き、その白色菌株を同液体培地(5mlから100ml)で、27℃で5〜10日間好気的に振とう培養した。培養の結果得られた菌株のうち白色を呈し、かつ、粘度を示す菌株を選択した(図5(b))。
液体培地を用いた選択の結果得られた白色株(図5(b)において矢印で示す株)を再度、500ml容積のバッフル付三角フラスコに入れた100mlの同液体培地で培養し、βグルカン生産とメラニン産生の有無、β-1,3-1,6-グルカン濃度と粘度との関係を確認し、さらに有望な株を選択した。
FIG. 5 is a diagram showing the state of the bacterial strain obtained as a result of the culture in the double screening of solid culture and liquid culture. Among the obtained strains, only white strains were selected (FIG. 5 (a)).
Subsequently, the white strain was cultured in the same liquid medium (5 ml to 100 ml) under aerobic shaking at 27 ° C. for 5 to 10 days. Among the strains obtained as a result of the culture, strains that exhibited white color and showed viscosity were selected (FIG. 5 (b)).
The white strain obtained as a result of selection using the liquid medium (strain indicated by the arrow in FIG. 5B) is again cultured in 100 ml of the same liquid medium placed in a 500 ml baffled conical flask to produce β-glucan. And the presence or absence of melanin production, the relationship between β-1,3-1,6-glucan concentration and viscosity, and more promising strains were selected.

図6はメラニン非産生または低産生変異株のスクリーニングで得られたものの多糖生産と粘度を一覧にしたものである。多糖濃度は、培養液を数mlサンプリングし、菌体を遠心分離除去した後、その上清に最終濃度が66%(v/v)となるようにエタノールを加えて多糖を沈殿させて回収した後、イオン交換水に溶解し、フェノール硫酸法で定量した。粘度は回転粘度計で測定した。その培養液の粘度はBM型回転粘度計(東機産業社製)により測定した。30℃では数百cP(mPa・s)から数千cP(mPa・s)という非常に高い粘度を有するものを選んだ。
ここでは、変異株を2つ選び出した。ここでは、そのうちの1つを“変異株1(TS−1株)”と呼び、他の1つを“変異株2(TS−2株)”と呼ぶ。
FIG. 6 is a list of polysaccharide production and viscosities of those obtained by screening melanin non-producing or low-producing mutant strains. The polysaccharide concentration was collected by sampling several ml of the culture solution, centrifuging and removing the cells, and then adding ethanol to the supernatant so that the final concentration was 66% (v / v) to precipitate the polysaccharide. Then, it melt | dissolved in ion-exchange water and quantified with the phenol sulfuric acid method. The viscosity was measured with a rotational viscometer. The viscosity of the culture solution was measured with a BM type rotational viscometer (manufactured by Toki Sangyo Co., Ltd.). A material having a very high viscosity of several hundred cP (mPa · s) to several thousand cP (mPa · s) at 30 ° C. was selected.
Here, two mutant strains were selected. Here, one of them is called “mutant strain 1 (TS-1 strain)” and the other one is called “mutant strain 2 (TS-2 strain)”.

[工程3]ダブルスクリーニング
チロシナーゼ経路の阻害剤を添加した培地での培養によるスクリーニングと、ポリケタイド経路の阻害剤を添加した培地での培養によるスクリーニングを行った。
[Step 3] Double screening Screening by culture in a medium to which an inhibitor of tyrosinase pathway was added and screening by culture in a medium to which an inhibitor of polyketide pathway was added were performed.

図7は、チロシナーゼ経路、ポリケタイド経路、それぞれの経路の阻害剤存在下における各菌株のメラニン産生の様子を示す図である。シャーレ内の3つのエリアのうち左上エリアにある菌株が、遺伝子変異処理を施す前の親株(K-1株の)、右上エリアにある菌株が工程2で選択された変異株の1つである“変異株1(TS−1株)”、下エリアに菌株が工程2で選択された変異株の1つである“変異株2(TS−2株)”である。   FIG. 7 is a diagram showing the state of melanin production of each strain in the presence of tyrosinase pathway, polyketide pathway, and inhibitors of each pathway. Among the three areas in the petri dish, the strain in the upper left area is the parent strain before the gene mutation treatment (K-1 strain), and the strain in the upper right area is one of the mutant strains selected in step 2. “Mutant strain 1 (TS-1 strain)”, and “Mutant strain 2 (TS-2 strain)” which is one of the mutant strains selected in step 2 in the lower area.

図7では、4つの条件で培養した結果を並べて図示している。
それぞれポテトデキストロース寒天培地を用いているが、阻害剤の添加の有無により4つの実験培地を調製している。
左上がコントロールであり、何の阻害剤も添加していないポテトデキストロース寒天培地で培養した結果である。
左下がチロシナーゼ経路の阻害剤であるコウジ酸を1000μg/ml添加したポテトデキストロース寒天培地で培養した結果である。コウジ酸の存在により菌株中のチロシナーゼ経路の機能が阻害されている。
右上がポリケタイド経路の阻害剤であるフタリドを250μg/ml添加したポテトデキストロース寒天培地で培養した結果である。フタリドの存在により菌株中のポリケタイド経路の機能が阻害されている。
右下がポリケタイド経路の阻害剤であるトリシクラゾールを200μg/ml添加したポテトデキストロース寒天培地で培養した結果である。トリシクラゾールの存在により菌株中のポリケタイド経路の機能が阻害されている。
In FIG. 7, the results of culturing under four conditions are shown side by side.
Potato dextrose agar medium is used for each, but four experimental media are prepared depending on whether or not an inhibitor is added.
The upper left is a control, and is a result of culturing on a potato dextrose agar medium to which no inhibitor is added.
The lower left is the result of culturing on a potato dextrose agar medium supplemented with 1000 μg / ml of kojic acid, an inhibitor of the tyrosinase pathway. The presence of kojic acid inhibits the function of the tyrosinase pathway in the strain.
The upper right is the result of culturing on a potato dextrose agar medium supplemented with 250 μg / ml of phthalide, an inhibitor of the polyketide pathway. The presence of phthalide inhibits the function of the polyketide pathway in the strain.
The lower right is the result of culturing on a potato dextrose agar medium supplemented with 200 μg / ml of tricyclazole, an inhibitor of the polyketide pathway. The presence of tricyclazole inhibits the function of the polyketide pathway in the strain.

図7に示す各々の菌におけるメラニン産生の有無を評価する。
まず、変異処理を施していない親株であるK−1株を評価する。
コントロールの培養結果より、親株であるK−1株はメラニン色素合成能力を備えている。
The presence or absence of melanin production in each bacterium shown in FIG. 7 is evaluated.
First, the K-1 strain which is a parent strain not subjected to mutation treatment is evaluated.
From the culture results of the control, the parent strain K-1 has the ability to synthesize melanin.

ポリケタイド経路阻害剤のフタリド添加の培養結果より、ポリケタイド経路阻害剤を添加することでメラニン産生が阻害されたが若干のメラニン生成が見られた。ポリケタイド経路の他の阻害剤であるトリシクラゾールでは少量の褐色メラニンを産生した。この実験から親株であるK−1株にはチロシナーゼ経路が完全には不活性化されておらず、チロシナーゼ経路により若干のメラニン色素合成能力を有していることが分かる。
チロシナーゼ経路阻害剤のコウジ酸添加の培養結果より、チロシナーゼ経路阻害剤を添加してもメラニン色素が活発に合成されている。この実験から親株であるK−1株にはポリケタイド経路が活性化されており、ポリケタイド経路によるメラニン色素合成能力を有していることが分かる。
From the culture results of addition of the polyketide pathway inhibitor phthalide, melanin production was inhibited by adding the polyketide pathway inhibitor, but some melanin production was observed. Tricyclazole, another inhibitor of the polyketide pathway, produced small amounts of brown melanin. From this experiment, it can be seen that the tyrosinase pathway is not completely inactivated in the parent strain K-1 and has some melanin pigment synthesis ability through the tyrosinase pathway.
From the culture results of addition of kojic acid as a tyrosinase pathway inhibitor, melanin pigments are actively synthesized even when a tyrosinase pathway inhibitor is added. From this experiment, it can be seen that the polyketide pathway is activated in the parent strain K-1 and has the ability to synthesize melanin by the polyketide pathway.

次に、“変異株1(TS−1株)”では、コントロールの培養結果、ポリケタイド経路阻害剤のフタリド添加の培養結果、ポリケタイド経路の他の阻害剤であるトリシクラゾールで添加の培養結果、チロシナーゼ経路の阻害剤であるコウジ酸添加の培養結果のいずれの結果においてもメラニン産生が阻害されており、完全にメラニン色素合成能力がないことが分かる。   Next, in “mutant strain 1 (TS-1 strain)”, the culture results of the control, the culture results of addition of the polyketide pathway inhibitor phthalide, the culture results of addition of tricyclazole, another inhibitor of the polyketide pathway, the tyrosinase pathway It can be seen that melanin production is inhibited in any of the results of the addition of kojic acid, which is an inhibitor of the above, and there is no ability to synthesize melanin completely.

一方、“変異株2(TS−2株)”では、コントロールの培養結果、ポリケタイド経路阻害剤のフタリド添加の培養結果、ポリケタイド経路の他の阻害剤であるトリシクラゾールで添加の培養結果、チロシナーゼ経路の阻害剤であるコウジ酸添加の培養結果のいずれの結果においても、メラニン色素産生が少なく抑制されていることが確認できるが、メラニン産生量はゼロではなく若干生成されており、チロシナーゼ経路、ポリケチド経路のいずれも活性が部分的に残っていることが分かる。
このダブルスクリーニングの結果、完全にメラニン色素合成能力がない変異株として“変異株1(TS−1株)”を選定することができ、メラニン色素産生が抑制されているが部分的にメラニン色素合成能力が残っている変異株として“変異株2(TS−2株)”が得られている。
On the other hand, in “mutant strain 2 (TS-2 strain)”, the culture result of the control, the culture result of addition of the polyketide pathway inhibitor phthalide, the culture result of addition of tricyclazole, another inhibitor of the polyketide pathway, the tyrosinase pathway It can be confirmed that the production of melanin pigment is suppressed to a small extent in any of the results of the culture with addition of kojic acid, which is an inhibitor, but the melanin production amount is not zero but slightly produced, and the tyrosinase pathway and the polyketide pathway It can be seen that some of the activity remains partially.
As a result of this double screening, “Mutant 1 (TS-1 strain)” can be selected as a mutant having no ability to synthesize melanin, and the production of melanin is partially suppressed. “Mutant 2 (TS-2 strain)” has been obtained as a mutant having remaining ability.

[工程4]
[工程4]本発明のメラニン色素非産生または低産生βグルカン産生菌を用いた高純度β−1,3−1,6−グルカンの生産
図8に示す組成を有するシード用の液体培地100mlを500ml容量のバッフル付付き三角フラスコに入れ、121℃で、15分間、加圧蒸気滅菌を行った後、先に取得したメラニン非産生または低産生株である変異株を同培地組成のスラントより無菌的に1白金耳植菌し、130rpmの速度で好気的に振とう攪拌しつつ、27℃で3〜5日間培養することにより種培養液を調製した。
[Step 4]
[Step 4] Production of high-purity β-1,3-1,6-glucan using the melanin non-producing or low-producing β-glucan-producing bacterium of the present invention 100 ml of seed liquid medium having the composition shown in FIG. Put into a 500 ml Erlenmeyer flask with baffle, autoclaved at 121 ° C. for 15 minutes, and then sterilize the mutant strain that was previously obtained as a non-producing or low-producing melanin strain from the slant of the same medium composition. A seed culture solution was prepared by inoculating 1 platinum ear inoculum and culturing at 27 ° C. for 3 to 5 days with aerobic shaking and stirring.

次に、図9の本培養組成の培地2L(pH3.7〜4.0)を3L容量のジャーファーメンター培養装置(丸菱バイオエンジ製)に入れ、121℃で、15分間、加圧蒸気滅菌し、上記のようにして得られた種培養液100mlを無菌的に植菌し、500rpm、27℃、1L/minの通気攪拌培養を行った。   Next, 2 L (pH 3.7 to 4.0) of the main culture composition shown in FIG. 9 is placed in a 3 L jar fermenter culture apparatus (manufactured by Maruhishi Bioengineering) and pressurized steam at 121 ° C. for 15 minutes. Sterilized and 100 ml of the seed culture solution obtained as described above was inoculated aseptically, followed by aeration and agitation culture at 500 rpm, 27 ° C. and 1 L / min.

同様に本培養培地組成の中でアスコルビン酸を含まない培地でも同条件で培養検討を行った。この場合は培地の初発pHは水酸化ナトリウム及び塩酸を用いてpH3.7〜4.0の範囲内に制御した。コントロールとして、親株であるK−1株を用い、本培養の培地はアスコルビン酸を含む同培地にて同条件で培養を行った。   Similarly, the culture was examined under the same conditions even in a medium not containing ascorbic acid in the main culture medium composition. In this case, the initial pH of the medium was controlled within the range of pH 3.7 to 4.0 using sodium hydroxide and hydrochloric acid. As a control, the parent strain K-1 was used, and the main culture medium was cultured under the same conditions in the same medium containing ascorbic acid.

図10はK−1親株および変異株1(TS−1株)の培養結果を示す図である。
図10に示すように、変異株1(TS−1株)はアスコルビン酸の有無にかかわらずメラニン産生が抑制された状態で培養が進んだ。またそれぞれの多糖濃度(β−1,3−1,6−グルカン)、粘度、生育を測定したところ、アスコルビン酸を添加せずとも変異株は良好な結果を得た。
FIG. 10 is a diagram showing the culture results of the K-1 parent strain and mutant strain 1 (TS-1 strain).
As shown in FIG. 10, the mutant strain 1 (TS-1 strain) was cultured in a state where melanin production was suppressed regardless of the presence or absence of ascorbic acid. Moreover, when each polysaccharide density | concentration ((beta) -1,3-1,6-glucan), a viscosity, and growth were measured, even if ascorbic acid was not added, the mutant strain had a favorable result.

図11はK−1親株および変異株1(TS−1株)の培養結果で得られた培養液の色を観察した図である。
図11の左側はコントロールである親株であるK−1株の培養液の色である。培養液が褐変しておりメラニン色素が混入している様子が良く分かる。
図11の中央はアスコルビン酸を添加した場合の変異株1(TS−1株)の培養液の色である。変異株1(TS−1株)では培養液にメラニン色素の混入は見られないが、アスコルビン酸を添加した場合は、その影響で培養液は若干の黄色みを呈した。
図11の右側はアスコルビン酸を添加しない場合の変異株2(TS−2株)の培養液の色である。変異株1(TS−1株)では培養液にメラニンの産生は見られず、アスコルビン酸による影響もないため培養液は白く綺麗な色を呈している。
このように、本発明のメラニン色素の産生能力がゼロでβグルカン産生を行う能力を備えたβグルカン産生菌(変異株1(TS−1株))によれば、メラニン色素が混入していない白色のメラニンフリーのβ−1,3−1,6−グルカンが得られた。また、メラニン色素の産生能力が変異処理前の初期状態より低く抑制されかつβグルカン産生を行う能力を備えたβグルカン産生菌(変異株2(TS−2株))によれば、メラニン色素の混入が低減された低メラニン含有のβ−1,3−1,6−グルカンが得られた。
FIG. 11 is a diagram observing the color of the culture solution obtained from the culture results of the K-1 parent strain and mutant strain 1 (TS-1 strain).
The left side of FIG. 11 is the color of the culture solution of the parent strain K-1 which is a control. It can be clearly seen that the culture is browned and melanin is mixed.
The center of FIG. 11 is the color of the culture solution of mutant strain 1 (TS-1 strain) when ascorbic acid is added. In the mutant strain 1 (TS-1 strain), no melanin pigment was mixed in the culture solution, but when ascorbic acid was added, the culture solution showed a slight yellowishness due to its influence.
The right side of FIG. 11 is the color of the culture solution of Mutant 2 (TS-2 strain) when no ascorbic acid is added. In the mutant strain 1 (TS-1 strain), no melanin production is observed in the culture solution, and there is no influence of ascorbic acid, so that the culture solution is white and has a beautiful color.
Thus, according to the β-glucan-producing bacterium (mutant strain 1 (TS-1 strain)) having the ability to produce β-glucan with zero melanin-producing ability of the present invention, no melanin pigment is mixed. White melanin-free β-1,3-1,6-glucan was obtained. In addition, according to β-glucan-producing bacteria (mutant strain 2 (TS-2 strain)) having the ability to produce β-glucan, the production ability of melanin pigment being suppressed lower than the initial state before the mutation treatment, A low melanin-containing β-1,3-1,6-glucan with reduced contamination was obtained.

次に、メラニン色素の産生能力がゼロでβグルカン産生を行う能力を備えたβグルカン産生菌(変異株1(TS−1株))から得られたメラニンフリーの培養液中のβ−1,3−1,6−グルカンの純度についても調べた。図12は、変異株1(TS−1株)由来のβ−1,3−1,6−グルカンのNMR分析測定を行った結果を示す図である。
上記の課題を解決する手段で説明したように、1N水酸化ナトリウム重水溶液を溶媒とする溶液の1HのNMRスペクトルにおいて、β−1,3−1,6−グルカンは約4.75ppm及び約4.55ppmの2つのピークを示し、プルラン等のαグルカンは4.9〜5.4の間に3つピーク(4.95、5.20,5.28)を示すところ、図12に示すように、β−1,3−1,6−グルカン特有のピーク値は見られるが、プルラン特有のピーク値は見られない。つまり、プルランを含まない高純度のβ−1,3−1,6−グルカンが得られていることが分かる。重量からの純度計算では90%以上の純度と計算された。
このように、本発明のメラニン色素非産生または低産生βグルカン産生菌によれば、高純度なβ−1,3−1,6−グルカンが産生された。
次に、上記した放射線照射の変異処理とダブルスクリーニングによる選定を繰り返して作成に成功した他の変異株の例を示す。図13は、メラニン色素の産生能力がゼロでβグルカン産生を行う能力を備えたβグルカン産生菌(変異株3(TS−5株)、変異株4(TS−9株))を示す写真の写しである。図13に示すように、この変異株3(TS−5株)、変異株4(TS−9株)も白色をしている。これら変異株3(TS−5株)、変異株4(TS−9株)から得た培養液中のβ−1,3−1,6−グルカンの純度についても調べたところメラニンフリーのβ−1,3−1,6−グルカンが産生された。このように、放射線照射による変異処理を利用した場合、本発明にかかるメラニン色素の産生能力がゼロまたは変異処理前の初期状態より低くかつβグルカン産生を行う能力を備えたメラニン色素非産生または低産生βグルカン産生株の製造方法は、再現性も高いものであることが分かる。
Next, β-1, in a melanin-free culture obtained from a β-glucan producing bacterium (mutant strain 1 (TS-1 strain)) having the ability to produce β-glucan without producing melanin pigment. The purity of 3-1,6-glucan was also examined. FIG. 12 is a diagram showing the results of NMR analysis measurement of β-1,3-1,6-glucan derived from mutant strain 1 (TS-1 strain).
As described in the means for solving the above problems, in the 1H NMR spectrum of a solution using 1N sodium hydroxide heavy aqueous solution as a solvent, β-1,3-1,6-glucan is about 4.75 ppm and about 4 As shown in FIG. 12, two peaks of .55 ppm are shown, and α-glucan such as pullulan shows three peaks (4.95, 5.20, 5.28) between 4.9 and 5.4. In addition, a peak value peculiar to β-1,3-1,6-glucan is seen, but a peak value peculiar to pullulan is not seen. That is, it can be seen that high-purity β-1,3-1,6-glucan containing no pullulan is obtained. In the purity calculation from the weight, the purity was calculated to be 90% or more.
Thus, according to the melanin non-producing or low-producing β-glucan-producing bacterium of the present invention, highly pure β-1,3-1,6-glucan was produced.
Next, examples of other mutant strains that have been successfully created by repeating the above-described mutation treatment by irradiation and selection by double screening will be shown. FIG. 13 is a photograph showing β-glucan-producing bacteria (mutant strain 3 (TS-5 strain), mutant strain 4 (TS-9 strain)) having the ability to produce β-glucan with zero melanin pigment production ability. It is a copy. As shown in FIG. 13, the mutant strain 3 (TS-5 strain) and the mutant strain 4 (TS-9 strain) are also white. The purity of β-1,3-1,6-glucan in the culture solution obtained from these mutant 3 (TS-5 strain) and mutant 4 (TS-9 strain) was also examined. 1,3-1,6-glucan was produced. As described above, when the mutation treatment by irradiation is used, the production ability of the melanin pigment according to the present invention is zero or lower than the initial state before the mutation treatment and the ability to produce β-glucan is low or low. It can be seen that the production method of the production β-glucan production strain has high reproducibility.

実施例2として、変異処理(工程1)において化学変異剤処理法を用いた例を示す。
実験に用いる菌株は、実施例1と同様、地方独立行政法人大阪産業技術研究所森ノ宮センターより入手したAureobasidium pullulansのK-1株とした。
なお、オーレオバシジウム属微生物は、他の種類の菌株タイプカルチャーを入手することができるため、K−1株に限定されるものではなく、Aureobasidium属微生物に幅広くわたって利用可能である。
Example 2 shows an example in which a chemical mutagen treatment method is used in the mutation treatment (step 1).
As in Example 1, the strain used in the experiment was Aureobasidium pullulans K-1 strain obtained from the Morinomiya Center, Osaka Industrial Technology Research Institute.
Since Aureobasidium microorganisms can be obtained from other types of strain type cultures, they are not limited to the K-1 strain and can be used over a wide range of Aureobasidium microorganisms.

[工程1:遺伝子変異処理]
ポテトデキストロース培地の60ml(pH 5.0)を300ml容積のバッフル付三角フラスコに入れ、121℃で蒸気殺菌処理した培地を作製した。この培地を実験に用いるAureobasidium pullulans K−1株 (黒酵母菌)の生育用の培地とした。培養は27℃、振とう培養で好気的に行った。
菌体が生育し濁度OD660で10以上になり対数増殖期に至った微生物を放射線変異法のための供試菌とした。菌体を実施例1の図3に示す無菌培地(シュークロースを除いた培地、pHは塩酸でpH5.0に調整)で洗浄し、遠心分離操作(5000rpm,10分間)により集菌後に、再度同培地(炭素源を含まない無菌培地)に菌体の濁度OD660が1程度になるように懸濁した。
この菌体希釈液にEMSを4%(w/v)になるように添加し、27℃で30分間振盪し、死滅率99%を指標に処理を行った。
[Step 1: Gene mutation treatment]
60 ml (pH 5.0) of a potato dextrose medium was placed in a 300 ml-volume baffled Erlenmeyer flask to prepare a medium that was steam sterilized at 121 ° C. This medium was used as a medium for growing Aureobasidium pullulans K-1 strain (black yeast) used in the experiment. The culture was performed aerobically at 27 ° C. with shaking culture.
Microorganisms in which the cells grew and the turbidity OD660 reached 10 or more and reached the logarithmic growth phase were used as test bacteria for the radiation mutation method. The bacterial cells were washed with a sterile medium (medium excluding sucrose, pH adjusted to pH 5.0 with hydrochloric acid) shown in FIG. 3 of Example 1, and collected again by centrifugation (5000 rpm, 10 minutes). The cells were suspended in the same medium (sterile medium containing no carbon source) so that the turbidity OD660 of the cells was about 1.
EMS was added to this microbial cell dilution so that it might become 4% (w / v), it was shaken for 30 minutes at 27 degreeC, and it processed using the death rate 99% as a parameter | index.

[工程2]生存した菌株から候補の選択
生存した菌株から候補を固体培地(静置培養)と液体培地で培養して候補を選択した。固体培地として実施例1の図3に示す同寒天培地を用いた(4%スクロース)。pHは塩酸で5に調製した。
この固体培地に菌体を塗布して1週間から10日程度27℃のインキュベータ内で静置培養した。
[Step 2] Selection of candidates from surviving strains Candidates were selected from surviving strains by culturing them in a solid medium (stationary culture) and a liquid medium. The agar medium shown in FIG. 3 of Example 1 was used as the solid medium (4% sucrose). The pH was adjusted to 5 with hydrochloric acid.
The cells were applied to the solid medium and statically cultured in an incubator at 27 ° C. for about 1 week to 10 days.

1週間〜10日後に目的に適う白色コロニー変異株を指標にスクリーニングを行った。培養の結果得られた菌株のうち白色を呈し、かつ、粘度を示す菌株を選択した。
その結果、1株の白色株(メラニン非産生または低産生株)の単離に成功した。
図14は、培養の結果得られた菌株の様子を示す図である。
After 1 week to 10 days, screening was performed using a white colony mutant suitable for the purpose as an index. Among the strains obtained as a result of the culture, a strain that exhibited white color and showed viscosity was selected.
As a result, one white strain (non-melanin producing or low producing strain) was successfully isolated.
FIG. 14 is a diagram showing the state of the strain obtained as a result of the culture.

[工程3]ダブルスクリーニング
実施例1と同様の手法により、チロシナーゼ経路の阻害剤を添加した培地での培養によるスクリーニングと、ポリケタイド経路の阻害剤を添加した培地での培養によるスクリーニングを行った。
1000 μg/mlのコウジ酸(チロシナーゼ経路阻害)、および250μg/mlのフタリド(ポリケタイド経路阻害)を含む同組成の寒天培地でメラニン産生の有無を確認した(図15)。その結果、コウジ酸入りの培地では白色で、フタリド入りの培地では徐々に着色する変異株K−1W株を得た。このことからポリケタイド経路は機能していないものの、チロシナーゼ経路が機能を保ったままの変異株であることが推測される。
そこで、さらにK−1W株を基にして、上記工程1の化学変異剤処理および上記工程2の菌株の選択処理を継続した(図16)。その結果、フタリド入りの培地でもメラニン非産生または低産生株の単離に成功した(図17)。ここでは、この変異株を“変異株5(K−1ww株)”と呼ぶ。
[Step 3] Double screening Screening by culture in a medium to which an inhibitor of tyrosinase pathway was added and screening by culture in a medium to which an inhibitor of polyketide pathway was added were performed in the same manner as in Example 1.
The presence or absence of melanin production was confirmed on an agar medium having the same composition containing 1000 μg / ml kojic acid (tyrosinase pathway inhibition) and 250 μg / ml phthalide (polyketide pathway inhibition) (FIG. 15). As a result, a mutant K-1W strain that was white in the medium containing kojic acid and gradually colored in the medium containing phthalide was obtained. This suggests that although the polyketide pathway is not functioning, it is a mutant strain in which the tyrosinase pathway remains functional.
Therefore, based on the K-1W strain, the chemical mutagen treatment in Step 1 and the strain selection process in Step 2 were continued (FIG. 16). As a result, a melanin non-producing or low-producing strain was successfully isolated even in a medium containing phthalide (FIG. 17). Here, this mutant strain is referred to as “mutant strain 5 (K-1ww strain)”.

[工程4]本発明のメラニン色素非産生または低産生βグルカン産生菌を用いた高純度β−1,3−1,6−グルカンの生産
ダブルスクリーニングの結果得られた変異株(変異株5(K−1ww株))を用いて、実施例1に示した工程4と同じ方法にて、高純度β−1,3−1,6−グルカンを生産した。本培養は500ml容積のバッフル付き三角フラスコに図9に示す100mlの培地を添加して、27℃で好気的に振とう培養を5日間行い、除菌後にその上清に対して実施例1と同様の方法にてエタノール沈殿によりβグルカンを回収した。その結果、メラニンの混入が低減された低メラニン含有のβグルカンが512mg得られた。
[Step 4] Production of high-purity β-1,3-1,6-glucan using melanin-non-producing or low-producing β-glucan-producing bacteria of the present invention Mutant strain obtained by double screening (mutant strain 5 ( K-1ww strain)) was used to produce high-purity β-1,3-1,6-glucan in the same manner as in Step 4 shown in Example 1. In the main culture, 100 ml of the medium shown in FIG. 9 was added to a 500 ml baffled Erlenmeyer flask and aerobically shaken at 27 ° C. for 5 days. Β-glucan was recovered by ethanol precipitation in the same manner as described above. As a result, 512 mg of low-melanin-containing β-glucan with reduced melanin contamination was obtained.

実施例3として、変異処理(工程1)において紫外線照射変異法を用いた例を示す。
実験に用いる菌株は、実施例1と同様、地方独立行政法人大阪産業技術研究所森ノ宮センターより入手したAureobasidium pullulansのK-1株とした。
なお、オーレオバシジウム属微生物は、他の種類の菌株タイプカルチャーを入手することができるため、K−1株に限定されるものではなく、Aureobasidium属微生物に幅広くわたって利用可能である。
Example 3 shows an example in which the ultraviolet irradiation mutation method is used in the mutation treatment (step 1).
As in Example 1, the strain used in the experiment was Aureobasidium pullulans K-1 strain obtained from the Morinomiya Center, Osaka Industrial Technology Research Institute.
Since Aureobasidium microorganisms can be obtained from other types of strain type cultures, they are not limited to the K-1 strain and can be used over a wide range of Aureobasidium microorganisms.

[工程1:遺伝子変異処理]
ポテトデキストロース培地の60ml(pH 5.0)を300ml容積のバッフル付三角フラスコに入れ、121℃で蒸気殺菌処理した培地を作製した。この培地を実験に用いるAureobasidium pullulans K−1株 (黒酵母菌)の生育用の培地とした。培養は27℃、振とう培養で好気的に行った。
菌体が生育し濁度OD660で10以上になり対数増殖期に至った微生物を放射線変異法のための供試菌とした。菌体を実施例1の図3に示す無菌培地(シュークロースを除いた培地、pHは塩酸でpH5.0に調整)で洗浄し、遠心分離操作(5000rpm,10分間)により集菌後に、再度同培地(炭素源を含まない無菌培地)に菌体の濁度OD660が1程度になるように懸濁した。
クリーンベンチを用いて、この菌体希釈液に対して紫外線(15ワット、260nm)を2分間照射し、死滅率99%を指標に処理を行った。なお、5分間照射したところ生存率は0%となったため、紫外線照射時間は2分で行うこととした。
[Step 1: Gene mutation treatment]
60 ml (pH 5.0) of a potato dextrose medium was placed in a 300 ml-volume baffled Erlenmeyer flask to prepare a medium that was steam sterilized at 121 ° C. This medium was used as a medium for growing Aureobasidium pullulans K-1 strain (black yeast) used in the experiment. The culture was performed aerobically at 27 ° C. with shaking culture.
Microorganisms in which the cells grew and the turbidity OD660 reached 10 or more and reached the logarithmic growth phase were used as test bacteria for the radiation mutation method. The bacterial cells were washed with a sterile medium (medium excluding sucrose, pH adjusted to pH 5.0 with hydrochloric acid) shown in FIG. 3 of Example 1, and collected again by centrifugation (5000 rpm, 10 minutes). The cells were suspended in the same medium (sterile medium containing no carbon source) so that the turbidity OD660 of the cells was about 1.
Using a clean bench, this bacterial cell diluted solution was irradiated with ultraviolet rays (15 watts, 260 nm) for 2 minutes, and the treatment was performed using a death rate of 99% as an index. In addition, since the survival rate became 0% when irradiated for 5 minutes, the ultraviolet irradiation time was set to 2 minutes.

[工程2]生存した菌株から候補の選択
生存した菌株から候補を固体培地(静置培養)と液体培地で培養して候補を選択した。固体培地として実施例1の図3に示す寒天培地を用いた(4%スクロース)。pHは塩酸で5に調製した。
この固体培地に菌体を塗布して1週間から10日程度27℃のインキュベータ内で静置培養した。
[Step 2] Selection of candidates from surviving strains Candidates were selected from surviving strains by culturing them in a solid medium (stationary culture) and a liquid medium. The agar medium shown in FIG. 3 of Example 1 was used as the solid medium (4% sucrose). The pH was adjusted to 5 with hydrochloric acid.
The cells were applied to the solid medium and statically cultured in an incubator at 27 ° C. for about 1 week to 10 days.

1週間〜10日後に目的に適う白色コロニー変異株を指標にスクリーニングを行った。   After 1 week to 10 days, screening was performed using a white colony mutant suitable for the purpose as an index.

[工程3]ダブルスクリーニング
実施例1と同様の手法により、チロシナーゼ経路の阻害剤を添加した培地での培養によるスクリーニングと、ポリケタイド経路の阻害剤を添加した培地での培養によるスクリーニングを行った。
今回の実験では、コウジ酸入りの培地、フタリド入りの培地とも徐々に着色するが、メラニン生成が遅延する株(UV−1株)が得られた。このことからポリケタイド経路、チロシナーゼ経路とも機能を失ってはいないもののメラニン生成能力が低下している変異株であることが推測される。ここでは、この変異株を“変異株6(UV−1株)”と呼ぶ。
図18は、紫外線照射処理により変異させたメラニン色素非産生または低産生βグルカン産生菌の様子を示す図である。図18に示すように、メラニン色素の混入が低減された低メラニン含有のβ−1,3−1,6−グルカンが得られた。このように、紫外線照射処理を用いた場合でも、本発明にかかるメラニン色素の産生能力がゼロまたは変異処理前の初期状態より低くかつβグルカン産生を行う能力を備えたメラニン色素非産生または低産生βグルカン産生株を製造することができることが分かる。
[Step 3] Double screening Screening by culture in a medium to which an inhibitor of tyrosinase pathway was added and screening by culture in a medium to which an inhibitor of polyketide pathway was added were performed in the same manner as in Example 1.
In this experiment, both a medium containing kojic acid and a medium containing phthalide were gradually colored, but a strain (UV-1 strain) in which melanin production was delayed was obtained. From this, it is presumed that the polyketide pathway and the tyrosinase pathway are mutant strains that have not lost function but have reduced melanin production ability. Here, this mutant strain is referred to as “mutant strain 6 (UV-1 strain)”.
FIG. 18 is a diagram showing a state of melanin non-producing or low-producing β-glucan producing bacteria mutated by ultraviolet irradiation treatment. As shown in FIG. 18, β-1,3-1,6-glucan containing low melanin with reduced melanin pigment contamination was obtained. Thus, even when ultraviolet irradiation treatment is used, melanin pigment non-production or low production with the ability to produce β-glucan is zero or lower than the initial state before the mutation treatment and the production ability of melanin pigment according to the present invention It can be seen that a β-glucan producing strain can be produced.

[工程4]本発明のメラニン色素非産生または低産生βグルカン産生菌を用いた高純度β−1,3−1,6−グルカンの生産
ダブルスクリーニングの結果得られた変異株を用いて、実施例1に示した工程4と同じ方法にて、高純度β−1,3−1,6−グルカンを生産した。500ml容積のバッフル付三角きフラスコに図9に示す100mlの培地を添加して、27℃で好気的に振とう培養を5日間行い、除菌後にその上清に対して実施例1と同様の方法にてエタノール沈殿によりβグルカンを回収した。その結果、βグルカンが503mg得られた。
[Step 4] Production of high-purity β-1,3-1,6-glucan using melanin non-producing or low-producing β-glucan-producing bacterium of the present invention. Using mutant obtained as a result of double screening. High purity β-1,3-1,6-glucan was produced by the same method as in Step 4 shown in Example 1. 9 ml of a baffled conical flask with a baffle is added to the flask and aerobically shaken at 27 ° C. for 5 days. After sterilization, the supernatant is the same as in Example 1. Β-glucan was recovered by ethanol precipitation according to the above method. As a result, 503 mg of β-glucan was obtained.

最後に実施例1で得られた変異株1(TS−1株)、変異株2(TS−2株)、変異株3(TS−5株)、変異株4(TS−9株)と、実施例2で得られた変異株5(K−1ww株)、実施例3で得られた変異株6(UV−1株)に関する性質をまとめたものを図19に示す。
なお、表中の生産β−グルカンは、実施例2に示す方法で調製した。表中の各変異株およびオリジナル株を500ml容積のバッフル付き三角フラスコに対して、図9に示す100mlの培地を添加して、27℃で好気的に培養を5日間行った。除菌処理後にその上清を用いてエタノール沈殿処理により、β−グルカンを回収し、その生産量を測定したものである。NMR解析の欄は、その得られたβ−グルカンを用いて、実施例1に示す方法で行った結果を記載している。
以上、本発明のメラニン色素非産生または低産生βグルカン産生菌、その人工的製造方法、およびそれを利用して産生したβグルカンの生産方法の好ましい実施形態を図示して説明してきたが、本発明の技術的範囲を逸脱することなく種々の変更が可能であることは理解されるであろう。
Finally, Mutant 1 (TS-1 strain), Mutant 2 (TS-2 strain), Mutant 3 (TS-5 strain), Mutant 4 (TS-9 strain) obtained in Example 1, FIG. 19 shows a summary of the properties of mutant 5 (K-1ww strain) obtained in Example 2 and mutant 6 (UV-1 strain) obtained in Example 3.
In addition, the production β-glucan in the table was prepared by the method shown in Example 2. Each of the mutant strains and original strains in the table was added to 100 ml of baffled Erlenmeyer flask with 100 ml of medium shown in FIG. 9 and cultured aerobically at 27 ° C. for 5 days. The β-glucan was recovered by ethanol precipitation using the supernatant after sterilization treatment, and the production amount was measured. The column of NMR analysis describes the results of the method shown in Example 1 using the obtained β-glucan.
The preferred embodiments of the melanin non-producing or low-producing β-glucan-producing bacterium, the artificial production method thereof, and the production method of β-glucan produced using the same have been illustrated and described above. It will be understood that various modifications can be made without departing from the scope of the invention.

本発明の製造法により得られたβ−1,3−1,6−グルカンや複合体の水分散液は、安全性が高く、医薬品原料、医薬部外品、化粧品原料、染料、着色料などの各種用途に応用可能なものである。

The aqueous dispersion of β-1,3-1,6-glucan and complex obtained by the production method of the present invention has high safety, such as pharmaceutical raw materials, quasi drugs, cosmetic raw materials, dyes, coloring agents, etc. It can be applied to various uses.

Claims (11)

Aureobasidium属微生物に対して遺伝子の変異を生じせしめる物理的処置または化学的処置による変異処理を施す遺伝子変異処理工程と、
前記遺伝子変異処理工程により得られた変異株に対して、チロシナーゼ経路阻害剤を施用した培養およびポリケタイド経路阻害剤を施用した培養において、メラニン生成が少ない株をスクリーニングする変異株選定工程を含み、
メラニン色素の産生能力がゼロまたは前記変異処理前の初期状態より低くかつβグルカン産生を行う能力を備えたメラニン色素非産生または低産生βグルカン産生株の製造方法。
A gene mutation treatment step for carrying out a mutation treatment by a physical treatment or a chemical treatment for causing a gene mutation in an Aureobasidium genus microorganism;
In the culture obtained by applying the tyrosinase pathway inhibitor and the culture obtained by applying the polyketide pathway inhibitor to the mutant strain obtained by the gene mutation treatment step, a mutant strain selection step of screening a strain with less melanin production,
A method for producing a melanin pigment non-producing or low-producing β-glucan producing strain having zero ability to produce melanin pigment or lower than the initial state before the mutation treatment and capable of producing β-glucan.
前記Aureobasidium属微生物が、Aureobasidium pullulansである請求項1に記載のメラニン色素非産生または低産生βグルカン産生株の製造方法。   The method for producing a melanin non-producing or low-producing β-glucan producing strain according to claim 1, wherein the microorganism belonging to the genus Aureobasidium is Aureobasidium pullulans. 前記遺伝子変異処理工程における前記変異処理が、放射線照射処理を含む請求項1または2に記載のメラニン色素非産生または低産生βグルカン産生株の製造方法。   The method for producing a melanin non-producing or low-producing β-glucan producing strain according to claim 1 or 2, wherein the mutation treatment in the gene mutation treatment step includes irradiation treatment. 前記放射線照射処理がガンマー線による照射処理であり、死滅率を基準にメラニン非産生または低産生変異株を選択する請求項3に記載のメラニン色素非産生または低産生βグルカン産生株の製造方法。   The method for producing a melanin non-producing or low producing β-glucan producing strain according to claim 3, wherein the irradiation treatment is an irradiation treatment with gamma rays, and a melanin non-producing or low producing mutant strain is selected based on the death rate. 前記遺伝子変異処理工程における前記変異処理が、紫外線照射による変異処理または化学変異剤の投与による変異処理、または、それらを混合したものを含むものである請求項1から4のいずれかに記載のメラニン色素非産生または低産生βグルカン産生株の製造方法。   5. The melanin pigment-free composition according to claim 1, wherein the mutation treatment in the gene mutation treatment step includes mutation treatment by ultraviolet irradiation, mutation treatment by administration of a chemical mutation agent, or a mixture thereof. A method for producing a production or low production β-glucan production strain. Aureobasidium属微生物に対して遺伝子の変異を生じせしめる物理的処置または化学的処置を施す遺伝子変異処理工程と、
前記遺伝子変異処理工程により得られた変異株に対して、チロシナーゼ経路阻害剤を施用した培養およびポリケタイド経路阻害剤を施用した培養においてメラニン生成が阻害された株をスクリーニングする変異株選定工程を経て得た、メラニン色素の産生能力がゼロまたは前記変異処理前の初期状態より低くかつβグルカン産生を行う能力を備えた、メラニン色素非産生または低産生βグルカン産生株。
A gene mutation treatment process for applying a physical treatment or a chemical treatment for causing a gene mutation in a microorganism belonging to the genus Aureobasidium;
Obtained through a mutant selection process for screening a mutant strain obtained by the gene mutation treatment step and a strain in which melanin production is inhibited in a culture applied with a tyrosinase pathway inhibitor and a culture applied with a polyketide pathway inhibitor. A melanin non-producing or low-producing β-glucan-producing strain having zero or less ability to produce melanin or having an ability to produce β-glucan from the initial state before the mutation treatment.
生体内において、ポリケタイド経路あるいはチロシナーゼ経路の少なくとも一方が不活性化された請求項6に記載のメラニン色素非産生または低産生βグルカン産生株。   The melanin non-producing or low-producing β-glucan producing strain according to claim 6, wherein at least one of the polyketide pathway or the tyrosinase pathway is inactivated in vivo. 請求項1から5のいずれかに記載のメラニン色素非産生または低産生βグルカン産生株の製造方法により得られたメラニン色素非産生または低産生βグルカン産生株を用いて培養するにより産生せしめるβ−1,3−1,6−グルカンの製造方法。   A β- produced by culturing using a melanin non-producing or low-producing β-glucan producing strain obtained by the method for producing a melanin non-producing or low-producing β-glucan producing strain according to any one of claims 1 to 5. A method for producing 1,3-1,6-glucan. 請求項8に記載のβ−1,3−1,6−グルカンの製造方法により製造したメラニン色素を包含しないβ−1,3−1,6−グルカン。   A β-1,3-1,6-glucan that does not include a melanin pigment produced by the method for producing β-1,3-1,6-glucan according to claim 8. 請求項6または7に記載のメラニン色素非産生または低産生βグルカン産生株を用いて培養するにより産生せしめるβ−1,3−1,6−グルカンの製造方法。   A method for producing β-1,3-1,6-glucan produced by culturing using the melanin non-producing or low-producing β-glucan-producing strain according to claim 6 or 7. 請求項10に記載のβ−1,3−1,6−グルカンの製造方法により製造したメラニン色素を包含しないβ−1,3−1,6−グルカン。


A β-1,3-1,6-glucan that does not include a melanin pigment produced by the method for producing β-1,3-1,6-glucan according to claim 10.


JP2018524095A 2016-06-20 2017-06-19 Melanin pigment non-producing or low-producing β-glucan-producing bacterium, its artificial production method, and β-glucan produced using the same, and its production method Active JP6585295B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016122182 2016-06-20
JP2016122182 2016-06-20
PCT/JP2017/022596 WO2017221905A1 (en) 2016-06-20 2017-06-19 β-GLUCAN-PRODUCING FUNGUS WITHOUT MELANIN PIGMENT FORMATION ABILITY OR WITH LOW MELANIN PIGMENT FORMATION ABILITY, METHOD FOR ARTIFICIALLY PRODUCING SAID FUNGUS, β-GLUCAN PRODUCED UTILIZING SAID FUNGUS, AND METHOD FOR PRODUCING SAID Β-GLUCAN

Publications (2)

Publication Number Publication Date
JPWO2017221905A1 true JPWO2017221905A1 (en) 2018-10-04
JP6585295B2 JP6585295B2 (en) 2019-10-02

Family

ID=60784011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524095A Active JP6585295B2 (en) 2016-06-20 2017-06-19 Melanin pigment non-producing or low-producing β-glucan-producing bacterium, its artificial production method, and β-glucan produced using the same, and its production method

Country Status (2)

Country Link
JP (1) JP6585295B2 (en)
WO (1) WO2017221905A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109825496A (en) * 2019-03-20 2019-05-31 南京康之春生物科技有限公司 The breeding method of water body high-efficiency nitrogen-fixing bacterium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956391A (en) * 1995-08-21 1997-03-04 Nippon Oil Co Ltd Production of beta-1,3-glucan
JP2004329077A (en) * 2003-05-06 2004-11-25 Onaka Yasushi CULTURE PRODUCT, NEW beta-1,3-1,6 GLUCAN CONTAINED IN THE SAME AND METHOD FOR PRODUCING beta-1,3-1.6 GLUCAN USING STRAIN OF GENUS AUREOBASIDIUM
JP2006075076A (en) * 2004-09-09 2006-03-23 Aureo Co Ltd COMPOSITION CONTAINING beta-GLUCAN, METHOD FOR PRODUCING THE SAME, AND FOOD AND DRINK OR MOISTURIZING AGENT FOR SKIN CONTAINING THE COMPOSITION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956391A (en) * 1995-08-21 1997-03-04 Nippon Oil Co Ltd Production of beta-1,3-glucan
JP2004329077A (en) * 2003-05-06 2004-11-25 Onaka Yasushi CULTURE PRODUCT, NEW beta-1,3-1,6 GLUCAN CONTAINED IN THE SAME AND METHOD FOR PRODUCING beta-1,3-1.6 GLUCAN USING STRAIN OF GENUS AUREOBASIDIUM
JP2006075076A (en) * 2004-09-09 2006-03-23 Aureo Co Ltd COMPOSITION CONTAINING beta-GLUCAN, METHOD FOR PRODUCING THE SAME, AND FOOD AND DRINK OR MOISTURIZING AGENT FOR SKIN CONTAINING THE COMPOSITION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宮脇香織: "メラニン非産生性オーレオバシジウム属酵母の分離とその特性", 日本農芸化学会大会講演要旨集, vol. Vol.2007, JPN6017030614, 2007, pages 2 - 8 *

Also Published As

Publication number Publication date
JP6585295B2 (en) 2019-10-02
WO2017221905A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
Wang et al. A new green technology for direct production of low molecular weight chitosan
Nguyen et al. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha
Kada et al. Desmutagens and bio‐antimutagens–their modes of action
Yu et al. Coculture, an efficient biotechnology for mining the biosynthesis potential of macrofungi via interspecies interactions
Singh et al. Biochemical and molecular characterization of a new pullulan producer Rhodosporidium paludigenum PUPY-06
Xu et al. Optimization of submerged‐culture conditions for mycelial growth and exo‐biopolymer production by Auricularia polytricha (wood ears fungus) using the methods of uniform design and regression analysis
Choudhury et al. Application of response surface methodology to understand the interaction of media components during pullulan production by Aureobasidium pullulans RBF-4A3
Jirasatid et al. Statistical optimization for monacolin K and yellow pigment production and citrinin reduction by Monascus purpureus in solid-state fermentation
Jaros et al. Exopolysaccharides from Basidiomycota: Formation, isolation and techno‐functional properties
CN104130961A (en) Bacterial strain for producing chitinase and application thereof in chitin enzymolysis
Rizal et al. The Growth of Yeast and Fungi, the Formation of β‐Glucan, and the Antibacterial Activities during Soybean Fermentation in Producing Tempeh
Wagh et al. Isolation and structural characterization of exopolysaccharide from marine Bacillus sp. and its optimization by Microbioreactor
Nadaf et al. Isolation, screening and characterization of L-arginase producing soil bacteria
JP6585295B2 (en) Melanin pigment non-producing or low-producing β-glucan-producing bacterium, its artificial production method, and β-glucan produced using the same, and its production method
JP4901372B2 (en) Deferifericlysin high production mutant, liquid medium for siderophore production, and method for producing siderophore
WO2006054480A1 (en) Process for producing food containing ϝ-aminobutyric acid and yeast having high ability to produce ϝ-aminobutyric acid
Rana et al. Optimization of culture conditions to produce secondary metabolites by Pleurotus ostreatus
Jebur et al. Chitosan Production from Aspergillus oryzae SU-B2 by submerged fermentation and studying some of its Physiochemical and antibacterial Characteristics
El-Far Statistical optimization of chitosan production using marine-derived Penicillium chrysogenum MZ723110 in Egypt
CN106754829B (en) Method for producing chitosanase by using bacillus HS17 fermentation and application thereof
Zahović et al. The effect of cultivation time on xanthan production by Xanthomonas spp. on glycerol containing medium
KR20060022577A (en) Composition for the culturing of phellinus linteus mycelium
Kutty et al. Black yeasts from the slope sediments of Bay of Bengal: phylogenetic and functional characterization
Mazhar et al. Original Research article GAMMA RAYS MUTAGENESIS OF ASPERGILLUS NIGER FOR HYPERPRODUCTION OF MUTAROTASE
Angelova et al. Optimization of exopolysaccharide synthesys by medicinal fungus Trametes versicolor in submerged culture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190904

R150 Certificate of patent or registration of utility model

Ref document number: 6585295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250