JPWO2017086280A1 - Thermal history measuring method, thermal history measuring tool, and thermal history measuring device - Google Patents

Thermal history measuring method, thermal history measuring tool, and thermal history measuring device Download PDF

Info

Publication number
JPWO2017086280A1
JPWO2017086280A1 JP2017551866A JP2017551866A JPWO2017086280A1 JP WO2017086280 A1 JPWO2017086280 A1 JP WO2017086280A1 JP 2017551866 A JP2017551866 A JP 2017551866A JP 2017551866 A JP2017551866 A JP 2017551866A JP WO2017086280 A1 JPWO2017086280 A1 JP WO2017086280A1
Authority
JP
Japan
Prior art keywords
transmittance
thermal history
heating
heat
history measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017551866A
Other languages
Japanese (ja)
Other versions
JP6714232B2 (en
Inventor
藤井 寿
寿 藤井
健 良知
健 良知
健 小田代
健 小田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Institute of Industrial Science and Technology
G Quest Co Ltd
Original Assignee
Kanagawa Institute of Industrial Science and Technology
G Quest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Institute of Industrial Science and Technology, G Quest Co Ltd filed Critical Kanagawa Institute of Industrial Science and Technology
Publication of JPWO2017086280A1 publication Critical patent/JPWO2017086280A1/en
Application granted granted Critical
Publication of JP6714232B2 publication Critical patent/JP6714232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

配線等が不要で搬送式や密閉式の熱処理炉に用いることができ、約300〜1000℃の広い温度領域において簡便かつ正確に加熱温度や加熱時間を測定することができる、熱履歴測定方法、熱履歴測定具及び熱履歴測定装置を提供する。
不純物をドープした酸化スズ膜の可視から近赤外領域における透過率が、受けた熱履歴に依存して不可逆的に変化する現象を利用することにより、加熱温度や加熱時間を推定することができる。
A heat history measurement method that can be used in a heat treatment furnace of a transfer type or a closed type without requiring wiring or the like, and can easily and accurately measure a heating temperature and a heating time in a wide temperature range of about 300 to 1000 ° C., A thermal history measuring tool and a thermal history measuring device are provided.
By utilizing the phenomenon that the transmittance in the visible to near-infrared region of the tin oxide film doped with impurities changes irreversibly depending on the thermal history received, the heating temperature and heating time can be estimated. .

Description

本発明は、熱処理工程の温度管理に用いる熱履歴測定方法等に関する。より詳しくは、搬送式や密閉式の熱処理炉内において、配線等が不要で簡便かつ正確に熱履歴を測定することができる、熱履歴測定方法、熱履歴測定具及び熱履歴測定装置に関する。   The present invention relates to a thermal history measurement method used for temperature management in a heat treatment process. More specifically, the present invention relates to a thermal history measuring method, a thermal history measuring tool, and a thermal history measuring device that can measure a thermal history simply and accurately without the need for wiring or the like in a transfer type or closed type heat treatment furnace.

液晶、半導体、ガラス、セラミックスなどの製造分野では、多くの熱処理工程が設けられており、その温度領域は製品の特性により異なる。例えば、液晶の熱処理ではガラス基板を用いるため150〜400℃、半導体の熱処理ではシリコン基板を用いるためそれより高温の150〜600℃、ガラスやセラミックスなどの熱処理ではさらに高温の600〜1000℃付近での熱処理が多用されている。   In the field of manufacturing liquid crystals, semiconductors, glass, ceramics, etc., many heat treatment steps are provided, and the temperature range varies depending on the characteristics of the product. For example, a glass substrate is used for heat treatment of liquid crystal at 150 to 400 ° C., a silicon substrate is used for heat treatment of semiconductor, so that the temperature is higher than 150 to 600 ° C., and heat treatment of glass or ceramics is at a higher temperature of about 600 to 1000 ° C. This heat treatment is frequently used.

これらの熱処理工程の温度管理には、温度領域や熱処理炉の構造に対応して、各種の温度測定方法が用いられている。例えば、熱電対による測定は、異種金属の接合点で生じる熱起電力を測定することにより、低温から高温まで簡便かつ正確に測定できるため最も広く用いられている。また、赤外放射温度計による測定は、測定対象物が放射する赤外線の強度を測定することにより、非接触的に高速に測定することができる。   For temperature control of these heat treatment processes, various temperature measurement methods are used corresponding to the temperature region and the structure of the heat treatment furnace. For example, the measurement by a thermocouple is most widely used because it can be easily and accurately measured from a low temperature to a high temperature by measuring a thermoelectromotive force generated at a junction of dissimilar metals. Moreover, the measurement by the infrared radiation thermometer can be measured at high speed in a non-contact manner by measuring the intensity of infrared rays emitted from the measurement object.

しかし、熱電対による測定は電気的に接続するための配線が必要であり、また熱電対先端を測定する箇所に正確に設置する必要があるため、製品が搬送経路を移動しながら加熱される搬送式の熱処理工程で用いることは困難である。
また、赤外放射温度計による測定は、赤外線センサを遮るものなく測定対象物に直接向ける必要があり、真空減圧容器内で加熱される密閉式の熱処理工程で用いることは困難である。
However, measurement with a thermocouple requires wiring for electrical connection, and the thermocouple tip must be installed accurately at the location where the measurement is to be made. It is difficult to use in the heat treatment process of the formula.
In addition, the measurement with the infrared radiation thermometer needs to be directed directly to the measurement object without obstructing the infrared sensor, and it is difficult to use it in a sealed heat treatment process heated in a vacuum decompression vessel.

そこで、製品の近傍にラベルや測定具を配置することで、搬送式や密閉式の熱処理工程にも柔軟に対応することができる、温度測定方法や測定具が開発されている。
例えば、示温ラベルは、樹脂フィルム間に封入された脂肪酸やワックスが所定の温度で融解して発色する構造のラベルであり、最高到達温度や温度分布を簡便に測定することができる。また、セラミックス成形体の焼結時の体積変化を測定する方法や、ゼーゲルコーンを用いたセラミックスの軟化変形を利用した方法があり、配線等が不要で1000℃以上の高温領域での測定が可能である。
In view of this, a temperature measuring method and a measuring tool have been developed that can flexibly cope with a heat treatment process of a transfer type or a sealed type by arranging a label or a measuring tool in the vicinity of the product.
For example, the temperature indicating label is a label having a structure in which a fatty acid or wax enclosed between resin films melts at a predetermined temperature and develops color, and the maximum temperature reached and temperature distribution can be easily measured. In addition, there are a method for measuring the volume change during sintering of a ceramic molded body and a method using softening deformation of ceramics using a Zeger cone, and it is possible to measure in a high temperature region of 1000 ° C or higher without wiring etc. is there.

しかし、示温ラベルは樹脂部材を含むため、300℃以上の熱処理に用いることは難しい。また、セラミックス成形体を用いた測定方法は、通常1000℃以上の高温領域の測定に用いられ、原理的にそれより低温領域では測定精度が低下し、ゼーゲルコーンによる測定方法は、その変形度を目視で確認して到達温度を推定するため測定精度が十分ではない。   However, since the temperature indicating label includes a resin member, it is difficult to use it for heat treatment at 300 ° C. or higher. In addition, the measurement method using a ceramic molded body is usually used for measurement in a high temperature region of 1000 ° C. or more, and in principle, the measurement accuracy is lowered in a low temperature region. The measurement accuracy is not sufficient because the final temperature is estimated by checking in

ここで、特許文献1には、硬質の基板上に成膜したアルミニウム薄膜の反射率が、受けた熱履歴に依存して低下する現象を利用して、最高到達温度を推定する温度測定方法等が開示されている。この方法は、配線等の付加物が不要で搬送式や密閉式の熱処理炉に用いることができ、150〜600℃程度の最高到達温度を簡便かつ正確に測定することができる。   Here, Patent Document 1 discloses a temperature measurement method for estimating a maximum temperature using a phenomenon in which the reflectance of an aluminum thin film formed on a hard substrate decreases depending on the received thermal history. Is disclosed. This method does not require any additional components such as wiring, and can be used for a conveyance type or closed type heat treatment furnace, and can easily and accurately measure a maximum temperature of about 150 to 600 ° C.

特開2009−36756号公報JP 2009-36756 A

しかしながら、特許文献1に開示された測定方法は、アルミニウム薄膜の塑性変形等による物理的な構造変化に伴い反射率が低下する現象を利用しているため、アルミニウムの融点を考慮すると原理的に600℃付近が上限となる。
したがって、配線等の付加物が不要で搬送式や密閉式の熱処理炉に用いることができ、600〜1000℃の温度領域において簡便かつ正確に温度を測定できる方法は、いまだ存在しないのが現状である。
However, since the measurement method disclosed in Patent Document 1 uses a phenomenon in which the reflectance decreases with a physical structural change caused by plastic deformation of an aluminum thin film, in principle, the melting point of aluminum is 600. The upper limit is around ℃.
Therefore, there is no method for measuring the temperature easily and accurately in the temperature range of 600 to 1000 ° C., because it does not require any additional products such as wiring and can be used in a transfer or sealed heat treatment furnace. is there.

また、従来のラベルや測定具を用いた温度測定方法は、一般的に最高到達温度を測定することを目的としており、その最高到達温度でどの位の時間加熱されたのかを知ることはできなかった。そのため、加熱温度に加えて加熱時間に関する情報も得られる測定方法が求められていた。   Also, conventional temperature measurement methods using labels and measuring tools are generally aimed at measuring the maximum temperature reached, and it is not possible to know how long it has been heated at that maximum temperature. It was. Therefore, there has been a demand for a measurement method that can obtain information on the heating time in addition to the heating temperature.

本発明は上記課題に鑑みてなされたものであり、配線等の付加物が不要で搬送式や密閉式の熱処理炉に用いることができ、600〜1000℃の範囲を含む温度領域において簡便かつ正確に加熱温度や加熱時間を測定することができる、熱履歴測定方法、熱履歴測定具及び熱履歴測定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and does not require any additional components such as wiring, and can be used for a transfer-type or closed-type heat treatment furnace, and is simple and accurate in a temperature range including a range of 600 to 1000 ° C. It is an object of the present invention to provide a heat history measuring method, a heat history measuring tool, and a heat history measuring device capable of measuring a heating temperature and a heating time.

本発明者らは、上記課題を解決すべく鋭意研究した結果、不純物をドープした酸化スズ膜の可視から近赤外領域における透過率が、受けた熱履歴に依存して不可逆的に変化する現象を利用することにより、配線等の付加物が不要となり、約300〜1000℃の広い温度領域において、簡便かつ正確に加熱温度や加熱時間を推定できることを見出し、さらに研究を進めた結果、本発明を完成させるに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found that the transmittance of the tin oxide film doped with impurities in the visible to near-infrared region changes irreversibly depending on the thermal history received. As a result of further research, the present inventors have found that heating and the heating time can be estimated easily and accurately in a wide temperature range of about 300 to 1000 ° C. It came to complete.

すなわち、本発明は熱履歴を記録する熱履歴測定具を用いて熱履歴を推定する熱履歴測定方法であって、前記熱履歴測定具が不純物をドープした酸化スズからなる記録層を含み、前記熱履歴測定具を熱処理する前に、可視から近赤外領域の光の少なくとも1つの波長に対する前記記録層の初期透過率を測定する段階と、前記熱履歴測定具を熱処理した後に、前記初期透過率を測定した少なくとも1つの波長と同一の波長に対する前記記録層の加熱後透過率を測定する段階と、前記初期透過率と前記加熱後透過率との間の少なくとも1つの変化量に基づいて、前記熱履歴測定具の受けた熱履歴のうち加熱温度を推定する段階と、を含む前記熱履歴測定方法である。   That is, the present invention is a thermal history measurement method for estimating a thermal history using a thermal history measuring tool for recording a thermal history, wherein the thermal history measuring tool includes a recording layer made of tin oxide doped with impurities, Measuring the initial transmittance of the recording layer with respect to at least one wavelength of light in the visible to near-infrared region before heat-treating the thermal history measuring device; and after heat-treating the thermal history measuring device, the initial transmission Measuring the post-heating transmittance of the recording layer for the same wavelength as the at least one wavelength at which the rate was measured, and based on at least one change between the initial transmittance and the post-heat transmittance. Estimating the heating temperature of the heat history received by the heat history measuring tool.

本発明の熱履歴測定方法は、初期透過率及び加熱後透過率を測定する段階において、少なくとも2つの波長に対する記録層の透過率を測定し、さらに、推定した加熱温度と少なくとも1つの透過率変化量とに基づいて、熱履歴測定具の受けた熱履歴のうち加熱時間を推定する段階を含む、熱履歴測定方法としてもよい。   The thermal history measurement method of the present invention measures the transmittance of the recording layer with respect to at least two wavelengths in the step of measuring the initial transmittance and the transmittance after heating, and further calculates the estimated heating temperature and at least one transmittance change. It is good also as a heat history measuring method including the step which estimates the heating time among the heat histories which the heat history measuring tool received based on quantity.

また、本発明は熱履歴を記録する熱履歴測定具であって、不純物をドープした酸化スズからなる記録層と、300℃以上の耐熱性又は近赤外領域における透明性及び300℃以上の耐熱性を有する基板と、を含む前記熱履歴測定具である。   The present invention is also a thermal history measuring instrument for recording thermal history, a recording layer made of tin oxide doped with impurities, heat resistance of 300 ° C. or higher, transparency in the near infrared region, and heat resistance of 300 ° C. or higher. A thermal history measuring instrument including a substrate having a property.

本発明の熱履歴測定具は、不純物をドープした酸化スズが、アンチモンドープ酸化スズ(ATO)又はフッ素ドープ酸化スズ(FTO)であり、基板が、ガラス、シリコン、石英、サファイア又はセラミックスのいずれか1種からなる、熱履歴測定具としてもよい。   In the thermal history measuring device of the present invention, the tin oxide doped with impurities is antimony-doped tin oxide (ATO) or fluorine-doped tin oxide (FTO), and the substrate is any of glass, silicon, quartz, sapphire, or ceramics. It is good also as a heat history measuring tool which consists of 1 type.

本発明によれば、配線等の付加物が不要で搬送式や密閉式の熱処理炉に用いることができ、約1000℃までの広い温度領域において加熱温度や加熱時間を簡便かつ正確に測定することができる。   According to the present invention, no additional components such as wiring can be used, and it can be used in a transfer-type or closed-type heat treatment furnace, and the heating temperature and heating time can be measured easily and accurately in a wide temperature range up to about 1000 ° C. Can do.

実施例1(ATO膜/石英基板)の熱処理前後の透過スペクトルを示す図である。It is a figure which shows the transmission spectrum before and behind heat processing of Example 1 (ATO film | membrane / quartz substrate). 実施例1(ATO膜)及び比較例1(Al膜)の熱処理後の表面状態を示す走査型電子顕微鏡による観察画像である。It is an observation image by the scanning electron microscope which shows the surface state after the heat processing of Example 1 (ATO film) and Comparative Example 1 (Al film). 実施例1(ATO膜/石英基板)の熱処理後の波長2000nm及び波長1400nmおける吸光度比と加熱温度との関係を示す図である。It is a figure which shows the relationship between the light absorbency ratio in wavelength 2000nm and wavelength 1400nm after heat processing of Example 1 (ATO film | membrane / quartz substrate), and heating temperature. 実施例1(ATO膜/石英基板)の熱処理後の波長2000nm及び波長1400nmおける吸光度比と加熱時間との関係を示す図である。It is a figure which shows the relationship between the light absorbency ratio in wavelength 2000nm and wavelength 1400nm after the heat processing of Example 1 (ATO film | membrane / quartz substrate), and heating time. 実施例2(ATO膜/石英基板)の熱処理後の波長2300nmにおける吸光度比と加熱温度との関係を示す図である。It is a figure which shows the relationship between the light absorbency ratio in wavelength 2300nm after the heat processing of Example 2 (ATO film | membrane / quartz substrate), and heating temperature. 実施例3(ATO膜/石英基板)の膜厚と初期透過率との関係を示す図である。It is a figure which shows the relationship between the film thickness of Example 3 (ATO film | membrane / quartz substrate), and initial stage transmittance | permeability. 実施例4(ATO膜/シリコン基板)の熱処理前後の透過スペクトルを示す図である。It is a figure which shows the transmission spectrum before and behind heat processing of Example 4 (ATO film | membrane / silicon substrate). 実施例4(ATO膜/シリコン基板)の熱処理後の波長2300nmにおける吸光度比と加熱温度との関係を示す図である。It is a figure which shows the relationship between the light absorbency ratio in wavelength 2300nm after the heat processing of Example 4 (ATO film | membrane / silicon substrate), and heating temperature.

以下、本発明の熱履歴測定方法、熱履歴測定具及び熱履歴測定装置について、詳細に説明する。なお、説明が省略されている方法、構造、機能等については、当該技術分野の当業者に知られているものと同一又は実質的に同一のものとすることができる。   Hereinafter, the thermal history measuring method, thermal history measuring tool, and thermal history measuring device of the present invention will be described in detail. Note that the method, structure, function, and the like that are not described here may be the same or substantially the same as those known to those skilled in the art.

本発明の熱履歴測定方法、熱履歴測定具及び熱履歴測定装置は、不純物をドープした酸化スズ膜の可視から近赤外領域における透過率が、受けた熱履歴に依存して不可逆的に変化する現象を利用したものである。この透過率変化は、波長により異なる温度依存性及び時間依存性を示すことが特徴である。   The thermal history measuring method, thermal history measuring instrument, and thermal history measuring apparatus of the present invention are such that the transmittance in the visible to near-infrared region of the tin oxide film doped with impurities changes irreversibly depending on the received thermal history. This is a phenomenon that uses the phenomenon. This transmittance change is characterized in that it shows temperature dependency and time dependency that vary depending on the wavelength.

<熱履歴測定方法>
本発明の熱履歴測定方法で用いる熱履歴を記録する熱履歴測定具は、不純物をドープした酸化スズからなる記録層を含んでいる。
不純物をドープした酸化スズとしては、アンチモンドープ酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)、リンドープ酸化スズなどが挙げられる。
<Thermal history measurement method>
The thermal history measuring tool for recording the thermal history used in the thermal history measuring method of the present invention includes a recording layer made of tin oxide doped with impurities.
Examples of tin oxide doped with impurities include antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), and phosphorus-doped tin oxide.

本発明の熱履歴測定方法では、上記熱履歴測定具を熱処理する前に、その記録層の可視から近赤外領域の光の少なくとも1つの波長に対する初期透過率を測定する。可視から近赤外領域とは、波長400〜2500nmの領域である。   In the thermal history measuring method of the present invention, the initial transmittance of at least one wavelength of light in the visible to near-infrared region of the recording layer is measured before heat-treating the thermal history measuring tool. The visible to near infrared region is a region having a wavelength of 400 to 2500 nm.

次に、初期透過率を測定した熱履歴測定具を、測定対象物の近傍に配置して熱処理を行った後に、その記録層の可視から近赤外領域の光の少なくとも1つの波長に対する加熱後透過率を測定する。初期透過率と加熱後透過率を測定する波長は同一である。   Next, after the heat history measuring tool whose initial transmittance has been measured is placed in the vicinity of the measurement object and subjected to heat treatment, the recording layer is heated for at least one wavelength of light in the visible to near infrared region Measure the transmittance. The wavelength for measuring the initial transmittance and the transmittance after heating is the same.

そして、初期透過率と加熱後透過率との間の少なくとも1つの変化量に基づいて、熱履歴測定具の受けた熱履歴のうち加熱温度(最高到達温度)を推定する。
少なくとも1つの透過率変化量に基づいて加熱温度を推定する手法としては、透過率変化量を加熱温度に対してプロットしたグラフ又は透過率変化量と加熱温度との間の関係式を、予備試験により少なくとも1つ予め作成する。そして、このグラフ又は関係式に測定した透過率変化量をプロット又は代入して推定する手法を用いることができる。
And based on the at least 1 variation | change_quantity between an initial stage transmittance | permeability and the transmittance | permeability after a heating, heating temperature (maximum reached temperature) is estimated among the thermal histories which the thermal history measuring tool received.
As a method for estimating the heating temperature based on at least one transmittance change amount, a graph in which the transmittance change amount is plotted against the heating temperature or a relational expression between the transmittance change amount and the heating temperature is used as a preliminary test. At least one is created in advance. And the technique of estimating by plotting or substituting the measured transmittance | permeability variation | change_quantity into this graph or relational expression can be used.

また、初期透過率及び加熱後透過率を、可視から近赤外領域の光の少なくとも2つの波長で測定してもよい。具体的には、少なくとも1つの温度依存性を示す波長と、少なくとも1つの温度及び時間依存性を示す波長で測定する。これにより、推定した加熱温度と少なくとも1つの透過率変化量とに基づいて、熱履歴測定具の受けた熱履歴のうち加熱時間を推定することができる。   In addition, the initial transmittance and the transmittance after heating may be measured at at least two wavelengths of light in the visible to near-infrared region. Specifically, measurement is performed at a wavelength that exhibits at least one temperature dependence and at least one wavelength that exhibits temperature and time dependence. Thereby, based on the estimated heating temperature and at least one transmittance | permeability variation | change_quantity, a heating time can be estimated among the thermal histories which the thermal history measuring tool received.

推定した加熱温度と少なくとも1つの透過率変化量とに基づいて加熱時間を推定する手法としては、加熱温度毎に、透過率変化量を加熱時間に対してプロットしたグラフ又は透過率変化量と加熱時間との間の関係式を、予備試験により少なくとも1つ予め作成する。そして、上記手法により推定した加熱温度に基づいて透過率変化量と加熱時間との関係を示すグラフ又は関係式を選択し、このグラフ又は関係式に測定した透過率変化量をプロット又は代入して推定する手法を用いることができる。   As a method of estimating the heating time based on the estimated heating temperature and at least one transmittance change amount, a graph in which the transmittance change amount is plotted with respect to the heating time or the transmittance change amount and heating for each heating temperature. At least one relational expression between time is prepared in advance by a preliminary test. Then, based on the heating temperature estimated by the above method, select a graph or relational expression indicating the relationship between the transmittance change amount and the heating time, and plot or substitute the measured transmittance change amount in this graph or relational expression. An estimation method can be used.

また、初期透過率(T)及び加熱後透過率(T)をそのまま演算に用いると、膜厚のバラツキによる影響を受けやすいため、透過率(T)を吸光度(log10(1/T))に変換して、透過率変化量を吸光度比(log10(1/T)/log10(1/T))として演算に用いることが好ましい。Further, if the initial transmittance (T 0 ) and the transmittance after heating (T a ) are used as they are in the calculation, the transmittance (T) is easily affected by variations in film thickness, and therefore the transmittance (T) is expressed as absorbance (log 10 (1 / T )), And the transmittance change amount is preferably used in the calculation as an absorbance ratio (log 10 (1 / T a ) / log 10 (1 / T 0 )).

さらに、加熱温度を少なくとも2つの透過率変化量に基づいて推定し、加熱時間を推定した加熱温度と少なくとも2つの透過率変化量とに基づいて推定することにより、加熱温度及び加熱時間の測定精度を各々高めてもよい。   Further, the heating temperature is estimated based on at least two transmittance changes, and the heating time is estimated based on the estimated heating temperature and at least two transmittance changes, thereby measuring the heating temperature and the heating time. May be increased.

なお、本発明において「記録層の透過率を測定する」とは、記録層を透過した光から透過率を測定する場合と、記録層の表面又は界面で反射した光から透過率を測定する場合の両方を含むものとする。   In the present invention, “measuring the transmittance of the recording layer” means measuring the transmittance from the light transmitted through the recording layer and measuring the transmittance from the light reflected from the surface or interface of the recording layer. Including both.

ここで、初期透過率及び加熱後透過率を測定する最適な波長は、記録層及び基板の種類、測定対象となる熱処理工程の条件(加熱温度、加熱時間、雰囲気、炉内圧力等)、測定項目(加熱温度、加熱時間)により異なる。そのため、下記のような手順により予備試験を行い、最適な波長を予め確認して、透過率変化量と加熱温度及び加熱時間との関係を示すグラフ又は関係式を予め作成する必要がある。   Here, the optimum wavelength for measuring the initial transmittance and the transmittance after heating is the type of the recording layer and substrate, the conditions of the heat treatment process to be measured (heating temperature, heating time, atmosphere, furnace pressure, etc.), measurement It depends on the item (heating temperature, heating time). Therefore, it is necessary to perform a preliminary test according to the following procedure, confirm an optimal wavelength in advance, and prepare a graph or a relational expression indicating the relationship between the transmittance change amount, the heating temperature, and the heating time in advance.

最初に、測定対象となる熱処理工程の条件を考慮して、記録層及び基板の種類を選択してテスト用の熱履歴測定具を作製する。次に、テスト用測定具の可視から近赤外領域における熱処理前の初期透過率と、測定対象の熱処理工程で熱処理後の加熱後透過率を測定する。そして、熱処理前後の透過スペクトルの測定結果より、十分な透過率変化量を得ることができ高い測定精度が期待できる最適な波長を選択する。また、その最適な波長における透過率変化量を加熱温度に対してプロットしたグラフ又は透過率変化量と加熱温度との間の関係式を作成する。さらに、加熱温度毎に、透過率変化量を加熱時間に対してプロットしたグラフ又は透過率変化量と加熱時間との間の関係式を作成する。   First, in consideration of the conditions of the heat treatment process to be measured, the recording layer and the substrate type are selected to produce a test thermal history measuring tool. Next, the initial transmittance before heat treatment in the visible to near-infrared region of the test measuring instrument and the transmittance after heating after the heat treatment in the heat treatment step to be measured are measured. Then, from the measurement result of the transmission spectrum before and after the heat treatment, an optimum wavelength that can obtain a sufficient transmittance change amount and can expect high measurement accuracy is selected. In addition, a graph in which the transmittance change amount at the optimum wavelength is plotted with respect to the heating temperature or a relational expression between the transmittance change amount and the heating temperature is created. Further, for each heating temperature, a graph in which the transmittance change amount is plotted with respect to the heating time or a relational expression between the transmittance change amount and the heating time is created.

具体的には、後述する実施例1では、アンチモンドープ酸化スズ(ATO)膜を合成石英ガラス基板上に成膜した熱履歴測定具を、600〜850℃で15〜120分間、大気雰囲気下で熱処理して検討している。
熱処理前後の可視から近赤外領域の透過スペクトルの測定結果より、波長1800nm付近を境に、それより長波長側では透過率が減少し、短波長側では透過率が増加する傾向が認められた。
Specifically, in Example 1 to be described later, a thermal history measuring device in which an antimony-doped tin oxide (ATO) film is formed on a synthetic quartz glass substrate is heated at 600 to 850 ° C. for 15 to 120 minutes in an air atmosphere. Considering heat treatment.
From the measurement results of the visible to near-infrared transmission spectrum before and after the heat treatment, it was observed that the transmittance decreased on the longer wavelength side and the transmittance increased on the shorter wavelength side near the wavelength of 1800 nm. .

そして、波長1900〜2500nmの領域、特に波長2000〜2400nmの領域において十分な透過率変化量を得ることができ、波長2000nmにおける透過率変化量を吸光度比に換算して加熱温度に対してプロットしたところ、吸光度比が加熱温度に依存して単調に増加する温度依存性が認められた。一方、吸光度比を加熱時間に対してプロットしたところ、吸光度比は加熱時間が増加してもほぼ一定であり、時間依存性はほとんど認められなかった。   And sufficient transmittance | permeability variation | change_quantity can be obtained in the wavelength 1900-2500nm area | region, especially the wavelength 2000-2400nm area | region, The transmittance | permeability variation | change_quantity in wavelength 2000nm was converted into an absorbance ratio, and it plotted with respect to heating temperature. However, a temperature dependency was observed in which the absorbance ratio monotonously increased depending on the heating temperature. On the other hand, when the absorbance ratio was plotted against the heating time, the absorbance ratio was almost constant even when the heating time was increased, and almost no time dependency was observed.

また、波長1100〜1600nmの領域、特に波長1200〜1500nmの領域において十分な透過率変化量を得ることができ、波長1400nmにおける透過率変化量を吸光度比に換算して加熱時間に対してプロットしたところ、加熱温度毎に、吸光度比が加熱時間に依存して単調に減少する時間依存性が認められた。一方、吸光度比を加熱温度に対してプロットしたところ、吸光度比は加熱温度に依存して増減するが、単調に増減する傾向は認められなかった。   In addition, a sufficient transmittance change amount can be obtained in a wavelength range of 1100 to 1600 nm, particularly a wavelength range of 1200 to 1500 nm, and the transmittance change amount at a wavelength of 1400 nm is converted into an absorbance ratio and plotted with respect to heating time. However, a time dependency was observed in which the absorbance ratio monotonously decreased depending on the heating time for each heating temperature. On the other hand, when the absorbance ratio was plotted against the heating temperature, the absorbance ratio increased or decreased depending on the heating temperature, but no tendency to increase or decrease monotonously was observed.

したがって、同条件で作製した熱履歴測定具を用いて、波長2000nm及び1400nmにおける、熱処理前の初期透過率と同条件で熱処理後の加熱後透過率を測定する。そして、波長2000nmにおける透過率変化量から吸光度比を算出し、単調増加の温度依存性を示すグラフ又は関係式にプロット又は代入することにより、熱履歴測定具が受けた加熱温度(最高到達温度)を推定することが可能となる。   Therefore, the post-heating transmittance after the heat treatment is measured under the same conditions as the initial transmittance before the heat treatment at the wavelengths of 2000 nm and 1400 nm using the thermal history measuring device manufactured under the same conditions. And by calculating the absorbance ratio from the amount of change in transmittance at a wavelength of 2000 nm and plotting or substituting it into a graph or relational expression showing the temperature dependence of monotonic increase, the heating temperature (maximum reached temperature) received by the thermal history measuring instrument Can be estimated.

加熱温度が推定できたら、次に波長1400nmにおける透過率変化量から吸光度比を算出し、その加熱温度において単調減少の時間依存性を示すグラフ又は関係式にプロット又は代入することにより、熱履歴測定具が受けた加熱温度(最高到達温度)が保持された加熱時間を推定することが可能となる。   Once the heating temperature has been estimated, the absorbance ratio is calculated from the amount of change in transmittance at a wavelength of 1400 nm, and thermal history measurement is performed by plotting or substituting into a graph or relational expression showing the time dependence of monotonic decrease at that heating temperature. It is possible to estimate the heating time during which the heating temperature (maximum temperature reached) received by the tool is maintained.

<熱履歴測定具>
本発明の熱履歴測定具は、不純物をドープした酸化スズからなる記録層を含んでいる。不純物をドープした酸化スズの種類は、前述した熱履歴測定方法と同一である。温度依存性の傾向から、アンチモンドープ酸化スズ(ATO)及びフッ素ドープ酸化スズ(FTO)が好ましく、アンチモンドープ酸化スズ(ATO)がより好ましい。
<Heat history measuring instrument>
The thermal history measuring instrument of the present invention includes a recording layer made of tin oxide doped with impurities. The kind of tin oxide doped with impurities is the same as that in the thermal history measurement method described above. From the tendency of temperature dependence, antimony-doped tin oxide (ATO) and fluorine-doped tin oxide (FTO) are preferable, and antimony-doped tin oxide (ATO) is more preferable.

その成膜方法は、均質で平滑な薄膜を効率よく成膜できる方法であれば特に限定されない。スパッタリング法、蒸着法等の物理的気相法、熱CVD法、プラズマCVD法等の化学的気相法、透明導電性ナノ粒子の分散液や塗料を用いたスピンコート法、スプレーコート法、ディップコート法等の液相成膜法が好適に例示される。   The film forming method is not particularly limited as long as it can efficiently form a uniform and smooth thin film. Physical vapor phase methods such as sputtering and vapor deposition methods, chemical vapor phase methods such as thermal CVD methods and plasma CVD methods, spin coating methods using dispersion liquids and paints of transparent conductive nanoparticles, spray coating methods, dipping A liquid phase film forming method such as a coating method is preferably exemplified.

また、本発明の熱履歴測定具は、300℃以上の耐熱性を有する基板を含んでいる。その耐熱性は、300℃以上、好ましくは600℃以上の温度において、支持体としての一定の機械的強度を維持することが求められる。
さらに、基板は近赤外領域における透明性を有していてもよい。その透明性は、波長1100〜2500nmの領域における透過率が、好ましくは20%以上、より好ましくは35%以上である。
The thermal history measuring tool of the present invention includes a substrate having heat resistance of 300 ° C. or higher. The heat resistance is required to maintain a certain mechanical strength as a support at a temperature of 300 ° C. or higher, preferably 600 ° C. or higher.
Furthermore, the substrate may have transparency in the near infrared region. The transparency is such that the transmittance in a wavelength range of 1100 to 2500 nm is preferably 20% or more, more preferably 35% or more.

基板の種類としては、ソーダガラス、耐熱ガラス、シリコン、溶融又は合成石英、サファイア、ジルコニアなどのセラミックスなどが挙げられる。耐熱性、透明性及び製造コストの観点から、耐熱ガラス及び石英が好ましい。測定対象物が半導体の場合には、シリコンが好ましい。   Examples of the substrate include soda glass, heat-resistant glass, silicon, fused or synthetic quartz, sapphire, and ceramics such as zirconia. From the viewpoint of heat resistance, transparency and production cost, heat resistant glass and quartz are preferred. Silicon is preferable when the object to be measured is a semiconductor.

また、本発明の熱履歴測定具の記録層は、波長1100nmに対する初期透過率Tと波長2300nmに対する初期透過率Tとの比(T/T)が、好ましくは1.5〜23、より好ましくは1.8〜7.0の範囲である。その比が小さすぎると得られる透過率変化量が小さくなる傾向があり測定精度が低下する。一方、大きすぎると長波長側における初期透過率が低すぎて、初めから飽和している状態となり測定精度が低下する。The recording layer of the thermal history measuring device of the present invention preferably has a ratio (T 1 / T 2 ) between the initial transmittance T 1 for a wavelength of 1100 nm and the initial transmittance T 2 for a wavelength of 2300 nm (1.5 / 23). More preferably, it is in the range of 1.8 to 7.0. If the ratio is too small, the transmittance change amount obtained tends to be small, and the measurement accuracy is lowered. On the other hand, if it is too large, the initial transmittance on the long wavelength side is too low, and it becomes saturated from the beginning, and the measurement accuracy decreases.

記録層の膜厚は、不純物ドープ酸化スズの種類によって異なるが、例えばATOでは、好ましくは0.2〜1.4μm、より好ましくは0.3〜1.0μmの範囲である。厚すぎると長波長側における初期透過率が低すぎて、加熱後の透過率変化量が小さくなり測定精度が低下する。一方、薄すぎても加熱後の透過率変化量が小さくなり測定精度が低下する。   The film thickness of the recording layer varies depending on the type of impurity-doped tin oxide, but for example, in ATO, it is preferably in the range of 0.2 to 1.4 μm, more preferably 0.3 to 1.0 μm. If it is too thick, the initial transmittance on the long wavelength side is too low, and the amount of change in transmittance after heating becomes small, and the measurement accuracy decreases. On the other hand, even if it is too thin, the amount of change in transmittance after heating becomes small and the measurement accuracy is lowered.

本発明の熱履歴測定具には、基板が耐熱性及び透明性を有し、測定時に記録層及び基板を透過した光から記録層の透過率を測定する透過型と、基板が耐熱性を有し、測定時に記録層の表面又は記録層と基板の界面で反射した光から記録層の透過率を測定する反射型の2種類がある。測定精度の観点からは透過型が好ましい。
反射型の場合には、記録層と基板の間又は基板を挟んで記録層の反対側に、反射層を設けてもよい。反射層の種類としては、金、プラチナ、シリコンなどが挙げられる。
In the thermal history measuring instrument of the present invention, the substrate has heat resistance and transparency, and the transmission layer for measuring the transmittance of the recording layer from the light transmitted through the recording layer and the substrate at the time of measurement, and the substrate has heat resistance. There are two types, a reflection type, that measures the transmittance of the recording layer from the light reflected at the surface of the recording layer or the interface between the recording layer and the substrate at the time of measurement. From the viewpoint of measurement accuracy, a transmission type is preferable.
In the case of the reflective type, a reflective layer may be provided between the recording layer and the substrate or on the opposite side of the recording layer across the substrate. Examples of the reflective layer include gold, platinum, and silicon.

<熱履歴測定装置>
本発明の熱履歴測定装置は、本発明の熱履歴測定方法に用いるための測定装置である。
その構成は、熱履歴測定具を設置するための設置部と、前記熱履歴測定具の記録層に向けて、可視から近赤外領域の光を照射する照射部と、前記熱履歴測定具の記録層を透過した光を受光する受光部と、前記照射光の強度と前記透過光の強度とから、少なくとも1つの波長に対する前記記録層の透過率を算出する透過率演算部と、初期透過率と加熱後透過率との間の少なくとも1つの変化量に基づいて、前記熱履歴測定具の受けた熱履歴のうち加熱温度を算出する熱履歴演算部と、を備える前記熱履歴測定装置である。
<Heat history measuring device>
The thermal history measuring device of the present invention is a measuring device for use in the thermal history measuring method of the present invention.
The configuration includes an installation unit for installing a thermal history measurement tool, an irradiation unit that irradiates light in the visible to near-infrared region toward the recording layer of the thermal history measurement tool, and the thermal history measurement tool. A light receiving portion that receives light transmitted through the recording layer, a transmittance calculating portion that calculates the transmittance of the recording layer for at least one wavelength from the intensity of the irradiation light and the intensity of the transmitted light, and an initial transmittance And a heat history calculation unit that calculates a heating temperature among heat histories received by the heat history measurement tool based on at least one change amount between the heat transfer rate and the transmittance after heating. .

また、本発明の熱履歴測定装置は、透過率演算部が、少なくとも2つの波長に対する記録層の透過率を算出し、熱履歴演算部が、さらに、推定した加熱温度と少なくとも1つの透過率変化量とに基づいて加熱時間を算出する、熱履歴測定装置としてもよい。   In the thermal history measurement device of the present invention, the transmittance calculation unit calculates the transmittance of the recording layer for at least two wavelengths, and the thermal history calculation unit further calculates the estimated heating temperature and at least one transmittance change. It is good also as a heat history measuring apparatus which calculates heating time based on quantity.

上記熱履歴演算部における、加熱温度及び加熱時間を推定する手段としては、前述した本発明の熱履歴測定方法と同様に、予備試験により予め作成した、透過率変化量と加熱温度又は加熱時間との関係を示すグラフ又は関係式を入力して、このグラフ又は関係式に測定した透過率変化量をプロット又は代入して算出する手段を用いることができる。   As a means for estimating the heating temperature and the heating time in the thermal history calculation unit, the transmittance change amount and the heating temperature or the heating time created in advance by a preliminary test, as in the above-described thermal history measurement method of the present invention. It is possible to use a means for inputting a graph or a relational expression indicating the above relationship and plotting or substituting the measured transmittance change amount into the graph or the relational expression.

測定する熱履歴測定具が透過型の場合には、照射部と受光部との間に設置部を配置して、熱履歴測定具を透過した光から透過率を算出する。また、測定する熱履歴測定具が反射型の場合には、照射部と受光部とを設置部に対して同じ側に入射角度を付けて配置し、熱履歴測定具を反射した光から透過率を算出する。   When the heat history measuring instrument to be measured is a transmission type, an installation part is disposed between the irradiation part and the light receiving part, and the transmittance is calculated from the light transmitted through the heat history measuring tool. In addition, when the thermal history measuring instrument to be measured is of a reflection type, the irradiation part and the light receiving part are arranged at the same angle with respect to the installation part, and the transmittance from the light reflected from the thermal history measuring instrument is set. Is calculated.

なお、本発明の熱履歴測定装置の上記各構成は、一般的な固体試料の透過率を測定する分光光度計等の構成を採用することができる。   In addition, each said structure of the thermal history measuring apparatus of this invention can employ | adopt structures, such as a spectrophotometer which measures the transmittance | permeability of a general solid sample.

以下、本発明の熱履歴測定方法等について、実施例及び比較例を参照して具体的に説明する。なお、本発明はこれらの実施例によって限定されるものではなく、本発明の技術的思想を逸脱しない範囲で種々の変更が可能である。   Hereinafter, the thermal history measurement method and the like of the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited to these examples, and various modifications can be made without departing from the technical idea of the present invention.

[実施例1]
(ATO膜の作製・評価)
25mm角、厚さ1mmの合成石英ガラス基板の表面に、ATO膜用コート材料(日揮触媒化成社製、ELCOM V−3560)をスピンコート法で均一に塗膜した。次に、300℃で1時間、大気中電気炉で加熱してATO膜を成膜した。ATO膜の膜厚は0.3μmであった。
その後、作製したATO膜を大気中電気炉で熱処理した。最高到達温度600〜850℃で15〜120分間保持した。温度は電気炉の熱電対の指示値を用いた。
[Example 1]
(Production and evaluation of ATO film)
A coating material for ATO film (ELCOM V-3560, manufactured by JGC Catalysts & Chemicals Co., Ltd.) was uniformly coated on the surface of a synthetic quartz glass substrate having a 25 mm square and a thickness of 1 mm by a spin coating method. Next, an ATO film was formed by heating in an electric furnace in the atmosphere at 300 ° C. for 1 hour. The thickness of the ATO film was 0.3 μm.
Thereafter, the prepared ATO film was heat-treated in an electric furnace in the atmosphere. It was held at a maximum temperature of 600-850 ° C. for 15-120 minutes. For the temperature, the indicated value of the thermocouple of the electric furnace was used.

作製したATO膜の可視から近赤外領域(400〜2500nm)における熱処理前の初期透過率と熱処理後の加熱後透過率を、分光光度計(島津製作所社製、UV−3100PC)を用いて測定した。なお、上記石英基板をリファレンスとして測定した。
熱処理前と700℃で30分間熱処理後のATO膜の透過スペクトルの測定結果を図1に示す。また、400〜800℃で30分間熱処理後のATO膜の表面状態を走査型電子顕微鏡で観察した画像を図2に示す。
The initial transmittance before heat treatment and the transmittance after heating after heat treatment in the visible to near-infrared region (400-2500 nm) of the prepared ATO film were measured using a spectrophotometer (manufactured by Shimadzu Corporation, UV-3100PC). did. The quartz substrate was used as a reference.
The measurement results of the transmission spectrum of the ATO film before heat treatment and after heat treatment at 700 ° C. for 30 minutes are shown in FIG. Moreover, the image which observed the surface state of the ATO film | membrane after heat processing for 30 minutes at 400-800 degreeC with the scanning electron microscope is shown in FIG.

[比較例1]
(Al膜の作製・評価)
直径6インチ、厚さ0.625mmの単結晶シリコン基板の表面に、マグネトロンスパッタ装置を用いてアルミニウム薄膜を成膜した。Al膜の膜厚は0.6μmであった。
次に、作製したAl膜を300〜500℃で30分間、大気中電気炉で熱処理した。温度は電気炉の熱電対の指示値を用いた。熱処理後のAl膜の表面状態を走査型電子顕微鏡で観察した画像を合わせて図2に示す。
[Comparative Example 1]
(Preparation and evaluation of Al film)
An aluminum thin film was formed on the surface of a single crystal silicon substrate having a diameter of 6 inches and a thickness of 0.625 mm using a magnetron sputtering apparatus. The film thickness of the Al film was 0.6 μm.
Next, the produced Al film was heat-treated at 300 to 500 ° C. for 30 minutes in an atmospheric electric furnace. For the temperature, the indicated value of the thermocouple of the electric furnace was used. An image obtained by observing the surface state of the Al film after the heat treatment with a scanning electron microscope is shown in FIG.

図1の結果より、ATO膜を熱処理することにより、波長1800nm付近を境に、それより長波長側では透過率が減少し、短波長側では透過率が増加することが分かる。
また、図2の結果より、Al膜では温度に依存して膜表面の構造的な変化が認められるが、ATO膜では温度が上昇しても膜表面に構造的な変化は認められなかった。
From the results of FIG. 1, it can be seen that the heat treatment of the ATO film decreases the transmittance on the longer wavelength side and increases the transmittance on the shorter wavelength side at a wavelength near 1800 nm.
From the results shown in FIG. 2, the Al film showed a structural change on the film surface depending on the temperature, but the ATO film showed no structural change on the film surface even when the temperature increased.

ATO膜の熱処理による透過率変化は、薄膜の物理的な構造変化によるものではなく、母材である酸化スズ(SnO)の性質に由来すると考えられる。そのメカニズムは必ずしも明らかではないが、近赤外領域の透過率の減少については、加熱によるキャリアの増加が反射や吸収を増加させることなどが考えられる。一方、500〜1800nm付近の透過率の増加については、加熱による欠陥等の減少が吸収や散乱を減少させることなどが考えられる。なお、この変化は不可逆的で安定なものと考えられる。It is considered that the transmittance change due to the heat treatment of the ATO film is not due to the physical structural change of the thin film but is derived from the properties of tin oxide (SnO 2 ) as a base material. Although the mechanism is not necessarily clear, the decrease in the transmittance in the near-infrared region may be that the increase in carriers due to heating increases reflection and absorption. On the other hand, regarding the increase in transmittance in the vicinity of 500 to 1800 nm, it can be considered that a decrease in defects and the like due to heating reduces absorption and scattering. This change is considered irreversible and stable.

(温度依存性の確認)
次に、熱処理前と600〜850℃で30分間熱処理後のATO膜の透過率測定結果から、透過率変化量と加熱温度との間の温度依存性を確認した。波長2000nm及び1400nmにおける初期透過率(T)及び加熱後透過率(T)の測定結果から、吸光度比(log10(1/T)/log10(1/T))を算出し、熱処理温度に対してプロットしたグラフを図3に示す。
(Confirmation of temperature dependence)
Next, the temperature dependence between the amount of change in transmittance and the heating temperature was confirmed from the measurement results of the transmittance of the ATO film before heat treatment and after heat treatment at 600 to 850 ° C. for 30 minutes. The absorbance ratio (log 10 (1 / T a ) / log 10 (1 / T 0 )) was calculated from the measurement results of the initial transmittance (T 0 ) and the post-heating transmittance (T a ) at wavelengths of 2000 nm and 1400 nm. FIG. 3 shows a graph plotted against the heat treatment temperature.

図3の結果より、波長2000nmにおける吸光度比は加熱温度に依存して単調に増加するが、波長1400nmにおける吸光度比は加熱温度が上昇しても単調には変化せず、波長により異なる温度依存性を示すことが分かる。この長波長側の単調増加する温度依存性を利用することにより、測定した透過率変化量に基づいて加熱温度(最高到達温度)を推定することが可能となる。   From the results of FIG. 3, the absorbance ratio at a wavelength of 2000 nm increases monotonously depending on the heating temperature, but the absorbance ratio at a wavelength of 1400 nm does not change monotonously even when the heating temperature rises, and varies depending on the wavelength. It can be seen that By utilizing the monotonically increasing temperature dependence on the long wavelength side, it is possible to estimate the heating temperature (maximum temperature reached) based on the measured transmittance change amount.

(時間依存性の確認)
また、熱処理前と600℃又は800℃で15〜120分間熱処理後のATO膜の透過率測定結果から、透過率変化量と加熱時間との間の時間依存性を確認した。熱処理温度毎に、波長2000nm及び1400nmにおける初期透過率(T)及び加熱後透過率(T)の測定結果から、吸光度比(log10(1/T)/log10(1/T))を算出し、熱処理時間に対してプロットしたグラフを図4に示す。
(Check time dependency)
Moreover, the time dependence between the transmittance | permeability change amount and the heating time was confirmed from the transmittance | permeability measurement result of the ATO film | membrane before heat processing and after heat processing for 15 to 120 minutes at 600 degreeC or 800 degreeC. From the measurement results of the initial transmittance (T 0 ) and the transmittance after heating (T a ) at wavelengths of 2000 nm and 1400 nm for each heat treatment temperature, the absorbance ratio (log 10 (1 / T a ) / log 10 (1 / T 0) )) Is calculated and a graph plotted with respect to the heat treatment time is shown in FIG.

図4の結果より、波長1400nmにおける吸光度比は加熱時間に依存して単調に減少するが、波長2000nmにおける吸光度比は加熱時間が増加してもほとんど変化せず、波長により異なる時間依存性を示すことが分かる。この短波長側の単調減少する時間依存性を利用することにより、推定した加熱温度と測定した透過率変化量とに基づいて加熱時間を推定することが可能となる。   From the results of FIG. 4, the absorbance ratio at a wavelength of 1400 nm monotonously decreases depending on the heating time, but the absorbance ratio at a wavelength of 2000 nm hardly changes even when the heating time is increased, and shows a time dependency that varies depending on the wavelength. I understand that. By utilizing the time-dependent dependence of the short wavelength on the short wavelength side, it is possible to estimate the heating time based on the estimated heating temperature and the measured transmittance change amount.

[実施例2]
(適用温度範囲の確認)
実施例1と同様の手順により、合成石英ガラス基板上に膜厚1μmのATO膜を成膜した。また、実施例1と同様の方法により、作製したATO膜を400〜1100℃で30分間熱処理した。さらに、実施例1と同様の方法により、波長2300nmにおける初期透過率と加熱後透過率を測定した。
透過率測定結果より吸光度比を算出して、吸光度比を熱処理温度に対してプロットしたグラフを図5に示す。
[Example 2]
(Confirmation of applicable temperature range)
An ATO film having a thickness of 1 μm was formed on a synthetic quartz glass substrate by the same procedure as in Example 1. Further, the produced ATO film was heat-treated at 400 to 1100 ° C. for 30 minutes by the same method as in Example 1. Further, by the same method as in Example 1, the initial transmittance at a wavelength of 2300 nm and the transmittance after heating were measured.
FIG. 5 shows a graph in which the absorbance ratio is calculated from the transmittance measurement result and the absorbance ratio is plotted against the heat treatment temperature.

図5の結果より、波長2300nmにおける吸光度比は、400〜1000℃の温度範囲において加熱温度に依存して単調に増加するが、1100℃では大きく低下することが分かる。したがって、約1000℃までの温度範囲であれば、単調増加する温度依存性を利用することにより加熱温度(最高到達温度)を推定できると考えられる。   From the result of FIG. 5, it can be seen that the absorbance ratio at a wavelength of 2300 nm monotonously increases depending on the heating temperature in the temperature range of 400 to 1000 ° C., but greatly decreases at 1100 ° C. Therefore, it is considered that the heating temperature (maximum temperature reached) can be estimated by utilizing the monotonically increasing temperature dependence within the temperature range up to about 1000 ° C.

[実施例3]
(膜厚の影響)
実施例1と同様の手順により、合成石英ガラス基板上にATO膜を成膜した。ATO膜用コート材料に溶媒を加えて濃度を調整し、0.2〜1.4μmの範囲で6種類の膜厚を調製した。また、実施例1と同様の方法により、可視から近赤外領域(400〜2500nm)における初期透過率を測定した。透過スペクトルの測定結果を図6に示す。
[Example 3]
(Effect of film thickness)
An ATO film was formed on a synthetic quartz glass substrate by the same procedure as in Example 1. A solvent was added to the coating material for the ATO film to adjust the concentration, and six kinds of film thicknesses were prepared in the range of 0.2 to 1.4 μm. Further, the initial transmittance in the visible to near infrared region (400 to 2500 nm) was measured by the same method as in Example 1. The measurement result of the transmission spectrum is shown in FIG.

図6の結果より、膜厚が厚くなると長波長側における初期透過率が低下することが分かる。一方、膜厚が薄くなると短波長側における初期透過率Tと長波長側における初期透過率Tとの比(T/T)が小さくなることが分かる。いずれの場合にも、熱処理前後の透過率変化量が小さくなり測定精度が低下する。本実施例の条件では、膜厚0.2〜1.4μmの範囲であれば十分な測定精度を実現できると考えられる。From the results of FIG. 6, it can be seen that the initial transmittance on the long wavelength side decreases as the film thickness increases. On the other hand, it can be seen that as the film thickness decreases, the ratio (T 1 / T 2 ) between the initial transmittance T 1 on the short wavelength side and the initial transmittance T 2 on the long wavelength side decreases. In either case, the amount of change in transmittance before and after the heat treatment becomes small and the measurement accuracy is lowered. Under the conditions of this example, it is considered that sufficient measurement accuracy can be realized if the film thickness is in the range of 0.2 to 1.4 μm.

[実施例4]
(基板の影響)
25mm角、厚さ0.625mmの単結晶シリコン基板の表面に、ATO膜用コート材料(日揮触媒化成社製、ELCOM V−3560)を、自動塗工装置を用いて均一に塗膜した。次に、300℃で1時間、大気中電気炉で加熱してATO膜を成膜した。ATO膜の膜厚は1.0μmであった。
[Example 4]
(Influence of substrate)
A coating material for ATO film (manufactured by JGC Catalysts & Chemicals, ELCOM V-3560) was uniformly coated on the surface of a single crystal silicon substrate having a 25 mm square and a thickness of 0.625 mm using an automatic coating apparatus. Next, an ATO film was formed by heating in an electric furnace in the atmosphere at 300 ° C. for 1 hour. The thickness of the ATO film was 1.0 μm.

その後、実施例1と同様の方法により、作製したATO膜を400〜1000℃で30分間熱処理した。また、実施例1と同様の方法により、可視から近赤外領域(400〜2500nm)における初期透過率と加熱後透過率を測定した。なお、リファレンスは測定しなかった。
熱処理前と700℃で30分間熱処理後のATO膜及びシリコン基板の透過スペクトルの測定結果を図7に示す。
Thereafter, the produced ATO film was heat-treated at 400 to 1000 ° C. for 30 minutes by the same method as in Example 1. Further, by the same method as in Example 1, the initial transmittance and the post-heating transmittance in the visible to near-infrared region (400 to 2500 nm) were measured. The reference was not measured.
The measurement results of the transmission spectra of the ATO film and silicon substrate before heat treatment and after heat treatment at 700 ° C. for 30 minutes are shown in FIG.

図7の結果より、シリコン基板を用いることにより、可視領域の透過率がほぼ0%になり近赤外領域における透過率も35%以下に低下しているが、これはシリコンによる吸収の影響である。また、熱処理することにより、1700nm付近を境に、それより短波長側では透過率が増加し、長波長側では透過率が減少することが分かる。この熱処理による透過率変化の傾向は、石英基板を用いた場合と同様であった。   From the result of FIG. 7, by using a silicon substrate, the transmittance in the visible region is almost 0% and the transmittance in the near infrared region is also lowered to 35% or less. This is due to the effect of absorption by silicon. is there. It can also be seen that the heat treatment increases the transmittance on the shorter wavelength side and the transmittance decreases on the longer wavelength side with the vicinity of 1700 nm as a boundary. The tendency of the transmittance change due to this heat treatment was the same as that when a quartz substrate was used.

次に、熱処理前と400〜1000℃で30分間熱処理後のATO膜及びシリコン基板の透過率測定結果から、透過率変化量と加熱温度との間の温度依存性を確認した。波長2300nmにおける初期透過率及び加熱後透過率の測定結果より吸光度比を算出して、吸光度比を熱処理温度に対してプロットしたグラフを図8に示す。   Next, the temperature dependence between the amount of change in transmittance and the heating temperature was confirmed from the transmittance measurement results of the ATO film and the silicon substrate before heat treatment and after heat treatment at 400 to 1000 ° C. for 30 minutes. FIG. 8 shows a graph in which the absorbance ratio is calculated from the measurement results of the initial transmittance and the transmittance after heating at a wavelength of 2300 nm, and the absorbance ratio is plotted against the heat treatment temperature.

図8の結果より、波長2300nmにおける吸光度比は、400〜1000℃の温度範囲において、加熱温度に依存して単調に増加することが分かる。したがって、シリコン基板を用いた場合でも、この単調増加する温度依存性を利用することにより加熱温度(最高到達温度)を推定できると考えられる。   From the results of FIG. 8, it can be seen that the absorbance ratio at a wavelength of 2300 nm monotonously increases depending on the heating temperature in the temperature range of 400 to 1000 ° C. Therefore, even when a silicon substrate is used, it is considered that the heating temperature (maximum temperature reached) can be estimated by utilizing this monotonically increasing temperature dependency.

本発明の熱履歴測定方法及び熱履歴測定具は、配線等の付加物が不要で搬送式や密閉式の熱処理炉に用いることができ、約300〜1000℃の広い温度領域において簡便かつ正確に熱履歴や温度分布を測定することができる。また、本発明の熱履歴測定具及び熱履歴測定装置は、取扱いが容易で操作が簡便である。   The thermal history measuring method and the thermal history measuring instrument of the present invention do not require additional products such as wiring, and can be used in a heat treatment furnace of a transfer type or a closed type, and can be easily and accurately in a wide temperature range of about 300 to 1000 ° C. Thermal history and temperature distribution can be measured. Moreover, the thermal history measuring tool and the thermal history measuring device of the present invention are easy to handle and easy to operate.

したがって、本発明の熱履歴測定方法、熱履歴測定具及び熱履歴測定装置は、多様な熱処理工程が設けられている、液晶、半導体、ガラス、セラミックスなどの製造分野において特に有用である。

Therefore, the thermal history measuring method, thermal history measuring instrument, and thermal history measuring device of the present invention are particularly useful in the field of manufacturing liquid crystals, semiconductors, glass, ceramics, etc., in which various heat treatment steps are provided.

Claims (9)

熱履歴を記録する熱履歴測定具を用いて熱履歴を推定する熱履歴測定方法であって、
前記熱履歴測定具が不純物をドープした酸化スズからなる記録層を含み、
前記熱履歴測定具を熱処理する前に、可視から近赤外領域の光の少なくとも1つの波長に対する前記記録層の初期透過率を測定する段階と、
前記熱履歴測定具を熱処理した後に、前記初期透過率を測定した少なくとも1つの波長と同一の波長に対する前記記録層の加熱後透過率を測定する段階と、
前記初期透過率と前記加熱後透過率との間の少なくとも1つの変化量に基づいて、前記熱履歴測定具の受けた熱履歴のうち加熱温度を推定する段階と、
を含む前記熱履歴測定方法。
A thermal history measuring method for estimating a thermal history using a thermal history measuring tool for recording a thermal history,
The thermal history measuring instrument includes a recording layer made of tin oxide doped with impurities,
Measuring the initial transmittance of the recording layer for at least one wavelength of light in the visible to near infrared region before heat treating the thermal history measuring tool;
Measuring the post-heating transmittance of the recording layer for the same wavelength as the at least one wavelength of the initial transmittance after heat treating the thermal history measuring tool;
Estimating a heating temperature among heat histories received by the thermal history measuring tool based on at least one change between the initial transmittance and the transmittance after heating;
The said heat history measuring method containing.
初期透過率及び加熱後透過率を測定する段階において、少なくとも2つの波長に対する記録層の透過率を測定し、さらに、推定した加熱温度と少なくとも1つの透過率変化量とに基づいて、熱履歴測定具の受けた熱履歴のうち加熱時間を推定する段階を含む、請求項1に記載の熱履歴測定方法。   In the stage of measuring the initial transmittance and the transmittance after heating, the transmittance of the recording layer with respect to at least two wavelengths is measured, and further, the thermal history measurement is performed based on the estimated heating temperature and at least one transmittance change amount. The heat history measuring method according to claim 1, comprising the step of estimating the heating time of the heat history received by the tool. 不純物をドープした酸化スズがアンチモンドープ酸化スズ(ATO)又はフッ素ドープ酸化スズ(FTO)であり、初期透過率及び加熱後透過率を測定する段階において、波長1900nm〜2500nmに対する透過率を測定する、請求項1に記載の熱履歴測定方法。   The tin oxide doped with impurities is antimony-doped tin oxide (ATO) or fluorine-doped tin oxide (FTO), and in the step of measuring the initial transmittance and the transmittance after heating, the transmittance for wavelengths of 1900 nm to 2500 nm is measured. The thermal history measuring method according to claim 1. 不純物をドープした酸化スズがアンチモンドープ酸化スズ(ATO)又はフッ素ドープ酸化スズ(FTO)であり、初期透過率及び加熱後透過率を測定する段階において、波長1900nm〜2500nm及び波長1100nm〜1600nmに対する透過率を測定し、熱履歴を推定する段階において、前記波長1900nm〜2500nmにおける透過率変化量に基づいて加熱温度を推定し、該推定した加熱温度と前記波長1100nm〜1600nmにおける透過率変化量とに基づいて加熱時間を推定する、請求項2に記載の熱履歴測定方法。   The impurity-doped tin oxide is antimony-doped tin oxide (ATO) or fluorine-doped tin oxide (FTO), and the transmittance for wavelengths 1900 nm to 2500 nm and wavelengths 1100 nm to 1600 nm is measured at the stage of measuring the initial transmittance and the transmittance after heating. In the step of measuring the rate and estimating the thermal history, the heating temperature is estimated based on the transmittance change amount at the wavelength of 1900 nm to 2500 nm, and the estimated heating temperature and the transmittance change amount at the wavelength of 1100 nm to 1600 nm are calculated. The heat history measuring method according to claim 2, wherein the heating time is estimated based on the heat history. 熱履歴を記録する熱履歴測定具であって、
不純物をドープした酸化スズからなる記録層と、300℃以上の耐熱性又は近赤外領域における透明性及び300℃以上の耐熱性を有する基板と、を含む前記熱履歴測定具。
A thermal history measuring instrument for recording thermal history,
The said thermal history measuring tool containing the recording layer which consists of tin oxide which doped the impurity, and the board | substrate which has the heat resistance of 300 degreeC or more or the transparency in a near infrared region, and the heat resistance of 300 degreeC or more.
不純物をドープした酸化スズが、アンチモンドープ酸化スズ(ATO)又はフッ素ドープ酸化スズ(FTO)であり、基板が、ガラス、シリコン、石英、サファイア又はセラミックスのいずれか1種からなる、請求項5に記載の熱履歴測定具。   The impurity-doped tin oxide is antimony-doped tin oxide (ATO) or fluorine-doped tin oxide (FTO), and the substrate is made of any one of glass, silicon, quartz, sapphire, or ceramics. The thermal history measuring instrument described. 記録層の波長1100nmに対する初期透過率Tと波長2300nmに対する初期透過率Tとの比(T/T)が、1.5〜23の範囲である、請求項5又は6に記載の熱履歴測定具。The ratio (T 1 / T 2 ) of the initial transmittance T 1 for the wavelength 1100 nm and the initial transmittance T 2 for the wavelength 2300 nm of the recording layer is in the range of 1.5 to 23. Thermal history measuring tool. 請求項1に記載の熱履歴測定方法に用いる熱履歴測定装置であって、
熱履歴測定具を設置するための設置部と、
前記熱履歴測定具の記録層に向けて、可視から近赤外領域の光を照射する照射部と、
前記熱履歴測定具の記録層を透過した光を受光する受光部と、
前記照射光の強度と前記透過光の強度とから、少なくとも1つの波長に対する前記記録層の透過率を算出する透過率演算部と、
初期透過率と加熱後透過率との間の少なくとも1つの変化量に基づいて、前記熱履歴測定具の受けた熱履歴のうち加熱温度を算出する熱履歴演算部と、
を備える前記熱履歴測定装置。
A thermal history measuring device used in the thermal history measuring method according to claim 1,
An installation section for installing a thermal history measuring instrument;
An irradiation unit that irradiates light in the near-infrared region from the visible toward the recording layer of the thermal history measuring tool,
A light receiving unit that receives light transmitted through the recording layer of the thermal history measuring tool;
A transmittance calculator that calculates the transmittance of the recording layer for at least one wavelength from the intensity of the irradiation light and the intensity of the transmitted light;
Based on at least one amount of change between the initial transmittance and the transmittance after heating, a heat history calculation unit that calculates a heating temperature out of the heat history received by the heat history measuring tool;
The thermal history measuring device comprising:
請求項2に記載の熱履歴測定方法に用いる熱履歴測定装置であって、透過率演算部が、少なくとも2つの波長に対する記録層の透過率を算出し、熱履歴演算部が、さらに、推定した加熱温度と少なくとも1つの透過率変化量とに基づいて加熱時間を算出する、請求項8に記載の熱履歴測定装置。

The thermal history measuring device used for the thermal history measuring method according to claim 2, wherein the transmittance calculating unit calculates the transmittance of the recording layer for at least two wavelengths, and the thermal history calculating unit further estimates. The heat history measuring device according to claim 8, wherein the heating time is calculated based on the heating temperature and at least one transmittance change amount.

JP2017551866A 2015-11-16 2016-11-15 Heat history measuring method, heat history measuring tool, and heat history measuring device Active JP6714232B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015223808 2015-11-16
JP2015223808 2015-11-16
PCT/JP2016/083737 WO2017086280A1 (en) 2015-11-16 2016-11-15 Method for measuring heat history, implement for measuring heat history, and device for measuring heat history

Publications (2)

Publication Number Publication Date
JPWO2017086280A1 true JPWO2017086280A1 (en) 2018-09-27
JP6714232B2 JP6714232B2 (en) 2020-06-24

Family

ID=58718927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017551866A Active JP6714232B2 (en) 2015-11-16 2016-11-15 Heat history measuring method, heat history measuring tool, and heat history measuring device

Country Status (3)

Country Link
JP (1) JP6714232B2 (en)
TW (1) TWI687663B (en)
WO (1) WO2017086280A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160728A (en) * 1983-03-04 1984-09-11 Omron Tateisi Electronics Co Optical temperature sensor
JPS59193324A (en) * 1983-04-19 1984-11-01 Omron Tateisi Electronics Co Optical temperature sensor
JPS6379339A (en) * 1986-09-22 1988-04-09 Nikon Corp Method and apparatus for measuring temperature of semiconductor substrate
GB2238868A (en) * 1989-11-22 1991-06-12 Res Corp Technologies Inc Silicon wafer temperature measurement by optical transmission monitoring.
WO2005018947A1 (en) * 2003-08-21 2005-03-03 Mitsubishi Kagaku Media Co., Ltd. Recording medium
JP5203801B2 (en) * 2007-07-09 2013-06-05 株式会社神戸製鋼所 Temperature measuring method, temperature measuring tool and temperature measuring device
US9976913B2 (en) * 2013-11-26 2018-05-22 King Abdullah University Of Science And Technology Thermal history devices, systems for thermal history detection, and methods for thermal history detection
JP6379339B2 (en) 2015-09-08 2018-08-29 株式会社公害防止機器研究所 Gas purification method

Also Published As

Publication number Publication date
TW201727204A (en) 2017-08-01
TWI687663B (en) 2020-03-11
WO2017086280A1 (en) 2017-05-26
JP6714232B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
Khusayfan et al. Study of structure and electro‐optical characteristics of indium tin oxide thin films
CN104697639B (en) A kind of MOCVD device real-time temperature measurement system self-calibrating device and method
Baba et al. Development of ultrafast laser flash methods for measuring thermophysical properties of thin films and boundary thermal resistances
JP5203801B2 (en) Temperature measuring method, temperature measuring tool and temperature measuring device
CN104465850B (en) Pyroelectric infrared detector based on Graphene absorbed layer and manufacture method thereof
JP7162835B2 (en) blackbody furnace
WO2009081748A1 (en) Radiometric temperature measuring method and radiometric temperature measuring system
Zhai et al. Giant impact of self-photothermal on light-induced ultrafast insulator-to-metal transition in VO 2 nanofilms at terahertz frequency
JP6714232B2 (en) Heat history measuring method, heat history measuring tool, and heat history measuring device
JP6893657B2 (en) Temperature measuring method, temperature measuring tool, and temperature measuring device
CN104697637B (en) A kind of real time temperature measurement method of film growth
US20140369387A1 (en) Method for the temperature measurement of substrates in a vacuum chamber
CN104697666B (en) A kind of MOCVD reaction chambers temp measuring method
Zarrinkhameh et al. Effect of oxidation and annealing temperature on optical and structural properties of SnO 2
CN104697638B (en) A kind of MOCVD device real-time temperature measurement system method for self-calibrating
Allegrezza et al. Transparent conducting oxides for high temperature processing
CN104697636B (en) A kind of self calibration realtime temperature measurer of film growth
US20010022803A1 (en) Temperature-detecting element
WO2020105344A1 (en) Method for measuring temperature of glass article
CN104701200B (en) A kind of device of on-line real-time measuremen epitaxial wafer temperature
JP5590454B2 (en) Electrical element, integrated element and electronic circuit
KR100974502B1 (en) Temperature detecting element in the furnace
Terada et al. Semitransparent properties of an intrinsic silicon wafer and its application to an optical fiber temperature sensor
CN107895564B (en) A kind of OLED structure and its monitoring internal temperature method
Basnet et al. Theoretical Model for Determining the Thickness and Optical Constants of Transparent Conducting Oxide Thin Films From the Measured Reflectance Spectra

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200424

R150 Certificate of patent or registration of utility model

Ref document number: 6714232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250