JPWO2017115797A1 - Silicon material, optical member having the same, and optical instrument - Google Patents

Silicon material, optical member having the same, and optical instrument Download PDF

Info

Publication number
JPWO2017115797A1
JPWO2017115797A1 JP2017559206A JP2017559206A JPWO2017115797A1 JP WO2017115797 A1 JPWO2017115797 A1 JP WO2017115797A1 JP 2017559206 A JP2017559206 A JP 2017559206A JP 2017559206 A JP2017559206 A JP 2017559206A JP WO2017115797 A1 JPWO2017115797 A1 JP WO2017115797A1
Authority
JP
Japan
Prior art keywords
optical member
silicon
silicon material
optical
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017559206A
Other languages
Japanese (ja)
Inventor
知久 天間
知久 天間
龍太 迫
龍太 迫
一美 千葉
一美 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carlit Holdings Co Ltd
Original Assignee
Carlit Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carlit Holdings Co Ltd filed Critical Carlit Holdings Co Ltd
Publication of JPWO2017115797A1 publication Critical patent/JPWO2017115797A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Glass Compositions (AREA)

Abstract


本発明は、高い赤外線透過率を有する光学部材を得るために、酸素濃度が1.0×1017atom/cm以下であり、ゲルマニウム、リン及びヒ素からなる群から選ばれる少なくとも1種の元素を含有するシリコン材料を提供する。本発明はさらに前記シリコン材料からなる光学部材及び光学機器を提供する。

In order to obtain an optical member having high infrared transmittance, the present invention has an oxygen concentration of 1.0 × 10 17 atoms / cm 3 or less and at least one element selected from the group consisting of germanium, phosphorus and arsenic A silicon material containing is provided. The present invention further provides an optical member and an optical apparatus made of the silicon material.

Description

本願は日本国における特願2015−257034の優先権を主張し、ここで参照することによりその内容は本明細書に包含される。   This application claims the priority of Japanese Patent Application No. 2015-257034 in Japan, and the content is included in this specification by referring here.

本発明は赤外線を透過させるための光学部材及び該光学部材を作製することのできるシリコン材料に関する。   The present invention relates to an optical member for transmitting infrared rays and a silicon material capable of producing the optical member.

近年、赤外線を利用した機器の開発が進められている。赤外線の4〜15μmの波長域の光を利用した赤外線センサー等の光学機器の開発が盛んになってきている。波長が4〜15μmである赤外線を透過する光学部材としては、ゲルマニウム、カルコゲナイドガラス、シリコン等の材料が知られている。これらの中でもゲルマニウム材料を用いた光学部材は波長4〜15μmにおいて高い透過率を有する特徴があるが、ゲルマニウムが高価であり、安価な材料で得られる光学部材が求められている。シリコン材料は安価な材料であるため、赤外線透過用途の光学部材として有用であるが、ゲルマニウム材料に比べて波長8〜14μmにおける透過率に劣る問題があった。   In recent years, development of devices using infrared rays has been promoted. Development of optical equipment such as an infrared sensor using infrared light having a wavelength range of 4 to 15 μm has become active. As an optical member that transmits infrared rays having a wavelength of 4 to 15 μm, materials such as germanium, chalcogenide glass, and silicon are known. Among these, although the optical member using a germanium material has the characteristics which have a high transmittance | permeability in wavelength 4-15 micrometers, germanium is expensive and the optical member obtained with an inexpensive material is calculated | required. Since silicon material is an inexpensive material, it is useful as an optical member for infrared transmission, but has a problem inferior in transmittance at a wavelength of 8 to 14 μm as compared with germanium material.

光学部材は、カメラ等の光学機器の解像度を向上させるという理由で、波長8〜14μmにおいて、高い赤外線透過率を有する光学部材が求められている。波長8〜14μm、特に9μm及び13μmにおける光学部材の透過率を高くすることで、赤外線の光路に設置した光学部材を有する光学機器における優れた解像度を得ることが可能となる。   The optical member is required to have a high infrared transmittance at a wavelength of 8 to 14 μm because the resolution of an optical device such as a camera is improved. By increasing the transmittance of the optical member at wavelengths of 8 to 14 [mu] m, particularly 9 [mu] m and 13 [mu] m, it is possible to obtain excellent resolution in an optical apparatus having an optical member installed in the infrared light path.

シリコン材料を用いて作製した光学部材に酸素が混入していると、波長9μm付近の赤外線透過率が不所望に低下する問題があることが知られている。特許文献1には、酸素含有量が10ppma(5×1016atm/cm)以下の多結晶シリコン凝固体からなる光学部材の製造方法が開示されている。 該公報に記載の光学部材は9μmの透過率には優れているが、より長波長側である13μmにおける透過率には劣る問題があった。It is known that when oxygen is mixed in an optical member manufactured using a silicon material, there is a problem that the infrared transmittance near a wavelength of 9 μm is undesirably lowered. Patent Document 1 discloses a method for producing an optical member made of a polycrystalline silicon solidified body having an oxygen content of 10 ppma (5 × 10 16 atm / cm 3 ) or less. The optical member described in this publication is excellent in the transmittance of 9 μm, but has a problem inferior in the transmittance at 13 μm, which is on the longer wavelength side.

これまでの光学部材は、波長9μmにおいて高い赤外線の透過率(44%以上)を有するものであれば光学機器に使用できたが、近年、赤外線カメラや赤外線サーモグラフィーの発達により、高い解像度が得られる光学部材が要望されており、その要望を達成するためには、波長8〜14μmにおける光学部材の赤外線透過率、特に波長13μmにおける光学部材の透過率を44%以上にさせる必要があった。これまでのシリコン材料を加工して得られた光学部材は、波長13μmにおける透過率が43%程度であり、44%に到達することはなかった。   Conventional optical members can be used for optical devices as long as they have a high infrared transmittance (44% or more) at a wavelength of 9 μm, but in recent years, high resolution can be obtained by the development of infrared cameras and infrared thermography. There has been a demand for an optical member, and in order to achieve the demand, the infrared transmittance of the optical member at a wavelength of 8 to 14 μm, particularly the transmittance of the optical member at a wavelength of 13 μm, has to be 44% or more. The optical member obtained by processing a conventional silicon material has a transmittance of about 43% at a wavelength of 13 μm, and never reaches 44%.

そこで、波長9μmだけではなく、波長13μmにおける高い透過率、具体的には44%以上の透過率を有する光学部材及び該光学部材を製造することのできるシリコン材料が求められている。   Therefore, there is a demand for an optical member having a high transmittance not only at a wavelength of 9 μm but also at a wavelength of 13 μm, specifically, a transmittance of 44% or more, and a silicon material capable of manufacturing the optical member.

特開2010−163353号公報JP 2010-163353 A

本発明は、波長13μmにおける高い赤外線透過率を有する光学部材及び該光学部材を製造することのできるシリコン材料の提供を課題とする。   An object of the present invention is to provide an optical member having a high infrared transmittance at a wavelength of 13 μm and a silicon material capable of producing the optical member.

本発明者らが鋭意検討した結果、以下の内容の本発明を完成した。(1)酸素濃度が1.0×1017atom/cm以下であり、ゲルマニウム、リン及びヒ素からなる群から選ばれる少なくとも1つの元素を含有することを特徴とするシリコン材料。

(2)ゲルマニウム及び/又はリンを必須に含有する(1)のシリコン材料。

(3)ゲルマニウムを0.01〜4.0wt%の濃度で含有することを特徴とする(2)のシリコン材料。

(4)リンを1.0×10−8〜5×10−4wt%の濃度で含有することを特徴とする(2)又は(3)のシリコン材料。

(5)(1)〜(4)のシリコン材料からなり赤外線を透過させるための光学部材。

(6)波長13μmにおける赤外線の透過率が44%以上であることを特徴とする(5)の光学部材。

(7)赤外線の光路に設置された(5)又は(6)の光学部材を有する光学機器。
As a result of intensive studies by the present inventors, the present invention having the following contents was completed. (1) A silicon material having an oxygen concentration of 1.0 × 10 17 atoms / cm 3 or less and containing at least one element selected from the group consisting of germanium, phosphorus and arsenic.

(2) The silicon material according to (1), which essentially contains germanium and / or phosphorus.

(3) The silicon material according to (2), wherein germanium is contained at a concentration of 0.01 to 4.0 wt%.

(4) The silicon material according to (2) or (3), wherein phosphorus is contained at a concentration of 1.0 × 10 −8 to 5 × 10 −4 wt%.

(5) An optical member made of the silicon material of (1) to (4) for transmitting infrared rays.

(6) The optical member according to (5), wherein the infrared transmittance at a wavelength of 13 μm is 44% or more.

(7) An optical apparatus having the optical member according to (5) or (6) installed in an infrared optical path.

本発明によれば、酸素濃度が1.0×1017atom/cm以下であり、ゲルマニウム、リン及びヒ素からなる群から選ばれる少なくとも1種の元素を含有するシリコン材料が提供され、このシリコン材料からなる光学部材は、これまで到達することのできなかった波長13μmにおける高い赤外線透率(44%以上)を有し得る。According to the present invention, there is provided a silicon material having an oxygen concentration of 1.0 × 10 17 atoms / cm 3 or less and containing at least one element selected from the group consisting of germanium, phosphorus and arsenic. The optical member made of a material may have a high infrared transmittance (44% or more) at a wavelength of 13 μm that could not be reached so far.

<シリコン材料>

本発明のシリコン材料は、酸素濃度が1.0×1017atom/cm以下であり、ゲルマニウム、リン、ヒ素のうち、少なくとも1つを含有する。
<Silicon material>

The silicon material of the present invention has an oxygen concentration of 1.0 × 10 17 atoms / cm 3 or less and contains at least one of germanium, phosphorus, and arsenic.

シリコン材料におけるシリコンの結晶状態は、単結晶であってもよいし、多結晶であってもよい。シリコン材料の形状は特に限定はなく、棒状でもよく、丸い塊状でもよいが、棒状にすることで、光学部材を容易に製造できる点より好ましく挙げられる。   The crystalline state of silicon in the silicon material may be single crystal or polycrystalline. The shape of the silicon material is not particularly limited, and may be a rod shape or a round lump shape, but is preferably mentioned because it can be easily manufactured by forming a rod shape.

シリコン材料には酸素は含まれないことが好ましく、酸素濃度が1.0×1017atom/cm以下であることが好ましく挙げられる。酸素濃度は小さければ小さいほどよく、後述の測定法で検出限界以下であることが特に好ましい。酸素濃度を小さくする手段として、例えば、るつぼ材料の材質をサファイア、カーボン、窒化ホウ素とすることなどが挙げられる。該酸素濃度のシリコン材料を用いて製造した光学部材は、波長8〜14μm、特に波長9μmにおける高い透過率を有する特徴がある。The silicon material preferably contains no oxygen, and preferably has an oxygen concentration of 1.0 × 10 17 atoms / cm 3 or less. The smaller the oxygen concentration, the better. It is particularly preferable that the oxygen concentration is below the detection limit in the measurement method described later. As means for reducing the oxygen concentration, for example, the material of the crucible material may be sapphire, carbon, boron nitride, or the like. The optical member manufactured using the silicon material having the oxygen concentration is characterized by having a high transmittance at a wavelength of 8 to 14 μm, particularly at a wavelength of 9 μm.

シリコン材料における酸素の含有量は二次イオン質量分析法(以下、「SIMS法」と略記する。)で測定することができる。SIMS法とは、固体の表面にビーム状のイオン(一次イオン)を照射し、そのイオンと固体表面の分子・原子レベルでの衝突によって発生するイオン(二次イオン)を質量分析計で検出する表面計測法である。SIMS法では酸素濃度の検出下限はおよそ5.0×1015atom/cmである。The oxygen content in the silicon material can be measured by secondary ion mass spectrometry (hereinafter abbreviated as “SIMS method”). The SIMS method irradiates a solid surface with beam-like ions (primary ions) and detects ions (secondary ions) generated by collisions between the ions and the solid surface at the molecular / atomic level with a mass spectrometer. It is a surface measurement method. In the SIMS method, the lower limit of detection of the oxygen concentration is approximately 5.0 × 10 15 atoms / cm 3 .

シリコン材料におけるゲルマニウムの含有量は、得られる光学部材の透過率を向上させる点より、0.01〜4.0wt%が好ましく、0.01〜2.0wt%がより好ましく挙げられる。0.01wt%以上で、得られる光学部材の透過率の向上性能に特に優れ、4.0wt%以下で、得られる光学部材の透過率の向上効果の維持と光学部材の強度維持が両立する。   The content of germanium in the silicon material is preferably 0.01 to 4.0 wt%, more preferably 0.01 to 2.0 wt%, from the viewpoint of improving the transmittance of the obtained optical member. When it is 0.01 wt% or more, it is particularly excellent in the performance of improving the transmittance of the obtained optical member, and when it is 4.0 wt% or less, the maintenance of the effect of improving the transmittance of the obtained optical member and the maintenance of the strength of the optical member are compatible.

シリコン材料におけるリンの含有量は、得られる光学部材の透過率を向上させる点より、1.0×10−8〜5×10−4wt%が好ましく、5.0×10−8〜5.0×10−5wt%がより好ましく挙げられる。1.0×10−8wt%以上で、得られる光学部材の透過率の向上性能に優れ、5.0×10−4wt%以下で、光学部材の強度が維持される。From the point which improves the transmittance | permeability of the optical member obtained, 1.0 * 10 < -8 > -5 * 10 < -4 > wt% is preferable and, as for content of phosphorus in a silicon material, 5.0 * 10 < -8 > -5. More preferably, 0 × 10 −5 wt% is mentioned. When it is 1.0 × 10 −8 wt% or more, the resulting optical member has excellent transmittance improvement performance, and when it is 5.0 × 10 −4 wt% or less, the strength of the optical member is maintained.

シリコン材料におけるヒ素の含有量は、得られる光学部材の透過率を向上と強度維持の両立の観点から、1.0×10−8〜5×10−4wt%が好ましい。The content of arsenic in the silicon material is preferably 1.0 × 10 −8 to 5 × 10 −4 wt% from the viewpoint of improving the transmittance of the obtained optical member and maintaining the strength.

シリコンの原料にゲルマニウム、リン、ヒ素の1種以上を含有させてシリコン材料を製造することで、シリコン材料におけるシリコンの結晶性が変化し、結果的に、波長13μmの赤外領域における高い透過率を有する光学部材を得ることができる。特に、ゲルマニウム又はリンの1種を含む場合、さらには、ゲルマニウムとリンが共存するシリコン材料からなる光学部材は、13μmにおける波長を透過させるのに最適な結晶状態となるため、特に好ましく挙げられる。   By producing a silicon material by adding one or more of germanium, phosphorus, and arsenic to the raw material of silicon, the crystallinity of silicon in the silicon material changes, and as a result, high transmittance in the infrared region with a wavelength of 13 μm. An optical member having the following can be obtained. In particular, when one kind of germanium or phosphorus is included, an optical member made of a silicon material in which germanium and phosphorus coexist is particularly preferable because it is in an optimal crystal state for transmitting a wavelength of 13 μm.

ゲルマニウム、リン、ヒ素の添加方法は、例えば、所定量のシリコンの原料と所望の元素の粉末とを混合してから加熱によりそれらを溶融混合させて、しかる後に、結晶化させることで、シリコン材料を製造することができる。 The method of adding germanium, phosphorus, and arsenic is, for example, mixing a predetermined amount of silicon raw material and a desired element powder, melting and mixing them by heating, and then crystallizing the silicon material. Can be manufactured.

シリコン材料におけるゲルマニウム、リン及びヒ素の含有量の測定方法は、グロー放電質量分析法を用いて測定することができる。グロー放電質量分析法とは、アルゴン雰囲気下で試料を陰極としてグロー放電を発生させ、プラズマ内で試料表面をスパッタし、イオン化された構成元素を質量分析計で測定する手法である。主成分元素と目的元素のイオン強度比を相対感度係数で補正して、半定量値を算出する。   The method for measuring the content of germanium, phosphorus and arsenic in the silicon material can be measured using glow discharge mass spectrometry. Glow discharge mass spectrometry is a technique in which a glow discharge is generated using a sample as a cathode in an argon atmosphere, the surface of the sample is sputtered in plasma, and ionized constituent elements are measured with a mass spectrometer. A semi-quantitative value is calculated by correcting the ionic strength ratio of the main component element and the target element with the relative sensitivity coefficient.

酸素濃度もグロー放電質量分析法で測定可能であるが、測定に用いるアルゴン中に不純物として酸素が存在する可能性があり、グロー放電分析法では正確な含有量を測定することができないため好ましく挙げられない。そこで、シリコン材料における酸素濃度を測定するには前述したSIMS法が好ましく挙げられる。   The oxygen concentration can also be measured by glow discharge mass spectrometry, but oxygen may be present as an impurity in the argon used for the measurement, and it is preferable because the glow discharge analysis method cannot measure the exact content. I can't. Therefore, the SIMS method described above is preferably used to measure the oxygen concentration in the silicon material.

シリコン材料には、本発明の光学特性を損なわない範囲で、硬度や電導度を向上させる目的で添加剤を含有させてもよい。添加剤としては、炭素、ホウ素、アルミニウム等が挙げられ、これらの中でも炭素が好ましく挙げられる。炭素を含有させることで、シリコン材料の硬度を特に向上させることが可能となる。   The silicon material may contain an additive for the purpose of improving the hardness and conductivity within a range not impairing the optical characteristics of the present invention. Examples of the additive include carbon, boron, and aluminum. Among these, carbon is preferable. By including carbon, the hardness of the silicon material can be particularly improved.

所望の形状のシリコン材料を得るための製造方法は特に限定は無く、シリコン材料の加工方法に関する従来技術を適宜参照することができる。例えば、CZ法(チョクラルスキー法)、FZ法(フローティング法)、押出成形法、金型成形法等によりシリコン材料である棒状のシリコンインゴッドを作ることができる。   A manufacturing method for obtaining a silicon material having a desired shape is not particularly limited, and the prior art relating to a processing method of the silicon material can be appropriately referred to. For example, a rod-shaped silicon ingot, which is a silicon material, can be produced by the CZ method (Czochralski method), FZ method (floating method), extrusion molding method, die molding method, or the like.

前記製造方法の中で、特にCZ法による製造が好ましく挙げられる。CZ法は、シリコン材料であるシリコンインゴットを得る製造方法として幅広く開発が進んでいて、大まかには、るつぼ内で融かしたシリコン原料に種結晶を漬け、引き上げる、いわゆる引き上げ法に分類される。前記溶かしたシリコン原料を得る際に、上述のようにゲルマニウム粉、リン粉末及びヒ素粉末の少なくとも1種の所定量を加えておいて、シリコン原料とともに溶融せしめることが好ましい。好ましくはゲルマニウム粉末、リン粉末、ヒ素粉末の少なくとも1種が共存した状態で溶融したシリコン原料に、種結晶を浸漬して、その種結晶を回転させながら引き上げることにより、単結晶が種結晶にぶら下がるように成長していき、シリコン材料である棒状のシリコンインゴットを得ることができる。   Among the production methods, production by the CZ method is particularly preferred. The CZ method has been widely developed as a production method for obtaining a silicon ingot, which is a silicon material, and is roughly classified into a so-called pulling method in which a seed crystal is immersed in a silicon raw material melted in a crucible and pulled. When obtaining the melted silicon raw material, it is preferable to add a predetermined amount of at least one of germanium powder, phosphorus powder and arsenic powder as described above, and melt the silicon raw material together. Preferably, the single crystal hangs on the seed crystal by immersing the seed crystal in a silicon raw material melted in a state where at least one of germanium powder, phosphorus powder, and arsenic powder coexists, and pulling the seed crystal up while rotating. Thus, a rod-shaped silicon ingot which is a silicon material can be obtained.

<赤外線を透過させるための光学部材>

本発明における「赤外線を透過させるための光学部材」は、光学装置等における赤外線の光路に設置されるように構成された光学部材である。
<Optical member for transmitting infrared rays>

The “optical member for transmitting infrared rays” in the present invention is an optical member configured to be installed in an infrared optical path in an optical device or the like.

光学部材の形状は特に限定無く、上述した本発明のシリコン材料内を赤外線が通るように加工されていればよい。典型的には、上述したシリコン材料をレンズ状又は板状へと加工したものを光学部材として挙げることができる。シリコン材料を加工して光学部材を製造する方法としては、シリコン材料を切り出し成形法、押し出し成形法、研磨成形法等の公知の加工技術を適宜参照することができる。   The shape of the optical member is not particularly limited as long as it is processed so that infrared rays pass through the above-described silicon material of the present invention. Typically, what processed the silicon material mentioned above into the shape of a lens or a plate can be mentioned as an optical member. As a method of manufacturing an optical member by processing a silicon material, known processing techniques such as a cutting method, an extrusion molding method, and a polishing molding method can be appropriately referred to.

切り出し成形によれば、棒状や丸い塊状等のシリコン材料をスライスして板状に加工して光学部材を得る方法であり、レンズ状にする場合には該板状の光学部材の表面を研磨することでレンズ状に加工することができる。押し出し成形は、棒状や丸い塊状等のシリコン材料をそのまま、もしくは、破砕して細かくしたものを射出成形器に投入し、熱をかけて溶解したシリコン材料を金型へ押し出して注入した後、冷却させてレンズ状又は板状の光学部材を得る方法である。研磨法としては、シリコン材料を研磨することでレンズ状又は板状にして光学部材を得る方法が挙げられる。   Cut-out molding is a method of obtaining an optical member by slicing a silicon material such as a rod or a round lump and processing it into a plate shape. When forming a lens shape, the surface of the plate-like optical member is polished. Thus, it can be processed into a lens shape. In extrusion molding, silicon materials such as rods and round lumps are left as they are, or crushed and made into fine pieces are put into an injection molding machine. And a lens-like or plate-like optical member. Examples of the polishing method include a method of obtaining an optical member in a lens shape or a plate shape by polishing a silicon material.

好適態様によれば、光学部材は、波長13μmにおける赤外線の透過率が44%以上である。透過率はフーリエ変換型赤外分光装置(FT−IR装置)を用いて測定することができる。波長13μmにおける赤外線の透過率が44%以上有する光学部材であるため、該光学部材を赤外線の光路に設置した光学機器は優れた解像度を得ることができる。透過率が44%以上であるか否かは光学機器における性能にとって極めて大きな差異をもたらす。例えば、人の存在を光で検知する光学機器に光学部材を用いる場合に、その光学部材の透過率が44%を下回ると人を認識する精度が低くなって誤検知がやや多くなりがちであるが、44%以上であるとそのような誤検知はほとんどなくなる。   According to a preferred embodiment, the optical member has an infrared transmittance of 44% or more at a wavelength of 13 μm. The transmittance can be measured using a Fourier transform infrared spectrometer (FT-IR apparatus). Since it is an optical member having an infrared transmittance of 44% or more at a wavelength of 13 μm, an optical device having the optical member installed in the infrared optical path can obtain an excellent resolution. Whether or not the transmittance is 44% or more causes a very large difference in performance in optical instruments. For example, when an optical member is used in an optical device that detects the presence of a person with light, if the transmittance of the optical member is less than 44%, the accuracy of recognizing a person tends to be low and false detection tends to be slightly increased. However, when it is 44% or more, such a false detection is almost eliminated.

光学部材がレンズ状である場合には、そのまま用いてもよいし、レンズの表面を研磨してもよい。研磨することで、より精密なガラスレンズを形成させることができる。   When the optical member has a lens shape, it may be used as it is, or the surface of the lens may be polished. By polishing, a more precise glass lens can be formed.

ガラスレンズの表面に反射防止膜(ARコート)を配置させてもよい。反射防止膜を配置することで光の反射を防ぎ、より優れた透過率を有することができる。   An antireflection film (AR coating) may be disposed on the surface of the glass lens. By disposing an antireflection film, reflection of light can be prevented and a higher transmittance can be obtained.

また、板状の光学部材は、例えば、遠赤外線カメラ用レンズ材料や遠赤外線センサーの窓材等の用途に用いられる。   The plate-like optical member is used for applications such as a far-infrared camera lens material and a far-infrared sensor window material.

上述した本発明の光学部材が赤外線の光路に設置されている光学機器もまた本発明の実施の一態様である。そのような光学機器として、遠赤外線カメラ、赤外線サーモグラフィー等が非限定的に挙げられる。   An optical apparatus in which the above-described optical member of the present invention is installed in an infrared optical path is also an embodiment of the present invention. Examples of such optical equipment include, but are not limited to, a far-infrared camera and an infrared thermography.

以下に実施例を挙げることによって本発明をさらに詳しく説明する。本発明はこれら実施例に限定されるわけではない。   Hereinafter, the present invention will be described in more detail by giving examples. The present invention is not limited to these examples.

(実施例1〜6及び比較例1)

真空中で高純度窒化ホウ素ルツボ(内径170mmφ)中、塊状シリコン多結晶2000gに後記所定量のゲルマニウム粉末を加え、温度1550℃で融解させることにより、シリコン融液を得た。得られたシリコン融液を1450℃にして、そこにシリコン種結晶を接触させることにより、種子付けさせた。その後、まず、シリコン種子結晶を2回転/分の回転速度、1.5mm/分の引上速度で引き上げて、シリコン種子結晶と同じ太さのシリコン結晶をシリコン融液から約40mmの長さに成長させた。引き続き、20回転/分の回転速度、1.0mm/分の引上速度でシリコン結晶(直径70mmφ×100mm)を成長させ、シリコン材料からなるインゴットを得た。
(Examples 1-6 and Comparative Example 1)

In a high-purity boron nitride crucible (inner diameter 170 mmφ) in vacuum, a predetermined amount of germanium powder was added to 2000 g of massive silicon polycrystal and melted at a temperature of 1550 ° C. to obtain a silicon melt. The obtained silicon melt was brought to 1450 ° C., and seeded by bringing a silicon seed crystal into contact therewith. Then, first, the silicon seed crystal is pulled up at a rotation speed of 2 rotations / minute and a pulling speed of 1.5 mm / minute, so that the silicon crystal having the same thickness as the silicon seed crystal is about 40 mm in length from the silicon melt. Grown up. Subsequently, a silicon crystal (diameter 70 mmφ × 100 mm) was grown at a rotation speed of 20 rotations / minute and a pulling speed of 1.0 mm / minute to obtain an ingot made of a silicon material.

上記製造において添加したゲルマニウム粉末の量は以下の通りである。

実施例1:0.6g 実施例2:6.0g

実施例3:20.0g 実施例4:40.0g

実施例5:60.0g 実施例6:80.0g

比較例1:0(無添加)
The amount of germanium powder added in the above production is as follows.

Example 1: 0.6 g Example 2: 6.0 g

Example 3: 20.0 g Example 4: 40.0 g

Example 5: 60.0 g Example 6: 80.0 g

Comparative example 1: 0 (no addition)

(実施例7〜11)

真空中で高純度窒化ホウ素ルツボ(内径170mmφ)中、塊状シリコン多結晶2000gに後記所定量のリン粉末を加え、温度1550℃で融解させることにより、シリコン融液を得た。得られたシリコン融液を1450℃にして、そこにシリコン種結晶を接触させることにより、種子付けさせた。その後、まず、シリコン種子結晶を2回転/分の回転速度、1.5mm/分の引上速度で引き上げて、シリコン種子結晶と同じ太さのシリコン結晶をシリコン融液から約40mmの長さに成長させた。引き続き、20回転/分の回転速度、1.0mm/分の引上速度でシリコン結晶(直径70mmφ×100mm)を成長させ、シリコン材料からなるインゴットを得た。
(Examples 7 to 11)

In a high-purity boron nitride crucible (inner diameter: 170 mmφ) in vacuum, a predetermined amount of phosphorus powder was added to 2000 g of bulk silicon polycrystal and melted at a temperature of 1550 ° C. to obtain a silicon melt. The obtained silicon melt was brought to 1450 ° C., and seeded by bringing a silicon seed crystal into contact therewith. Then, first, the silicon seed crystal is pulled up at a rotation speed of 2 rotations / minute and a pulling speed of 1.5 mm / minute, so that the silicon crystal having the same thickness as the silicon seed crystal is about 40 mm in length from the silicon melt. Grown up. Subsequently, a silicon crystal (diameter 70 mmφ × 100 mm) was grown at a rotation speed of 20 rotations / minute and a pulling speed of 1.0 mm / minute to obtain an ingot made of a silicon material.

上記製造において添加したリン粉末の量は以下の通りである。

実施例7:3.3×10−3g 実施例8:3.4×10−2

実施例9:9.8×10−2g 実施例10:3.8g

実施例11:61.8g
The amount of phosphorus powder added in the above production is as follows.

Example 7: 3.3 × 10 −3 g Example 8: 3.4 × 10 −2 g

Example 9: 9.8 × 10 −2 g Example 10: 3.8 g

Example 11: 61.8g

(実施例12〜13)

真空中で高純度窒化ホウ素ルツボ(内径170mmφ)中、塊状シリコン多結晶2000gに後記所定量のヒ素を加え、温度1550℃で融解させることにより、シリコン融液を得た。得られたシリコン融液を1450℃にして、そこにシリコン種結晶を接触させることにより、種子付けさせた。その後、まず、シリコン種子結晶を2回転/分の回転速度、1.5mm/分の引上速度で引き上げて、シリコン種子結晶と同じ太さのシリコン結晶をシリコン融液から約40mmの長さに成長させた。引き続き、20回転/分の回転速度、1.0mm/分の引上速度でシリコン結晶(直径70mmφ×100mm)を成長させ、シリコン材料からなるインゴットを得た。
(Examples 12 to 13)

In a high-purity boron nitride crucible (inner diameter: 170 mmφ) in vacuum, a predetermined amount of arsenic described below was added to 2000 g of massive silicon polycrystal and melted at a temperature of 1550 ° C. to obtain a silicon melt. The obtained silicon melt was brought to 1450 ° C., and seeded by bringing a silicon seed crystal into contact therewith. Thereafter, the silicon seed crystal is first pulled up at a rotation speed of 2 rotations / minute and a pulling speed of 1.5 mm / minute, and a silicon crystal having the same thickness as the silicon seed crystal is about 40 mm long from the silicon melt. Grown up. Subsequently, a silicon crystal (diameter 70 mmφ × 100 mm) was grown at a rotation speed of 20 rotations / minute and a pulling speed of 1.0 mm / minute to obtain an ingot made of a silicon material.

上記製造において添加したヒ素の量は以下の通りである。

実施例12:10.0×10−2g 実施例13:2.0g
The amount of arsenic added in the above production is as follows.

Example 12: 10.0 × 10 −2 g Example 13: 2.0 g

(実施例14〜16)

真空中で高純度窒化ホウ素ルツボ(内径170mmφ)中、塊状シリコン多結晶2000gに後記所定量のゲルマニウム粉末及びリン粉末を加え、温度1550℃で融解させることにより、シリコン融液を得た。得られたシリコン融液を1450℃にして、そこにシリコン種結晶を接触させることにより、種子付けさせた。その後、まず、シリコン種子結晶を2回転/分の回転速度、1.5mm/分の引上速度で引き上げて、シリコン種子結晶と同じ太さのシリコン結晶をシリコン融液から約40mmの長さに成長させた。引き続き、20回転/分の回転速度、1.0mm/分の引上速度でシリコン結晶(直径70mmφ×100mm)を成長させ、シリコン材料からなるインゴットを得た。
(Examples 14 to 16)

In a high-purity boron nitride crucible (inner diameter: 170 mmφ) in vacuum, a predetermined amount of germanium powder and phosphorus powder were added to 2000 g of massive silicon polycrystal and melted at a temperature of 1550 ° C. to obtain a silicon melt. The obtained silicon melt was brought to 1450 ° C., and seeded by bringing a silicon seed crystal into contact therewith. Then, first, the silicon seed crystal is pulled up at a rotation speed of 2 rotations / minute and a pulling speed of 1.5 mm / minute, so that the silicon crystal having the same thickness as the silicon seed crystal is about 40 mm in length from the silicon melt. Grown up. Subsequently, a silicon crystal (diameter 70 mmφ × 100 mm) was grown at a rotation speed of 20 rotations / minute and a pulling speed of 1.0 mm / minute to obtain an ingot made of a silicon material.

上記製造において添加したゲルマニウム粉末及びリン粉末の量は以下の通りである。

実施例14:ゲルマニウム6.0g及びリン9.8×10−2

実施例15:ゲルマニウム20.0g及びリン9.8×10−2

実施例16:ゲルマニウム60.0g及びリン9.8×10−2
The amounts of germanium powder and phosphorus powder added in the above production are as follows.

Example 14: 6.0 g germanium and 9.8 × 10 −2 g phosphorus

Example 15: 20.0 g of germanium and 9.8 × 10 −2 g of phosphorus

Example 16: 60.0 g of germanium and 9.8 × 10 −2 g of phosphorus

(酸素濃度の測定)

各実施例・比較例のインゴットからワイヤーソーでサンプルウェーハを切り出し、ウェーハ面内の酸素濃度をSIMS(CAMECA社製)で測定した。
(Measurement of oxygen concentration)

Sample wafers were cut out from the ingots of the examples and comparative examples with a wire saw, and the oxygen concentration in the wafer surface was measured by SIMS (manufactured by CAMCA).

(ゲルマニウム濃度、リン濃度、ヒ素濃度の測定)

各実施例・比較例のインゴットからワイヤーソーでサンプルウェーハを切り出し、ウェーハ面内のゲルマニウム濃度、リン濃度及びヒ素濃度をグロー放電質量分析装置(VG Elemental社製、VG−9000)で測定した。測定条件は、放電ガス:高純度アルゴン、放電条件:1kV、2mAとした。
(Measurement of germanium concentration, phosphorus concentration, arsenic concentration)

Sample wafers were cut out from the ingots of the examples and comparative examples with a wire saw, and the germanium concentration, phosphorus concentration, and arsenic concentration in the wafer surface were measured with a glow discharge mass spectrometer (VG-9000, manufactured by VG Elemental). The measurement conditions were discharge gas: high purity argon, discharge conditions: 1 kV, 2 mA.

(透過率の測定)

各実施例及び比較例のインゴットからワイヤーソーでサンプルウェーハを切り出し、算術平均粗さRaが1nm以下、厚みが1mmになるよう表面を研磨し、FT−IR装置を用いて、FT−IR(フーリエ変換型赤外吸収)法によりウェーハ中心を波長13μmにて測定した。
(Measurement of transmittance)

Sample wafers were cut out from the ingots of the examples and comparative examples with a wire saw, the surface was polished so that the arithmetic average roughness Ra was 1 nm or less and the thickness was 1 mm, and FT-IR (Fourier) was used. The center of the wafer was measured at a wavelength of 13 μm by a conversion type infrared absorption method.

測定結果は以下の通りである。ここで、

C1は酸素濃度(1016atom/cm)であり、

C2はゲルマニウム濃度(wt%)であり、

C3はリン濃度(wt%)であり、

C4はヒ素濃度(wt%)である。

Tは透過率(%)である。
The measurement results are as follows. here,

C1 is the oxygen concentration (10 16 atoms / cm 3 ),

C2 is the germanium concentration (wt%),

C3 is the phosphorus concentration (wt%),

C4 is an arsenic concentration (wt%).

T is the transmittance (%).

C1 C2 C3 C4 T

実施例1 5 0.03 0 0 45.0

実施例2 5 0.3 0 0 45.1

実施例3 5 1.0 0 0 45.7

実施例4 6 2.0 0 0 45.4

実施例5 5 2.9 0 0 44.8

実施例6 5 3.8 0 0 44.5

実施例7 5 0 2.2×10−8 0 44.8

実施例8 6 0 2.3×10−7 0 45.7

実施例9 5 0 6.6×10−7 0 45.9

実施例10 5 0 2.5×10−5 0 45.6

実施例11 5 0 4.0×10−4 0 44.6

実施例12 5 0 0 6.0×10−7 44.3

実施例13 5 0 0 2.8×10−5 44.2

実施例14 5 0.3 6.5×10−7 0 46.5

実施例15 5 1.0 6.7×10−7 0 46.8

実施例16 5 2.9 6.5×10−7 0 46.2

比較例1 5 0 0 0 43.4

C1 C2 C3 C4 T

Example 1 5 0.03 0 0 45.0

Example 2 5 0.3 0 0 45.1

Example 3 5 1.0 0 0 45.7

Example 4 6 2.0 0 0 45.4

Example 5 5 2.9 0 0 44.8

Example 6 5 3.8 0 0 44.5

Example 7 5 0 2.2 × 10 −8 0 44.8

Example 8 6 0 2.3 × 10 −7 0 45.7

Example 9 5 0 6.6 × 10 −7 0 45.9

Example 10 5 0 2.5 × 10 −5 0 45.6

Example 11 5 0 4.0 × 10 −4 0 44.6

Example 12 5 0 0 6.0 × 10 −7 44.3

Example 13 5 0 0 2.8 × 10 −5 44.2

Example 14 5 0.3 6.5 × 10 −7 0 46.5

Example 15 5 1.0 6.7 × 10 −7 0 46.8

Example 16 5 2.9 6.5 × 10 −7 0 46.2

Comparative Example 1 5 0 0 0 43.4

上記の通り、実施例においては波長13μmにおける透過率が44%以上であり、高い赤外線の透過率を有する光学部材であることがわかった。 特に実施例14〜16でわかるように、ゲルマニウムとリンの両方を含有させた光学部材は、波長13μmにおける透過率が46%以上となり、赤外線の透過率が特に高いことがわかる。   As described above, in the examples, the transmittance at a wavelength of 13 μm was 44% or more, and it was found that the optical member had a high infrared transmittance. In particular, as can be seen from Examples 14 to 16, the optical member containing both germanium and phosphorus has a transmittance of 46% or more at a wavelength of 13 μm, and the infrared transmittance is particularly high.

本願発明のシリコン材料を加工することで波長13μmにおける高い赤外線の透過率を有する光学部材を製造することができ、該光学部材は、遠赤外線カメラ、赤外線サーモグラフィー等の様々な用途で使用することができる。   By processing the silicon material of the present invention, an optical member having a high infrared transmittance at a wavelength of 13 μm can be produced. The optical member can be used in various applications such as a far-infrared camera and an infrared thermography. it can.

Claims (10)

酸素濃度が1.0×1017atom/cm以下であり、ゲルマニウム、リン及びヒ素からなる群から選ばれる少なくとも1つの元素を含有することを特徴とするシリコン材料。A silicon material having an oxygen concentration of 1.0 × 10 17 atoms / cm 3 or less and containing at least one element selected from the group consisting of germanium, phosphorus, and arsenic. ゲルマニウム及び/又はリンを必須に含有する請求項1記載のシリコン材料。 2. The silicon material according to claim 1, which essentially contains germanium and / or phosphorus. ゲルマニウムを0.01〜4.0wt%の濃度で含有することを特徴とする請求項2記載のシリコン材料。 3. The silicon material according to claim 2, wherein germanium is contained at a concentration of 0.01 to 4.0 wt%. リンを1.0×10−8〜5×10−4wt%の濃度で含有することを特徴とする請求項2記載のシリコン材料。3. The silicon material according to claim 2, wherein phosphorus is contained at a concentration of 1.0 × 10 −8 to 5 × 10 −4 wt%. 請求項1記載のシリコン材料からなり赤外線を透過させるための光学部材。 An optical member made of the silicon material according to claim 1 for transmitting infrared rays. 請求項2記載のシリコン材料からなり赤外線を透過させるための光学部材。 An optical member made of the silicon material according to claim 2 for transmitting infrared rays. 請求項3記載のシリコン材料からなり赤外線を透過させるための光学部材。 An optical member made of the silicon material according to claim 3 for transmitting infrared rays. 請求項4記載のシリコン材料からなり赤外線を透過させるための光学部材。 An optical member made of the silicon material according to claim 4 for transmitting infrared rays. 波長13μmにおける赤外線の透過率が44%以上であることを特徴とする請求項5に記載の光学部材。 6. The optical member according to claim 5, wherein infrared transmittance at a wavelength of 13 [mu] m is 44% or more. 赤外線の光路に設置された請求項5に記載の光学部材を有する光学機器。 An optical apparatus having the optical member according to claim 5 installed in an infrared optical path.
JP2017559206A 2015-12-28 2016-12-27 Silicon material, optical member having the same, and optical instrument Pending JPWO2017115797A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015257034 2015-12-28
JP2015257034 2015-12-28
PCT/JP2016/088903 WO2017115797A1 (en) 2015-12-28 2016-12-27 Silicon material, optical member comprising same, and optical device

Publications (1)

Publication Number Publication Date
JPWO2017115797A1 true JPWO2017115797A1 (en) 2018-10-25

Family

ID=59225290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559206A Pending JPWO2017115797A1 (en) 2015-12-28 2016-12-27 Silicon material, optical member having the same, and optical instrument

Country Status (3)

Country Link
JP (1) JPWO2017115797A1 (en)
TW (1) TW201736260A (en)
WO (1) WO2017115797A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112140374B (en) * 2019-06-29 2022-08-12 洛阳阿特斯光伏科技有限公司 Cutting method of polycrystalline silicon rod

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154265A (en) * 1978-05-26 1979-12-05 Hitachi Ltd Impurity doping amount evaluation method for semiconductor
JPH07314123A (en) * 1994-05-30 1995-12-05 Tokyo Denshi Yakin Kenkyusho:Kk Melting and forming method of ge, si or ge-si alloy
JP2011123185A (en) * 2009-12-09 2011-06-23 Mitsubishi Materials Corp Silicon material for infrared transmitting members, and infrared transmitting member
JP2012005187A (en) * 2010-06-15 2012-01-05 Tokyo Electric Power Co Inc:The Wire connection section with protective cover

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489614B2 (en) * 2008-12-19 2014-05-14 株式会社トクヤマ Manufacturing method of optical member
JP5574645B2 (en) * 2009-09-07 2014-08-20 Sumco Techxiv株式会社 Method for producing single crystal silicon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154265A (en) * 1978-05-26 1979-12-05 Hitachi Ltd Impurity doping amount evaluation method for semiconductor
JPH07314123A (en) * 1994-05-30 1995-12-05 Tokyo Denshi Yakin Kenkyusho:Kk Melting and forming method of ge, si or ge-si alloy
JP2011123185A (en) * 2009-12-09 2011-06-23 Mitsubishi Materials Corp Silicon material for infrared transmitting members, and infrared transmitting member
JP2012005187A (en) * 2010-06-15 2012-01-05 Tokyo Electric Power Co Inc:The Wire connection section with protective cover

Also Published As

Publication number Publication date
WO2017115797A1 (en) 2017-07-06
TW201736260A (en) 2017-10-16

Similar Documents

Publication Publication Date Title
AU2004308879B2 (en) Silicon feedstock for solar cells
US8524001B2 (en) Silicon wafer and method for producing the same
EP0691423B1 (en) Method for the preparation of silicon single crystal and fused silica glass crucible therefor
US9446957B2 (en) Polycrystalline silicon rod and method for producing polysilicon
TW201239145A (en) Polycrystalline silicon wafer
JPWO2017115797A1 (en) Silicon material, optical member having the same, and optical instrument
JP6682515B2 (en) Optical member made of silicon material and optical device having the same
KR20160142306A (en) Boron doped n-type silicon target
US3954518A (en) Method for reducing compositional gradients in mercury cadmium telluride
KR20170129188A (en) Lanthanum fluoride single crystal and optical parts
JP2010163353A (en) Optical member
EP0133084B1 (en) Process for making bismuth-germanate single crystals with a high scintillation efficiency
Hoshikawa et al. Relationship between gallium concentration and resistivity of gallium-doped Czochralski silicon crystals: investigation of a conversion curve
JP4158252B2 (en) Fluorite single crystal, heat treatment method thereof, and method for producing fluorite single crystal material
JP2020033221A (en) Method for manufacturing opaque quartz glass
JP7138682B2 (en) GaAs wafer and GaAs ingot manufacturing method
EP3578513B1 (en) Polycrystalline silicon rod
JP5061728B2 (en) Method for growing silicon single crystal
JP2011046565A (en) Single crystal silicon ingot, single crystal silicon wafer, single crystal silicon solar cell, and method for manufacturing single crystal silicon ingot
KR100321373B1 (en) Method for fabricating bismuth germanium oxides crystal
Mena et al. InSb Czochralski growth single crystals for InGaSb substrates
KR20220042296A (en) Mg2Si single crystal, Mg2Si single crystal substrate, infrared light receiving element, and manufacturing method of Mg2Si single crystal
JP2005029455A (en) As-grown single crystal of alkaline earth metal fluoride
JP2006001760A (en) Method for producing fluoride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210601