JPWO2017154181A1 - Method for determining mixed refrigerant composition of natural gas liquefier - Google Patents

Method for determining mixed refrigerant composition of natural gas liquefier Download PDF

Info

Publication number
JPWO2017154181A1
JPWO2017154181A1 JP2017550787A JP2017550787A JPWO2017154181A1 JP WO2017154181 A1 JPWO2017154181 A1 JP WO2017154181A1 JP 2017550787 A JP2017550787 A JP 2017550787A JP 2017550787 A JP2017550787 A JP 2017550787A JP WO2017154181 A1 JPWO2017154181 A1 JP WO2017154181A1
Authority
JP
Japan
Prior art keywords
natural gas
refrigerant
mixed refrigerant
composition
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017550787A
Other languages
Japanese (ja)
Other versions
JP6286812B2 (en
Inventor
カン レオン アウン
カン レオン アウン
剛久 金丸
剛久 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Application granted granted Critical
Publication of JP6286812B2 publication Critical patent/JP6286812B2/en
Publication of JPWO2017154181A1 publication Critical patent/JPWO2017154181A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • F25J1/0241Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling wherein the overhead cooling comprises providing reflux for a fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas

Abstract

【課題】天然ガスの供給条件の少なくとも1つが変化した場合であっても、変化後の新たな供給条件に適した混合冷媒組成を決定することが可能な方法を提供する。【解決手段】モデル作成工程では、天然ガスの供給条件を決定し、天然ガス液化装置より、予め設定した温度まで冷却された液化天然ガスを得る際に、天然ガス液化装置から取得した稼働データに基づいてシミュレーションモデルを作成し、UA値算出工程では、シミュレーションモデルを実行して極低温熱交換器のUA値を算出する。試算工程では、天然ガスの新たな供給条件下にて、冷媒原料の組成が異なる複数の混合冷媒ケースについてシミュレーションモデルを実行して総消費動力を算出し、組成決定工程では液化天然ガスの単位流出量あたりの総消費動力が最も小さくなる混合冷媒ケースの混合冷媒組成を、前記新たな供給条件下での混合冷媒組成とする。【選択図】図1Provided is a method capable of determining a mixed refrigerant composition suitable for a new supply condition after the change even when at least one of the supply conditions of natural gas is changed. In the model creation process, when the natural gas supply conditions are determined and the liquefied natural gas cooled to a preset temperature is obtained from the natural gas liquefier, the operation data acquired from the natural gas liquefier is used. A simulation model is created based on this, and in the UA value calculation step, the simulation model is executed to calculate the UA value of the cryogenic heat exchanger. In the trial calculation process, the total consumption power is calculated by executing a simulation model for multiple mixed refrigerant cases with different refrigerant composition under the new supply conditions of natural gas, and in the composition determination process, the unit outflow of liquefied natural gas The mixed refrigerant composition of the mixed refrigerant case with the smallest total power consumption per unit amount is set as the mixed refrigerant composition under the new supply condition. [Selection] Figure 1

Description

本発明は、複数の冷媒原料が混合された混合冷媒を用いて天然ガスを液化する技術に関する。   The present invention relates to a technology for liquefying natural gas using a mixed refrigerant in which a plurality of refrigerant raw materials are mixed.

天然ガス液化装置(以下、「NG液化装置」という)においては、供給された天然ガス(NG:Natural Gas)を一連の熱交換器群にて冷却し、液化天然ガス(LNG:Liquefied Natural Gas)を得る処理が行われる。主要なNG液化装置においては、プロパンなどの予冷用冷媒を用いてNGの予冷を行った後、窒素、メタン、エタン、プロパンなどの複数種類の冷媒原料を混合した混合冷媒(MR:Mixed Refrigerant)を用いて、予冷されたNGを液化、過冷却する。   In a natural gas liquefaction device (hereinafter referred to as “NG liquefaction device”), the supplied natural gas (NG: Natural Gas) is cooled by a series of heat exchangers, and liquefied natural gas (LNG) is obtained. Is obtained. In major NG liquefaction equipment, mixed refrigerant (MR: Mixed Refrigerant) in which NG is pre-cooled using a pre-cooling refrigerant such as propane and then mixed with a plurality of refrigerant raw materials such as nitrogen, methane, ethane, and propane. Is used to liquefy and supercool precooled NG.

NG液化装置は、NGの供給組成や供給圧力、NG液化装置のプラント区域の環境要因(外気温や気圧)などの前提条件を設定したうえで、効率的にLNGを生産できるように最適な設計が行われる。特に複数の冷媒原料を混合するMRは、NGの冷却曲線に沿って温度変化する冷却曲線を実現することが可能であり、ロスが少なく効率的な液化サイクルを実現することができる。   The NG liquefaction equipment is optimally designed so that LNG can be produced efficiently after setting preconditions such as NG supply composition and supply pressure, and environmental factors (outside temperature and pressure) in the plant area of the NG liquefaction equipment. Is done. In particular, MR that mixes a plurality of refrigerant raw materials can realize a cooling curve that changes in temperature along the cooling curve of NG, and can realize an efficient liquefaction cycle with little loss.

しかしながら、ガス井から産出される天然ガスの経時的な変化やガス井の切り替えなどによって、NGの供給組成や供給圧力が設計時の前提条件として設定された値からずれてしまう場合がある。前提条件の一つとして設定された値からの変化は、LNGの生産量の低下や、目標の生産量を維持するためにNG液化装置にて消費される動力の増大を招き、NG液化装置の稼働効率の低下(LNGの単位産出量あたりの消費動力の増大)を引き起こす可能性がある。   However, there are cases where the supply composition and supply pressure of NG deviate from the values set as the preconditions at the time of design due to changes in the natural gas produced from the gas wells over time or switching of the gas wells. The change from the value set as one of the preconditions leads to a decrease in the production amount of LNG and an increase in power consumed by the NG liquefaction device in order to maintain the target production amount. It may cause a decrease in operating efficiency (an increase in power consumption per unit output of LNG).

ここで特許文献1には、公知のモデル予測制御を利用して、天然ガスの液化を行う主熱交換器(本願の“極低温熱交換器”に相当する)の運転に係る複数の操作変数のセット(例えばMRの重質冷媒フラクションや軽質冷媒フラクションの質量流量、冷媒成分組成物(本願の“混合冷媒”に相当する)の補填流量など)を操作することにより、所定の制御変数のセット(例えば主熱交換器の暖端部側における天然ガスと気化したMRとの温度差、液化天然ガスの温度など)の最適化を図る技術が記載されている。   Here, Patent Document 1 discloses a plurality of operation variables related to the operation of a main heat exchanger (corresponding to the “cryogenic heat exchanger” of the present application) that performs liquefaction of natural gas using known model predictive control. A predetermined set of control variables by manipulating the set of the mass (eg, the mass flow rate of the MR heavy refrigerant fraction and the light refrigerant fraction, the compensation flow rate of the refrigerant component composition (corresponding to the “mixed refrigerant” of the present application), etc.) Techniques for optimizing (for example, temperature difference between natural gas and vaporized MR on the warm end side of the main heat exchanger, temperature of liquefied natural gas, etc.) are described.

米国特許第7266975号公報US Pat. No. 7,266,975

しかしながら特許文献1に記載のモデル予測制御は、各セット内の所定の操作変数の変化に対する、特定の制御変数の経験的な応答関係を利用した応答モデルを作成し、例えばLNGの生産量が最大となるように当該モデルを用いた制御を行う技術である。このため、操作変数と制御変数との応答関係は、NG液化装置のこれまでの運転にて得られたデータに制約されてしまう。   However, the model predictive control described in Patent Document 1 creates a response model using an empirical response relationship of a specific control variable with respect to a change in a predetermined operation variable in each set. For example, the production amount of LNG is maximum. This is a technique for performing control using the model. For this reason, the response relationship between the manipulated variable and the control variable is restricted by the data obtained in the previous operation of the NG liquefaction apparatus.

通常、NG液化装置の操作変数の操作範囲や制御変数の許容変動範囲は、既述のように所定の前提条件の下、NG液化装置が効率的なLNG生産を実行できる範囲に限定されている。従って、前提条件となるNGの供給組成や供給圧力が変化してしまった場合には、現在、許容されている変動範囲自体が、NG液化装置を構成する各機器にて実現可能な最適状態からずれてしまっている可能性がある。このため、NGの供給組成や供給圧力の変化後においては、モデル予測制御の結果よりも効率的な運転状態が存在している可能性がある。   Usually, the operation range of the operation variable of the NG liquefier and the allowable variation range of the control variable are limited to a range in which the NG liquefier can execute efficient LNG production under the predetermined preconditions as described above. . Therefore, if the supply composition or supply pressure of NG, which is a precondition, has changed, the currently allowed fluctuation range itself is from the optimum state that can be realized by each device constituting the NG liquefaction apparatus. It may have shifted. For this reason, after the change of the supply composition and supply pressure of NG, there is a possibility that an operation state more efficient than the result of the model predictive control exists.

本発明は、このような背景の下になされたものであり、その目的は、天然ガスの供給条件の少なくとも一つが変化した後であっても、変化後の新たな供給条件に適した混合冷媒組成を決定することが可能な方法を提供することにある。   The present invention has been made under such a background, and an object of the present invention is to provide a mixed refrigerant suitable for new supply conditions after the change even after at least one of the supply conditions of natural gas has changed. The object is to provide a method by which the composition can be determined.

本発明の天然ガス液化装置の混合冷媒組成の決定方法は、予冷用冷媒により天然ガスを予冷する予冷熱交換器と、窒素及び炭素数が1から3までの炭化水素からなる冷媒原料群から選択される複数の冷媒原料を含む混合冷媒により、前記予冷された天然ガスを液化する極低温熱交換器と、前記予冷用冷媒及び混合冷媒のガスの圧縮を行う複数の圧縮機とを備えた天然ガス液化装置の混合冷媒組成の決定方法であって、
天然ガスの供給組成及び供給圧力と、前記混合冷媒の組成とを決定し、予め設定した温度まで冷却された液化天然ガスを得る際に、前記極低温熱交換器の総括伝熱係数に伝熱面積を乗じた値であるUA値と、前記複数の圧縮機の総消費動力との算出に必要な前記天然ガス液化装置の稼働情報を入力可能なシミュレーションモデルを、当該天然ガス液化装置から取得した稼働データに基づいて作成するモデル作成工程と、
前記稼働データ取得時の混合冷媒組成と天然ガスの供給組成及び供給圧力とを用いて前記モデル作成の結果得られたシミュレーションモデルを実行し、前記UA値を算出するUA値算出工程と、
前記供給組成及び供給圧力の少なくとも一方を変化させた新たな供給条件下にて、前記稼働データ取得時の混合冷媒組成から、冷媒原料の組成を変化させた複数の混合冷媒ケースについて、前記極低温熱交換器のUA値が、UA値算出によって得られたUA値と揃うように調整した前記シミュレーションモデルを実行し、前記総消費動力を算出する試算工程と、
前記試算工程にて求めた各混合冷媒ケースについてのシミュレーションモデルの実行結果のうち、液化天然ガスの単位流出量あたりの総消費動力が最も小さくなる混合冷媒ケースの混合冷媒組成を、前記新たな供給条件下での混合冷媒組成とする組成決定工程と、を含むことを特徴とする。
The method for determining the mixed refrigerant composition of the natural gas liquefaction apparatus of the present invention is selected from a precooling heat exchanger for precooling natural gas with a precooling refrigerant and a refrigerant raw material group consisting of nitrogen and hydrocarbons having 1 to 3 carbon atoms Natural cryogenic heat exchanger for liquefying the precooled natural gas by a mixed refrigerant containing a plurality of refrigerant raw materials, and a plurality of compressors for compressing the precooling refrigerant and the mixed refrigerant gas A method for determining a mixed refrigerant composition of a gas liquefier,
When determining the supply composition and supply pressure of the natural gas and the composition of the mixed refrigerant and obtaining the liquefied natural gas cooled to a preset temperature, the heat transfer to the overall heat transfer coefficient of the cryogenic heat exchanger A simulation model capable of inputting operation information of the natural gas liquefier required for calculating the UA value, which is a value multiplied by the area, and the total power consumption of the plurality of compressors was acquired from the natural gas liquefier. A model creation process to be created based on operational data;
A UA value calculation step of calculating a UA value by executing a simulation model obtained as a result of the model creation using the mixed refrigerant composition at the time of the operation data acquisition and the supply composition and supply pressure of natural gas;
With respect to a plurality of mixed refrigerant cases in which the composition of the refrigerant raw material is changed from the mixed refrigerant composition at the time of the operation data acquisition under a new supply condition in which at least one of the supply composition and the supply pressure is changed. A trial calculation step of executing the simulation model adjusted so that the UA value of the heat exchanger is aligned with the UA value obtained by calculating the UA value, and calculating the total power consumption;
Among the execution results of the simulation model for each mixed refrigerant case obtained in the trial calculation step, the mixed refrigerant composition of the mixed refrigerant case in which the total consumed power per unit outflow of liquefied natural gas is minimized is supplied to the new supply. And a composition determining step for obtaining a mixed refrigerant composition under conditions.

前記天然ガス液化装置の混合冷媒組成の決定方法は以下の特徴を備えていてもよい。
(a)前記混合冷媒は4つの冷媒原料を含み、
前記混合冷媒に含まれる蒸気圧が最大である第1の冷媒原料の含有量を変化させながら、前記極低温熱交換器のUA値が、UA値算出によって得られたUA値と揃うように調整した前記シミュレーションモデルを実行して、前記極低温熱交換器の塔頂部における液化天然ガスの温度と、当該塔頂部の液化天然ガスの冷却を行う混合冷媒の温度との温度差が、前記予め設定した温度まで冷却された液化天然ガスを得るために必要な最高温度差以下となる第1の冷媒原料の暫定含有量を求める第1の暫定含有量決定工程と、
前記混合冷媒に含まれる蒸気圧が最小である第2の冷媒原料の含有量を変化させながら、前記UA値算出によって得られたUA値が調整されたシミュレーションモデルを実行して、前記極低温熱交換器の塔底部における天然ガスの温度と、当該塔底部の天然ガスの冷却を行う混合冷媒の温度との温度差が、前記予め設定した温度まで冷却された液化天然ガスを得るために必要な最高温度差以下となる第2の冷媒原料の暫定含有量を求める第2の暫定含有量決定工程と、を含み、
前記試算工程における複数の混合冷媒ケースは、前記第1、第2の暫定含有量決定工程にて求めた暫定含有量の第1、第2の冷媒原料を含むこと。
(b)前記試算工程における複数の混合冷媒ケースは、前記第1、第2の冷媒原料の含有量が各々の暫定含有量における混合冷媒中の含有割合の±0.5パーセントポイントの範囲に設定され、且つ、これら第1、第2の冷媒原料以外の残る2つの冷媒原料の含有量を変化させたものであること。
The method for determining the mixed refrigerant composition of the natural gas liquefier may have the following characteristics.
(A) the mixed refrigerant includes four refrigerant raw materials;
The UA value of the cryogenic heat exchanger is adjusted so as to match the UA value obtained by calculating the UA value while changing the content of the first refrigerant raw material having the maximum vapor pressure contained in the mixed refrigerant. When the simulation model is executed, the temperature difference between the temperature of the liquefied natural gas at the top of the cryogenic heat exchanger and the temperature of the mixed refrigerant that cools the liquefied natural gas at the top of the tower is set in advance. A first provisional content determination step for obtaining a provisional content of the first refrigerant raw material that is equal to or less than the maximum temperature difference necessary for obtaining the liquefied natural gas cooled to the tempered temperature;
While changing the content of the second refrigerant raw material having the minimum vapor pressure contained in the mixed refrigerant, a simulation model in which the UA value obtained by the UA value calculation is adjusted is executed, and the cryogenic heat is The temperature difference between the temperature of the natural gas at the tower bottom of the exchanger and the temperature of the mixed refrigerant that cools the natural gas at the tower bottom is necessary for obtaining liquefied natural gas cooled to the preset temperature. A second provisional content determination step for obtaining a provisional content of the second refrigerant raw material that is not more than the maximum temperature difference,
The plurality of mixed refrigerant cases in the trial calculation step include the first and second refrigerant raw materials having the temporary content obtained in the first and second temporary content determination steps.
(B) In the plurality of mixed refrigerant cases in the trial calculation step, the contents of the first and second refrigerant raw materials are set in a range of ± 0.5 percentage points of the content ratio in the mixed refrigerant in each temporary content. And the contents of the remaining two refrigerant raw materials other than the first and second refrigerant raw materials are changed.

本発明は、実際の稼働データに基づいて作成した天然ガス液化装置のシミュレーションモデルを利用して、極低温熱交換器の総括伝熱係数に伝熱面積を乗じたUA値を算出し、極低温熱交換器のUA値が算出されたUA値と揃うようにシミュレーションモデルを調節しながら、天然ガスの供給組成及び供給圧力の少なくとも一方を変化させた新たな供給条件下でシミュレーションモデルを実行する。そして、稼働データ取得時の混合冷媒組成から、冷媒原料の組成を変化させた複数の混合冷媒ケースについてシミュレーションモデルを実行した結果に基づいて、液化天然ガスの単位流出量あたりの総消費動力が最も小さくなる混合冷媒ケースの混合冷媒組成を、新たな供給条件下での混合冷媒組成とするので、より消費動力の少ない混合冷媒組成を選択することができる。   The present invention calculates a UA value obtained by multiplying the overall heat transfer coefficient of a cryogenic heat exchanger by a heat transfer area using a simulation model of a natural gas liquefaction apparatus created based on actual operation data. The simulation model is executed under new supply conditions in which at least one of the supply composition and supply pressure of the natural gas is changed while adjusting the simulation model so that the UA value of the heat exchanger matches the calculated UA value. Based on the result of running the simulation model for a plurality of mixed refrigerant cases in which the composition of the refrigerant raw material was changed from the mixed refrigerant composition at the time of operating data acquisition, the total consumed power per unit outflow of liquefied natural gas was the highest. Since the mixed refrigerant composition of the mixed refrigerant case that becomes smaller is the mixed refrigerant composition under new supply conditions, a mixed refrigerant composition with less power consumption can be selected.

NG液化装置の構成例を示す説明図である。It is explanatory drawing which shows the structural example of NG liquefying apparatus. 前記NG液化装置におけるNG及び冷媒に対する冷却曲線を示す説明図である。It is explanatory drawing which shows the cooling curve with respect to NG and a refrigerant | coolant in the said NG liquefying apparatus. 前記NG液化装置にて、NGの液化に用いられるMRの組成を決定する手順を示す説明図である。It is explanatory drawing which shows the procedure which determines the composition of MR used for the liquefaction of NG in the said NG liquefaction apparatus.

初めに、本発明の実施の形態に係るMR組成の決定方法が適用されるNG液化装置の一例について図1を参照しながら説明する。
図1に示すように、本例のNG液化装置は、予冷用冷媒によってNGを予冷する予冷熱交換器101〜104と、NGから重質分を分離するスクラブカラム2と、予冷されたNGを液化する極低温熱交換器(MCHE:Main Cryogenic Heat Exchanger)3と、熱交換後の予冷用冷媒やMRの気体を圧縮する圧縮機41、42、51と、を備える。
First, an example of an NG liquefaction apparatus to which the MR composition determination method according to an embodiment of the present invention is applied will be described with reference to FIG.
As shown in FIG. 1, the NG liquefaction apparatus of this example includes precooling heat exchangers 101 to 104 that precool NG with a precooling refrigerant, a scrub column 2 that separates heavy components from NG, and precooled NG. A cryogenic heat exchanger (MCHE) 3 that liquefies, and compressors 41, 42, and 51 that compress precooled refrigerant and MR gas after heat exchange are provided.

井戸元から供給されたNGは、不図示の前処理部にて、NG中に含まれる水銀や酸性ガス、水分を除去する前処理が行われた後、予冷熱交換器101〜104に供給される。本例のNG液化装置においては、プロパンを主成分とする予冷用冷媒(以下「C3冷媒」とも記す)を用い、前処理後、例えば40〜50℃で供給されたNGが、直列に接続された例えば4段の予冷熱交換器101〜104によって−30℃付近まで冷却される。   The NG supplied from the well source is supplied to the pre-cooling heat exchangers 101 to 104 after pre-processing for removing mercury, acid gas, and moisture contained in the NG in a pre-processing unit (not shown). The In the NG liquefaction apparatus of this example, a precooling refrigerant (hereinafter also referred to as “C3 refrigerant”) containing propane as a main component is used, and after pretreatment, for example, NG supplied at 40 to 50 ° C. is connected in series. For example, it is cooled to around −30 ° C. by four-stage precooling heat exchangers 101 to 104.

各予冷熱交換器101〜104にC3冷媒を供給するラインの上流側には、各々不図示の膨張弁が設けられ、この膨張弁にて断熱膨張させ、温度を低下させたC3冷媒が、各予冷熱交換器101〜104へと供給される。この結果予冷熱交換器101〜104においては、NGの流れ方向の上流側(予冷熱交換器101)から下流側(予冷熱交換器104)へ向けて、順次、圧力レベルが低くなるように調整されたC3冷媒(図1中に「HPC3、MPC3、LPC3、LLPC3」と記載してある)を用いてNGの冷却が行われる。   On the upstream side of the line for supplying the C3 refrigerant to each of the precooling heat exchangers 101 to 104, an expansion valve (not shown) is provided, and the C3 refrigerant whose temperature is lowered by adiabatic expansion by the expansion valve is It supplies to the pre-cooling heat exchangers 101-104. As a result, in the precooling heat exchangers 101 to 104, the pressure level is adjusted so as to decrease sequentially from the upstream side (precooling heat exchanger 101) in the flow direction of NG to the downstream side (precooling heat exchanger 104). The NG cooling is performed using the C3 refrigerant (described as “HPC3, MPC3, LPC3, LLPC3” in FIG. 1).

スクラブカラム2は、予冷熱交換器101〜104にて予冷されたNGを、メタンを多く含む塔頂側の気体と、メタンより重質の炭化水素成分を多く含む塔底側の液体とに分留する。本例のスクラブカラム2には、スクラブカラム2の下段位置から抜き出した液体を加熱し、加熱後の気体及び液体をスクラブカラム2に戻すリボイラー201が設けられている。   The scrub column 2 separates NG precooled in the precooling heat exchangers 101 to 104 into a gas at the top of the column containing a large amount of methane and a liquid at the bottom of the column containing a heavier hydrocarbon component than methane. Stay. The scrub column 2 of this example is provided with a reboiler 201 that heats the liquid extracted from the lower position of the scrub column 2 and returns the heated gas and liquid to the scrub column 2.

スクラブカラム2の塔頂側から流出した気体は、MCHE3における後述のボトムバンドルのNG用のチューブ内を流れ、MCHE3の塔底部近傍の比較的温度が高いMRによって冷却されてその一部が液化する。しかる後、ボトムバンドルのチューブから抜き出されたNGの気液混合流体は、リフラックスドラム202へ供給されて気液分離される。気液分離後の液体はリフラックスポンプ203によりスクラブカラム2へと還流される一方、気体は、MCHE3のミドルバンドルのNG用のチューブへと導入される。   The gas flowing out from the column top side of the scrub column 2 flows in the NG tube of the bottom bundle described later in the MCHE 3 and is cooled by MR having a relatively high temperature near the column bottom of the MCHE 3 to partially liquefy. . Thereafter, the NG gas-liquid mixed fluid extracted from the tube of the bottom bundle is supplied to the reflux drum 202 to be gas-liquid separated. The liquid after the gas-liquid separation is refluxed to the scrub column 2 by the reflux pump 203, while the gas is introduced into the NG tube of the MCHE3 middle bundle.

また、スクラブカラム2の塔底側から流出した液体は、不図示の精留塔を備える精留部21にて、常温で液体のコンデンセートと、コンデンセートより軽質の気体とに分離される。コンデンセートと分離された気体はMCHE3へ供給される。   Further, the liquid flowing out from the bottom side of the scrub column 2 is separated into liquid condensate and lighter gas than the condensate in a rectifying section 21 having a rectifying tower (not shown). The gas separated from the condensate is supplied to MCHE3.

ここで本例のMCHE3は、塔頂部側から塔底部側へ向けてMRが流下するシェル内に、NG用及びMR用の多数本のチューブを前記MRの流れ方向に沿って配設した構造となっている。NGやMRは、各チューブ内をシェルの塔底部側から塔頂部側へ向けて、シェル内のMRの流れと反対方向に流れる。   Here, the MCHE 3 of this example has a structure in which a number of tubes for NG and MR are arranged along the flow direction of the MR in a shell where the MR flows down from the tower top side toward the tower bottom side. It has become. NG and MR flow in each tube in the opposite direction to the MR flow in the shell from the tower bottom side to the tower top side of the shell.

また、上述のNG用、MR用の多数本のチューブは束ねられてチューブバンドルを構成している。チューブバンドルは、シェルの塔頂部側の領域に配置されたトップバンドルと、トップバンドルの下方側から、シェルの塔底部に至る領域に配置されたミドルバンドル及びボトムバンドルとの3つの領域に分けることができる。以下、トップバンドル/ミドルバンドル/ボトムバンドルの3領域に分けられたMCHE3を3バンドル型のMCHE3という。
NG用のチューブの一部は、一部のNG(既述のスクラブカラム2の塔頂側から流出したNG)がボトムバンドルを流れた後、MCHE3から抜き出されるように配置される。またMR用のチューブの一部は、一部のMR(後述のMRセパレーター31にて気液分離された気体MR)がミドルバンドル、ボトムバンドルを流れた後、MCHE3から抜き出されるように配置されている。また、残るNG用、MR用のチューブは、NGやMRがボトムバンドル、ミドルバンドル及びトップバンドルを流れた後、MCHE3の塔頂部から抜き出されるように配置されている。
Further, the above-mentioned multiple tubes for NG and MR are bundled to form a tube bundle. The tube bundle is divided into three regions: a top bundle arranged in the region on the tower top side of the shell, and a middle bundle and bottom bundle arranged in the region from the lower side of the top bundle to the bottom of the shell tower. Can do. Hereinafter, MCHE3 divided into three regions of top bundle / middle bundle / bottom bundle is referred to as three-bundle type MCHE3.
A part of the tube for NG is arranged so that a part of NG (NG flowing out from the top of the scrub column 2 as described above) flows out of the MCHE 3 after flowing through the bottom bundle. Further, a part of the MR tube is arranged so that a part of MR (gas MR separated by an MR separator 31 to be described later) flows through the middle bundle and the bottom bundle and then is extracted from the MCHE 3. ing. The remaining NG and MR tubes are arranged so that the NG and MR flow through the bottom bundle, middle bundle, and top bundle, and then are extracted from the top of the MCHE 3.

MCHE3においては、既述の精留部21から供給されたコンデンセートとの分離後の気体は、ボトムバンドルのNG用のチューブに導入され、シェル側を流れるMRにより次第に冷却される。当該流体には、さらに既述のリフラックスドラム202から抜き出された気体が合流する。そして、これらの気体(NG)の流れは、ミドルバンドルとトップバンドルに流れ込んで冷却されながら液化され、さらに過冷却されて、およそ−150〜−155℃に冷却されたLNGとしてMCHE3の塔頂部から抜き出される。   In the MCHE 3, the gas after separation from the condensate supplied from the rectifying unit 21 is introduced into the NG tube of the bottom bundle and gradually cooled by the MR flowing on the shell side. Further, the gas extracted from the above-described reflux drum 202 joins the fluid. The flow of these gases (NG) flows into the middle bundle and the top bundle and is liquefied while being cooled, further subcooled, and cooled to about −150 to −155 ° C. from the top of the MCHE 3 as LNG. Extracted.

MCHE3から流出したLNGは、エキスパンダータービン33で動力回収を行った後、膨張弁V5にて膨張させ、エンドフラッシュ容器61にて窒素や一部の軽質末端成分をフラッシュさせて、LNGの沸点をおよそ−161℃に調節した後、不図示のLNGタンクへランダウンされる。なお、エンドフラッシュ容器61にてLNGからフラッシュさせた軽質末端成分は、例えばNG液化装置が設置された工場内で燃料ガスとして利用される。   The LNG that has flowed out of the MCHE 3 is recovered by the expander turbine 33 and then expanded by the expansion valve V5, and the end flash container 61 is flushed with nitrogen and some light end components, so that the boiling point of the LNG is approximately reduced. After adjusting to −161 ° C., it is run down to an LNG tank (not shown). The light end component flushed from the LNG in the end flush container 61 is used as a fuel gas in a factory where an NG liquefaction apparatus is installed, for example.

次いで、MCHE3にてNGの液化、過冷却を行うMRの流れ(MRサイクル)について説明する。NGの冷却に利用されたMRは、MCHE3のシェルの底部から低圧MR(およそ温度−40℃、圧力3.5bara)として気体の状態で抜き出される。低圧MRは、サクションドラム413にて液滴が分離された後、低圧MR圧縮機41にて低圧から中圧に昇圧され、さらにアフタークーラー411にて冷却される。アフタークーラー411にて冷却された中圧MRは、サクションドラム423にて液滴が分離された後、高圧MR圧縮機42にて中圧から高圧(圧力50〜55bara)に昇圧され、さらにアフタークーラー421により冷却される(およそ温度+30℃)。   Next, the MR flow (MR cycle) for liquefying and supercooling NG in the MCHE 3 will be described. The MR used for cooling the NG is extracted as a low-pressure MR (approximately -40 ° C., pressure 3.5 bara) from the bottom of the MCHE 3 shell in a gaseous state. After the droplets are separated by the suction drum 413, the low pressure MR is boosted from a low pressure to a medium pressure by the low pressure MR compressor 41, and further cooled by the after cooler 411. The medium pressure MR cooled by the after cooler 411 is increased in pressure from medium pressure to high pressure (pressure 50 to 55 bara) by the high pressure MR compressor 42 after the droplets are separated by the suction drum 423, and further the after cooler. Cooled by 421 (approx. Temperature + 30 ° C.).

各MR圧縮機41、42は、NGを燃料としたガスタービンや燃料ガスを燃焼させて得られた蒸気により駆動するスチームタービン、或いは電気モーターなどの駆動部412、422によって駆動される。また、例えばアフタークーラー411、421は、各MR圧縮機41、42のうちの対応する一つから吐出されたMRが流れる多数のチューブを束ねたチューブバンドルと、このチューブバンドルに空気を供給するためのファンとを備えた空冷式熱交換器、或いは水冷式熱交換器より構成される。   The MR compressors 41 and 42 are driven by driving units 412 and 422 such as a gas turbine using NG as fuel, a steam turbine driven by steam obtained by burning fuel gas, or an electric motor. Further, for example, the aftercoolers 411 and 421 are used to supply a tube bundle obtained by bundling a large number of tubes through which MR discharged from a corresponding one of the MR compressors 41 and 42 flows, and supply air to the tube bundle. An air-cooled heat exchanger provided with a fan or a water-cooled heat exchanger.

高圧MRは、さらにチラー431〜434にて、C3冷媒により冷却され、気液混合流体としてMRセパレーター31へ供給されて気液分離が行われる。予冷熱交換器101〜104と同様に、これらのチラー431〜434においても、高圧MRの流れ方向の上流側(チラー431)から下流側(チラー434)へ向けて、順次、圧力レベルが低くなるように、膨張弁を用いて膨張、温度低下させたC3冷媒を用いて高圧MRの冷却が行われる(図示の便宜上、チラー431〜434側においては、「HPC3、MPC3、LPC3、LLPC3」とのC3冷媒側の圧力レベルの記載は省略してある)。   The high-pressure MR is further cooled by the C3 refrigerant in the chillers 431 to 434 and supplied to the MR separator 31 as a gas-liquid mixed fluid to perform gas-liquid separation. Similarly to the pre-cooling heat exchangers 101 to 104, also in these chillers 431 to 434, the pressure level sequentially decreases from the upstream side (chiller 431) to the downstream side (chiller 434) in the flow direction of the high-pressure MR. Thus, cooling of the high-pressure MR is performed using the C3 refrigerant that has been expanded and lowered in temperature using the expansion valve (on the side of the chillers 431 to 434, for convenience of illustration, “HPC3, MPC3, LPC3, LLPC3” The description of the pressure level on the C3 refrigerant side is omitted).

MRセパレーター31にて気液分離された気体MR(およそ温度−30〜−40℃)は、MCHE3の塔底側からMR用のチューブへ導入された後、ボトムバンドル、ミドルバンドル及びトップバンドルを流れて冷却され、MCHE3の塔頂部から抜き出される(およそ−150〜−155℃)。MCHE3から抜き出されたMRは、膨張弁V1にて膨張させた後、MCHE3の塔頂部側に設けられたノズル302を介してMCHE3のシェル側に供給される。   The gas MR (approximately -30 to -40 ° C) gas-liquid separated by the MR separator 31 is introduced into the MR tube from the tower bottom side of the MCHE 3 and then flows through the bottom bundle, the middle bundle and the top bundle. And cooled from the top of MCHE3 (approximately -150 to -155 ° C). The MR extracted from the MCHE 3 is expanded by the expansion valve V1, and then supplied to the shell side of the MCHE 3 through the nozzle 302 provided on the tower top side of the MCHE 3.

一方で、MRセパレーター31にて気液分離された液体MR(およそ温度−30〜−40℃)は、MCHE3の塔底部側からMR用のチューブ側へ導入された後、ボトムバンドルとミドルバンドルを流れて冷却され、MCHE3から抜き出される(およそ−120〜−125℃)。当該ミドルバンドルから抜き出された液体MRは、エキスパンダータービン32を介して動力回収を行いながら、膨張弁V2にて膨張させた後、既述の気体MR側のノズル302の下方側(トップバンドルの下方側)に配置されたノズル301より、MCHE3のシェル側に導入される。   On the other hand, after the liquid MR (approximately -30 to -40 ° C) that has been gas-liquid separated by the MR separator 31 is introduced from the tower bottom side of the MCHE 3 to the MR tube side, the bottom bundle and the middle bundle are separated. Flowed and cooled and withdrawn from MCHE3 (approximately -120 to -125 ° C). The liquid MR extracted from the middle bundle is expanded by the expansion valve V2 while recovering power through the expander turbine 32, and then the lower side of the nozzle 302 on the gas MR side (the top bundle). It is introduced into the shell side of MCHE 3 from the nozzle 301 arranged on the lower side.

上下2段に配置されたノズル302、301を介してMCHE3のシェル側に導入されたMRは、NG用のチューブを流れるNGの液化、過冷却及びMR用のチューブを流れる気体MR、液体MRの冷却に利用された後、低圧MRとしてMCHE3の塔底部から抜き出され、再び低圧MR圧縮機41に供給される。   MR introduced to the shell side of the MCHE 3 through the nozzles 302 and 301 arranged in two upper and lower stages is liquefaction of NG flowing through the NG tube, supercooling, gas MR flowing through the MR tube, and liquid MR After being used for cooling, the low pressure MR is extracted from the bottom of the MCHE 3 and supplied to the low pressure MR compressor 41 again.

上述のMRサイクルにおいて、MRセパレーター31から気体MRを抜き出してMCHE3へ供給するライン及び同じくMRセパレーター31から液体MRを抜き出してMCHE3へ供給するラインからは、各々、NG液化装置の外部へ気体MRや液体MRを抜き出すための抜き出しラインが分岐している。MCHE3へのMRの供給量は、弁V1、V2の開度を変化させることにより調節することができる。MRの成分の調節は、抜き出し弁V3、V4の開度を変化させることにより調節することができる。   In the MR cycle described above, from the line for extracting the gas MR from the MR separator 31 and supplying it to the MCHE 3 and the line for extracting the liquid MR from the MR separator 31 and supplying it to the MCHE 3 respectively, An extraction line for extracting the liquid MR is branched. The amount of MR supplied to the MCHE 3 can be adjusted by changing the opening degree of the valves V1 and V2. The MR component can be adjusted by changing the opening degree of the extraction valves V3 and V4.

また、例えば低圧MR圧縮機41に併設されたサクションドラム413の上流側の位置には、MRの冷媒原料である窒素(N)、メタン(C1)、エタン(C2)、プロパン(C3)を個別に補充することが可能なMR原料補充ラインが設けられている。これらのMR原料補充ラインからの各冷媒原料の補充は、補充量調節弁V51〜V54の開度を変化させることによって調節することができる。Further, for example, nitrogen (N 2 ), methane (C 1), ethane (C 2), and propane (C 3), which are MR refrigerant materials, are placed at the upstream position of the suction drum 413 provided in the low-pressure MR compressor 41. An MR material replenishment line that can be individually replenished is provided. Replenishment of each refrigerant material from these MR material replenishment lines can be adjusted by changing the opening degree of the replenishment amount adjustment valves V51 to V54.

続いて、NGの予冷及び高圧MRの冷却に用いられるC3冷媒の流れ(C3サイクル)について説明する。予冷熱交換器101〜104におけるNGとの熱交換、チラー431〜434における高圧MRとの熱交換を行った後のC3冷媒の気体は、サクションドラム512〜515にて液滴が分離され、各C3冷媒の圧力レベルに応じて、例えば4段圧縮を行うC3圧縮機51の各段の吸込側へ供給される。   Next, the flow (C3 cycle) of the C3 refrigerant used for precooling NG and cooling the high pressure MR will be described. The C3 refrigerant gas after heat exchange with NG in the precooling heat exchangers 101 to 104 and heat exchange with the high pressure MR in the chillers 431 to 434 is separated into droplets in the suction drums 512 to 515, Depending on the pressure level of the C3 refrigerant, for example, it is supplied to the suction side of each stage of the C3 compressor 51 that performs four-stage compression.

なお、図示の便宜上、C3サイクルにおいては、予冷熱交換器101〜104、チラー431〜434や、これらの熱交換器101〜104、431〜434の上流側に各々設けられた膨張弁の個別の記載を省略し、総括的に「C3冷媒熱交換部50」と表示してある。
またMR圧縮機41、42と同様に、C3圧縮機51は、NGを燃料としたガスタービンや燃料ガスを燃焼させて得られた蒸気により駆動するスチームタービン、或いは電気モーターなどの駆動部511によって駆動される。
For convenience of illustration, in the C3 cycle, the individual components of the pre-cooling heat exchangers 101 to 104, the chillers 431 to 434, and the expansion valves provided on the upstream side of these heat exchangers 101 to 104 and 431 to 434, respectively. The description is omitted, and is generally indicated as “C3 refrigerant heat exchange unit 50”.
Similarly to the MR compressors 41 and 42, the C3 compressor 51 is driven by a driving unit 511 such as a gas turbine using NG as a fuel, a steam turbine driven by steam obtained by burning fuel gas, or an electric motor. Driven.

C3圧縮機51にて所定の圧力まで圧縮されたC3冷媒は、デスーパーヒーター521及びコンデンサー522にて減温され、凝縮したC3冷媒は、セパレーター53に集められた後、C3冷媒熱交換部50内の予冷熱交換器101、チラー431の上流側に配置された膨張弁へ、再び供給される。MR圧縮機41、42側のアフタークーラー411、421と同様に、デスーパーヒーター521やコンデンサー522についても例えば空冷式熱交換器、或いは水冷式熱交換器により構成される。   The C3 refrigerant compressed to a predetermined pressure by the C3 compressor 51 is reduced in temperature by the desuperheater 521 and the condenser 522, and the condensed C3 refrigerant is collected in the separator 53 and then the C3 refrigerant heat exchange unit 50. The precooling heat exchanger 101 and the expansion valve disposed on the upstream side of the chiller 431 are supplied again. Similar to the aftercoolers 411 and 421 on the MR compressors 41 and 42 side, the desuperheater 521 and the condenser 522 are configured by, for example, an air-cooled heat exchanger or a water-cooled heat exchanger.

以上、図1を用いてNG液化装置の構成例を示したが、実施の形態に係るMR組成の決定方法を適用可能なNG液化装置の構成は、当該例に限定されるものではない。実際のNG液化装置にて採用可能な種々の変形例に適用することができる。   As described above, the configuration example of the NG liquefaction apparatus is shown using FIG. 1, but the configuration of the NG liquefaction apparatus to which the MR composition determination method according to the embodiment can be applied is not limited to this example. The present invention can be applied to various modifications that can be adopted in an actual NG liquefaction apparatus.

例えば、C3圧縮機51の圧縮段数は3段であってもよいし、5段であってもよい。この場合には、予冷熱交換器101〜104、チラー431〜434の設置段数もC3圧縮機51の圧縮段数に応じて増減される。また、セパレーター53とC3冷媒熱交換部50との間に、C3冷媒の過冷却を行うサブクーラーを設けてもよい。
また、MCHE3の構成は、既述の3バンドル型に限定されるものではなく、トップバンドルとボトムバンドルで構成される2バンドル型であってもよい。
For example, the number of compression stages of the C3 compressor 51 may be three or five. In this case, the number of installation stages of the precooling heat exchangers 101 to 104 and the chillers 431 to 434 is also increased or decreased according to the number of compression stages of the C3 compressor 51. Further, a subcooler that performs supercooling of the C3 refrigerant may be provided between the separator 53 and the C3 refrigerant heat exchange unit 50.
The configuration of the MCHE 3 is not limited to the above-described three bundle type, and may be a two bundle type including a top bundle and a bottom bundle.

以下の説明においては、NG液化装置の各種変形例を代表する一例として、図1に示すNG液化装置に、実施の形態に係るMR組成の決定方法を適用する場合を説明する。
予冷用冷媒によるNGの予冷及びMRによるNGの液化が行われるNG液化装置は、図2に示される冷却曲線に沿ってNGの冷却が行われるように設計される。図2の横軸は、NGやC3冷媒、MRのエンタルピー変化を示し、縦軸はこれらの流体の温度を示している。同図中、実線または一点鎖線がNGの冷却曲線を示している。また、長い破線がC3冷媒の冷却曲線(「予冷サイクル」と記してある)を示し、短い破線がMRの冷却曲線(「液化サイクル」と記してある)を示している。
In the following description, the case where the MR composition determination method according to the embodiment is applied to the NG liquefaction apparatus shown in FIG. 1 will be described as an example representing various modifications of the NG liquefaction apparatus.
An NG liquefier that performs precooling of NG with a precooling refrigerant and liquefaction of NG with MR is designed so that NG is cooled along a cooling curve shown in FIG. The horizontal axis of FIG. 2 shows enthalpy changes of NG, C3 refrigerant, and MR, and the vertical axis shows the temperature of these fluids. In the figure, the solid line or the alternate long and short dash line indicates an NG cooling curve. A long broken line indicates a C3 refrigerant cooling curve (denoted as “pre-cooling cycle”), and a short broken line represents an MR cooling curve (denoted as “liquefaction cycle”).

例えば温度40℃で予冷熱交換器101の入口側に供給されたNGはC3冷媒を用いた多段の予冷サイクル(図示の便宜上、図2には、3段の予冷サイクルを示してある)にて予冷された後、さらにMCHE3におけるMRを用いた液化サイクルにてNGが液化、過冷却される。
この液化サイクルにおいて、MRにおけるN、C1、C2、C3の組成(MR中の各冷媒原料の含有割合)は、井戸元から供給されるNGの供給組成や供給圧力の設計値に基づいて決定されている。
For example, NG supplied to the inlet side of the pre-cooling heat exchanger 101 at a temperature of 40 ° C. is a multi-stage pre-cooling cycle using C3 refrigerant (for convenience of illustration, FIG. 2 shows a three-stage pre-cooling cycle). After precooling, NG is further liquefied and supercooled in a liquefaction cycle using MR in MCHE3.
In this liquefaction cycle, the composition of N 2 , C 1, C 2 , C 3 in MR (content ratio of each refrigerant raw material in MR) is determined based on the supply composition of NG supplied from the well source and the design value of supply pressure Has been.

しかしながら、NG液化装置に供給されるNGは、井戸元からの産出状態の変化や、NGを産出する井戸の切り替えなどによって供給組成や供給圧力が変化する場合がある。
例えば図2に示す一点鎖線は、実線で示す冷却曲線のNGよりも重質のNGの冷却曲線の例を示している。この場合には、MCHE3におけるNG側とMR側の温度差が大きくなりNGの液化効率が低下してしまう。一方で、NGが軽質化してMCHE3内におけるMRとNGとの温度差が過小になると、MCHE3の処理能力に制約が生じる可能性もある。
However, the supply composition and supply pressure of NG supplied to the NG liquefaction apparatus may change due to changes in the state of production from the well source, switching of wells that produce NG, and the like.
For example, the alternate long and short dash line shown in FIG. 2 shows an example of a cooling curve of NG that is heavier than the NG of the cooling curve shown by the solid line. In this case, the temperature difference between the NG side and the MR side in the MCHE 3 becomes large, and the liquefaction efficiency of NG decreases. On the other hand, if NG is lightened and the temperature difference between MR and NG in MCHE3 becomes too small, there is a possibility that the processing capability of MCHE3 may be restricted.

上述の課題を解決するため、本実施の形態においては、通常は固定された状態で用いられているMR組成について、NGの供給組成や供給圧力の変化に対応して効率的な処理を行うことが可能な新たなMR組成を決定する。
以下、図3を参照しながら実施の形態に係るMR組成の決定法の一例について説明する。
In order to solve the above-described problem, in the present embodiment, the MR composition that is normally used in a fixed state is processed efficiently in response to changes in the supply composition and supply pressure of NG. To determine a new MR composition.
Hereinafter, an example of the MR composition determination method according to the embodiment will be described with reference to FIG.

はじめに、NG液化装置のシミュレーションモデルを作成する(モデル作成工程:P1)。シミュレーションモデルは、予冷熱交換器101〜104やMCHE3における熱交換、スクラブカラム2におけるNGの分留、圧縮機41、42、51における各冷媒ガスの圧縮など、機器毎にNG液化装置内で実行される単位操作を表現することが可能な公知のプロセスシミュレータを用いて作成することができる。   First, a simulation model of the NG liquefaction apparatus is created (model creation process: P1). The simulation model is executed in the NG liquefier for each device, such as heat exchange in the precooling heat exchangers 101 to 104 and MCHE3, NG fractionation in the scrub column 2, and compression of each refrigerant gas in the compressors 41, 42, and 51. The unit operation can be created using a known process simulator capable of expressing the unit operation.

シミュレーションモデルにおいては、NGの供給組成、供給圧力、供給温度、MCHE3内における各流体の圧力、温度、C3及びMRの各冷媒の流量、圧力、温度などの稼働条件が設定される。これらの稼働条件は、新たなMR組成の決定を行うNG液化装置の実際の稼働データに基づいて設定される。例えば図1には、稼働データの取得が行われる圧力計(PI)、温度計(TI)、流量計(FI)、組成分析計(AI)及び圧縮機動力計測器(SC)を破線で囲んで示してある。例えば稼働データは、所定の期間中にこれらの計測機器などで取得された計測値の平均値を採用することができる。   In the simulation model, operating conditions such as supply composition of NG, supply pressure, supply temperature, pressure and temperature of each fluid in the MCHE 3, flow rate of each refrigerant of C 3 and MR, pressure and temperature are set. These operating conditions are set based on actual operating data of the NG liquefier that determines a new MR composition. For example, in FIG. 1, a pressure gauge (PI), a thermometer (TI), a flow meter (FI), a composition analyzer (AI), and a compressor power meter (SC) from which operation data is acquired are surrounded by broken lines. It is shown by. For example, as the operation data, an average value of measured values acquired by these measuring devices during a predetermined period can be adopted.

作成したNG液化装置のシミュレーションモデルからは、MCHE3の総括伝熱係数に伝熱面積を乗じた値であるUA値と、各圧縮機41、42、51にて消費される動力とを算出することができる。
UA値は、MCHE3内にてNGからMRへの単位時間当たりの伝熱量をq、MCHE3におけるNGの温度とMRの温度との対数平均温度差をLMTDとしたとき、UA値=q/LMTDの関係より算出することができる。伝熱量qや温度差LMTDは、シミュレーションモデルを実行した結果より得られる。
From the created simulation model of the NG liquefier, calculate the UA value, which is a value obtained by multiplying the overall heat transfer coefficient of MCHE3 by the heat transfer area, and the power consumed by each compressor 41, 42, 51. Can do.
The UA value is UA value = q / LMTD, where q is the heat transfer amount per unit time from NG to MR in MCHE3, and LMTD is the logarithmic average temperature difference between NG temperature and MR temperature in MCHE3. It can be calculated from the relationship. The heat transfer amount q and the temperature difference LMTD are obtained from the result of executing the simulation model.

また、MRや予冷用冷媒の流量、温度、入口側、出口側の圧力から各圧縮機41、42、51にて実行される仕事が計算され、各圧縮機41、42、51の効率(投入した動力に対する仕事の比)から、消費動力を求めることができる。そして、全ての圧縮機41、42、51の消費動力の合計値が総消費動力となる。   Also, the work executed in each compressor 41, 42, 51 is calculated from the flow rate, temperature, inlet side and outlet side pressure of the MR and precooling refrigerant, and the efficiency (input) of each compressor 41, 42, 51 is calculated. The power consumption can be obtained from the ratio of work to power). And the total value of the power consumption of all the compressors 41, 42, 51 becomes total power consumption.

シミュレーションモデルを作成したら、前記稼働データ取得時のMR組成と、NGの供給組成及び供給圧力とを用いて前記シミュレーションモデルを実行する。この結果、計算値が稼働データとよく一致しておれば、検討対象のNG液化装置を適切に表現したシミュレーションモデルと評価することができる。   Once the simulation model is created, the simulation model is executed using the MR composition at the time of the operation data acquisition, the supply composition and supply pressure of NG. As a result, if the calculated value is in good agreement with the operation data, it can be evaluated as a simulation model that appropriately represents the NG liquefaction apparatus to be studied.

そして、シミュレーションモデルを実行した結果に基づき、UA値を算出する(UA値算出工程:P2)。既述のように、シミュレーションモデルは稼働データ取得時のNG液化装置の状態を適切に表現しているので、このシミュレーションモデルを実行した結果から算出したUA値についても、稼働データ取得時におけるMCHE3の冷却能力を適切に表した指標であると言える。   Then, based on the result of executing the simulation model, a UA value is calculated (UA value calculating step: P2). As described above, since the simulation model appropriately represents the state of the NG liquefaction apparatus at the time of operation data acquisition, the UA value calculated from the result of executing this simulation model is also the value of MCHE 3 at the time of operation data acquisition. It can be said that this is an index that appropriately represents the cooling capacity.

しかる後、シミュレーションモデル作成時に設定された供給条件から、供給組成、供給圧力の少なくとも一方を変化させた新たなNGの供給条件下で、MCHE3のUA値が算出されたUA値に揃うようにシミュレーションモデルを調整しながら、MR組成を変化させる。なお、「MCHE3のUA値を算出されたUA値に揃える」とは、これらのUA値が厳密に揃っている場合に限定されない。シミュレーションモデルに要求される精度などに応じて例えば±1~2%程度の範囲内でずれがあってもよい。   After that, simulation is performed so that the UA value of MCHE3 is aligned with the calculated UA value under the new NG supply condition in which at least one of the supply composition and the supply pressure is changed from the supply condition set at the time of creating the simulation model. The MR composition is changed while adjusting the model. Note that “aligning the UA value of MCHE3 to the calculated UA value” is not limited to the case where these UA values are strictly aligned. Depending on the accuracy required for the simulation model, there may be a deviation within a range of, for example, about ± 1 to 2%.

既述のようにUA値は、MCHE3内おける単位時間当たりの伝熱量と、NGとMRの温度差との比で表されるので、UA値の調整に当たっては、これらの値に影響するパラメータを調整する。パラメータの例としては、LNGのランダウン量、膨張弁V1、V2の開度などを例示することができる。また、必要に応じて気体MR、液体MRの抜き出し用の抜き出し弁V3、V4の開度を調節してもよいし、MR成分の補充ラインにある補充量調節弁V51、52、53、54の開度を調節してもよい。   As described above, the UA value is represented by the ratio between the heat transfer amount per unit time in the MCHE 3 and the temperature difference between NG and MR. Therefore, when adjusting the UA value, parameters that affect these values are set. adjust. Examples of parameters include the LNG rundown amount, the opening degree of the expansion valves V1 and V2, and the like. Further, the opening degree of the extraction valves V3, V4 for extracting the gas MR and the liquid MR may be adjusted as necessary, and the replenishment amount adjustment valves V51, 52, 53, 54 in the MR component replenishment line may be adjusted. The opening degree may be adjusted.

またここで、新たなMR組成においても図2中に実線で示した冷却曲線と同様の効率的な冷却が可能なように、蒸気圧最大の冷媒原料(本例ではN)の暫定含有量(PAH:Preliminary Amount of the Highest vapor pressure refrigerant component)及び蒸気圧最小の冷媒原料(本例ではC3)の暫定含有量(PAL:Preliminary Amount of the Lowest vapor pressure refrigerant component)を求める(第1、第2の暫定含有量決定工程:P3)。In addition, here, even with the new MR composition, the provisional content of the refrigerant raw material with the maximum vapor pressure (N 2 in this example) so that the same efficient cooling as the cooling curve shown by the solid line in FIG. 2 is possible. (PAH: Preliminary Amount of the Highest Vapor Pressure Refrigerant Component) and Temporary Content (PAL: Preliminary Amount of the Lowest Vapor Pressure Refrigerant Component) (C3 in this example) 2 provisional content determination step: P3).

PAHについて、新たなNG組成及び供給圧力下で、MCHE3のUA値が算出されたUA値に揃うように調整を行いつつ、MR中のNの含有量を調整しながらシミュレーションモデルを実行する。そして、MCHE3の塔頂部におけるNGの温度と、当該塔頂部のMRの温度との温度差が、予め設定した温度(本例では−150〜−155℃の範囲の所定の温度)まで冷却されたLNGを得るために必要な最高温度差以下となるときのNの流量をPAHとする(第1の暫定含有量決定工程)。このとき、N以外の冷媒原料の含有量は、後段の第2の暫定含有量決定工程、及び試算工程で決定するので、ここでは仮の値(例えば現状のC1、C2、C3の含有量)を設定しておく。For PAH, under a new NG composition and supply pressure, a simulation model is executed while adjusting the content of N 2 in MR while adjusting the UA value of MCHE3 to be equal to the calculated UA value. The temperature difference between the NG temperature at the top of the MCHE 3 and the MR temperature at the top of the MCHE 3 was cooled to a preset temperature (predetermined temperature in the range of −150 to −155 ° C. in this example). The flow rate of N 2 when the temperature difference is equal to or less than the maximum temperature difference necessary for obtaining LNG is defined as PAH (first provisional content determination step). At this time, the content of the refrigerant raw material other than N 2 is determined in the second provisional content determination step and the trial calculation step in the latter stage, so here the provisional values (for example, the current contents of C1, C2, and C3) ) Is set in advance.

次いで、新たなNG組成及び供給圧力下で、PALはMCHE3のUA値が算出されたUA値に揃うように調整を行いつつ、MR中のC3の含有量を調整しながらシミュレーションモデルを実行する。そして、MCHE3の塔底部におけるNGの温度と、当該塔底のNGの冷却を行うMRの温度との温度差が、前記予め設定した温度まで冷却されたLNGを得るために必要な最高温度差以下となるときのC3の流量をPALとする(第2の暫定含有量決定工程)。このとき、C3以外の冷媒原料の含有量は、Nについては既述の第1の暫定含有量決定工程にて決定し、残る2つ(C1、C2)については後段の試算工程で決定するので、ここでは仮の値(例えば現状のC1、C2、C3の含有量)を設定しておく。Next, under a new NG composition and supply pressure, the PAL is adjusted so that the UA value of MCHE3 is aligned with the calculated UA value, and the simulation model is executed while adjusting the content of C3 in MR. The temperature difference between the NG temperature at the bottom of the MCHE 3 and the MR temperature for cooling the NG at the bottom is less than the maximum temperature difference necessary to obtain the LNG cooled to the preset temperature. Is set to PAL (second provisional content determination step). Herein, the amount of refrigerant materials other than C3, for N 2 is determined in the first tentative content determination process described above, for the remaining two (C1, C2) determined by the subsequent estimation process Therefore, here, provisional values (for example, the current contents of C1, C2, and C3) are set.

そして、新たなNG組成、供給圧力下、且つ、PAH、PALの制約の範囲内で、残る冷媒原料(C1、C2)の含有量を変化させた複数のMRケースについて、MCHE3のUA値が算出されたUA値に揃うように調整されたシミュレーションモデルを実行する。このとき、MR中のN、C3の含有量は、各々PAH、PALと厳密に一致している場合に限られない。例えば、PAH、PALにおける各冷媒原料の含有割合の0.5パーセントポイントの範囲(PAHにおけるMR中のNの含有割合が10パーセントであれば、9.5〜10.5パーセントの範囲)で変化させてもよい。
そして、シミュレーションモデルを実行した複数のMRケースについて圧縮機41、42、51の総消費動力を求める(試算工程:P4)。
Then, the UA value of MCHE3 is calculated for a plurality of MR cases in which the content of the remaining refrigerant raw materials (C1, C2) is changed under the new NG composition, supply pressure, and within the limits of PAH and PAL. The simulation model adjusted to match the adjusted UA value is executed. At this time, the contents of N 2 and C3 in the MR are not limited to the case where the contents exactly match PAH and PAL, respectively. For example, in the range of 0.5 percentage point of the content ratio of each refrigerant raw material in PAH and PAL (if the content ratio of N 2 in MR in PAH is 10 percent, the range is 9.5 to 10.5 percent). It may be changed.
Then, the total power consumption of the compressors 41, 42, 51 is obtained for a plurality of MR cases for which the simulation model has been executed (trial calculation step: P4).

さらに、前記複数のMRケースについて総消費動力を求めた結果から、当該総消費動力をNG液化装置からのLNGの流出量のシミュレーション値で除した値であるPSP(Plant Specific Power、LNGの単位流出量当たりの総消費動力)を算出する。当該PSPの値が最小となったMRケースにおけるMRの組成を、新たなNG組成、供給圧力に適したMRの組成とする(組成決定工程:P5)。
新たな供給条件に適したMR組成が決定されたら、補充量調節弁V51〜V54の開度を調整することにより、実際のNG液化装置内を循環するMR組成を徐々に組成決定工程にて決定された値に近づける調整を行う。
Furthermore, PSP (Plant Specific Power, LNG unit outflow), which is a value obtained by dividing the total consumption power by the simulation value of the outflow amount of LNG from the NG liquefaction device, from the result of obtaining the total consumption power for the plurality of MR cases Calculate the total power consumption per unit). The MR composition in the MR case in which the value of the PSP is minimized is set as the MR composition suitable for the new NG composition and supply pressure (composition determination step: P5).
When the MR composition suitable for the new supply conditions is determined, the MR composition circulating in the actual NG liquefier is gradually determined in the composition determination step by adjusting the opening of the replenishment amount adjusting valves V51 to V54. Make adjustments to bring the values closer to the specified values.

本実施の形態に係るNG液化装置のMR組成の決定方法によれば以下の効果がある。実際の稼働データに基づいて作成したNG液化装置のシミュレーションモデルを利用して、MCHE3の総括伝熱係数に伝熱面積を乗じたUA値を算出し、稼働データ取得時のUA値と揃うようにシミュレーションモデルを調節しながら、NGの供給組成及び供給圧力の少なくとも一方を変化させた新たな供給条件下でシミュレーションモデルを実行する。そして、稼働データ取得時のMR組成から、冷媒原料の組成を変化させた複数のMRケースについてシミュレーションモデルを実行した結果に基づいて、LNGの単位流出量あたりの総消費動力が最も小さくなるMRケースのMR組成を、新たな供給条件下でのMR組成とするので、より消費動力の少ないMR組成を選択することができる。   The method for determining the MR composition of the NG liquefaction apparatus according to the present embodiment has the following effects. Using the simulation model of the NG liquefaction device created based on actual operation data, calculate the UA value by multiplying the overall heat transfer coefficient of MCHE3 by the heat transfer area so that it matches the UA value at the time of operation data acquisition While adjusting the simulation model, the simulation model is executed under new supply conditions in which at least one of the supply composition and supply pressure of NG is changed. Then, based on the result of executing the simulation model for a plurality of MR cases in which the composition of the refrigerant raw material is changed from the MR composition at the time of operation data acquisition, the MR case in which the total power consumption per unit outflow of LNG is the smallest Therefore, the MR composition with less power consumption can be selected.

ここでNGの新たな条件下におけるMR組成の決定にあたって、PAHやPALを求めてから、MR中のNやC3の含有量をこれらPAHやPALに揃えた条件下で、残る冷媒原料(C1、C2)の含有量を変化させる手法を採用することは必須ではない。
現状のMR組成を含む複数のMRケースについてシミュレーションモデルを実行してPSPを算出し、PSPが最も小さくなるMRケースが、現状のMR組成以外のMRケースであれば、NG液化装置の稼働効率を改善できる。
Here, in determining the MR composition under the new conditions of NG, after obtaining the PAH and PAL, the remaining refrigerant raw material (C1) under the conditions in which the contents of N 2 and C3 in the MR are aligned with these PAH and PAL. It is not essential to adopt a method of changing the content of C2).
A PSP is calculated by executing a simulation model for a plurality of MR cases including the current MR composition, and if the MR case having the smallest PSP is an MR case other than the current MR composition, the operating efficiency of the NG liquefaction apparatus is increased. Can improve.

またMRは、N、C1、C2、C3からなる冷媒原料群に含まれる冷媒原料の全てを含んでいる必要はない。これらの冷媒原料群から選択した複数の冷媒原料を含んでいれば、複数のMRケースについてのシミュレーションモデルを実行した結果に基づいて、PSPが最も小さくなるMRケースを決定することができる。The MR is, N 2, C1, C2, C3 need not include all of the refrigerant material included in the refrigerant material group consisting of. If a plurality of refrigerant raw materials selected from these refrigerant raw material groups are included, an MR case with the smallest PSP can be determined based on the result of executing a simulation model for a plurality of MR cases.

以下、本発明の実施の形態に基づき、NGの供給条件の少なくとも一つが変化したときにMR組成を変化させることによるPSPへの影響について説明する。
本例では、図1に示したNG液化装置に対して所定の圧力で供給されるNGの平均分子量が、17.15から18.29に増加(重質化)した場合について、MR組成の変更によるPSPへの影響をシミュレーションモデルにより確認した。MRは、冷媒原料としてN、C1、C2及びC3を含むものを用い、後記の各表中では各冷媒原料の含有割合に替えて、総括的な指標として平均分子量を表示してある。シミュレーションモデルの作成に用いたプロセスシミュレータはハネウエル社のUNISIM(登録商標)である。
Hereinafter, the influence on the PSP by changing the MR composition when at least one of the supply conditions of NG changes will be described based on the embodiment of the present invention.
In this example, the MR composition is changed when the average molecular weight of NG supplied to the NG liquefier shown in FIG. 1 at a predetermined pressure is increased from 17.15 to 18.29 (heavy). The effect of PSP on the PSP was confirmed by a simulation model. MR uses N 2 , C 1, C 2 , and C 3 as refrigerant raw materials, and in the following tables, the average molecular weight is displayed as a general index instead of the content ratio of each refrigerant raw material. The process simulator used for creating the simulation model is UNISIM (registered trademark) of Honeywell.

(参照例)
表1の参照例1〜5は、NG液化装置の現状の稼働データを用いてシミュレーションモデルを作成し、NGの平均分子量を増加(重質化)させる前の平均分子量が17.15のNGについて、MRの平均分子量を次第に増加(重質化)させた各MRケースについて当該シミュレーションモデルを実行して得られたPSPを示している。
表1に示した結果によれば、平均分子量が25.73のMRケースである参照例3においてPSP比が最小となることが確認できる。参照例3のMRケースにおいて、各冷媒原料の含有割合は、Nが13モル%、C1が40モル%、C2が36モル%、C3が11モル%である。

Figure 2017154181
(Reference example)
Reference examples 1 to 5 in Table 1 create a simulation model using the current operation data of the NG liquefaction apparatus, and for NG having an average molecular weight of 17.15 before increasing (heavyening) the average molecular weight of NG , PSP obtained by executing the simulation model for each MR case in which the average molecular weight of MR is gradually increased (heavy).
According to the results shown in Table 1, it can be confirmed that the PSP ratio is minimized in Reference Example 3, which is an MR case having an average molecular weight of 25.73. In MR case of Reference Example 3, the content of the respective refrigerant materials are, N 2 is 13 mol%, C1 is 40 mol%, C2 is 36 mol%, a C3 11 mol%.
Figure 2017154181

(実施例)
平均分子量が25.87、各冷媒原料の含有割合が、Nは13モル%、C1は39モル%、C2は37モル%、C3は11モル%であるMRケースについて、NGの平均分子量を18.29まで重質化させた新たな供給条件下でシミュレーションモデルを実行してPSP、総消費動力、LNG流出量を算出した。シミュレーションモデルを実行する際には、MCHE3のUA値が参照例1〜5におけるUA値と揃うように調整した。
(比較例)
参照例3に相当するMRケースにて、NGの平均分子量を18.29まで重質化させた新たな供給条件下でシミュレーションモデルを実行し、実施例と同様の手法でPSP、総消費動力、LNG流出量を算出した。
実施例、比較例の結果を表2に示す。また、参照例3についての同様のデータを表2に併記した。

Figure 2017154181
(Example)
Average molecular weight of 25.87, is the content of the coolant material, N 2 is 13 mol%, C1 is 39 mol%, C2 is 37 mol%, C3 for MR cases is 11 mol%, an average molecular weight of NG The simulation model was executed under new supply conditions that were increased to 18.29 to calculate PSP, total power consumption, and LNG outflow. When the simulation model was executed, the UA value of MCHE3 was adjusted so as to match the UA value in Reference Examples 1-5.
(Comparative example)
In the MR case corresponding to Reference Example 3, a simulation model was executed under new supply conditions in which the average molecular weight of NG was increased to 18.29, and PSP, total power consumption, LNG efflux was calculated.
The results of Examples and Comparative Examples are shown in Table 2. Similar data for Reference Example 3 is also shown in Table 2.
Figure 2017154181

表2に示した結果によれば、NGが重質化する前においてPSPが最小であった参照例3に対応するMRケースを採用した比較例の方がPSPは大きかった。これに対して、MRを重質化(参照例5のMRケースに対応する)させた実施例の方がLNGの流出量が増加し、その結果としてPSPが小さくなった。
上述の結果によれば、NGの供給条件の少なくとも一つが変化するとき、稼働データを用いて作成したシミュレーションモデルを用い、複数のMRケース(実施例、比較例の各MRケース)についてUA値を揃えながらシミュレーションモデルを実行してPSPを算出、比較することにより、新たな供給条件に適したMRを決定できることが確かめられた。
According to the results shown in Table 2, the PSP was larger in the comparative example employing the MR case corresponding to the reference example 3 in which the PSP was the minimum before the NG became heavier. On the other hand, in the example in which MR was made heavy (corresponding to the MR case of Reference Example 5), the outflow amount of LNG increased, and as a result, the PSP became small.
According to the above results, when at least one of the supply conditions of NG changes, a UA value is obtained for a plurality of MR cases (each MR case of the example and the comparative example) using a simulation model created using operation data. It was confirmed that the MR suitable for the new supply condition can be determined by calculating and comparing the PSP by executing the simulation model while aligning.

101〜104
予冷熱交換器
3 MCHE
41 低圧MR圧縮機
42 中圧MR圧縮機
412、422
駆動部
431〜434
チラー
50 C3冷媒熱交換部
51 C3圧縮機
511 駆動部

101-104
Pre-cooling heat exchanger 3 MCHE
41 Low pressure MR compressor 42 Medium pressure MR compressor 412, 422
Drive unit 431-434
Chiller 50 C3 refrigerant heat exchange unit 51 C3 compressor 511 drive unit

Claims (3)

予冷用冷媒により天然ガスを予冷する予冷熱交換器と、窒素及び炭素数が1から3までの炭化水素からなる冷媒原料群から選択される複数の冷媒原料を含む混合冷媒により、前記予冷された天然ガスを液化する極低温熱交換器と、前記予冷用冷媒及び混合冷媒のガスの圧縮を行う複数の圧縮機とを備えた天然ガス液化装置の混合冷媒組成の決定方法であって、
天然ガスの供給組成及び供給圧力と、前記混合冷媒の組成とを決定し、予め設定した温度まで冷却された液化天然ガスを得る際に、前記極低温熱交換器の総括伝熱係数に伝熱面積を乗じた値であるUA値と、前記複数の圧縮機の総消費動力との算出に必要な前記天然ガス液化装置の稼働情報を入力可能なシミュレーションモデルを、当該天然ガス液化装置から取得した稼働データに基づいて作成するモデル作成工程と、
前記稼働データ取得時の混合冷媒組成と天然ガスの供給組成及び供給圧力とを用いて前記モデル作成の結果得られたシミュレーションモデルを実行し、前記UA値を算出するUA値算出工程と、
前記供給組成及び供給圧力の少なくとも一方を変化させた新たな供給条件下にて、前記稼働データ取得時の混合冷媒組成から、冷媒原料の組成を変化させた複数の混合冷媒ケースについて、前記極低温熱交換器のUA値が、UA値算出によって得られたUA値と揃うように調整した前記シミュレーションモデルを実行し、前記総消費動力を算出する試算工程と、
前記試算工程にて求めた各混合冷媒ケースについてのシミュレーションモデルの実行結果のうち、液化天然ガスの単位流出量あたりの総消費動力が最も小さくなる混合冷媒ケースの混合冷媒組成を、前記新たな供給条件下での混合冷媒組成とする組成決定工程と、を含むことを特徴とする天然ガス液化装置の混合冷媒組成の決定方法。
The precooling is performed by a precooling heat exchanger that precools natural gas using a precooling refrigerant, and a mixed refrigerant including a plurality of refrigerant raw materials selected from a refrigerant raw material group consisting of nitrogen and hydrocarbons having 1 to 3 carbon atoms. A method for determining a mixed refrigerant composition of a natural gas liquefaction apparatus comprising a cryogenic heat exchanger for liquefying natural gas and a plurality of compressors for compressing the precooling refrigerant and the mixed refrigerant gas,
When determining the supply composition and supply pressure of the natural gas and the composition of the mixed refrigerant and obtaining the liquefied natural gas cooled to a preset temperature, the heat transfer to the overall heat transfer coefficient of the cryogenic heat exchanger A simulation model capable of inputting operation information of the natural gas liquefier required for calculating the UA value, which is a value multiplied by the area, and the total power consumption of the plurality of compressors was acquired from the natural gas liquefier. A model creation process to be created based on operational data;
A UA value calculation step of calculating a UA value by executing a simulation model obtained as a result of the model creation using the mixed refrigerant composition at the time of the operation data acquisition and the supply composition and supply pressure of natural gas;
With respect to a plurality of mixed refrigerant cases in which the composition of the refrigerant raw material is changed from the mixed refrigerant composition at the time of the operation data acquisition under a new supply condition in which at least one of the supply composition and the supply pressure is changed. A trial calculation step of executing the simulation model adjusted so that the UA value of the heat exchanger is aligned with the UA value obtained by calculating the UA value, and calculating the total power consumption;
Among the execution results of the simulation model for each mixed refrigerant case obtained in the trial calculation step, the mixed refrigerant composition of the mixed refrigerant case in which the total consumed power per unit outflow of liquefied natural gas is minimized is supplied to the new supply. And a composition determination step for obtaining a mixed refrigerant composition under conditions. A method for determining a mixed refrigerant composition of a natural gas liquefaction apparatus.
前記混合冷媒は4つの冷媒原料を含み、
前記混合冷媒に含まれる蒸気圧が最大である第1の冷媒原料の含有量を変化させながら、前記極低温熱交換器のUA値が、UA値算出によって得られたUA値と揃うように調整した前記シミュレーションモデルを実行して、前記極低温熱交換器の塔頂部における液化天然ガスの温度と、当該塔頂部の液化天然ガスの冷却を行う混合冷媒の温度との温度差が、前記予め設定した温度まで冷却された液化天然ガスを得るために必要な最高温度差以下となる第1の冷媒原料の暫定含有量を求める第1の暫定含有量決定工程と、
前記混合冷媒に含まれる蒸気圧が最小である第2の冷媒原料の含有量を変化させながら、前記UA値算出によって得られたUA値が調整されたシミュレーションモデルを実行して、前記極低温熱交換器の塔底部における天然ガスの温度と、当該塔底部の天然ガスの冷却を行う混合冷媒の温度との温度差が、前記予め設定した温度まで冷却された液化天然ガスを得るために必要な最高温度差以下となる第2の冷媒原料の暫定含有量を求める第2の暫定含有量決定工程と、を含み、
前記試算工程における複数の混合冷媒ケースは、前記第1、第2の暫定含有量決定工程にて求めた暫定含有量の第1、第2の冷媒原料を含むことを特徴とする請求項1に記載の天然ガス液化装置の混合冷媒組成の決定方法。
The mixed refrigerant includes four refrigerant raw materials,
The UA value of the cryogenic heat exchanger is adjusted so as to match the UA value obtained by calculating the UA value while changing the content of the first refrigerant raw material having the maximum vapor pressure contained in the mixed refrigerant. When the simulation model is executed, the temperature difference between the temperature of the liquefied natural gas at the top of the cryogenic heat exchanger and the temperature of the mixed refrigerant that cools the liquefied natural gas at the top of the tower is set in advance. A first provisional content determination step for obtaining a provisional content of the first refrigerant raw material that is equal to or less than the maximum temperature difference necessary for obtaining the liquefied natural gas cooled to the tempered temperature;
While changing the content of the second refrigerant raw material having the minimum vapor pressure contained in the mixed refrigerant, a simulation model in which the UA value obtained by the UA value calculation is adjusted is executed, and the cryogenic heat is The temperature difference between the temperature of the natural gas at the tower bottom of the exchanger and the temperature of the mixed refrigerant that cools the natural gas at the tower bottom is necessary for obtaining liquefied natural gas cooled to the preset temperature. A second provisional content determination step for obtaining a provisional content of the second refrigerant raw material that is not more than the maximum temperature difference,
The plurality of mixed refrigerant cases in the trial calculation step include first and second refrigerant raw materials having provisional contents obtained in the first and second provisional content determination steps. The method for determining the mixed refrigerant composition of the natural gas liquefying apparatus described.
前記試算工程における複数の混合冷媒ケースは、前記第1、第2の冷媒原料の含有量が各々の暫定含有量における混合冷媒中の含有割合の±0.5パーセントポイントの範囲に設定され、且つ、これら第1、第2の冷媒原料以外の残る2つの冷媒原料の含有量を変化させたものであることを特徴とする請求項2に記載の天然ガス液化装置の混合冷媒組成の決定方法。

In the plurality of mixed refrigerant cases in the trial calculation step, the contents of the first and second refrigerant raw materials are set in a range of ± 0.5 percentage points of the content ratio in the mixed refrigerant in each temporary content, and 3. The method for determining a mixed refrigerant composition of a natural gas liquefying apparatus according to claim 2, wherein the contents of the remaining two refrigerant raw materials other than the first and second refrigerant raw materials are changed.

JP2017550787A 2016-03-10 2016-03-10 Method for determining mixed refrigerant composition of natural gas liquefier Active JP6286812B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057651 WO2017154181A1 (en) 2016-03-10 2016-03-10 Method for determining mixed refrigerant composition for natural gas liquefaction device

Publications (2)

Publication Number Publication Date
JP6286812B2 JP6286812B2 (en) 2018-03-07
JPWO2017154181A1 true JPWO2017154181A1 (en) 2018-03-15

Family

ID=59789145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017550787A Active JP6286812B2 (en) 2016-03-10 2016-03-10 Method for determining mixed refrigerant composition of natural gas liquefier

Country Status (4)

Country Link
JP (1) JP6286812B2 (en)
MY (1) MY190843A (en)
RU (1) RU2686355C1 (en)
WO (1) WO2017154181A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7114202B2 (en) * 2017-07-19 2022-08-08 千代田化工建設株式会社 LNG production forecast system
JP7144462B2 (en) 2018-02-15 2022-09-29 千代田化工建設株式会社 Plant operating condition setting support system and operating condition setting support device
WO2019159371A1 (en) * 2018-02-19 2019-08-22 日揮株式会社 Natural gas liquefier
WO2020012637A1 (en) * 2018-07-13 2020-01-16 千代田化工建設株式会社 Method for determining mixed refrigerant composition for natural gas liquefaction device
CN109404718B (en) * 2018-12-13 2023-12-19 国能龙源环保有限公司 System and method for reducing VOCs emission and sealed nitrogen consumption of oil storage tank
AU2019445489A1 (en) * 2019-05-13 2021-06-10 Jgc Corporation Operation guidance searching method and operation guidance searching system
US20220276000A1 (en) * 2019-07-10 2022-09-01 Jgc Corporation Operation analysis method for natural gas plant
JP7429600B2 (en) 2020-05-19 2024-02-08 大陽日酸株式会社 Natural gas liquefaction equipment and its startup method
AU2020450354B2 (en) 2020-05-27 2024-03-07 Chiyoda Corporation Method and system for determining operating conditions of liquefied natural gas plant
WO2022137296A1 (en) * 2020-12-21 2022-06-30 日揮グローバル株式会社 Complex natural gas treatment system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325481A (en) * 1986-07-10 1988-02-02 エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド Automatic control system of multicomponent refrigerant system
US7266975B2 (en) * 2003-01-31 2007-09-11 Shell Oil Company Process of Liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
JP2012531576A (en) * 2009-07-03 2012-12-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method and apparatus for producing a cooled hydrocarbon stream
JP2013540973A (en) * 2010-03-25 2013-11-07 ザ・ユニバーシティ・オブ・マンチェスター Cooling process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2060431C1 (en) * 1992-07-24 1996-05-20 Эр Продактс Энд Кемикалз, Инк. Gas fluidizing process control method
US5791160A (en) * 1997-07-24 1998-08-11 Air Products And Chemicals, Inc. Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325481A (en) * 1986-07-10 1988-02-02 エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド Automatic control system of multicomponent refrigerant system
US7266975B2 (en) * 2003-01-31 2007-09-11 Shell Oil Company Process of Liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
JP2012531576A (en) * 2009-07-03 2012-12-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method and apparatus for producing a cooled hydrocarbon stream
JP2013540973A (en) * 2010-03-25 2013-11-07 ザ・ユニバーシティ・オブ・マンチェスター Cooling process

Also Published As

Publication number Publication date
WO2017154181A1 (en) 2017-09-14
JP6286812B2 (en) 2018-03-07
MY190843A (en) 2022-05-12
RU2686355C1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6286812B2 (en) Method for determining mixed refrigerant composition of natural gas liquefier
KR100521705B1 (en) Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
RU2752223C2 (en) Complex system for methane cooling for natural gas liquefaction
US6751985B2 (en) Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
RU2170894C2 (en) Method of separation of load in the course of stage-type cooling
KR101059398B1 (en) Liquefaction of gaseous methane enriched feedstock to obtain liquefied natural gas
CA3029950C (en) System and method for liquefaction of natural gas
RU2469249C2 (en) Method and device for cooling of hydrocarbon flow
US7628035B2 (en) Method for processing a stream of LNG obtained by means of cooling using a first refrigeration cycle and associated installation
KR102493917B1 (en) gas production system
JP2003517561A (en) Natural gas liquefaction by expansion cooling
RU2645185C1 (en) Method of natural gas liquefaction by the cycle of high pressure with the precooling of ethane and nitrogen "arctic cascade" and the installation for its implementation
US10180282B2 (en) Parallel compression in LNG plants using a positive displacement compressor
JP5726184B2 (en) Method and apparatus for producing a cooled hydrocarbon stream
AU2015388393B2 (en) Natural gas production system and method
AU2023237164A1 (en) Liquefaction system
WO2021240689A1 (en) Method and system for determining operating conditions of liquefied natural gas plant
WO2016103295A1 (en) Refrigeration device
KR20230034899A (en) Integrated nitrogen rejection for liquefaction of natural gas
WO2020012637A1 (en) Method for determining mixed refrigerant composition for natural gas liquefaction device
EA034091B1 (en) Method for liquefying natural gas and nitrogen
Longwell et al. Aerojet-General Corporation El Monte, California

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6286812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250