JPWO2017073765A1 - Lithium sodium titanium composite oxide powder for electrode of electricity storage device, active material, and electrode sheet and electricity storage device using the same - Google Patents

Lithium sodium titanium composite oxide powder for electrode of electricity storage device, active material, and electrode sheet and electricity storage device using the same Download PDF

Info

Publication number
JPWO2017073765A1
JPWO2017073765A1 JP2017547912A JP2017547912A JPWO2017073765A1 JP WO2017073765 A1 JPWO2017073765 A1 JP WO2017073765A1 JP 2017547912 A JP2017547912 A JP 2017547912A JP 2017547912 A JP2017547912 A JP 2017547912A JP WO2017073765 A1 JPWO2017073765 A1 JP WO2017073765A1
Authority
JP
Japan
Prior art keywords
lithium
storage device
composite oxide
titanium composite
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017547912A
Other languages
Japanese (ja)
Inventor
敦允 中川
敦允 中川
大谷 慎一郎
慎一郎 大谷
三好 和弘
和弘 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2017073765A1 publication Critical patent/JPWO2017073765A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

空間群Cmcaまたは空間群Fmmmに属する結晶構造を有する、一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)で表されるリチウムナトリウムチタン複合酸化物を主相とする、蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末を提供する。Having a crystal structure belonging to the space group Cmca or space group Fmmm, the general formula: Li 2 + x Na 2 + y Ti 6-z M z O 14 ( provided that at least M is selected Al, Ga, an In, V, from Nb and Ta X is −0.1 ≦ x ≦ 0.1, y is −0.1 ≦ y ≦ 0.1, and z is 0 <z ≦ 1. Provided is a lithium sodium titanium composite oxide powder for an electrode active material of an electricity storage device, comprising a lithium sodium titanium composite oxide as a main phase.

Description

本発明は、蓄電デバイスの電極材料等として好適なリチウムナトリウムチタン複合酸化物粉末、および、このリチウムナトリウムチタン複合酸化物粉末を含む活物質材料と、この活物質材料を用いた電極シートおよび蓄電デバイスに関するものである。   The present invention relates to a lithium sodium titanium composite oxide powder suitable as an electrode material for an electricity storage device, an active material containing the lithium sodium titanium composite oxide powder, an electrode sheet using the active material, and an electricity storage device It is about.

近年、蓄電デバイスの電極材料として種々の材料が研究されている。その中でも、リチウムチタン複合酸化物は、負極の活物質として用いた場合に入出力特性に優れる蓄電デバイスを提供できるので、HEV、PHEV、BEVといった電気自動車用の蓄電デバイスの活物質材料として注目されている。なかでも、スピネル構造を有するチタン酸リチウムは、充放電に伴う体積変化がほとんどなく、三次元的なLiイオンの移動が可能であり、特に充放電サイクル特性や入出力特性に優れるため、電気自動車用の蓄電デバイスの活物質材料として有望である。   In recent years, various materials have been studied as electrode materials for power storage devices. Among them, lithium-titanium composite oxides can provide an electricity storage device with excellent input / output characteristics when used as an active material for a negative electrode, and thus are attracting attention as an active material material for electricity storage devices for electric vehicles such as HEV, PHEV, and BEV. ing. Among them, lithium titanate having a spinel structure has almost no volume change associated with charge / discharge and can move three-dimensional Li ions, and is particularly excellent in charge / discharge cycle characteristics and input / output characteristics. It is promising as an active material for electricity storage devices.

しかしながら、スピネル構造を有するチタン酸リチウム(LiTi12)は、リチウムの吸蔵放出反応がリチウム基準で約1.55Vという高い電位で進行するため、それが適用された蓄電デバイスの作動電圧が低くなり、エネルギー密度が小さくなる。However, in lithium titanate having a spinel structure (Li 4 Ti 5 O 12 ), since the occlusion / release reaction of lithium proceeds at a high potential of about 1.55 V with respect to lithium, the operating voltage of the electricity storage device to which it is applied Becomes lower and the energy density becomes smaller.

そこで、リチウムの吸蔵放出反応が比較的低い電位で進行する電極材料として、アルカリ金属類及びアルカリ土類金属類の元素を主要構成元素として含有する、空間群Cmcaまたは空間群Fmmmに属する結晶構造のリチウムチタン複合酸化物が注目され、いくつかの組成物が、電極材料として検討されている。   Therefore, as an electrode material in which the occlusion and release reaction of lithium proceeds at a relatively low potential, it has a crystal structure belonging to space group Cmca or space group Fmmm, which contains alkali metal and alkaline earth metal elements as main constituent elements. Lithium titanium composite oxides have attracted attention, and several compositions have been studied as electrode materials.

例えば特許文献1には、空間群がCmcaである結晶構造を有する、Li2+xATi14(但し、AはNa、K、Mg、Ca、Ba及びSrよりなる群から選ばれる少なくとも1種類の元素で、TはTi、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Hf、Ta、W、B、Al、Ga及びInよりなる群から選ばれる少なくとも1種類の元素で、xは0≦x≦5である。)、およびLi2+xATi6−y14(但し、AはNa、K、Mg、Ca、Ba及びSrよりなる群から選ばれる少なくとも1種類の元素で、MはV、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Hf、Ta、W、B、Al、Ga及びInよりなる群から選ばれる少なくとも1種類の元素で、xは0≦x≦5で、yは0<y<6である。)なる組成式が記載され、前記組成式において、AがMg、Ca、BaおよびSrのうちの一種または二種、TがTi、そして、Mを含有する組成式においては、MがAl、V、Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、B、Ga、ZrおよびInのうちの一種の組成物の一部が具体的に開示され、エネルギー密度が向上された非水電解質電池を提供できることが示されている。For example, Patent Document 1 discloses that Li 2 + x ATi 6 O 14 (where A is at least one selected from the group consisting of Na, K, Mg, Ca, Ba, and Sr) having a crystal structure in which the space group is Cmca. T is at least one element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Hf, Ta, W, B, Al, Ga, and In. And x is 0 ≦ x ≦ 5), and Li 2 + x AT i6- y My O 14 (where A is selected from the group consisting of Na, K, Mg, Ca, Ba, and Sr) M is selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Hf, Ta, W, B, Al, Ga, and In. At least one element, x is ≦ x ≦ 5 and y is 0 <y <6). In the composition formula, A is one or two of Mg, Ca, Ba and Sr, T is Ti, And in the composition formula containing M, M is a part of a kind of composition of Al, V, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, B, Ga, Zr and In. Is specifically disclosed, and it has been shown that a nonaqueous electrolyte battery with improved energy density can be provided.

また、特許文献2には、Li2+n1Na2−x1x1Ti14(n1は0≦n1≦2、x1は0<x1≦1.2を満たす。)、Li2+n2Na2−x2−y2x2Rby2Ti14(n2は0≦n2≦2、x2およびy2は0≦x2≦1.2、0<y2≦0.5および0<5x2+12y2≦6を満たす。)、およびLi2+n3Na2−x3−y3−z3x3Rby3Csz3Ti14(n3は0≦n3≦2、x3、y3およびz3は0≦x3≦0.25、0≦y3≦0.05、0<z3≦0.05および0<y3+z3≦0.05を満たす。)なる組成式が記載され、これらの組成式に含まれる、NaおよびKを必須元素とする組成物の一部が具体的に開示され、LiTi12とほぼ同等の容量維持率が得られることが示されている。Further, Patent Document 2, Li 2 + n1 Na 2 -x1 K x1 Ti 6 O 14 (n1 is 0 ≦ n1 ≦ 2, x1 satisfies 0 <x1 ≦ 1.2.), Li 2 + n2 Na 2-x2- y2 K x2 Rb y2 Ti 6 O 14 (n2 is 0 ≦ n2 ≦ 2, x2 and y2 satisfy the 0 ≦ x2 ≦ 1.2,0 <y2 ≦ 0.5 and 0 <5x2 + 12y2 ≦ 6. ), and Li 2 + n3 Na 2-x3-y3-z3 K x3 Rb y3 Cs z3 Ti 6 O 14 (n3 is 0 ≦ n3 ≦ 2, x3, y3 and z3 are 0 ≦ x3 ≦ 0.25, 0 ≦ y3 ≦ 0.05, 0 <z3 ≦ 0.05 and 0 <y3 + z3 ≦ 0.05) are described, and a part of the composition containing Na and K as essential elements contained in these compositional formulas is concrete. disclosed, Li 4 Ti 5 O 1 Substantially the same capacity retention ratio is indicated to be obtained when.

特開2005−267940号公報JP 2005-267940 A 特開2014−103032号公報JP, 2014-103032, A

しかしながら、以上のような、空間群Cmcaまたは空間群Fmmmに属する結晶構造の、従来のリチウムチタン複合酸化物は、高温における充放電サイクル特性が悪く、高温環境下でも充放電サイクル特性に優れることが要求される電気自動車用の蓄電デバイスへの適用には重要な課題となっている。また、高温環境下でのガス発生を抑制することも重要な課題である。   However, the conventional lithium titanium composite oxide having a crystal structure belonging to the space group Cmca or the space group Fmmm as described above has poor charge / discharge cycle characteristics at high temperatures, and is excellent in charge / discharge cycle characteristics even in a high temperature environment. This is an important issue for the application to the required electric storage devices for electric vehicles. It is also an important issue to suppress gas generation in a high temperature environment.

そこで本発明は、高温環境下での充放電サイクル特性に優れ、高温環境下での充放電サイクル後のガス発生が抑制されたリチウムナトリウムチタン複合酸化物粉末、及び活物質材料、並びにそれを用いた電極シートおよび蓄電デバイスを提供することを目的とする。   Accordingly, the present invention provides a lithium sodium titanium composite oxide powder that is excellent in charge / discharge cycle characteristics in a high temperature environment and that suppresses gas generation after the charge / discharge cycle in a high temperature environment, and an active material, and uses the same. It is an object of the present invention to provide an electrode sheet and an electricity storage device.

本発明者らは、以上の課題について検討した結果、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有するリチウムチタン複合酸化物において、Naを含有し、さらにTiサイトを置換する元素として、周期表第13族に属するAl、Ga、In、周期表第5族に属するV、Nb、Taから選択される少なくとも一種の元素を含有するリチウムナトリウムチタン複合酸化物粉末が、高温における充放電サイクル寿命が長く、高温環境下における充放電サイクル後のガス発生量が少ないことを見出して本発明を完成した。すなわち、本発明は以下の事項に関する。   As a result of studying the above problems, the present inventors have found that a lithium-titanium composite oxide having a crystal structure belonging to the space group Cmca or the space group Fmmm contains Na and further contains a periodic table as an element for substituting the Ti site. Lithium sodium titanium composite oxide powder containing at least one element selected from Al, Ga, In belonging to Group 13 and V, Nb, Ta belonging to Group 5 of the periodic table has a charge / discharge cycle life at high temperature. The present invention was completed by finding that the amount of gas generated after a long charge / discharge cycle under a high temperature environment was small. That is, the present invention relates to the following matters.

(1) 空間群Cmcaまたは空間群Fmmmに属する結晶構造を有する、一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)で表されるリチウムナトリウムチタン複合酸化物を主相とする、蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。(1) has a crystal structure belonging to the space group Cmca or space group Fmmm, the general formula: Li 2 + x Na 2 + y Ti 6-z M z O 14 ( provided that selection, M is Al, Ga, In, V, from Nb and Ta X is −0.1 ≦ x ≦ 0.1, y is −0.1 ≦ y ≦ 0.1, and z is 0 <z ≦ 1.) A lithium sodium titanium composite oxide powder for an electrode active material of an electricity storage device, comprising a lithium sodium titanium composite oxide represented by

(2) BET法によって求められる比表面積が1m/g〜50m/gであり、X線回折による、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有するLiNaTi14の回折角2θ=17.6〜18.6°の範囲のピークの半値幅からScherrerの式より算出される結晶子径をDとしたときに、Dが80nm以上であることを特徴とする(1)に記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。(2) specific surface area determined by the BET method is 1m 2 / g~50m 2 / g, by X-ray diffraction, the Li 2 Na 2 Ti 6 O 14 having a crystal structure belonging to the space group Cmca or space group Fmmm the crystallite size from the half width is calculated from the Scherrer formula peak in the range of diffraction angle 2 [Theta] = 17.6 to 18.6 ° when the D X, characterized in that D X is 80nm or more The lithium sodium titanium composite oxide powder for an electrode active material of the electricity storage device according to (1).

(3) 前記比表面積より算出される比表面積相当径をDBETとしたときに、DBETとDの比DBET/D(μm/μm)が4以下であることを特徴とする(1)または(2)に記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。(3) The ratio D BET / D X (μm / μm) of D BET and D X is 4 or less when the specific surface area equivalent diameter calculated from the specific surface area is D BET ( A lithium sodium titanium composite oxide powder for an electrode active material for an electricity storage device according to 1) or (2).

(4) 全細孔容積が0.001ml/g〜0.5ml/gであることを特徴とする(1)〜(3)いずれかに記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。   (4) The total pore volume is 0.001 ml / g to 0.5 ml / g, and the lithium sodium titanium composite oxide for electrode active material of the electricity storage device according to any one of (1) to (3) Powder.

(5) 前記リチウムナトリウムチタン複合酸化物からなる一次粒子が集合した二次粒子を含み、体積中位粒径をD50としたときに、D50が10μm以上35μm以下であり、D50とDBETの比D50/DBET(μm/μm)が25以上100以下であることを特徴とする(1)〜(4)いずれかに記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。(5) Including secondary particles in which primary particles composed of the lithium sodium titanium composite oxide are aggregated, and when the volume median particle size is D50, D50 is 10 μm or more and 35 μm or less, and the ratio of D50 and D BET D50 / D BET (μm / μm) is 25 or more and 100 or less, The lithium sodium titanium composite oxide powder for an electrode active material for an electricity storage device according to any one of (1) to (4).

(6) 前記二次粒子の平均圧縮強度が0.3MPa以上7MPa以下であることを特徴とする(1)〜(5)いずれかに記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。   (6) The average compressive strength of the secondary particles is 0.3 MPa or more and 7 MPa or less, and the lithium sodium titanium composite oxide for an electrode active material of an electricity storage device according to any one of (1) to (5) Powder.

(7) 前記二次粒子の平均円形度が80%以上であることを特徴とする(1)〜(6)いずれかに記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。   (7) The average circularity of the secondary particles is 80% or more, and the lithium sodium titanium composite oxide powder for an electrode active material for an electricity storage device according to any one of (1) to (6).

(8) (1)〜(7)いずれかに記載の蓄電デバイスの電極用リチウムナトリウムチタン複合酸化物粉末を含む活物質材料。   (8) An active material containing the lithium sodium titanium composite oxide powder for an electrode of the electricity storage device according to any one of (1) to (7).

(9) (8)に記載の活物質材料と、グラファイト類、カーボンブラック類、およびカーボンナノチューブ類から選ばれる少なくとも一種の導電剤と、結着剤とを含むことを特徴とする蓄電デバイス用電極シート。   (9) An electrode for an electricity storage device comprising the active material according to (8), at least one conductive agent selected from graphites, carbon blacks, and carbon nanotubes, and a binder. Sheet.

(10) 前記導電剤として、カーボンナノチューブ類を少なくとも含むことを特徴とする(9)に記載の蓄電デバイス用電極シート。   (10) The electrode sheet for an electricity storage device according to (9), wherein the conductive agent includes at least carbon nanotubes.

(11) 前記導電剤として、カーボンナノチューブ類に加えて、グラファイト類およびカーボンブラック類から選ばれる少なくとも一種の導電剤を含み、全導電剤中のカーボンナノチューブ類の割合が1質量%以上49質量%以下であることを特徴とする(10)に記載の蓄電デバイス用電極シート。   (11) The conductive agent contains at least one conductive agent selected from graphites and carbon blacks in addition to carbon nanotubes, and the proportion of carbon nanotubes in the total conductive agent is 1% by mass or more and 49% by mass. The electrode sheet for an electricity storage device according to (10), wherein:

(12) 前記カーボンナノチューブ類が、そのグラファイト網面が閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位が、中心軸を共有して2〜30個層状に積み重なって形成された釣鐘状構造単位集合体を複数備え、前記カーボンナノチューブ類は、複数の前記釣鐘状構造単位集合体が、Head−to−Tail様式で間隔をもって連結して繊維を形成することにより構成されていることを特徴とする(9)〜(11)いずれかに記載の蓄電デバイス用電極シート。   (12) The carbon nanotubes are formed by stacking 2 to 30 bell-shaped structural units having a top portion with a closed graphite net surface and a trunk portion with an open lower portion sharing a central axis. A plurality of bell-shaped structural unit aggregates, and the carbon nanotubes are formed by connecting a plurality of bell-shaped structural unit aggregates at intervals in a head-to-tail manner to form fibers. The electrode sheet for an electricity storage device according to any one of (9) to (11), wherein

(13) (9)〜(12)いずれかに記載の電極シートを用いることを特徴とする蓄電デバイス。   (13) An electrical storage device using the electrode sheet according to any one of (9) to (12).

(14) リチウムを吸蔵および放出可能な材料を活物質材料として含む正極と、負極と、前記正極と前記負極との間に配置されたセパレータと、非水電解液と、を含む蓄電デバイスであって、前記負極が、(10)〜(13)いずれかに記載の電極シートを含むことを特徴とする蓄電デバイス。   (14) An electricity storage device including a positive electrode including a material capable of inserting and extracting lithium as an active material, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. And the said negative electrode contains the electrode sheet in any one of (10)-(13), The electrical storage device characterized by the above-mentioned.

(15) 前記非水電解液が、非水溶媒中に電解質塩を溶解させたものであり、前記非水溶媒中にエチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、および2,3−ブチレンカーボネートから選ばれる少なくとも一種の環状カーボネートが含まれており、全環状カーボネート中のプロピレンカーボネート、1,2−ブチレンカーボネートおよび2,3−ブチレンカーボネートから選ばれる少なくとも一種のアルキレン鎖を有する環状カーボネートの割合が55体積%以上100体積%以下であることを特徴とする(14)に記載の蓄電デバイス。   (15) The nonaqueous electrolytic solution is obtained by dissolving an electrolyte salt in a nonaqueous solvent, and ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, and 2,3-butylene are dissolved in the nonaqueous solvent. A ratio of cyclic carbonate having at least one alkylene chain selected from propylene carbonate, 1,2-butylene carbonate and 2,3-butylene carbonate in all cyclic carbonates, including at least one cyclic carbonate selected from carbonates Is 55 volume% or more and 100 volume% or less, The electrical storage device as described in (14) characterized by the above-mentioned.

(16) 前記非水電解液が、非水溶媒中に電解質塩を溶解させたものであり、前記非水溶媒中にジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチルおよび酢酸エチルから選ばれる少なくとも一種のメチル基を有する鎖状エステルを含み、非水溶媒中の全鎖状エステルの含有量が60体積%以上90体積%以下であることを特徴とする(14)または(15)に記載の蓄電デバイス。   (16) The non-aqueous electrolyte is a solution in which an electrolyte salt is dissolved in a non-aqueous solvent, and dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, It contains a chain ester having at least one methyl group selected from methyl propionate, methyl acetate and ethyl acetate, and the content of all chain esters in the non-aqueous solvent is 60% by volume or more and 90% by volume or less. The electrical storage device according to (14) or (15), which is characterized.

(17) 前記非水電解液が、非水溶媒中に電解質塩を溶解させたものであり、前記電解質塩として少なくともLiPFを非水電解液中に含み、更にLiBF、LiPOおよびLiN(SOF)から選ばれる少なくとも一種のリチウム塩を0.001M以上1M以下の濃度で非水電解液中に含むことを特徴とする(14)〜(16)いずれかに記載の蓄電デバイス。(17) The non-aqueous electrolyte is obtained by dissolving an electrolyte salt in a non-aqueous solvent, and includes at least LiPF 6 as the electrolyte salt in the non-aqueous electrolyte, and further includes LiBF 4 , LiPO 2 F 2 and The electrical storage according to any one of (14) to (16), wherein at least one lithium salt selected from LiN (SO 2 F) 2 is contained in the non-aqueous electrolyte at a concentration of 0.001M to 1M. device.

(18) (13)〜(17)いずれかに記載の蓄電デバイスがリチウムイオン二次電池であり、前記リチウムイオン二次電池の負極の完全充電状態における充電電位が、リチウム基準極に対して1.05V以上であることを特徴とするリチウムイオン二次電池。   (18) The electricity storage device according to any one of (13) to (17) is a lithium ion secondary battery, and a charging potential in a fully charged state of the negative electrode of the lithium ion secondary battery is 1 with respect to a lithium reference electrode. A lithium ion secondary battery having a voltage of 0.05 V or higher.

(19) 前記負極の完全放電状態における放電電位が、リチウム基準極に対して1.8V以下であることを特徴とする(18)記載のリチウムイオン二次電池。   (19) The lithium ion secondary battery according to (18), wherein a discharge potential of the negative electrode in a fully discharged state is 1.8 V or less with respect to a lithium reference electrode.

(20) 前記正極に含まれる活物質材料が、スピネル構造を有する複合金属酸化物であることを特徴とする(18)または(19)のリチウムイオン二次電池。   (20) The lithium ion secondary battery according to (18) or (19), wherein the active material contained in the positive electrode is a composite metal oxide having a spinel structure.

(21) 前記複合金属酸化物が、マンガンを含有することを特徴とする(20)のリチウムイオン二次電池。   (21) The lithium ion secondary battery according to (20), wherein the composite metal oxide contains manganese.

(22) 前記複合金属酸化物が、LiMnまたはLiNi0.5Mn1.5であることを特徴とする(21)のリチウムイオン二次電池。(22) The lithium ion secondary battery according to (21), wherein the composite metal oxide is LiMn 2 O 4 or LiNi 0.5 Mn 1.5 O 4 .

本発明によれば、蓄電デバイスの電極材料として適用した場合に、高温における充放電サイクル寿命が長く、すなわち、高温における充放電サイクル後の放電容量維持率が大きく、また、充放電サイクル後のガス発生量が少ないリチウムナトリウムチタン複合酸化物粉末、それを含む活物質材料、その活物質材料が用いられた蓄電デバイスを提供することができる。   According to the present invention, when applied as an electrode material for an electricity storage device, the charge / discharge cycle life at high temperatures is long, that is, the discharge capacity retention rate after charge / discharge cycles at high temperatures is large, and the gas after charge / discharge cycles It is possible to provide a lithium sodium titanium composite oxide powder with a small amount of generation, an active material containing the same, and an electricity storage device using the active material.

図1は、空間群CmcaのLiNaTi14のX線回折パターンを示す図である。FIG. 1 is a diagram showing an X-ray diffraction pattern of Li 2 Na 2 Ti 6 O 14 in the space group Cmca. 図2は、空間群FmmmのLiNaTi14のX線回折パターンを示す図である。FIG. 2 is a diagram showing an X-ray diffraction pattern of Li 2 Na 2 Ti 6 O 14 in the space group Fmmm.

本発明のリチウムナトリウムチタン複合酸化物は、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有する、一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)で表されるリチウムナトリウムチタン複合酸化物を主相とする、蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末である。すなわち、本発明のリチウムナトリウムチタン複合酸化物は、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有するリチウムチタン複合酸化物であって、Li以外のアルカリ金属として実質的にNaのみを含有することに加えて、Tiサイトの一部がAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素で置換されていることを特徴とする。The lithium sodium titanium composite oxide of the present invention has a general structure: Li 2 + x Na 2 + y Ti 6-z M z O 14 (where M is Al, Ga, In , V, Nb, and Ta, x is −0.1 ≦ x ≦ 0.1, y is −0.1 ≦ y ≦ 0.1, and z is 0 <Z ≦ 1.) A lithium sodium titanium composite oxide powder for an electrode active material for an electricity storage device, the main phase being a lithium sodium titanium composite oxide represented by: That is, the lithium sodium titanium composite oxide of the present invention is a lithium titanium composite oxide having a crystal structure belonging to space group Cmca or space group Fmmm, and contains substantially only Na as an alkali metal other than Li. In addition, a part of the Ti site is substituted with at least one element selected from Al, Ga, In, V, Nb, and Ta.

ここで、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有する、一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)で表されるリチウムナトリウムチタン複合酸化物を主相とするとは、X線回折法によって測定されるピークのうち、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有する、一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)と同様のX線回折パターンを示す、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有するLiNaTi14の回折角2θ=17.6〜18.6°の範囲のピークに相当するピークの回折強度を100としたときに、検出される他の相のメインピーク強度の合計が5以下であることを言う。この、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有する、一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)以外の成分は少ない方が、蓄電デバイスの初期放電容量が高くなりやすいため、他の相は少ないことが好ましく、検出される他の相のメインピーク強度の合計は3以下であることが特に好ましい。Here, the general formula: Li 2 + x Na 2 + y Ti 6-z M z O 14 (where M is selected from Al, Ga, In, V, Nb, and Ta) having a crystal structure belonging to the space group Cmca or the space group Fmmm X is −0.1 ≦ x ≦ 0.1, y is −0.1 ≦ y ≦ 0.1, and z is 0 <z ≦ 1.) Is a general formula: Li 2 + x Na 2 + y having a crystal structure belonging to the space group Cmca or the space group Fmmm among the peaks measured by the X-ray diffraction method. Ti 6-z M z O 14 (where M is at least one element selected from Al, Ga, In, V, Nb and Ta, x is −0.1 ≦ x ≦ 0.1, y is −0.1 ≦ y ≦ 0 Is 1, z is 0 <z ≦ 1.) Shows an X-ray diffraction pattern similar to the diffraction angle 2θ of Li 2 Na 2 Ti 6 O 14 having a crystal structure belonging to the space group Cmca or space group Fmmm When the diffraction intensity of the peak corresponding to the peak in the range of = 17.6 to 18.6 ° is defined as 100, the total of the main peak intensities of the other phases detected is 5 or less. The general formula: Li 2 + x Na 2 + y Ti 6-z M z O 14 (wherein M is selected from Al, Ga, In, V, Nb and Ta) having a crystal structure belonging to the space group Cmca or the space group Fmmm. X is −0.1 ≦ x ≦ 0.1, y is −0.1 ≦ y ≦ 0.1, and z is 0 <z ≦ 1. When the component is smaller, the initial discharge capacity of the electricity storage device tends to be higher. Therefore, the other phases are preferably small, and the total of the main peak intensities of the detected other phases is particularly preferably 3 or less.

また、一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)で表されるリチウムナトリウムチタン複合酸化物は、斜方晶の構造を有しており、そのX線回折パターンとしては、空間群がCmcaの場合と、空間群がFmmmの場合との非常に類似したX線回折パターンの二種類のカードデータが存在する。図1に、空間群CmcaのLiNaTi14のX線回折パターンを、図2に、空間群FmmmのLiNaTi14のX線回折パターンを、それぞれ示す。図1、図2に示すように、いずれのX線回折パターンにおいても、2θ=18°付近と2θ=45°付近とに強度が際立って大きいピークが観察されるものであり、これらのうちいずれもメインピークということができるものである。そのため、本発明においては、これら2つのピークのうち、2θ=18°付近(2θ=17.6〜18.6°)のピークをメインピークとして扱い、このピークの強度を100とした場合の相対値として、アナターゼ型二酸化チタン、ルチル型二酸化チタンLiTiOを含む他の結晶相のメインピークの強度を算出するものである。Further, the general formula: Li 2 + x Na 2 + y Ti 6-z M z O 14 (where M is at least one element selected from Al, Ga, In, V, Nb and Ta, and x is −0.1 ≦ x ≦ 0.1, y is −0.1 ≦ y ≦ 0.1, and z is 0 <z ≦ 1, and the lithium sodium titanium composite oxide represented by orthorhombic crystal As the X-ray diffraction pattern, there are two types of card data, an X-ray diffraction pattern that is very similar to the case where the space group is Cmca and the case where the space group is Fmmm. 1, the X-ray diffraction pattern of Li 2 Na 2 Ti 6 O 14 of the space group Cmca, Figure 2, the X-ray diffraction pattern of Li 2 Na 2 Ti 6 O 14 of the space group Fmmm, respectively. As shown in FIG. 1 and FIG. 2, in any X-ray diffraction pattern, peaks with markedly large intensities are observed near 2θ = 18 ° and 2θ = 45 °. Can also be called the main peak. Therefore, in the present invention, of these two peaks, a peak around 2θ = 18 ° (2θ = 17.6 to 18.6 °) is treated as a main peak, and the relative intensity when the intensity of this peak is 100 is used. As a value, the intensity of the main peak of another crystal phase including anatase type titanium dioxide and rutile type titanium dioxide Li 2 TiO 3 is calculated.

さらに、図1、図2に示すように、空間群がCmcaの場合と、空間群がFmmmの場合とでは非常に類似するX線回折パターンを与えるため、本発明に係る、一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)で表されるリチウムナトリウムチタン複合酸化物は、そのX線回折パターンからは、空間群Cmcaに属するか、あるいは、空間群Fmmmに属するかを必ずしも明確に規定できない場合もある。さらには、本発明者等の知見によると、空間群Cmcaに属すると判断できる場合、空間群Fmmmに属すると判断できる場合のいずれにおいても、本発明の作用効果は十分に奏されるものである。そのため、本発明においては、一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)で表されるリチウムナトリウムチタン複合酸化物として、空間群Cmcaに属するもの、空間群Fmmmに属するもののいずれをも用いることができるものである。Furthermore, as shown in FIGS. 1 and 2, since the X-ray diffraction pattern very similar between the case where the space group is Cmca and the case where the space group is Fmmm is given, the general formula: Li 2 + x according to the present invention is given. Na 2 + y Ti 6-z M z O 14 (where M is at least one element selected from Al, Ga, In, V, Nb and Ta, and x is −0.1 ≦ x ≦ 0.1) And y is −0.1 ≦ y ≦ 0.1, and z is 0 <z ≦ 1.) From the X-ray diffraction pattern, the lithium sodium titanium composite oxide represented by It may not always be possible to clearly define whether it belongs to Cmca or the space group Fmmm. Furthermore, according to the knowledge of the present inventors, the operational effects of the present invention are sufficiently exerted both in the case where it can be determined that it belongs to the space group Cmca and in the case where it can be determined that it belongs to the space group Fmmm. . Therefore, in the present invention, the general formula: Li 2 + x Na 2 + y Ti 6-z M z O 14 (where M is at least one element selected from Al, Ga, In, V, Nb and Ta, and x Is −0.1 ≦ x ≦ 0.1, y is −0.1 ≦ y ≦ 0.1, and z is 0 <z ≦ 1.) Any of those belonging to the space group Cmca and those belonging to the space group Fmmm can be used.

前記一般式におけるMは、Al、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、高温における充放電サイクル後の放電容量維持率を向上させる観点から、AlまたはNbが好ましく、Nbが特に好ましい。   M in the general formula is at least one element selected from Al, Ga, In, V, Nb, and Ta. From the viewpoint of improving the discharge capacity retention rate after a charge / discharge cycle at high temperature, Al or Nb is Nb is preferable and Nb is particularly preferable.

また、前記一般式におけるxは−0.1≦x≦0.1である。xがこの範囲であれば、高温における充放電サイクル後の放電容量維持率が大きく、ガス発生量が少ない。前記一般式におけるxの上限は、リチウムナトリウムチタン複合酸化物のリチウムイオンの利用効率を最大化させて、高温における充放電サイクル後の放電容量維持率を向上させる観点から、0.08が好ましく、さらに好ましくは0.06であり、特に好ましくは0.04である。前記一般式におけるxの下限は、同様の観点から、−0.08が好ましく、さらに好ましくは−0.06であり、特に好ましくは−0.04である。   Further, x in the general formula is −0.1 ≦ x ≦ 0.1. When x is within this range, the discharge capacity retention rate after the charge / discharge cycle at a high temperature is large, and the amount of gas generated is small. The upper limit of x in the general formula is preferably 0.08 from the viewpoint of maximizing the utilization efficiency of lithium ions of the lithium sodium titanium composite oxide and improving the discharge capacity retention rate after the charge / discharge cycle at a high temperature, More preferably, it is 0.06, Most preferably, it is 0.04. From the same viewpoint, the lower limit of x in the general formula is preferably -0.08, more preferably -0.06, and particularly preferably -0.04.

また、前記一般式におけるyは−0.1≦y≦0.1である。yがこの範囲であれば、高温における充放電サイクル後の放電容量維持率が大きく、ガス発生量が少ない。yの上限は、リチウムナトリウムチタン複合酸化物の結晶構造を安定化させて、高温における充放電サイクル後の放電容量維持率を向上させる観点から、0.08が好ましく、さらに好ましくは0.06であり、最も好ましくは0.04である。yの下限は、同様の観点から、−0.08が好ましく、さらに好ましくは−0.06であり、最も好ましくは−0.04である。   In the above general formula, y is −0.1 ≦ y ≦ 0.1. If y is this range, the discharge capacity maintenance factor after the charge / discharge cycle at a high temperature is large, and the amount of gas generated is small. The upper limit of y is preferably 0.08, more preferably 0.06, from the viewpoint of stabilizing the crystal structure of the lithium sodium titanium composite oxide and improving the discharge capacity retention rate after the charge / discharge cycle at high temperature. Yes, most preferably 0.04. From the same viewpoint, the lower limit of y is preferably -0.08, more preferably -0.06, and most preferably -0.04.

また、前記一般式におけるzは0<z≦1である。zがこの範囲であれば、高温における充放電サイクル後の放電容量維持率が大きく、ガス発生量が少ない。zの上限は、リチウムナトリウムチタン複合酸化物の電子伝導性を高めて、高温における充放電サイクル後の放電容量維持率を向上させる観点から、0.7が好ましく、さらに好ましくは0.4であり、特に好ましくは0.2である。zの下限は、同様の観点から、0.001が好ましく、さらに好ましくは0.01であり、特に好ましくは0.05である。   Moreover, z in the said general formula is 0 <z <= 1. If z is in this range, the discharge capacity retention rate after the charge / discharge cycle at a high temperature is large, and the amount of gas generated is small. The upper limit of z is preferably 0.7, more preferably 0.4, from the viewpoint of enhancing the electronic conductivity of the lithium sodium titanium composite oxide and improving the discharge capacity retention rate after the charge / discharge cycle at a high temperature. Particularly preferably 0.2. From the same viewpoint, the lower limit of z is preferably 0.001, more preferably 0.01, and particularly preferably 0.05.

<比表面積>
BET法によって求められる本発明のリチウムナトリウムチタン複合酸化物粉末の比表面積は1m/g〜50m/gである。比表面積がこの範囲であれば、粉体のハンドリン性を損なうことなく高い入出力特性が実現できる。これらの観点からは2m/g〜45m/gが好ましく、3m/g〜40m/gが特に好ましい。
<Specific surface area>
The specific surface area of the lithium sodium titanium composite oxide powder of the present invention as determined by the BET method is 1m 2 / g~50m 2 / g. When the specific surface area is in this range, high input / output characteristics can be realized without impairing the handlinability of the powder. Preferably 2m 2 / g~45m 2 / g from the above viewpoints, 3m 2 / g~40m 2 / g is particularly preferred.

<比表面積相当径DBET
本発明のリチウムナトリウムチタン複合酸化物粉末の比表面積相当径DBETは、BET法により求める前記比表面積から算出される比表面積相当径である。本発明のリチウムナトリウムチタン複合酸化物粉末の比表面積相当径DBETは0.03μm〜0.6μmであることが好ましい。DBETが0.03μm〜0.6μmであれば、蓄電デバイスの充放電容量を大きくすることができる。また、DBETは0.03〜0.4μmであることが特に好ましく、この範囲であれば蓄電デバイスの入力特性も向上する。
<Specific surface area equivalent diameter D BET >
The specific surface area equivalent diameter D BET of the lithium sodium titanium composite oxide powder of the present invention is a specific surface area equivalent diameter calculated from the specific surface area determined by the BET method. The specific surface area equivalent diameter D BET of the lithium sodium titanium composite oxide powder of the present invention is preferably 0.03 μm to 0.6 μm. When D BET is 0.03 μm to 0.6 μm, the charge / discharge capacity of the electricity storage device can be increased. Moreover, it is especially preferable that D BET is 0.03 to 0.4 μm, and if it is within this range, the input characteristics of the electricity storage device are also improved.

<結晶子径D
本発明においては、X線回折による、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有するLiNaTi14の回折角2θ=17.6〜18.6°の範囲のピーク(LiNaTi14の結晶構造が空間群Cmcaに属するとした場合における、(111)面に相当するピーク)の半値幅からScherrerの式より算出される結晶子径をDとする。本発明のリチウムナトリウムチタン複合酸化物粉末のDは80nm以上であることが好ましい。Dが80nm以上であると、リチウムイオンが粒界を移動するときの抵抗の影響を最小限に抑えることができ、粒界をリチウムイオンが移動することで生じる分極増加による電池性能の低下を抑制できる。またDは500nm以下であることが好ましい。Dが500nm以下であれば粒子内部の拡散抵抗の影響を最小限に抑えることができ、粒子内部をリチウムイオンが移動することで生じる分極増加による電池性能の低下を抑制できる。Dの測定方法については、実施例にて詳細に説明する。
<Crystallite diameter D X >
In the present invention, the peak (Li) of diffraction angle 2θ = 17.6 to 18.6 ° of Li 2 Na 2 Ti 6 O 14 having a crystal structure belonging to space group Cmca or space group Fmmm, as determined by X-ray diffraction. when the crystal structure of 2 Na 2 Ti 6 O 14 is to belong to the space group Cmca, and the crystallite diameter D X of from the half value width is calculated from the Scherrer formula of (111) peak corresponding to surface). D X of lithium sodium titanium composite oxide powder of the present invention is preferably 80nm or more. When D X is at 80nm or more, it is possible to minimize the effects of resistance when the lithium ions move grain boundary, deterioration in battery performance due to polarization increases caused by the grain boundaries lithium ion moves Can be suppressed. The D X is preferably at 500nm or less. D X it is possible to minimize the influence of diffusion resistance inside the particles as long as 500nm or less, it is possible to suppress the deterioration of the cell performance due to polarization increases caused by the internal particles of lithium ions to move. A method for measuring the D X, described in detail in Example.

<DBET/D(μm/μm)>
本発明のリチウムナトリウムチタン複合酸化物粉末のDBETとDの比DBET/D(μm/μm)は4以下であることが好ましく、3以下であることがより好ましく、2.5以下であることがさらに好ましく、2以下であることが特に好ましい。DBET/Dが小さいほど、本発明のリチウムナトリウムチタン複合酸化物粉末が電極材料として適用された蓄電デバイスの入出力特性が良くなる。
<D BET / D X (μm / μm)>
The ratio D BET / D X (μm / μm) of D BET and D X of the lithium sodium titanium composite oxide powder of the present invention is preferably 4 or less, more preferably 3 or less, and 2.5 or less. It is more preferable that it is 2 or less. The smaller D BET / D X is, the better the input / output characteristics of the electricity storage device to which the lithium sodium titanium composite oxide powder of the present invention is applied as the electrode material.

<全細孔容積>
本発明のリチウムナトリウムチタン複合酸化物粉末の全細孔容積は、0.001ml/g〜0.5ml/gであることが好ましい。本発明のリチウムナトリウムチタン複合酸化物粉末の全細孔容積がこの範囲であれば、蓄電デバイスに適用した際、高温における充放電サイクル後の放電容量維持率がより大きくなる。全細孔容積は、高温における充放電サイクル後の放電容量維持率をさらに向上させる観点からは、0.005ml/g以上であることが好ましく、0.01ml/g以上であることがより好ましく、0.015ml/g以上であることが特に好ましい。また、同様の観点から、0.45ml/g以下であることが好ましく、0.4ml/g以下であることが更に好ましく、0.35ml/g以下であることが特に好ましい。なお、本発明のリチウムナトリウムチタン複合酸化物粉末の全細孔容積は、ガス吸着法によって測定される全細孔容積である。
<Total pore volume>
The total pore volume of the lithium sodium titanium composite oxide powder of the present invention is preferably 0.001 ml / g to 0.5 ml / g. When the total pore volume of the lithium sodium titanium composite oxide powder of the present invention is within this range, the discharge capacity retention rate after a charge / discharge cycle at a high temperature becomes higher when applied to an electricity storage device. The total pore volume is preferably 0.005 ml / g or more, more preferably 0.01 ml / g or more, from the viewpoint of further improving the discharge capacity maintenance rate after the charge / discharge cycle at a high temperature, Particularly preferred is 0.015 ml / g or more. From the same viewpoint, it is preferably 0.45 ml / g or less, more preferably 0.4 ml / g or less, and particularly preferably 0.35 ml / g or less. The total pore volume of the lithium sodium titanium composite oxide powder of the present invention is the total pore volume measured by a gas adsorption method.

<体積中位粒径D50>
本発明のリチウムナトリウムチタン複合酸化物粉末の体積中位粒径(平均粒径、以下D50と記す)は、0.01μm以上35μm以下であることが好ましく、10μm以上35μm以下であることがさらに好ましく、20μm以上30μm以下であることが特に好ましい。ここでD50とは、体積分率で計算した累積体積頻度が、粒径の小さい方から積算して50%になる粒径を意味する。その測定方法については、後述の[各種物性測定方法]の〔5.粒度分布〕にて説明する。
<Volume Median Particle Size D50>
The volume-median particle size (average particle size, hereinafter referred to as D50) of the lithium sodium titanium composite oxide powder of the present invention is preferably 0.01 μm or more and 35 μm or less, and more preferably 10 μm or more and 35 μm or less. It is particularly preferably 20 μm or more and 30 μm or less. Here, D50 means a particle size in which the cumulative volume frequency calculated by the volume fraction is 50% when integrated from the smaller particle size. The measurement method is described in [5. Particle size distribution].

<D50/DBET(μm/μm)>
本発明のリチウムナトリウムチタン複合酸化物粉末のD50とDBETの比D50/DBET(μm/μm)は25以上100以下であることが好ましい。D50/DBETがこの範囲であれば、本発明のリチウムナトリウムチタン複合酸化物粉末が電極材料として適用された蓄電デバイスの高温サイクル後の放電容量維持率がさらに大きく、高温におけるガス発生量がさらに少ない。なお、本発明のリチウムナトリウムチタン複合酸化物粉末は、リチウムナトリウムチタン複合酸化物からなる一次粒子が集合して構成される二次粒子を含むことが好ましく、D50/DBET(μm/μm)は、二次粒子に対する一次粒子の集合度に関連する指標である。蓄電デバイスの高温サイクル後の放電容量維持率をより大きく、高温におけるガス発生量をより少なくする観点から、D50/DBET(μm/μm)は、25以上であることがより好ましく、28以上であることがさらに好ましく、30以上であることが特に好ましい。また、蓄電デバイスの高温サイクル後の放電容量維持率をより大きく、高温におけるガス発生量をより少なくする観点から、D50/DBET(μm/μm)は、100以下であることがより好ましく、80以下であることがさらに好ましく、60以下であることが特に好ましい。
<D50 / D BET (μm / μm)>
The ratio D50 / D BET (μm / μm) of D50 and D BET of the lithium sodium titanium composite oxide powder of the present invention is preferably 25 or more and 100 or less. If D50 / D BET is within this range, the discharge capacity retention rate after the high-temperature cycle of the electricity storage device to which the lithium sodium titanium composite oxide powder of the present invention is applied as an electrode material is further large, and the amount of gas generated at high temperature is further increased. Few. In addition, it is preferable that the lithium sodium titanium composite oxide powder of the present invention includes secondary particles formed by aggregating primary particles made of lithium sodium titanium composite oxide, and D50 / D BET (μm / μm) is This is an index related to the degree of aggregation of primary particles with respect to secondary particles. D50 / D BET (μm / μm) is more preferably 25 or more and 28 or more from the viewpoint of increasing the discharge capacity maintenance rate after the high temperature cycle of the electricity storage device and reducing the amount of gas generated at high temperature. More preferably, it is more preferably 30 or more. Further, from the viewpoint of increasing the discharge capacity maintenance rate after the high temperature cycle of the electricity storage device and reducing the amount of gas generated at high temperature, D50 / D BET (μm / μm) is more preferably 100 or less, 80 Or less, more preferably 60 or less.

<二次粒子の平均圧縮強度>
本発明のリチウムナトリウムチタン複合酸化物粉末が二次粒子を含む場合、その二次粒子の平均圧縮強度は0.3MPa以上7MPa以下であることが好ましい。本発明のリチウムナトリウムチタン複合酸化物粉末の二次粒子の平均圧縮強度がこの範囲であれば、本発明のリチウムナトリウムチタン複合酸化物粉末が電極材料として適用された蓄電デバイスの高温サイクル後の放電容量維持率がさらに大きくなる。蓄電デバイスの高温サイクル後の放電容量維持率をより大きくする観点から、二次粒子の平均圧縮強度は、0.4MPa以上であることがより好ましく、1MPa以上であることがさらに好ましく、1.2MPa以上であることが特に好ましい。また、蓄電デバイスの高温サイクル後の放電容量維持率をより大きく、高温におけるガス発生量をより少なくする観点から、二次粒子の平均圧縮強度は、6.2MPa以下であることがより好ましく、5MPa以下であることがさらに好ましく、4.2MPa以下であることが特に好ましい。二次粒子の平均圧縮強度の測定方法は後述の[各種物性測定方法]の〔7.二次粒子の平均圧縮強度〕にて説明する。
<Average compressive strength of secondary particles>
When the lithium sodium titanium composite oxide powder of the present invention contains secondary particles, the average compressive strength of the secondary particles is preferably 0.3 MPa or more and 7 MPa or less. If the average compressive strength of the secondary particles of the lithium sodium titanium composite oxide powder of the present invention is in this range, the discharge after the high-temperature cycle of the electricity storage device to which the lithium sodium titanium composite oxide powder of the present invention is applied as an electrode material The capacity maintenance rate is further increased. From the viewpoint of increasing the discharge capacity retention rate after the high temperature cycle of the electricity storage device, the average compressive strength of the secondary particles is more preferably 0.4 MPa or more, further preferably 1 MPa or more, and 1.2 MPa. The above is particularly preferable. Further, from the viewpoint of increasing the discharge capacity maintenance rate after the high-temperature cycle of the electricity storage device and reducing the amount of gas generation at high temperature, the average compressive strength of the secondary particles is more preferably 6.2 MPa or less. More preferably, it is more preferably 4.2 MPa or less. The method for measuring the average compressive strength of the secondary particles is described in [7. The average compressive strength of the secondary particles] will be described.

<二次粒子の平均円形度>
本発明のリチウムナトリウムチタン複合酸化物粉末が二次粒子を含む場合、その二次粒子の平均円形度は80%以上であることが好ましい。本発明のリチウムナトリウムチタン複合酸化物粉末の二次粒子の平均円形度がこの範囲であれば、本発明のリチウムナトリウムチタン複合酸化物粉末が電極材料として適用された蓄電デバイスの高温サイクル後の放電容量維持率がさらに大きくなる。蓄電デバイスの高温サイクル後の放電容量維持率をより大きくする観点から、二次粒子の平均円形度は、90%以上であることがより好ましく、94%以上であることがさらに好ましく、95%以上であることが特に好ましい。平均円形度の測定方法は後述の[各種物性測定方法]の〔8.二次粒子の平均円形度〕にて説明する。
<Average circularity of secondary particles>
When the lithium sodium titanium composite oxide powder of the present invention contains secondary particles, the average circularity of the secondary particles is preferably 80% or more. If the average circularity of the secondary particles of the lithium sodium titanium composite oxide powder of the present invention is within this range, the discharge after the high-temperature cycle of the electricity storage device to which the lithium sodium titanium composite oxide powder of the present invention is applied as an electrode material The capacity maintenance rate is further increased. From the viewpoint of further increasing the discharge capacity retention rate after the high-temperature cycle of the electricity storage device, the average circularity of the secondary particles is more preferably 90% or more, further preferably 94% or more, and 95% or more. It is particularly preferred that The method for measuring the average circularity is described in [8. The average circularity of the secondary particles] will be described.

(リチウムナトリウムチタン複合酸化物粉末の製造方法)
以下に、本発明のリチウムナトリウムチタン複合酸化物粉末の製造方法の一例を、原料の調製工程と焼成工程に分けて説明するが、本発明のリチウムナトリウムチタン複合酸化物粉末の製造方法はこれに限定されない。
(Method for producing lithium sodium titanium composite oxide powder)
Hereinafter, an example of a method for producing the lithium sodium titanium composite oxide powder of the present invention will be described by dividing it into a raw material preparation step and a firing step. It is not limited.

<原料の調製工程>
本発明のリチウムナトリウムチタン複合酸化物粉末の原料としては、チタン原料、リチウム原料、ナトリウム原料、および、前記一般式におけるMの原料、すなわちチタンサイトの一部を置換する元素の原料を用いる。チタン原料としては、アナターゼ型二酸化チタン、ルチル型二酸化チタン等のチタン化合物が用いられる。チタン原料としては、短時間でリチウム原料と反応し易いことが好ましく、その観点で、アナターゼ型二酸化チタンが好ましい。特にルチル化率が0%の完全アナターゼ型二酸化チタンが好ましい。
<Raw material preparation process>
As raw materials for the lithium sodium titanium composite oxide powder of the present invention, a titanium raw material, a lithium raw material, a sodium raw material, and a raw material of M in the above general formula, that is, a raw material of an element that substitutes a part of the titanium site are used. As the titanium raw material, titanium compounds such as anatase type titanium dioxide and rutile type titanium dioxide are used. As a titanium raw material, it is preferable that it reacts easily with a lithium raw material in a short time, and the anatase type titanium dioxide is preferable from the viewpoint. In particular, complete anatase-type titanium dioxide having a rutile ratio of 0% is preferable.

リチウム原料としては、水酸化リチウム一水和物、酸化リチウム、炭酸水素リチウム、炭酸リチウム等のリチウム化合物が用いられるが、水酸化リチウム一水和物、炭酸リチウムが好ましい。   As the lithium raw material, lithium compounds such as lithium hydroxide monohydrate, lithium oxide, lithium hydrogen carbonate, and lithium carbonate are used, and lithium hydroxide monohydrate and lithium carbonate are preferable.

ナトリウム原料としては、水酸化ナトリウム一水和物、酸化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム等のナトリウム化合物が用いられるが、水酸化ナトリウム一水和物、炭酸ナトリウムが好ましい。   As the sodium raw material, sodium compounds such as sodium hydroxide monohydrate, sodium oxide, sodium hydrogen carbonate and sodium carbonate are used, and sodium hydroxide monohydrate and sodium carbonate are preferred.

前記一般式におけるMの原料、すなわちチタンサイトの一部を置換する元素の原料としては、Mの酸化物、水酸化物、窒化物、リン化物、硫化物、フッ化物、塩化物、臭化物、ヨウ化物、または炭酸塩、硫酸塩、硝酸塩、ホウ酸塩、リン酸塩などの無機塩や、酢酸塩などの有機塩が用いられる。合成のしやすさの観点から、酸化物、フッ化物、硫酸塩、および酢酸塩が好ましい。   As the raw material of M in the above general formula, that is, the raw material of the element substituting a part of the titanium site, the oxide of M, hydroxide, nitride, phosphide, sulfide, fluoride, chloride, bromide, iodine Or inorganic salts such as carbonates, sulfates, nitrates, borates and phosphates, and organic salts such as acetates. From the viewpoint of ease of synthesis, oxides, fluorides, sulfates, and acetates are preferable.

本発明においては、以上の原料からなる混合物の焼成前に、混合物を構成する混合粉末のレーザ回折・散乱型粒度分布測定機にて測定される粒度分布曲線において、D95が4μm以下になるように調製することが好ましい。このD95は、Dを大きくし、DBET/D(μm/μm)を小さくし、全細孔容積を大きくする観点から、より好ましくは3μm以下であり、さらに好ましくは2μm以下であり、特に好ましくは1.5μm以下である。ここで、D95とは、体積分率で計算した累積体積頻度が、粒径の小さい方から積算して95%になる粒径のことである。混合物は、以上のように調製された混合粉末であっても、あるいは、以上のように調製された混合粉末を造粒して得られた造粒粉末であっても良い。また、焼成に供する混合物の状態を、以上の混合粉末または造粒粉末を含むスラリー状としても良い。混合物が造粒粉末である場合は、造粒粉末のD95が4μm以下である必要はなく、D95が4μm以下の混合粉末を造粒して得られた造粒粉末であることが好ましい。In the present invention, before firing the mixture composed of the above raw materials, the particle size distribution curve measured by a laser diffraction / scattering type particle size distribution measuring machine of the mixed powder constituting the mixture is such that D95 is 4 μm or less. It is preferable to prepare. The D95 is to increase the D X, reducing the D BET / D X (μm / μm), from the viewpoint of increasing the total pore volume, more preferably 3μm or less, more preferably 2μm or less, Particularly preferably, it is 1.5 μm or less. Here, D95 is a particle size in which the cumulative volume frequency calculated by the volume fraction is 95% when integrated from the smaller particle size. The mixture may be a mixed powder prepared as described above, or a granulated powder obtained by granulating the mixed powder prepared as described above. Moreover, it is good also considering the state of the mixture used for baking as the slurry form containing the above mixed powder or granulated powder. When the mixture is a granulated powder, the D95 of the granulated powder is not necessarily 4 μm or less, and is preferably a granulated powder obtained by granulating a mixed powder having a D95 of 4 μm or less.

以上のチタン原料、リチウム原料、ナトリウム原料、および、前記一般式におけるMの原料、すなわちチタンサイトの一部を置換する元素の原料を混合する。これら原料の混合物の調製方法としては、次に挙げる方法を採用することができる。第一の方法は、原料を調合後、混合と同時に粉砕を行う方法である。第二の方法は、各原料を粉砕した後、これらを混合、あるいは軽く粉砕しながら混合する方法である。第三の方法は、各原料を晶析などの方法によって微粒子からなる粉末を製造し、必要に応じて分級して、これらを混合、あるいは軽く粉砕しながら混合する方法である。なかでも、第一の方法において、原料の混合と同時に粉砕を行う方法は、工程が少ない方法なので工業的に有利な方法である。   The titanium raw material, the lithium raw material, the sodium raw material, and the raw material of M in the above general formula, that is, the raw material of the element that substitutes a part of the titanium site are mixed. As a method for preparing a mixture of these raw materials, the following methods can be employed. The first method is a method in which the raw materials are mixed and then pulverized simultaneously with mixing. The second method is a method in which each raw material is pulverized and then mixed or mixed while lightly pulverizing. The third method is a method in which powders made of fine particles are produced from each raw material by a method such as crystallization, classified as necessary, and mixed while mixing or lightly pulverizing. Among them, in the first method, the method of pulverizing simultaneously with the mixing of the raw materials is an industrially advantageous method because it involves fewer steps.

得られた混合物が混合粉末である場合は、そのまま次の焼成工程に供することができる。混合粉末からなる混合スラリーである場合は、混合スラリーをスプレードライヤーなどによって造粒・乾燥した後に次の焼成工程に供することができる。   When the obtained mixture is a mixed powder, it can be directly used for the next firing step. In the case of a mixed slurry made of a mixed powder, the mixed slurry can be granulated and dried with a spray dryer or the like and then subjected to the next firing step.

[焼成工程]
次いで、得られた混合物を焼成する。焼成条件に特に制約はないが、通常は、焼成時の最高温度(保持温度)を800〜1100℃、最高温度での保持時間を0.5〜25時間として、混合物を焼成する。得られるリチウムナトリウムチタン複合酸化物粉末の粒径を小さく、かつ結晶子径を大きくする観点からは、高温かつ短時間で焼成することが好ましく、その場合、焼成時の最高温度を850〜1100℃とし、焼成時の最高温度での保持時間を12時間以下とすることが好ましい。焼成時の最高温度は、より好ましくは880℃であり、最高温度での保持時間は、より好ましくは10時間以下、特に好ましくは8時間以下である。焼成時の最高温度が高い時には、より短い保持時間を選択することになる。同様に、得られるリチウムナトリウムチタン複合酸化物粉末の粒径を小さく、かつ結晶子径を大きくする観点から、焼成時の昇温過程においては、700℃〜最高温度(保持温度)の滞留時間を特に短くすることが好ましく、例えば昇温速度を200℃/h以上にすることが好ましい。
[Baking process]
The resulting mixture is then fired. There are no particular restrictions on the firing conditions, but usually the mixture is fired at a maximum temperature (holding temperature) of 800 to 1100 ° C. and a holding time of 0.5 to 25 hours at the maximum temperature. From the viewpoint of reducing the particle size of the obtained lithium sodium titanium composite oxide powder and increasing the crystallite size, it is preferable to fire at a high temperature for a short time, and in that case, the maximum temperature during firing is 850 to 1100 ° C. The holding time at the maximum temperature during firing is preferably 12 hours or less. The maximum temperature during firing is more preferably 880 ° C., and the holding time at the maximum temperature is more preferably 10 hours or less, and particularly preferably 8 hours or less. When the maximum temperature during firing is high, a shorter holding time is selected. Similarly, from the viewpoint of reducing the particle size of the obtained lithium sodium titanium composite oxide powder and increasing the crystallite size, the residence time from 700 ° C. to the maximum temperature (holding temperature) is set in the heating process during firing. In particular, it is preferable to shorten the temperature, for example, it is preferable to set the temperature rising rate to 200 ° C./h or more.

このような条件で焼成できる方法であれば、焼成方法は特に限定されるものではない。利用できる焼成炉としては、箱型炉(マッフル炉)や管状炉などの固定床式焼成炉、ローラーハース式焼成炉、メッシュベルト式焼成炉、流動床式、ロータリーキルン式焼成炉が挙げられる。匣鉢に粉末を収容して焼成するローラーハース式焼成炉、またはメッシュベルト式焼成炉を用いる場合は、得られるリチウムナトリウムチタン複合酸化物粉末の品質を一定にするために、焼成時の粉末の温度分布を均一にすることが好ましく、匣鉢への粉末の収容量を少量にすることが好ましい。焼成時の雰囲気は、特に限定されないが、酸素を含む雰囲気であることが好ましい。   The firing method is not particularly limited as long as it can be fired under such conditions. Examples of the firing furnace that can be used include a fixed-bed firing furnace such as a box furnace (muffle furnace) and a tubular furnace, a roller hearth firing furnace, a mesh belt firing furnace, a fluidized bed firing furnace, and a rotary kiln firing furnace. When using a roller hearth-type firing furnace or a mesh belt-type firing furnace that contains the powder in a sagger and fires, in order to make the quality of the obtained lithium sodium titanium composite oxide powder constant, It is preferable to make the temperature distribution uniform, and it is preferable to reduce the amount of powder contained in the mortar. Although the atmosphere at the time of baking is not specifically limited, It is preferable that it is an atmosphere containing oxygen.

[後処理工程]
本発明においては、前記焼成工程にて得られたリチウムナトリウムチタン複合酸化物粉末をそのまま活物質材料として用いることができるが、同粉末を造粒する、あるいはさらに造粒して得られた粉末を熱処理するなどの後処理を行った後に活物質材料として用いることもできる。例えば、前記焼成工程にて得られたリチウムナトリウムチタン複合酸化物粉末を水などの分散媒を用いてスラリー化し、得られたスラリーをスプレードライヤーなどによって造粒・乾燥しても良いし、造粒・乾燥後の粉末を熱処理しても良い。このような後処理工程を追加することによって、D50/DBET(μm/μm)、二次粒子の平均圧縮強度、二次粒子の平均円形度などの調節が容易になる。例えば、二次粒子の平均圧縮強度が1MPa以上5MPa以下のリチウムナトリウムチタン複合酸化物粉末を得るには、前記焼成工程にて得られたリチウムナトリウムチタン複合酸化物粉末をスラリー化し、スプレードライヤーなどによって造粒・乾燥した後に、400℃〜650℃の温度範囲で熱処理することが好ましい。
[Post-processing process]
In the present invention, the lithium sodium titanium composite oxide powder obtained in the firing step can be used as an active material as it is, but the powder obtained by granulating or further granulating the powder is used. It can also be used as an active material after post-treatment such as heat treatment. For example, the lithium sodium titanium composite oxide powder obtained in the firing step may be slurried using a dispersion medium such as water, and the resulting slurry may be granulated and dried by a spray dryer or the like. -You may heat-process the powder after drying. By adding such a post-treatment step, it is easy to adjust D50 / D BET (μm / μm), average compressive strength of secondary particles, average circularity of secondary particles, and the like. For example, in order to obtain a lithium sodium titanium composite oxide powder having an average compressive strength of secondary particles of 1 MPa or more and 5 MPa or less, the lithium sodium titanium composite oxide powder obtained in the firing step is slurried and sprayed with a spray dryer or the like. After granulation and drying, heat treatment is preferably performed in a temperature range of 400 ° C to 650 ° C.

(活物質材料)
本発明の活物質材料は、本発明のリチウムナトリウムチタン複合酸化物粉末を含むものである。本発明のリチウムナトリウムチタン複合酸化物粉末以外の物質を1種又は2種以上含んでいてもよい。他の物質としては、例えば、炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛等)、有機高分子化合物燃焼体、炭素繊維〕、スズやスズ化合物、ケイ素やケイ素化合物が使用される。
(Active material)
The active material of the present invention contains the lithium sodium titanium composite oxide powder of the present invention. One or more substances other than the lithium sodium titanium composite oxide powder of the present invention may be contained. Examples of other substances include carbon materials (pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustion bodies, carbon fibers), tin and tin compounds, silicon and silicon compounds. Is used.

(電極シート)
本発明の電極シートは、集電体の片面または両面に、電極合剤層として、本発明の活物質材料と、グラファイト類、カーボンブラック類、およびカーボンナノチューブ類から選ばれる少なくとも一種の導電剤と、結着剤とを含むことを特徴とする蓄電デバイス用電極シートであり、蓄電デバイスの設計形状に合わせて裁断され、負極として使用される。グラファイト類としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等が挙げられ、カーボンブラック類としては、アセチレンブラック、ケッチェンブラック、チェンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられ、カーボンナノチューブ類としては、単相カーボンナノチューブ、多層カーボンナノチューブ(グラファイト層が多層同心円筒状)(非魚骨状)、カップ積層型カーボンナノチューブ(魚骨状(フィッシュボーン))、節型カーボンナノファイバー(非魚骨構造)、プレートレット型カーボンナノファイバー(トランプ状)などが挙げられる。これらグラファイト類とカーボンブラック類とカーボンナノチューブ類を適宜混合して用いてもよい。特に限定されることはないが、カーボンブラック類の比表面積は好ましくは30〜3000m/gであり、さらに好ましくは50〜2000m/gである。また、グラファイト類の比表面積は、好ましくは30〜600m/gであり、さらに好ましくは50〜500m/gである。また、カーボンナノチューブ類のアスペクト比は、好ましくは10〜1000である。このような導電剤であれば、特に電極密度が大きくなりやすく、高容量化が容易である。導電剤の添加量は、活物質の比表面積や導電剤の種類や組合せにより最適化されるが、電極合剤層全体に対して、好ましくは10質量%以下であり、より好ましくは8質量%以下であり、さらに好ましくは6質量%以下である。
(Electrode sheet)
The electrode sheet of the present invention comprises, as an electrode mixture layer on one or both sides of a current collector, an active material of the present invention, and at least one conductive agent selected from graphites, carbon blacks, and carbon nanotubes. The electrode sheet for an electricity storage device including a binder, and is cut according to the design shape of the electricity storage device and used as a negative electrode. Examples of graphites include natural graphite (such as flake graphite), artificial graphite, and the like. Examples of carbon blacks include acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and the like. Carbon nanotubes include single-phase carbon nanotubes, multi-wall carbon nanotubes (graphite layers are multi-layer concentric cylinders) (non-fishbones), cup-stacked carbon nanotubes (fishbones), and nodal carbon nanofibers (Non-fishbone structure), platelet-type carbon nanofibers (like a playing card), and the like. These graphites, carbon blacks, and carbon nanotubes may be appropriately mixed and used. There is no particular limitation, specific surface area of the carbon blacks is preferably 30~3000m 2 / g, more preferably from 50~2000m 2 / g. The specific surface area of the graphite is preferably 30 to 600 m 2 / g, more preferably 50 to 500 m 2 / g. The aspect ratio of the carbon nanotubes is preferably 10 to 1000. With such a conductive agent, the electrode density is particularly likely to increase, and the capacity can be easily increased. The addition amount of the conductive agent is optimized depending on the specific surface area of the active material and the type and combination of the conductive agent, but is preferably 10% by mass or less, more preferably 8% by mass with respect to the entire electrode mixture layer. Or less, more preferably 6% by mass or less.

また、本発明の電極シートは、前記導電剤として、カーボンナノチューブ類を含むことが好ましい。導電剤としてカーボンナノチューブ類が含まれれば、高温における充放電サイクル後の放電容量維持率がより大きくなる。カーボンナノチューブ類のうち、多層カーボンナノチューブ(グラファイト層が多層同心円筒状)(非魚骨状)が好ましく、なかでも、特開2012―46864などに記載されている、そのグラファイト網面が閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位が、中心軸を共有して2〜30個層状に積み重なって形成された釣鐘状構造単位集合体を複数備え、かつ、複数の前記釣鐘状構造単位集合体が、Head−to−Tail様式で間隔をもって連結して繊維を形成している繊維状炭素が特に好ましい。導電剤として、この繊維状炭素が含まれれば、高温における充放電サイクル後の放電容量維持率が特に大きくなる。   The electrode sheet of the present invention preferably contains carbon nanotubes as the conductive agent. If carbon nanotubes are included as a conductive agent, the discharge capacity retention rate after a charge / discharge cycle at a high temperature is further increased. Among the carbon nanotubes, multi-walled carbon nanotubes (graphite layers are multi-layer concentric cylinders) (non-fish-bone-like) are preferable. In particular, a head with a closed graphite network surface described in JP 2012-46864 A or the like is used. A bell-shaped structural unit having a top portion and a body portion having an open bottom includes a plurality of bell-shaped structural unit assemblies formed by stacking 2 to 30 layers sharing a central axis, and a plurality of the bell-shaped structural units. Particularly preferred is fibrous carbon in which bell-shaped structural unit aggregates are connected in a head-to-tail manner at intervals to form fibers. If this fibrous carbon is contained as a conductive agent, the discharge capacity maintenance rate after a charge / discharge cycle at a high temperature is particularly increased.

さらに、本発明の電極シートは、前記導電剤として、カーボンナノチューブ類を含むことに加えて、グラファイト類およびカーボンブラック類から選ばれる少なくとも一種の導電剤を含むことが好ましく、その場合、全導電剤中のカーボンナノチューブ類の割合は1質量%以上49質量%以下であることが好ましく、5質量%以上40質量%以下であることがさらに好ましい。   Furthermore, the electrode sheet of the present invention preferably contains at least one conductive agent selected from graphites and carbon blacks in addition to containing carbon nanotubes as the conductive agent. The proportion of the carbon nanotubes in it is preferably 1% by mass or more and 49% by mass or less, and more preferably 5% by mass or more and 40% by mass or less.

前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリビニルピロリドン(PVP)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)等が挙げられる。特に限定されることはないが、ポリフッ化ビニリデンの分子量は、好ましくは2万〜20万である。電極合剤層の結着性を確保する観点から、2.5万以上であることが好ましく、3万以上であることがより好ましく、5万以上であることがさらに好ましい。導電性を確保する観点から、15万以下であることが好ましい。特に活物質の比表面積が10m/g以上の場合には、分子量は10万以上であることが好ましい。Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP), a copolymer of styrene and butadiene (SBR), and a copolymer of acrylonitrile and butadiene (NBR). ), Carboxymethylcellulose (CMC) and the like. Although not particularly limited, the molecular weight of polyvinylidene fluoride is preferably 20,000 to 200,000. From the viewpoint of securing the binding property of the electrode mixture layer, it is preferably 25,000 or more, more preferably 30,000 or more, and further preferably 50,000 or more. From the viewpoint of ensuring conductivity, it is preferably 150,000 or less. In particular, when the specific surface area of the active material is 10 m 2 / g or more, the molecular weight is preferably 100,000 or more.

前記結着剤の添加量は、活物質の比表面積や導電剤の種類や組合せにより最適化を行うが、通常、電極合剤層全体に対して、好ましくは0.2〜15質量%である。結着性を高め合剤層の強度を高める観点から、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましく、2質量%以上であることが特に好ましい。合剤層における活物質比率を高め、合剤層の単位質量および単位体積あたりの蓄電デバイスの放電容量を大きくする観点から、結着剤の添加量は、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。   The amount of the binder added is optimized depending on the specific surface area of the active material and the type and combination of the conductive agent, but is usually 0.2 to 15% by mass with respect to the entire electrode mixture layer. . From the viewpoint of enhancing the binding property and increasing the strength of the mixture layer, the content is more preferably 0.5% by mass or more, further preferably 1% by mass or more, and particularly preferably 2% by mass or more. From the viewpoint of increasing the active material ratio in the mixture layer and increasing the discharge capacity of the electricity storage device per unit mass and unit volume of the mixture layer, the addition amount of the binder is preferably 10% by mass or less, More preferably, it is 5 mass% or less.

前記集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、銅、チタン、焼成炭素、あるいはそれらの表面にカーボン、ニッケル、チタン、銀を被覆させたもの等が挙げられる。また、これらの材料の表面を酸化してもよく、表面処理により集電体表面に凹凸を付けてもよい。また、前記集電体の形態としては、例えば、シート、ネット、フォイル、フィルム、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。   Examples of the current collector include aluminum, stainless steel, nickel, copper, titanium, baked carbon, and those whose surfaces are coated with carbon, nickel, titanium, and silver. Moreover, the surface of these materials may be oxidized, and unevenness | corrugation may be given to the collector surface by surface treatment. Examples of the shape of the current collector include a sheet, a net, a foil, a film, a punched one, a lath body, a porous body, a foamed body, a fiber group, and a nonwoven fabric molded body.

前記電極シートは、本発明の活物質材料、導電剤および結着剤に溶剤を加えて、これらを混合・混練し、さらに溶剤を加えながら粘度を調節して塗料化した後、前記集電体上に塗布し、乾燥、圧縮することによって得ることができる。   The electrode sheet is prepared by adding a solvent to the active material, conductive agent and binder of the present invention, mixing and kneading them, adjusting the viscosity while adding the solvent, and forming a paint. It can be obtained by coating on top, drying and compressing.

本発明の活物質材料、導電剤、および結着剤を溶剤中に混合する方法としては、特に限定されることはないが、本発明の活物質材料と導電剤と結着剤を同時に溶剤中で混合する方法、導電剤と結着剤をあらかじめ溶剤中で混合した後に本発明の活物質材料を追加混合する方法、本発明の活物質材料のスラリーと導電剤スラリーと結着剤溶液をあらかじめ作製し、それぞれを混合する方法などが挙げられる。これらの電極合剤層構成材料を合剤層に均一に分散させて存在させるには、導電剤と結着剤をあらかじめ溶剤中で混合した後に活物質を追加混合する方法および負極活物質スラリーと導電剤スラリーと結着剤溶液をあらかじめ作製し、それぞれを混合する方法が好ましい。   A method for mixing the active material of the present invention, the conductive agent, and the binder in the solvent is not particularly limited, but the active material of the present invention, the conductive agent, and the binder are simultaneously mixed in the solvent. The method of mixing in the method, the method of mixing the conductive material and the binder in a solvent in advance, and then the additional mixing of the active material of the present invention, the slurry of the active material of the present invention, the conductive agent slurry and the binder solution in advance The method of producing and mixing each is mentioned. In order to make these electrode mixture layer constituent materials uniformly disperse in the mixture layer, a method in which the conductive material and the binder are previously mixed in a solvent and then the active material is additionally mixed, and the negative electrode active material slurry, A method of preparing a conductive agent slurry and a binder solution in advance and mixing them is preferable.

溶剤としては、水や有機溶媒を用いることができる。有機溶媒としては、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミドなど非プロトン性有機溶媒を単独、または2種類以上混合したものが挙げられ、好ましくはN−メチルピロリドンである。   As the solvent, water or an organic solvent can be used. Examples of the organic solvent include aprotic organic solvents such as N-methylpyrrolidone, dimethylacetamide, and dimethylformamide, or a mixture of two or more kinds, preferably N-methylpyrrolidone.

溶剤に水を用いる場合には、結着剤を凝集させないために、結着剤は、最終的に所望の粘度に調整する段階で添加することが好ましい。また、負極集電体としてアルミニウムを用いた場合、アルミニウムの腐食を抑制するために、酸性化合物を加えて、pHを調整することが好ましい。酸性化合物としては、無機酸や有機酸のどちらも使用できる。無機酸としては、好ましくはリン酸、ホウ酸、シュウ酸であり、より好ましくはシュウ酸である。有機酸としては、好ましくは有機カルボン酸である。また、アルミニウムの腐食を防ぐ方法として、アルミニウム集電体の表面にカーボンなど耐アルカリ性のあるものを被覆させたアルミニウム集電体を用いるのが好ましい。溶剤に有機溶媒を用いる場合には、結着剤をあらかじめ有機溶媒に溶解させて使用することが好ましい。   When water is used as the solvent, the binder is preferably added at the stage of finally adjusting to a desired viscosity in order not to cause the binder to aggregate. When aluminum is used as the negative electrode current collector, it is preferable to adjust pH by adding an acidic compound in order to suppress corrosion of aluminum. As the acidic compound, either an inorganic acid or an organic acid can be used. As the inorganic acid, phosphoric acid, boric acid and oxalic acid are preferable, and oxalic acid is more preferable. The organic acid is preferably an organic carboxylic acid. Further, as a method for preventing corrosion of aluminum, it is preferable to use an aluminum current collector in which the surface of the aluminum current collector is coated with an alkali-resistant material such as carbon. In the case of using an organic solvent as the solvent, it is preferable to use the binder by dissolving it in an organic solvent in advance.

本発明の活物質材料、導電剤および結着剤に溶剤を加えて、混合・混練する装置としては、例えば、プラネタリーミキサーなどの混練容器内で攪拌棒が自転しながら公転するタイプの混練機、二軸押し出し型混練機、遊星式撹拌脱泡装置、ビーズミル、高速旋回型ミキサ、粉体吸引連続溶解分散装置などを用いることができる。また、固形分濃度が高い状態で、混合・混練を開始し、段階的に固形分濃度を下げて塗料の粘度を調整することが好ましく、その場合は、粘度に応じて、その粘度に適した前記混合・混練装置を使い分けることが好ましい。なお、混合・混練を開始する段階の固形分濃度は、好ましくは60〜90質量%、さらに好ましくは70〜90質量%である。固形分濃度が60質量%以上であれば、本発明の活物質材料、結着剤、および導電剤を均一分散させるのに十分なせん断力を得ることができ、90質量%以下であれば、装置に極度に大きな負荷を与えることを避けることができる。   As an apparatus for mixing and kneading by adding a solvent to the active material, the conductive agent and the binder of the present invention, for example, a kneader of a type in which a stirring bar rotates while rotating in a kneading container such as a planetary mixer In addition, a twin-screw extrusion kneader, a planetary stirring and defoaming device, a bead mill, a high-speed swirling mixer, a powder suction continuous dissolution and dispersion device, and the like can be used. In addition, it is preferable to start mixing and kneading in a state where the solid content concentration is high, and adjust the viscosity of the coating material by gradually reducing the solid content concentration. It is preferable to use the mixing / kneading apparatus properly. The solid content concentration at the stage of starting mixing and kneading is preferably 60 to 90% by mass, and more preferably 70 to 90% by mass. If the solid content concentration is 60% by mass or more, sufficient shearing force can be obtained to uniformly disperse the active material of the present invention, the binder, and the conductive agent, and if it is 90% by mass or less, It is possible to avoid applying an extremely large load to the device.

(蓄電デバイス)
本発明の蓄電デバイスは、本発明の電極シートを用いる蓄電デバイスであり、前記活物質材料を含む電極へのリチウムイオンのインターカレーション、脱インターカレーションを利用してエネルギーを貯蔵、放出するデバイスであって、例えば、ハイブリッドキャパシタやリチウム電池などである。本発明の蓄電デバイスとしては、リチウムを吸蔵および放出可能な材料を活物質材料として含む正極と、負極と、前記正極と前記負極との間に配置されたセパレータと、非水電解液と、を含む蓄電デバイスであって、前記負極が、本発明の電極シートを含むことが好ましい。
(Electric storage device)
The power storage device of the present invention is a power storage device using the electrode sheet of the present invention, and stores and releases energy using intercalation and deintercalation of lithium ions to the electrode containing the active material. For example, it is a hybrid capacitor or a lithium battery. As an electricity storage device of the present invention, a positive electrode containing a material capable of occluding and releasing lithium as an active material, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte solution, It is an electrical storage device containing, Comprising: It is preferable that the said negative electrode contains the electrode sheet of this invention.

[ハイブリッドキャパシタ]
前記ハイブリッドキャパシタとしては、正極に、活性炭などの、電気二重層キャパシタの電極材料と同様の物理的な吸着によって容量が形成される活物質や、グラファイトなどの、物理的な吸着とインターカレーション、脱インターカレーションによって容量が形成される活物質や、導電性高分子などの、レドックスにより容量が形成される活物質を使用し、負極に本発明の活物質材料を使用するデバイスである。
[Hybrid capacitor]
As the hybrid capacitor, active adsorption and intercalation such as active material whose capacity is formed by the physical adsorption similar to the electrode material of the electric double layer capacitor, such as activated carbon, or graphite, on the positive electrode, This is a device that uses an active material in which capacitance is formed by deintercalation, or an active material in which capacitance is formed by redox, such as a conductive polymer, and uses the active material of the present invention for the negative electrode.

[リチウム電池]
本発明のリチウム電池は、リチウム一次電池およびリチウム二次電池を総称する。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
[Lithium battery]
The lithium battery of the present invention is a generic term for a lithium primary battery and a lithium secondary battery. In this specification, the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.

前記リチウム電池は、正極、負極および非水溶媒に電解質塩が溶解されている非水電解液等により構成されている。以下に、本発明のリチウム電池を構成する正極、非水電解液、リチウム電池の構造について説明する。   The lithium battery includes a positive electrode, a negative electrode, a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, and the like. Below, the structure of the positive electrode which comprises the lithium battery of this invention, a non-aqueous electrolyte, and a lithium battery is demonstrated.

<正極>
正極は、正極集電体の片面または両面に、正極活物質、導電剤および結着剤を含む合剤層を有する。
<Positive electrode>
The positive electrode has a mixture layer containing a positive electrode active material, a conductive agent, and a binder on one or both surfaces of the positive electrode current collector.

前記正極活物質としては、リチウムを吸蔵および放出可能な材料が使用され、例えば、活物質としては、コバルト、マンガン、ニッケルを含有するリチウムとの複合金属酸化物やリチウム含有オリビン型リン酸塩などが挙げられ、これらの正極活物質は、1種単独で又は2種以上を組み合わせて用いることができる。このような複合金属酸化物としては、例えば、LiCoO、LiMn、LiNiO、LiCo1−xNi(0.01<x<1)、LiCo1/3Ni1/3Mn1/3、LiNi1/2Mn3/2等が挙げられ、これらのリチウム複合酸化物の一部は他元素で置換してもよく、コバルト、マンガン、ニッケルの一部をSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも1種以上の元素で置換したり、Oの一部をSやFで置換したり、あるいは、これらの他元素を含有する化合物により被覆することができる。リチウム含有オリビン型リン酸塩としては、例えば、LiFePO、LiCoPO、LiNiPO、LiMnPO、LiFe1−xPO(MはCo、Ni、Mn、Cu、Zn、およびCdから選ばれる少なくとも1種であり、xは、0≦x≦0.5である。)等が挙げられる。As the positive electrode active material, a material capable of inserting and extracting lithium is used. For example, as the active material, a composite metal oxide with lithium containing cobalt, manganese, nickel, lithium-containing olivine-type phosphate, or the like These positive electrode active materials can be used singly or in combination of two or more. Examples of such composite metal oxides include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 <x <1), LiCo 1/3 Ni 1/3 Mn. 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 and the like. A part of these lithium composite oxides may be substituted with other elements, and a part of cobalt, manganese, nickel may be replaced with Sn. , Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La, etc., or a part of O is replaced with S or F Or it can coat | cover with the compound containing these other elements. Examples of the lithium-containing olivine-type phosphate include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 , LiFe 1-x M x PO 4 (M is selected from Co, Ni, Mn, Cu, Zn, and Cd). At least one, and x is 0 ≦ x ≦ 0.5.

前記正極用の導電剤および結着剤としては、負極と同様のものが挙げられる。前記正極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン、焼成炭素、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの等が挙げられる。これらの材料の表面を酸化してもよく、表面処理により正極集電体表面に凹凸を付けてもよい。また、集電体の形態としては、例えば、シート、ネット、フォイル、フィルム、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。   Examples of the conductive agent and binder for the positive electrode include the same as those for the negative electrode. Examples of the positive electrode current collector include aluminum, stainless steel, nickel, titanium, calcined carbon, and aluminum or stainless steel having a surface treated with carbon, nickel, titanium, or silver. The surface of these materials may be oxidized, and the surface of the positive electrode current collector may be uneven by surface treatment. Examples of the shape of the current collector include a sheet, a net, a foil, a film, a punched one, a lath body, a porous body, a foamed body, a fiber group, and a nonwoven fabric molded body.

<非水電解液>
非水電解液は、非水溶媒中に電解質塩を溶解させたものである。この非水電解液には特に制限は無く、種々のものを用いることができる。
<Non-aqueous electrolyte>
The nonaqueous electrolytic solution is obtained by dissolving an electrolyte salt in a nonaqueous solvent. There is no restriction | limiting in particular in this non-aqueous electrolyte, A various thing can be used.

前記電解質塩としては、非水電解質に溶解するものが用いられ、例えば、LiPF、LiBF、LiPO、LiN(SOF)、LiClO等の無機リチウム塩、LiN(SOCF、LiN(SO、LiCFSO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso−C、LiPF(iso−C)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF(SONLi、(CF(SONLi等の環状のフッ化アルキレン鎖を含有するリチウム塩、ビス[オキサレート−O,O’]ホウ酸リチウムやジフルオロ[オキサレート−O,O’]ホウ酸リチウム等のオキサレート錯体をアニオンとするリチウム塩が挙げられる。これらの中でも、特に好ましい電解質塩は、LiPF、LiBF、LiPO、およびLiN(SOF)であり、最も好ましい電解質塩はLiPFである。これらの電解質塩は、1種単独又は2種以上を組み合わせて使用することができる。また、これらの電解質塩の好適な組み合わせとしては、LiPFを含み、更にLiBF、LiPO、およびLiN(SOF)から選ばれる少なくとも1種のリチウム塩が非水電解液中に含まれている場合が好ましい。As the electrolyte salt, one that dissolves in a non-aqueous electrolyte is used. For example, an inorganic lithium salt such as LiPF 6 , LiBF 4 , LiPO 2 F 2 , LiN (SO 2 F) 2 , LiClO 4, or LiN (SO 2). CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiPF 4 (CF 3) 2, LiPF 3 (C 2 F 5) 3, LiPF 3 Lithium salts containing a chain-like fluorinated alkyl group such as (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ), and (CF 2 ) 2 ( SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 NLi and other lithium salts containing cyclic fluorinated alkylene chains, bis [oxalate-O, O ′] lithium borate and diflu Examples thereof include lithium salts using an oxalate complex such as oro [oxalate-O, O ′] lithium borate as an anion. Among these, particularly preferable electrolyte salts are LiPF 6 , LiBF 4 , LiPO 2 F 2 , and LiN (SO 2 F) 2 , and the most preferable electrolyte salt is LiPF 6 . These electrolyte salts can be used singly or in combination of two or more. As the preferred combination of these electrolyte salts include LiPF 6, further LiBF 4, LiPO 2 F 2, and LiN (SO 2 F) at least one lithium salt selected from 2 nonaqueous solution Is preferable.

これら全電解質塩が溶解されて使用される濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.5M以上がより好ましく、0.7M以上が更に好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.5M以下が更に好ましい。   The concentration used by dissolving all the electrolyte salts is usually preferably 0.3 M or more, more preferably 0.5 M or more, and even more preferably 0.7 M or more with respect to the non-aqueous solvent. Moreover, the upper limit is preferably 2.5 M or less, more preferably 2.0 M or less, and even more preferably 1.5 M or less.

一方、前記非水溶媒としては、環状カーボネート、鎖状カーボネート、鎖状エステル、エーテル、アミド、リン酸エステル、スルホン、ラクトン、ニトリル、S=O結合含有化合物等が挙げられ、環状カーボネートを含むことが好ましい。なお、「鎖状エステル」なる用語は、鎖状カーボネートおよび鎖状カルボン酸エステルを含む概念として用いる。   On the other hand, examples of the non-aqueous solvent include cyclic carbonates, chain carbonates, chain esters, ethers, amides, phosphate esters, sulfones, lactones, nitriles, S═O bond-containing compounds, and the like, including cyclic carbonates. Is preferred. The term “chain ester” is used as a concept including a chain carbonate and a chain carboxylic acid ester.

環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2−ブチレンカーボネート、2,3−ブチレンカーボネートから選ばれる一種又は二種以上が挙げられ、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネートから選ばれる一種以上が、50C充電レート特性の向上効果や高温保存時のガス発生量を低減する観点からより好適であり、プロピレンカーボネート、1,2−ブチレンカーボネートおよび2,3−ブチレンカーボネートから選ばれるアルキレン鎖を有する環状カーボネートの一種以上が更に好適である。全環状カーボネート中のアルキレン鎖を有する環状カーボネートの割合が55体積%〜100体積%であることが好ましく、60体積%〜90体積%であることが更に好ましい。   Examples of the cyclic carbonate include one or more selected from ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, and 2,3-butylene carbonate. Ethylene carbonate, propylene carbonate, 1, One or more selected from 2-butylene carbonate and 2,3-butylene carbonate are more preferable from the viewpoint of improving the 50C charge rate characteristics and reducing the amount of gas generated during high-temperature storage. Propylene carbonate, 1,2- One or more cyclic carbonates having an alkylene chain selected from butylene carbonate and 2,3-butylene carbonate are more preferred. The ratio of the cyclic carbonate having an alkylene chain in the total cyclic carbonate is preferably 55% by volume to 100% by volume, and more preferably 60% by volume to 90% by volume.

したがって、前記非水電解液としては、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、2,3−ブチレンカーボネートから選ばれる一種以上の環状カーボネートを含む非水溶媒に、LiPF、LiBF、LiPO、およびLiN(SOF)から選ばれる少なくとも一種のリチウム塩を含む電解質塩を溶解させた非水電解液を用いることが好ましく、前記環状カーボネートとしては、プロピレンカーボネート、1,2−ブチレンカーボネートおよび2,3−ブチレンカーボネートから選ばれるアルキレン鎖を有する環状カーボネートの一種以上が更に好ましい。Therefore, as the non-aqueous electrolyte, a non-aqueous solvent containing one or more cyclic carbonates selected from ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, and 2,3-butylene carbonate, LiPF 6 , LiBF 4 , It is preferable to use a nonaqueous electrolytic solution in which an electrolyte salt containing at least one lithium salt selected from LiPO 2 F 2 and LiN (SO 2 F) 2 is used. As the cyclic carbonate, propylene carbonate, 1, One or more cyclic carbonates having an alkylene chain selected from 2-butylene carbonate and 2,3-butylene carbonate are more preferred.

また、特に、全電解質塩の濃度が0.5M以上2.0M以下であり、前記電解質塩として、少なくともLiPFを含み、更に0.001M以上1M以下のLiBF、LiPO、及びLiN(SOF)から選ばれる少なくとも一種のリチウム塩が含まれる非水電解液を用いることが好ましい。LiPF以外のリチウム塩が非水溶媒中に占める割合が0.001M以上であると、蓄電デバイスの高温環境下での充放電サイクル特性を向上させる効果や、充放電サイクル後のガス発生量低減効果が発揮されやすく、1.0M以下であると高温環境下での充放電サイクル特性を向上させる効果や、充放電サイクル後のガス発生量低減効果が低下する懸念が少ないので好ましい。LiPF以外のリチウム塩が非水溶媒中に占める割合は、好ましくは0.01M以上、特に好ましくは0.03M以上、最も好ましくは0.04M以上である。その上限は、好ましくは0.8M以下、さらに好ましくは0.6M以下、特に好ましくは0.4M以下である。In particular, the concentration of the total electrolyte salt is 0.5 M or more and 2.0 M or less, and the electrolyte salt includes at least LiPF 6 and further 0.001 M or more and 1 M or less of LiBF 4 , LiPO 2 F 2 , and LiN. It is preferable to use a nonaqueous electrolytic solution containing at least one lithium salt selected from (SO 2 F) 2 . When the proportion of the lithium salt other than LiPF 6 in the non-aqueous solvent is 0.001 M or more, the effect of improving the charge / discharge cycle characteristics of the electricity storage device in a high-temperature environment and the reduction of gas generation after the charge / discharge cycle It is preferable that the effect is easily exhibited, and that it is 1.0 M or less because there is little concern that the effect of improving the charge / discharge cycle characteristics under a high temperature environment and the effect of reducing the amount of gas generated after the charge / discharge cycle are reduced. The proportion of the lithium salt other than LiPF 6 in the non-aqueous solvent is preferably 0.01 M or more, particularly preferably 0.03 M or more, and most preferably 0.04 M or more. The upper limit is preferably 0.8M or less, more preferably 0.6M or less, and particularly preferably 0.4M or less.

また、前記非水溶媒は、適切な物性を達成するために、混合して使用されることが好ましい。その組合せは、例えば、環状カーボネートと鎖状カーボネートの組合せ、環状カーボネートと鎖状カーボネートとラクトンとの組合せ、環状カーボネートと鎖状カーボネートとエーテルの組合せ、環状カーボネートと鎖状カーボネートと鎖状エステルとの組合せ、環状カーボネートと鎖状カーボネートとニトリルとの組合せ、環状カーボネート類と鎖状カーボネートとS=O結合含有化合物との組合せ等が挙げられる。   The non-aqueous solvent is preferably used as a mixture in order to achieve appropriate physical properties. The combination includes, for example, a combination of a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate, a chain carbonate and a lactone, a combination of a cyclic carbonate, a chain carbonate and an ether, a cyclic carbonate, a chain carbonate and a chain ester. Combinations, combinations of cyclic carbonates, chain carbonates, and nitriles, combinations of cyclic carbonates, chain carbonates, and S═O bond-containing compounds are included.

鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、およびエチルプロピルカーボネートから選ばれる1種又は2種以上の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、およびジブチルカーボネートから選ばれる1種又は2種以上の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酢酸メチル、および酢酸エチル(EA)から選ばれる1種又は2種以上の鎖状カルボン酸エステルが好適に挙げられる。   As the chain ester, one or more asymmetric chain carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate, One or more symmetrical linear carbonates selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and dibutyl carbonate, pivalate esters such as methyl pivalate, ethyl pivalate, and propyl pivalate Preferable examples include one or more chain carboxylic acid esters selected from methyl propionate, ethyl propionate, propyl propionate, methyl acetate, and ethyl acetate (EA).

前記鎖状エステルの中でも、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチルおよび酢酸エチル(EA)から選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。   Among the chain esters, chain esters having a methyl group selected from dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate, methyl acetate and ethyl acetate (EA) are preferable. In particular, a chain carbonate having a methyl group is preferred.

また、鎖状カーボネートを用いる場合には、2種以上を用いることが好ましい。さらに対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有量が非対称鎖状カーボネートより多く含まれると更に好ましい。   Moreover, when using chain carbonate, it is preferable to use 2 or more types. Further, it is more preferable that both a symmetric chain carbonate and an asymmetric chain carbonate are contained, and it is further more preferable that the content of the symmetric chain carbonate is more than that of the asymmetric chain carbonate.

鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60〜90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下するなどして高温環境下での充放電サイクル特性を向上させる効果や、充放電サイクル後のガス発生量低減効果が低下するおそれが少ないので上記範囲であることが好ましい。   The content of the chain ester is not particularly limited, but it is preferably used in the range of 60 to 90% by volume with respect to the total volume of the nonaqueous solvent. When the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and when the content is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte is decreased. The above range is preferable because there is little possibility that the effect of improving the discharge cycle characteristics and the effect of reducing the amount of gas generated after the charge / discharge cycle are reduced.

鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、51体積%以上が好ましく、55体積%以上がより好ましい。その上限としては、95体積%以下がより好ましく、85体積%以下であると更に好ましい。対称鎖状カーボネートにジメチルカーボネートが含まれると特に好ましい。また、非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネートが特に好ましい。上記の場合に一段と高温環境下での充放電サイクル特性を向上させる効果や、充放電サイクル後のガス発生量低減効果が向上するので好ましい。   The volume ratio of the symmetric chain carbonate in the chain carbonate is preferably 51% by volume or more, and more preferably 55% by volume or more. The upper limit is more preferably 95% by volume or less, and still more preferably 85% by volume or less. It is particularly preferred that the symmetric chain carbonate contains dimethyl carbonate. The asymmetric chain carbonate preferably has a methyl group, and methyl ethyl carbonate is particularly preferable. In the above case, it is preferable because the effect of improving the charge / discharge cycle characteristics under a higher temperature environment and the effect of reducing the amount of gas generated after the charge / discharge cycle are improved.

環状カーボネートと鎖状エステルの割合は、高温環境下での充放電サイクル特性を向上させる効果や、充放電サイクル後のガス発生量低減効果を高める観点から、環状カーボネート:鎖状エステル(体積比)が10:90〜45:55が好ましく、15:85〜40:60がより好ましく、20:80〜35:65が特に好ましい。   The ratio of cyclic carbonate and chain ester is cyclic carbonate: chain ester (volume ratio) from the viewpoint of improving the effect of improving charge / discharge cycle characteristics in a high temperature environment and the effect of reducing the amount of gas generated after the charge / discharge cycle. Is preferably 10:90 to 45:55, more preferably 15:85 to 40:60, and particularly preferably 20:80 to 35:65.

<リチウム電池の構造>
本発明のリチウム電池の構造は特に限定されるものではなく、正極、負極および単層又は複層のセパレータを有するコイン型電池、さらに、正極、負極およびロール状のセパレータを有する円筒型電池や角型電池等が一例として挙げられる。
<Structure of lithium battery>
The structure of the lithium battery of the present invention is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a cylindrical battery and a corner having a positive electrode, a negative electrode, and a roll separator. An example is a type battery.

前記セパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜が用いられる。例えば、ポリエチレン、ポリプロピレン、セルロース紙、ガラス繊維紙、ポリエチレンテレフタレート、ポリイミド微多孔膜などが挙げられ、2種以上を組み合わせて構成された多層膜としたものも用いることができる。またこれらのセパレータ表面にPVDF、シリコン樹脂、ゴム系樹脂などの樹脂や、酸化アルミニウム、二酸化珪素、酸化マグネシウムなどの金属酸化物の粒子などをコーティングすることもできる。前記セパレータの孔径としては、一般的に電池用として有用な範囲であればよく、例えば、0.01〜10μmである。前記セパレータの厚みとしては、一般的な電池用の範囲であればよく、例えば5〜300μmである。   As the separator, an insulating thin film having a large ion permeability and a predetermined mechanical strength is used. For example, polyethylene, polypropylene, cellulose paper, glass fiber paper, polyethylene terephthalate, polyimide microporous film and the like can be mentioned, and a multilayer film constituted by combining two or more kinds can also be used. In addition, the surfaces of these separators can be coated with resin such as PVDF, silicon resin, rubber-based resin, particles of metal oxide such as aluminum oxide, silicon dioxide, and magnesium oxide. The pore diameter of the separator may be in a range generally useful for batteries, for example, 0.01 to 10 μm. The thickness of the separator may be in a general battery range, and is, for example, 5 to 300 μm.

[リチウムイオン二次電池]
本発明のリチウムイオン二次電池は、リチウムを吸蔵および放出可能な材料を活物質材料として含む正極と、負極と、前記正極と前記負極との間に配置されたセパレータと、非水電解液と、を含むリチウムイオン二次電池であって、前記負極が、本発明の電極シートを含み、前記負極の完全充電状態における充電電位が、リチウム基準極に対して1.05V以上であることが好ましい。本発明のリチウムイオン二次電池においては、負極の完全充電状態における充電電位がこの範囲であれば、さらに高温環境下での充放電サイクル後の放電容量維持率が大きくなるからである。前記負極の完全充電状態における充電電位は、リチウム基準極に対して1.1V以上であることがさらに好ましく、1.15V以上であることが特に好ましい。以上の範囲とすることによって、特に高温環境下での充放電サイクル後の放電容量維持率が大きくなる。また、前記リチウムイオン二次電池において、前記負極の完全充電状態における充電電位が前記範囲にあることに加えて、前記負極の完全放電状態における放電電位が、リチウム基準極に対して1.8V以下であることがさらに好ましい。本発明のリチウムイオン二次電池においては、負極の完全放電状態における充電電位がこの範囲であれば、さらに高温環境下での充放電サイクル後の放電容量維持率が大きくなる。負極の完全放電状態における放電電位がこの範囲であれば、さらに高温環境下での充放電サイクル後の放電容量維持率が大きくなるからである。前記負極の完全放電状態における放電電位は、リチウム基準極に対して1.7V以下であることがさらに好ましく、1.6V以下であることが特に好ましい。以上の範囲とすることによって、高温環境下での充放電サイクル後の放電容量維持率が大きくなり、高温環境下でのガス発生も抑制される。
[Lithium ion secondary battery]
A lithium ion secondary battery of the present invention includes a positive electrode containing a material capable of inserting and extracting lithium as an active material, a negative electrode, a separator disposed between the positive electrode and the negative electrode, a non-aqueous electrolyte, It is preferable that the negative electrode includes the electrode sheet of the present invention, and a charging potential in a fully charged state of the negative electrode is 1.05 V or more with respect to a lithium reference electrode. . This is because, in the lithium ion secondary battery of the present invention, when the charge potential in the fully charged state of the negative electrode is in this range, the discharge capacity maintenance rate after the charge / discharge cycle in a high temperature environment is further increased. The charging potential of the negative electrode in a fully charged state is more preferably 1.1 V or more, and particularly preferably 1.15 V or more with respect to the lithium reference electrode. By setting it as the above range, the discharge capacity maintenance rate after the charge / discharge cycle especially in a high temperature environment becomes large. In the lithium ion secondary battery, in addition to the charge potential in the fully charged state of the negative electrode being in the above range, the discharge potential in the fully discharged state of the negative electrode is 1.8 V or less with respect to the lithium reference electrode. More preferably. In the lithium ion secondary battery of the present invention, when the charge potential in the complete discharge state of the negative electrode is within this range, the discharge capacity retention rate after the charge / discharge cycle in a high temperature environment is further increased. This is because if the discharge potential in the complete discharge state of the negative electrode is within this range, the discharge capacity retention rate after the charge / discharge cycle in a higher temperature environment is further increased. The discharge potential in the complete discharge state of the negative electrode is more preferably 1.7 V or less, and particularly preferably 1.6 V or less with respect to the lithium reference electrode. By setting it as the above range, the discharge capacity maintenance factor after the charging / discharging cycle in a high temperature environment becomes large, and the gas generation in a high temperature environment is also suppressed.

本発明のリチウムイオン二次電池の正極に含まれる活物質材料としては、スピネル構造を有する複合金属酸化物であることが好ましい。高温環境下での充放電サイクル後の放電容量維持率が大きくなるからである。ここで、スピネル構造を有する複合金属酸化物としては、具体的にはLiMn、LiNi0.5Mn1.5、LiMg0.5Mn1.5、LiNi0.5Ge1.5、LiNiVO、LiMnVO、LiMnVOなどが挙げられる。そして、これらスピネル構造を有する複合金属酸化物のなかでも、マンガンを含有する複合金属酸化物が好ましく、LiMnまたはLiNi0.5Mn1.5がさらに好ましく、LiMnが特に好ましい。これら二種の場合は、高温環境下での充放電サイクル後の放電容量維持率が特に大きくなる。なお、これらのスピネル構造を有する複合金属酸化物は、構成元素の一部が他の元素で置換された組成物であっても良い。The active material contained in the positive electrode of the lithium ion secondary battery of the present invention is preferably a composite metal oxide having a spinel structure. This is because the discharge capacity retention rate after the charge / discharge cycle in a high temperature environment is increased. Here, as the composite metal oxide having a spinel structure, specifically, LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiMg 0.5 Mn 1.5 O 4 , LiNi 0.5 Ge Examples thereof include 1.5 O 4 , LiNiVO 4 , LiMnVO 4 , and LiMnVO 4 . Among these composite metal oxides having a spinel structure, a composite metal oxide containing manganese is preferable, LiMn 2 O 4 or LiNi 0.5 Mn 1.5 O 4 is more preferable, and LiMn 2 O 4 is Particularly preferred. In these two types, the discharge capacity maintenance rate after the charge / discharge cycle in a high temperature environment is particularly large. Note that the composite metal oxide having the spinel structure may be a composition in which a part of the constituent elements is replaced with another element.

次に、本発明の詳細について、実施例および比較例を挙げてより具体的に説明するが、本発明は以下の実施例に限定されるものではなく、発明の趣旨から容易に類推可能な様々な組み合わせを包含する。特に、実施例の非水電解液構成する溶媒の組み合わせに限定されるものではない。以下に記載の実施例、比較例に挙げる物性値の詳細について記載する。   Next, the details of the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples, and can be easily inferred from the gist of the invention. Including any combination. In particular, it is not limited to the combination of the solvent which comprises the non-aqueous electrolyte of an Example. Details of the physical property values given in the following examples and comparative examples are described.

(各種物性測定方法)
〔1.XRD〕
測定装置として、CuKα線を用いたX線回折装置(株式会社リガク製、RINT−TTR−III型)を用いた。X線回折測定の測定条件は、測定角度範囲(2θ):10°〜90°、ステップ間隔:0.02°、測定時間:0.25秒/ステップ、線源:CuKα線、管球の電圧:50kV、電流:300mAとした。
(Various physical property measurement methods)
[1. XRD]
As a measuring device, an X-ray diffractometer using CuKα ray (Rigaku Corporation, RINT-TTR-III type) was used. The measurement conditions of the X-ray diffraction measurement are: measurement angle range (2θ): 10 ° to 90 °, step interval: 0.02 °, measurement time: 0.25 seconds / step, radiation source: CuKα ray, tube voltage : 50 kV, current: 300 mA.

空間群Cmcaまたは空間群Fmmmに属する結晶構造を有するLiNaTi14の回折角2θ=17.6〜18.6°の範囲のピークに相当するピーク(LiNaTi14の結晶構造が空間群Cmcaに属するとした場合における、(111)面に相当するピーク)の強度、アナターゼ型二酸化チタンのメインピーク強度(回折角2θ=24.7〜25.7°の範囲内の(101)面由来ピーク強度)、ルチル型二酸化チタンのメインピーク強度(回折角2θ=27.2〜27.6°の範囲内の(110)面由来ピーク強度)、およびLiTiOのピーク強度(回折角2θ=43.5〜43.8°の範囲内の(−133)面由来ピーク強度)を測定した。またLiTiOの(−133)面由来ピーク強度に100/80を乗じてLiTiOのメインピーク強度((002)面相当のピークの強度)を算出した。そして、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有するLiNaTi14の回折角2θ=17.6〜18.6°の範囲のピークに相当するピークの強度を100としたときの、前記のルチル型二酸化チタン、アナターゼ型二酸化チタン、およびLiTiOのメインピーク強度の相対値を算出した。A peak corresponding to a peak in the range of diffraction angle 2θ = 17.6 to 18.6 ° of Li 2 Na 2 Ti 6 O 14 having a crystal structure belonging to space group Cmca or space group Fmmm (Li 2 Na 2 Ti 6 O In the case where the crystal structure of 14 belongs to the space group Cmca, the intensity of the peak corresponding to the (111) plane), the main peak intensity of anatase-type titanium dioxide (diffraction angle 2θ = 24.7 to 25.7 °) (101) plane derived from the peak intensity of the inner) surface derived peak intensity ((110 in the range of diffraction angle 2 [Theta] = 27.2-27.6 °) the main peak intensity of rutile-type titanium dioxide), and Li 2 TiO 3 Peak intensity (diffraction angle 2θ = peak intensity derived from (−133) plane within the range of 43.5 to 43.8 °) was measured. Also the calculation of Li 2 TiO 3 and (-133) main peak intensity of Li 2 TiO 3 is multiplied by 100/80 on surface derived peak intensity ((002) intensity of the peak of the corresponding surface). The intensity of a peak corresponding to a peak in the range of diffraction angle 2θ = 17.6 to 18.6 ° of Li 2 Na 2 Ti 6 O 14 having a crystal structure belonging to space group Cmca or space group Fmmm is defined as 100. The relative values of the main peak intensities of the rutile titanium dioxide, anatase titanium dioxide, and Li 2 TiO 3 were calculated.

〔2.結晶子径(D)〕
本発明のリチウムナトリウムチタン複合酸化物粉末の結晶子径(D)は、CuKα線を用いたX線回折装置(株式会社リガク製、RINT−TTR−III型)を用いて測定した。測定条件を、測定角度範囲(2θ):15.8°〜21.0°、ステップ間隔:0.01°、測定時間:1秒/ステップ、線源:CuKα線、管球の電圧:50kV、電流:300mAとして得られた空間群Cmcaまたは空間群Fmmmに属する結晶構造を有するLiNaTi14の回折角2θ=17.6〜18.6°の範囲のピーク(LiNaTi14の結晶構造が空間群Cmcaに属するとした場合における、(111)面に相当するピーク)の半値幅からScherrerの式、すなわち以下の式(1)より求めた。なお、半値幅の算出においては、回折装置の光学系による線幅を補正する必要があり、この補正にはシリコン粉末を使用した。
= K・λ/( FW(S)・cosθ) ・・・(1)
FW(S)^D = FWHM^D − FW(I)^D
FW(I)=f0+f1×(2θ)+f2×(2θ)
θ=(t0+t1×(2θ)+t2(2θ))/2
K:Scherrer定数(0.94)
λ:CuKα線の波長(1.54059Å)
FW(S):試料固有の半値幅(FWHM)
FW(I):装置固有の半値幅(FWHM)
D:デコンボリューションパラメータ(1.3)
f0=5.108673E−02
f1=1.058424E−04
f2=6.871481E−06
θ:ブラッグ角の補正値
t0=−3.000E−03
t1=5.119E−04
t2=−3.599E−06
[2. Crystallite diameter (D X )]
The crystallite diameter (D X ) of the lithium sodium titanium composite oxide powder of the present invention was measured using an X-ray diffractometer using CuKα rays (RINT-TTR-III type, manufactured by Rigaku Corporation). Measurement conditions were as follows: measurement angle range (2θ): 15.8 ° to 21.0 °, step interval: 0.01 °, measurement time: 1 second / step, radiation source: CuKα ray, tube voltage: 50 kV, Current: A peak in the range of diffraction angle 2θ = 17.6 to 18.6 ° of Li 2 Na 2 Ti 6 O 14 having a crystal structure belonging to space group Cmca or space group Fmmm obtained as 300 mA (Li 2 Na 2 From the half-value width of the peak corresponding to the (111) plane when the crystal structure of Ti 6 O 14 belongs to the space group Cmca, it was obtained from the Scherrer equation, that is, the following equation (1). In calculating the half width, it is necessary to correct the line width by the optical system of the diffractometer, and silicon powder was used for this correction.
D X = K · λ / (FW (S) · cos θ c ) (1)
FW (S) ^ D = FWHM ^ D-FW (I) ^ D
FW (I) = f0 + f1 × (2θ) + f2 × (2θ) 2
θ c = (t0 + t1 × (2θ) + t2 (2θ) 2 ) / 2
K: Scherrer constant (0.94)
λ: wavelength of CuKα 1 line (1.54059 mm)
FW (S): Sample-specific half-width (FWHM)
FW (I): Device-specific half-width (FWHM)
D: Deconvolution parameter (1.3)
f0 = 5.108673E-02
f1 = 1.058424E-04
f2 = 6.871481E-06
θ c : Bragg angle correction value t0 = −3,000E-03
t1 = 5.119E-04
t2 = −3.599E-06

〔3.比表面積(m/g)〕
本発明のリチウムナトリウムチタン複合酸化物粉末の比表面積は、株式会社マウンテック製、全自動BET比表面積測定装置、商品名「Macsorb HM model−1208」を使用し、液体窒素を用いて一点法で測定した。
[3. Specific surface area (m 2 / g)]
The specific surface area of the lithium sodium titanium composite oxide powder of the present invention is measured by a one-point method using liquid nitrogen using a fully automatic BET specific surface area measuring device manufactured by Mountec Co., Ltd., trade name “Macsorb HM model-1208”. did.

〔4.BET径(DBET)〕
本発明のリチウムナトリウムチタン複合酸化物粉末のBET径(DBET)は、粉末を構成する全ての粒子が同一径の球と仮定して、下記の式(2)より求めた。ここで、DBETはBET径(μm)、ρはリチウムナトリウムナトリウムチタン複合酸化物の真密度(g/cc)、Sは〔3.比表面積(m/g)〕で説明した方法で測定された比表面積(m/g)である。
BET = 6/(ρ×S) ・・・(2)
[4. BET diameter (D BET )]
The BET diameter (D BET ) of the lithium sodium titanium composite oxide powder of the present invention was obtained from the following formula (2) assuming that all particles constituting the powder were spheres having the same diameter. Here, D BET is the BET diameter (μm), ρ S is the true density (g / cc) of lithium sodium sodium titanium composite oxide, and S is [3. Specific surface area (m 2 / g) measured by the method described in “Specific surface area (m 2 / g)”.
D BET = 6 / (ρ S × S) (2)

〔5.粒度分布〕
本発明のリチウムナトリウムチタン複合酸化物粉末の粒度分布は、レーザ回折・散乱型粒度分布測定機(日機装株式会社、マイクロトラックMT3300EXII)を用いて測定した。測定試料の調整には、イオン交換水を測定溶媒として用いた。50mlの測定溶媒に約50mgの試料を投入し、さらに界面活性剤である0.2%ヘキサメタリン酸ナトリウム水溶液を1cc添加し、得られた測定用スラリーを超音波分散機で処理した。分散処理が施された測定用スラリーを測定セルに収容して、さらに測定溶媒を加えてスラリー濃度を調整した。スラリーの透過率が適正範囲になったところで粒度分布測定を行った。本発明のリチウムナトリウムチタン複合酸化物粉末の体積中位粒径D50は、以上の粒度分布測定にて得られた結果から、体積分率で計算した累積体積頻度が、粒径の小さい方から積算して50%になる粒径として求めた。
[5. Particle size distribution)
The particle size distribution of the lithium sodium titanium composite oxide powder of the present invention was measured using a laser diffraction / scattering type particle size distribution analyzer (Nikkiso Co., Ltd., Microtrack MT3300EXII). For the preparation of the measurement sample, ion exchange water was used as a measurement solvent. About 50 mg of a sample was put into 50 ml of a measurement solvent, and 1 cc of 0.2% sodium hexametaphosphate aqueous solution as a surfactant was added, and the obtained measurement slurry was processed with an ultrasonic disperser. The measurement slurry subjected to the dispersion treatment was accommodated in a measurement cell, and a measurement solvent was added to adjust the slurry concentration. The particle size distribution was measured when the transmittance of the slurry was within an appropriate range. The volume median particle size D50 of the lithium sodium titanium composite oxide powder of the present invention is calculated from the results obtained by the above particle size distribution measurement, and the cumulative volume frequency calculated by the volume fraction is integrated from the smaller particle size. The particle size was 50%.

〔6.全細孔容積(ガス吸着法)〕
本発明のリチウムナトリウムチタン複合酸化物粉末の全細孔容積は、全自動ガス吸着量測定装置AC1−iQ(QUANTACHROME製)を用いて、ガス吸着法により以下の通り測定した。リチウムナトリウムチタン複合酸化物粉末1gを、ステム径6mmの測定セル(ラージセル)に収容して、前記測定装置に格納し、200℃の真空下で15時間脱気した。前記測定装置にて、吸着ガスとして窒素ガスを使用し、定容法により、全自動ガス吸着量測定を行い、全細孔容積を測定した。
[6. Total pore volume (gas adsorption method)]
The total pore volume of the lithium sodium titanium composite oxide powder of the present invention was measured by a gas adsorption method using a fully automatic gas adsorption amount measuring apparatus AC1-iQ (manufactured by QUANTACHROME) as follows. 1 g of lithium sodium titanium composite oxide powder was accommodated in a measuring cell (large cell) having a stem diameter of 6 mm, stored in the measuring device, and deaerated under vacuum at 200 ° C. for 15 hours. With the measurement apparatus, nitrogen gas was used as the adsorption gas, and a fully automatic gas adsorption amount measurement was performed by a constant volume method to measure the total pore volume.

〔7.二次粒子の平均圧縮強度〕
本発明のリチウムナトリウムチタン複合酸化物粉末の二次粒子の平均圧縮強度の測定は、試験力「1g以下計測モード」を追加した島津製微小圧縮試験機(MCT−510)を用いた。試験モードは「圧縮試験」を選択し、粒子を測定粒子径の10%だけ圧縮したときの圧縮強度を、測定した二次粒子の圧縮強度とした。試料ステージ上に分散させた測定サンプルに対し、任意の箇所について光学顕微鏡による観察を行い、光学顕微鏡の視野範囲において、粒子同士が重ならず、明らかに二次粒子を形成していると判別できる粒子を無作為に選定し、一つずつ測定して、50点の平均値を求め、その平均値を「二次粒子の平均圧縮強度」とした。圧縮試験データの表面検出点は、装置が自動で表面検出した点とした。圧子の種類は「FLAT50」、測長モードは「単体」にした。圧縮強度が3MPa以下の粒子では、「軟質試料測定」モードを使用し、試験力は4.90mNで、負荷速度は0.0100mN/秒で負荷保持時間5秒とした。圧縮強度が3MPa超の粒子では、「軟質試料測定」モードを使用せずに、試験力は4.90mNで、負荷速度は0.0446mN/秒で負荷保持時間5秒とした。
[7. (Average compressive strength of secondary particles)
The average compression strength of secondary particles of the lithium sodium titanium composite oxide powder of the present invention was measured using a Shimadzu micro compression tester (MCT-510) to which a test force “1 g or less measurement mode” was added. “Compression test” was selected as the test mode, and the compression strength when the particles were compressed by 10% of the measured particle diameter was defined as the compression strength of the measured secondary particles. The measurement sample dispersed on the sample stage is observed with an optical microscope at an arbitrary position, and in the field of view of the optical microscope, it can be determined that the particles do not overlap with each other and that secondary particles are clearly formed. Particles were randomly selected and measured one by one to obtain an average value of 50 points, and the average value was defined as “average compressive strength of secondary particles”. The surface detection point of the compression test data was the point where the device automatically detected the surface. The type of indenter was “FLAT50” and the length measurement mode was “single”. For particles with a compressive strength of 3 MPa or less, the “soft sample measurement” mode was used, the test force was 4.90 mN, the load speed was 0.0100 mN / sec, and the load holding time was 5 seconds. For particles with a compressive strength exceeding 3 MPa, the “soft sample measurement” mode was not used, the test force was 4.90 mN, the load speed was 0.0446 mN / sec, and the load holding time was 5 seconds.

〔8.二次粒子の平均円形度〕
円形度は、粒子を2次元平面に投影したときの球形度の指標であり、球形度に代わる指標である。本発明においては、各実施例のリチウムナトリウムチタン複合酸化物粉末の二次粒子について、測定対象の粒子の周囲長に対する、測定対象の粒子と同じ面積を持つ真円の周囲長を百分率で表した値を各粒子の円形度として求め、その平均値を平均円形度とした。測定対象の粒子の周囲長は、SEM画像を画像処理することにより求め、円形度は下記の式(3)で求めた。任意の箇所について測定された複数のSEM画像から、無作為に50個の粒子を選択し、無作為に選んだ50個の粒子の円形度の平均値を平均円形度とした。
円形度=(測定対象の粒子と同じ面積をもつ真円の周囲長)/(測定対象の粒子の周囲長)×100(%) ・・・(3)
[8. (Average circularity of secondary particles)
The circularity is an index of sphericity when a particle is projected on a two-dimensional plane, and is an index instead of sphericity. In the present invention, for the secondary particles of the lithium sodium titanium composite oxide powder of each example, the perimeter of the perfect circle having the same area as the measurement target particle is expressed as a percentage with respect to the perimeter of the measurement target particle. The value was determined as the circularity of each particle, and the average value was defined as the average circularity. The perimeter of the particles to be measured was determined by image processing of the SEM image, and the circularity was determined by the following equation (3). 50 particles were randomly selected from a plurality of SEM images measured at an arbitrary location, and the average circularity of 50 randomly selected particles was defined as the average circularity.
Circularity = (perimeter of a perfect circle having the same area as the particle to be measured) / (perimeter of the particle to be measured) × 100 (%) (3)

(実施例1−1)
<原料の調製>
リチウム原料としてLiCO(Alfa Aesar(ALF)製 製品番号:013418)、ナトリウム原料としてNaCO(Alfa Aesar(ALF)製 製品番号:L13098)、チタン原料としてアナターゼ型TiO(平均粒径 0.6μm)、および、チタンサイト置換元素の原料としてAl(SO・14〜18水和物(和光純薬工業製、製品番号:010−02125)を、表1に示すような組成物(LiNaTi5.99Al0.0114)になるように秤量した。なお、秤量する際にはAl(SO・14〜18水和物をAl(SO・16水和物として取り扱った。秤量した粉末を、ZrOボール(直径 2mm)と共に容器に入れ、得られる混合粉末のD95が1.0μmになるまで、ボールミルで粉砕・混合した。
(Example 1-1)
<Preparation of raw materials>
Li 2 CO 3 (Alfa Aesar (ALF) product number: 034418) as a lithium raw material, Na 2 CO 3 (Alfa Aesar (ALF) product number: L13098) as a sodium raw material, anatase TiO 2 (average grain as a titanium raw material) As shown in Table 1, Al 2 (SO 4 ) 3 · 14-18 hydrate (manufactured by Wako Pure Chemical Industries, product number: 010-02125) is used as a raw material for the titanium site substitution element. The composition (Li 2 Na 2 Ti 5.99 Al 0.01 O 14 ). In weighing, Al 2 (SO 4 ) 3 · 14 to 18 hydrate was handled as Al 2 (SO 4 ) 3 · 16 hydrate. The weighed powder was put into a container together with ZrO 2 balls (diameter 2 mm), and pulverized and mixed with a ball mill until D95 of the obtained mixed powder became 1.0 μm.

<焼成>
得られた混合粉末を、高純度アルミナ製の匣鉢に充填し、固定床式の管状炉を用いて、空気中900℃で12時間保持して焼成した。室温から最高温度(保持温度)までの昇温速度は200℃/hとした。その後、得られた焼成物を回収し、篩(目の粗さ:45μm)分けし、篩を通過した粉末を収集し、リチウムナトリウムチタン複合酸化物粉末を得た。
<Baking>
The obtained mixed powder was filled in a high-purity alumina mortar and fired at 900 ° C. for 12 hours in air using a fixed-bed tubular furnace. The rate of temperature increase from room temperature to the maximum temperature (holding temperature) was 200 ° C./h. Thereafter, the fired product obtained was collected, sieved (mesh roughness: 45 μm), and the powder that passed through the sieve was collected to obtain a lithium sodium titanium composite oxide powder.

得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。以上の実施例1−1のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。   The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. The physical properties of the lithium sodium titanium composite oxide powder of Example 1-1 are shown in Table 1 together with other examples and comparative examples.

(電気化学評価)
<特性評価用非水電解液の調製>
特性を評価するための電池に用いる非水電解液は、次のように調製した。エチレンカーボネート(EC):プロピレンカーボネート(PC):メチルエチルカーボネート(MEC):ジメチルカーボネート(DMC)(体積比)=10:20:20:50の非水溶媒を調製し、これに電解質塩としてLiPFを1M、LiPOを0.05Mの濃度になるように溶解して非水電解液を調製した。
(Electrochemical evaluation)
<Preparation of non-aqueous electrolyte for characteristic evaluation>
The non-aqueous electrolyte used for the battery for evaluating the characteristics was prepared as follows. A nonaqueous solvent of ethylene carbonate (EC): propylene carbonate (PC): methyl ethyl carbonate (MEC): dimethyl carbonate (DMC) (volume ratio) = 10: 20: 20: 50 was prepared, and LiPF was used as an electrolyte salt thereof. 6 was dissolved to a concentration of 1M and LiPO 2 F 2 to a concentration of 0.05M to prepare a non-aqueous electrolyte.

<導電剤用多層カーボンナノチューブの調製>
{多層カーボンナノチューブの合成}
イオン交換水中に、金属元素のモル比がCo:Mg:Al=8:66:26となるように、硝酸コバルト〔Co(NO・6HO:分子量291.03〕、硝酸マグネシウム〔Mg(NO・6HO:分子量256.41〕、硝酸アルミニウム〔Al(NO・9HO:分子量375.13〕を溶解させ、塩基性条件下で攪拌混合した。その後、生成した沈殿物のろ過、洗浄、乾燥を行った。これを500℃に加熱して1時間焼成した後、乳鉢で粉砕し、置換固溶によるスピネル構造を持つ触媒を取得した。次いで、石英製反応管に、石英ウール製の支持体を設け、その上に触媒を散布した。He雰囲気中で管内温度を550℃に加熱した後、CO、Hからなる混合ガス(容積比:CO/H=99.0/1.0)を原料ガスとして反応管の下部から1.28L/分の流量で7時間流し、多層カーボンナノチューブを得た。得られた多層カーボンナノチューブは、触媒の質量に対して15倍の収量であった。
<Preparation of multi-walled carbon nanotube for conductive agent>
{Synthesis of multi-walled carbon nanotubes}
In ion-exchanged water, cobalt nitrate [Co (NO 3 ) 2 .6H 2 O: molecular weight 291.03], magnesium nitrate [so that the molar ratio of metal elements is Co: Mg: Al = 8: 66: 26 Mg (NO 3 ) 2 · 6H 2 O: molecular weight 256.41] and aluminum nitrate [Al (NO 3 ) 3 · 9H 2 O: molecular weight 375.13] were dissolved and mixed under stirring under basic conditions. Thereafter, the produced precipitate was filtered, washed and dried. After heating this to 500 degreeC and baking for 1 hour, it grind | pulverized in the mortar and the catalyst with the spinel structure by substitution solid solution was acquired. Next, a quartz wool support was provided in the quartz reaction tube, and a catalyst was sprayed thereon. After heating the temperature in the tube to 550 ° C. in a He atmosphere, a mixed gas composed of CO and H 2 (volume ratio: CO / H 2 = 99.0 / 1.0) is used as a raw material gas from the bottom of the reaction tube. A multi-walled carbon nanotube was obtained by flowing at a flow rate of 28 L / min for 7 hours. The obtained multi-walled carbon nanotubes had a yield of 15 times the mass of the catalyst.

{多層カーボンナノチューブスラリーの調製}
得られた多層カーボンナノチューブと、カルボキシメチルセルロース(CMC)とイオン交換水を、質量比として1.0:0.8:98.2となるように調合・撹拌してスラリーを作成した。このスラリーを、ビーズミル(淺田鉄工社製、形式:PICOMILL PCM−LR型、アジテーター材質:窒化珪素、ベッセル内面材質:ジルコニア)を使用して、ジルコニア製(外径:1.0mm)のビーズをベッセルに80体積%充填し、アジテーター周速8m/秒、スラリーフィード速度30〜50ml/分で、ベッセル内圧が0.06MPa以下になるように制御しながら粉砕した。
{Preparation of multi-walled carbon nanotube slurry}
The obtained multi-walled carbon nanotube, carboxymethylcellulose (CMC) and ion-exchanged water were prepared and stirred so as to have a mass ratio of 1.0: 0.8: 98.2 to prepare a slurry. Using this slurry, beads made of zirconia (outer diameter: 1.0 mm) are vesseld by using a bead mill (model: PICOMILL PCM-LR type, agitator material: silicon nitride, vessel inner surface material: zirconia). The mixture was pulverized while controlling the internal pressure of the vessel to 0.06 MPa or less at an agitator peripheral speed of 8 m / sec and a slurry feed speed of 30 to 50 ml / min.

<負極シートの作製>
活物質として実施例1−1のリチウムナトリウムチタン複合酸化物粉末を90質量%、導電剤として、アセチレンブラックを4.5質量%、多層カーボンナノチューブを0.5質量%、結着剤としてポリフッ化ビニリデンを5質量%の割合で含有する塗料を次のように作製した。あらかじめ1−メチル−2−ピロリドン溶剤に溶解させたポリフッ化ビニリデンとアセチレンブラックと前記多層カーボンナノチューブスラリーと、1−メチル−2−ピロリドン溶剤とを遊星式撹拌脱泡装置にて混合した後、リチウムナトリウムチタン複合酸化物粉末を加え、全固形分濃度が64質量%となるように調製し遊星式撹押脱泡装置にて混合した。更に1−メチル−2−ピロリドン溶剤を加え全固形分濃度が56質量%となるように調製し、遊星式撹拌脱泡装置にて混合して塗料を調整した。得られた塗料をアルミニウム箔の両面に塗布し、乾燥させて負極シートを作製した。
<Preparation of negative electrode sheet>
90% by mass of the lithium sodium titanium composite oxide powder of Example 1-1 as an active material, 4.5% by mass of acetylene black as a conductive agent, 0.5% by mass of multi-walled carbon nanotubes, and polyfluorinated as a binder A paint containing vinylidene at a ratio of 5% by mass was prepared as follows. After mixing polyvinylidene fluoride, acetylene black, the above-mentioned multi-walled carbon nanotube slurry, and 1-methyl-2-pyrrolidone solvent previously dissolved in a 1-methyl-2-pyrrolidone solvent in a planetary stirring deaerator, lithium Sodium titanium composite oxide powder was added, and the total solid content concentration was adjusted to 64% by mass and mixed in a planetary stirring deaerator. Further, a 1-methyl-2-pyrrolidone solvent was added to prepare a total solid content concentration of 56% by mass, and the mixture was mixed with a planetary stirring and deaerator to prepare a coating material. The obtained paint was applied to both sides of an aluminum foil and dried to prepare a negative electrode sheet.

<正極シートの作製>
前記<負極シートの作製>と同様な作製方法において、活物質として、マンガン酸リチウム(LiMn)粉末を90質量%、アセチレンブラック(導電助剤)を5質量%、ポリフッ化ビニリデン(結着剤)を5質量%の割合で含有する塗料を調整し、アルミニウム箔上に塗布、乾燥させた後、反対面にも塗料を塗布、乾燥させて正極シートを作製した。
<Preparation of positive electrode sheet>
In the same production method as in <Preparation of negative electrode sheet>, as an active material, 90% by mass of lithium manganate (LiMn 2 O 4 ) powder, 5% by mass of acetylene black (conductive auxiliary agent), polyvinylidene fluoride (condensation) A paint containing 5% by mass of the adhesive was prepared, applied onto an aluminum foil and dried, and then applied to the opposite surface and dried to prepare a positive electrode sheet.

<ラミネート電池の作製>
前記負極シートをプレス加工し、所定の電極密度とした後、打ち抜き、リード線接続部分を有する合剤層が縦4.2cm横5.2cmの負極を作製した。このとき片面の合剤層の厚さは35μmで、合剤量は70g/mであった。前記正極シートをプレス加工した後、打ち抜き、リード線接続部分を有する、合剤層が縦4cm横5cmの正極を作製した。このとき片面の合剤層の厚さは20μmで、合剤量は70g/mであった。作製した負極と正極と、リチウム基準極として14mmφに打ち抜いた厚さ1mmのLi金属箔とを、微多孔性ポリエチレンフィルム製セパレータを介して対向させ、積層し、アルミ箔のリード線を正負極に接続し、ニッケル箔のリード線をLi箔に接続し、前記特性評価用非水電解液を、それぞれ加えてアルミラミネートで真空封止することによって、45℃充放電サイクル及び充放電サイクル後のガス発生評価用のラミネート型電池を作製した。このラミネート型電池の容量は200mAhであった。
<Production of laminated battery>
The negative electrode sheet was pressed to obtain a predetermined electrode density, and then punched to prepare a negative electrode having a mixture layer having a lead wire connecting portion of 4.2 cm in length and 5.2 cm in width. At this time, the thickness of the mixture layer on one side was 35 μm, and the amount of the mixture was 70 g / m 2 . After pressing the positive electrode sheet, a positive electrode having a mixture layer of 4 cm in length and 5 cm in width and having lead wire connecting portions was produced. At this time, the thickness of the mixture layer on one side was 20 μm, and the amount of the mixture was 70 g / m 2 . The prepared negative electrode and positive electrode, and a 1 mm thick Li metal foil punched out to 14 mmφ as a lithium reference electrode are opposed to each other through a separator made of a microporous polyethylene film, and the aluminum foil lead wire is used as a positive and negative electrode. Connect the nickel foil lead wire to the Li foil, add the non-aqueous electrolyte for characteristic evaluation to each other, and vacuum seal with an aluminum laminate, so that the gas after 45 ° C. charge-discharge cycle and charge-discharge cycle A laminate type battery for generation evaluation was produced. The capacity of this laminated battery was 200 mAh.

<充放電サイクル試験、およびガス発生量の測定>
25℃の恒温槽内にて、上述の<ラミネート電池の作製>で説明した方法で作製したラミネート電池に、40mAの電流で、負極の電位がリチウム基準極に対して1.1Vになるまで充電を行い、さらに負極の電位がリチウム基準極に対して1.1Vとなった状態で充電電流が10mAの電流になるまで充電させる定電流定電圧充電を行った後、40mAの電流で、負極の電位がリチウム基準極に対して1.8Vになるまで放電させる定電流放電を3サイクル行った(但し、負極にLiが吸蔵されるように電流が流れる場合を充電とする。また、充電および放電の電流は正極と負極の間で流れるように設定した。)。ラミネート電池を恒温槽から取り出し、アルキメデス法にて、ラミネート電池の体積(サイクル試験前のラミネート電池の体積)を測定した。その後、恒温槽の温度を45℃にして、200mAの電流で、負極の電位がリチウム基準極に対して1.1Vになるまで充電を行い、さらに負極の電位がリチウム基準極に対して1.1Vとなった状態で充電電流が10mAの電流になるまで充電させる定電流定電圧充電を行った後、200mAの電流で、リチウム基準極に対して負極の電位が1.8Vになるまで放電させる定電流放電を500サイクル行った。1サイクル目の放電容量を、500サイクル目の放電容量で除して、45℃における、500サイクルの充放電試験後の放電容量維持率、すなわち500cyc放電容量維持率(45℃)を算出した。その後、恒温槽の温度を25℃にして、1時間保存した。次に、ラミネート電池を恒温槽から取り出し、ラミネート電池の体積(保存後のラミネート電池の体積)をアルキメデス法で測定した。サイクル試験後のラミネート電池の体積からサイクル試験前のラミネート電池の体積を差し引いて、45℃における、500サイクルの充放電試験後のガス発生量を算出した。表1に示すガス発生量は、後述する比較例1におけるガス発生量を100%とし、その相対量である。
<Charge / discharge cycle test and measurement of gas generation amount>
Charge the laminated battery produced by the method described in <Preparation of Laminated Battery> in a constant temperature bath at 25 ° C. with a current of 40 mA until the negative electrode potential becomes 1.1 V with respect to the lithium reference electrode. In addition, after carrying out constant-current constant-voltage charging in which the charging current is 10 mA in a state where the potential of the negative electrode is 1.1 V with respect to the lithium reference electrode, 3 cycles of constant current discharge for discharging until the potential became 1.8 V with respect to the lithium reference electrode (however, charging is performed when current flows so that Li is occluded in the negative electrode. Current was set to flow between the positive and negative electrodes.) The laminate battery was taken out from the thermostat and the volume of the laminate battery (volume of the laminate battery before the cycle test) was measured by Archimedes method. Thereafter, the temperature of the thermostatic bath is set to 45 ° C., and charging is performed at a current of 200 mA until the potential of the negative electrode becomes 1.1 V with respect to the lithium reference electrode. After performing constant current and constant voltage charging in which the charging current reaches 10 mA in a state of 1 V, discharging is performed until the negative electrode potential becomes 1.8 V with respect to the lithium reference electrode at a current of 200 mA. 500 cycles of constant current discharge were performed. The discharge capacity at the first cycle was divided by the discharge capacity at the 500th cycle, and a discharge capacity retention rate after a 500 cycle charge / discharge test at 45 ° C., that is, a 500 cyc discharge capacity retention rate (45 ° C.) was calculated. Then, the temperature of the thermostat was set to 25 ° C. and stored for 1 hour. Next, the laminate battery was taken out from the thermostat, and the volume of the laminate battery (the volume of the laminate battery after storage) was measured by the Archimedes method. The volume of the laminate battery before the cycle test was subtracted from the volume of the laminate battery after the cycle test, and the amount of gas generated after the 500-cycle charge / discharge test at 45 ° C. was calculated. The gas generation amount shown in Table 1 is a relative amount with the gas generation amount in Comparative Example 1 described later as 100%.

以上の、実施例1−1のリチウムナトリウムチタン複合酸化物粉末を電極シートに用いたラミネート型電池の特性評価結果を、他の実施例、比較例のリチウムナトリウムチタン複合酸化物粉末を電極シートに用いたリチウムイオン二次電池(ラミネート型電池)の特性評価結果と併せて表1に示す。なお、表1においては、本実施例に導電剤として用いたアセチレンブラックおよび多層カーボンナノチューブを、ABおよびCNTと略記する。   The characteristics evaluation results of the laminate type battery using the lithium sodium titanium composite oxide powder of Example 1-1 as an electrode sheet are described above, and the lithium sodium titanium composite oxide powders of other examples and comparative examples are used as electrode sheets. It shows in Table 1 together with the characteristic evaluation result of the used lithium ion secondary battery (laminate type battery). In Table 1, acetylene black and multi-walled carbon nanotubes used as conductive agents in this example are abbreviated as AB and CNT.

(実施例1−2〜1−6)
各原料を表1に示す各実施例の組成物(実施例1−2:LiNaTi5.95Al0.0514、実施例1−3:LiNaTi5.9Al0.114、実施例1−4:LiNaTi5.8Al0.214、実施例1−5:LiNaTi5.5Al0.514、実施例1−6:LiNaTiAl14)になるように秤量し混合したこと以外は実施例1−1と同様の方法で、実施例1−2〜1−6のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例1−2〜1−6のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Examples 1-2 to 1-6)
Composition of each example shown in Table 1 for each raw material (Example 1-2: Li 2 Na 2 Ti 5.95 Al 0.05 O 14 , Example 1-3: Li 2 Na 2 Ti 5.9 Al 0.1 O 14 , Example 1-4: Li 2 Na 2 Ti 5.8 Al 0.2 O 14 , Example 1-5: Li 2 Na 2 Ti 5.5 Al 0.5 O 14 , Example 1-6: Lithium sodium titanium of Examples 1-2 to 1-6 in the same manner as Example 1-1 except that it was weighed and mixed so as to be Li 2 Na 2 Ti 5 Al 1 O 14 ). A composite oxide powder was produced. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powders of Examples 1-2 to 1-6 are shown in Table 1 together with other examples and comparative examples.

(実施例1−7〜1−10)
チタンサイト置換元素の原料として、Al(SO・14〜18HO(和光純薬工業製、製品番号:010−02125)に代えてNb(Alfa Aesar (ALF)製 製品番号:011366)を用い、表1に示す各実施例の組成物(実施例1−7:LiNaTi5.99Nb0.0114、実施例1−8:LiNaTi5.95Nb0.0514、実施例1−9:LiNaTi5.9Nb0.114、実施例1−10:LiNaTi5.8Nb0.214)になるように原料粉末を秤量し混合したこと以外は実施例1−1と同様の方法で、実施例1−7〜1−10のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例1−7〜1−10のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Examples 1-7 to 1-10)
Nb 2 O 5 (Alfa Aesar (ALF) product instead of Al 2 (SO 4 ) 3 · 14 to 18H 2 O (manufactured by Wako Pure Chemical Industries, product number: 010-02125) No. 011366), compositions of each example shown in Table 1 (Example 1-7: Li 2 Na 2 Ti 5.9 Nb 0.01 O 14 , Example 1-8: Li 2 Na 2 Ti 5.95 Nb 0.05 O 14 , Example 1-9: Li 2 Na 2 Ti 5.9 Nb 0.1 O 14 , Example 1-10: Li 2 Na 2 Ti 5.8 Nb 0.2 O 14 ) Lithium sodium titanium composite oxide powders of Examples 1-7 to 1-10 were produced in the same manner as in Example 1-1, except that the raw material powders were weighed and mixed. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powders of Examples 1-7 to 1-10 are shown in Table 1 together with other examples and comparative examples.

(実施例1−11〜1−13)
実施例1−10のリチウムナトリウムチタン複合酸化物粉末を用いて、実施例1−10と同様の方法でラミネート電池を作製した。充放電サイクル試験、および充放電サイクル後のガス発生量測定の際の、各実施例のリチウム基準極に対する充電電位と放電電位を表1に示す通りに変更したこと以外は、実施例1−1と同様の方法で、各実施例のラミネート型電池の特性評価を行った。この結果を、他の実施例、比較例と併せて表1に示す。
(Examples 1-11 to 1-13)
Using the lithium sodium titanium composite oxide powder of Example 1-10, a laminated battery was produced in the same manner as in Example 1-10. Example 1-1, except that the charge potential and discharge potential with respect to the lithium reference electrode of each example were changed as shown in Table 1 in the charge / discharge cycle test and the gas generation amount measurement after the charge / discharge cycle. In the same manner as above, the characteristics of the laminate type batteries of each example were evaluated. The results are shown in Table 1 together with other examples and comparative examples.

(実施例1−14〜1−16)
正極の活物質材料として、マンガン酸リチウムに代えて、表1に示す活物質材料を用いたこと以外は、負極の活物質材料として実施例1−10のリチウムナトリウムチタン複合酸化物粉末を用いたことを含めて実施例1−10と同様の方法で実施例1−14〜1−16のラミネート電池を作製した。実施例1−1と同様の方法で、各実施例のラミネート型電池の特性評価を行った。この結果を、他の実施例、比較例と併せて表1に示す。
(Examples 1-14 to 1-16)
The lithium sodium titanium composite oxide powder of Example 1-10 was used as the active material of the negative electrode, except that the active material shown in Table 1 was used instead of lithium manganate as the positive active material. In the same manner as in Example 1-10, laminated batteries of Examples 1-14 to 1-16 were produced. The characteristics of the laminate type battery of each example were evaluated in the same manner as in Example 1-1. The results are shown in Table 1 together with other examples and comparative examples.

(実施例1−17)
負極の導電剤としてアセチレンブラックのみを5質量%用いた(多層カーボンナノチューブを用いなかった)こと以外は、負極の活物質材料として実施例1−10のリチウムナトリウムチタン複合酸化物粉末を用いたことを含めて実施例1−10と同様の方法でラミネート電池を作製した。実施例1−1と同様の方法で、各実施例のラミネート型電池の特性評価を行った。この結果を、他の実施例、比較例と併せて表1に示す。
(Example 1-17)
The lithium sodium titanium composite oxide powder of Example 1-10 was used as the negative electrode active material except that only 5% by mass of acetylene black was used as the negative electrode conductive agent (no multi-walled carbon nanotubes were used). A laminated battery was prepared in the same manner as in Example 1-10. The characteristics of the laminate type battery of each example were evaluated in the same manner as in Example 1-1. The results are shown in Table 1 together with other examples and comparative examples.

(実施例1−18、1−19)
チタンサイト置換元素の原料として、Al(SO・14〜18HO(和光純薬工業製、製品番号:010−02125)に代えてNb(Alfa Aesar (ALF)製 製品番号:011366)を用い、表1に示す各実施例の組成物(実施例1−18:LiNaTi5.5Nb0.514、実施例1−19:LiNaTiNb14)になるように原料粉末を秤量し混合したこと以外は実施例1−1と同様の方法で、実施例1−18および1−19のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例1−18および1−19のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Examples 1-18 and 1-19)
Nb 2 O 5 (Alfa Aesar (ALF) product instead of Al 2 (SO 4 ) 3 · 14 to 18H 2 O (manufactured by Wako Pure Chemical Industries, product number: 010-02125) No. 011366), compositions of each example shown in Table 1 (Example 1-18: Li 2 Na 2 Ti 5.5 Nb 0.5 O 14 , Example 1-19: Li 2 Na 2 Ti 5 Nb 1 O 14 ) The lithium sodium titanium composite oxide powders of Examples 1-18 and 1-19 were produced in the same manner as in Example 1-1, except that the raw material powder was weighed and mixed. did. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powders of Examples 1-18 and 1-19 are shown in Table 1 together with other examples and comparative examples.

(実施例1−20)
チタンサイト置換元素の原料として、Al(SO・14〜18HO(和光純薬工業製、製品番号:010−02125)に代えてV(Strem Chemicals, Inc.製 製品番号:93―2321)を用い、表1に示す実施例1−20の組成物(LiNaTi5.90.114)になるように原料粉末を秤量し混合したこと以外は実施例1−1と同様の方法で、実施例1−20のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例1−21のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Example 1-20)
As a raw material for the titanium site substitution element, V 2 O 5 (manufactured by Strem Chemicals, Inc.) instead of Al 2 (SO 4 ) 3 · 14-18H 2 O (manufactured by Wako Pure Chemical Industries, product number: 010-02125) No. 93-2321), and the raw material powder was weighed and mixed so as to be the composition of Example 1-20 shown in Table 1 (Li 2 Na 2 Ti 5.9 V 0.1 O 14 ) Produced the lithium sodium titanium composite oxide powder of Example 1-20 in the same manner as in Example 1-1. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Example 1-21 are shown in Table 1 together with other examples and comparative examples.

(実施例1−21)
チタンサイト置換元素の原料として、Al(SO・14〜18HO(和光純薬工業製、製品番号:010−02125)に代えてGa(Strem Chemicals, Inc.製 製品番号:93―3106)を用い、表1に示す実施例1−21の組成物(LiNaTi5.9Ga0.114)になるように原料粉末を秤量し混合したこと以外は実施例1−1と同様の方法で、実施例1−21のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例1−21のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Example 1-21)
As a raw material for the titanium site substitution element, Ga 2 O 3 (manufactured by Strem Chemicals, Inc.) instead of Al 2 (SO 4 ) 3 · 14-18H 2 O (manufactured by Wako Pure Chemical Industries, product number: 010-02125) No. 93-3106), and the raw material powder was weighed and mixed so as to be the composition of Example 1-21 (Li 2 Na 2 Ti 5.9 Ga 0.1 O 14 ) shown in Table 1 Produced the lithium sodium titanium composite oxide powder of Example 1-21 in the same manner as in Example 1-1. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Example 1-21 are shown in Table 1 together with other examples and comparative examples.

(実施例1−22)
チタンサイト置換元素の原料として、Al(SO・14〜18HO(和光純薬工業製、製品番号:010−02125)に代えてIn(Chempur Feinchemikalien und Forschungsbedarf GmbH製 製品番号:004424―100)を用い、表1に示す実施例1−22の組成物(LiNaTi5.9In0.114)になるように原料粉末を秤量し混合したこと以外は実施例1−1と同様の方法で、実施例1−22のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例1−22のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Example 1-22)
As a raw material for the titanium site substitution element, Al 2 (SO 4 ) 3 · 14 to 18H 2 O (manufactured by Wako Pure Chemical Industries, product number: 010-02125) is replaced with In 2 O 3 (Chempur Feinchemalien und Forschungsbeddorf GmbH product No .: 004424-100), and the raw material powder was weighed and mixed so as to be the composition of Example 1-22 shown in Table 1 (Li 2 Na 2 Ti 5.9 In 0.1 O 14 ) Produced the lithium sodium titanium composite oxide powder of Example 1-22 in the same manner as in Example 1-1. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. Table 1 shows the physical properties of the lithium sodium titanium composite oxide powder of Example 1-22 together with other examples and comparative examples.

(実施例1−23)
混合粉末焼成時の最高温度での保持時間を24時間としたこと以外は実施例1−10と同様の方法で、実施例1−23のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例1−23のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Example 1-23)
A lithium sodium titanium composite oxide powder of Example 1-23 was produced in the same manner as in Example 1-10 except that the holding time at the maximum temperature during the mixed powder firing was 24 hours. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Example 1-23 above are shown in Table 1 together with other examples and comparative examples.

(比較例1)
チタンサイト置換元素の原料を含まない原料、すなわちLiCO(Alfa Aesar(ALF)製 製品番号:013418)、NaCO(Alfa Aesar(ALF)製 製品番号:L13098)、およびアナターゼ型TiO(平均粒径 0.6μm)を、表1に示す比較例1の組成物(LiNaTi14)になるように秤量し混合したこと以外は実施例1−1と同様の方法で、比較例1のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の比較例1のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Comparative Example 1)
Raw materials not containing raw materials for titanium site substitution elements, ie, Li 2 CO 3 (product number: Al3Aesar (ALF), product number: 034418), Na 2 CO 3 (product number: Alfa Aesar (ALF), product number: L13098), and anatase TiO 2 (average particle size 0.6 μm) was the same as Example 1-1 except that it was weighed and mixed so as to become the composition of Comparative Example 1 (Li 2 Na 2 Ti 6 O 14 ) shown in Table 1. By the method, the lithium sodium titanium composite oxide powder of Comparative Example 1 was produced. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Comparative Example 1 are shown in Table 1 together with other examples and comparative examples.

(比較例2)
ナトリウム原料のNaCO(Alfa Aesar(ALF)製 製品番号:L13098)に代えて、バリウム原料のBaCO(和光純薬工業製 製品番号:028―08761)を用い、表1に示す比較例2の組成物(LiBaTi14)になるように原料粉末を秤量し混合したこと以外は比較例1と同様の方法で、比較例2のリチウムバリウムチタン複合酸化物粉末を製造した。得られたリチウムバリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の比較例2のリチウムバリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Comparative Example 2)
A comparative example shown in Table 1 was used instead of sodium raw material Na 2 CO 3 (product number: L13098, manufactured by Alfa Aesar (ALF)) and barium raw material BaCO 3 (manufactured by Wako Pure Chemical Industries, product number: 028-08761). The lithium barium titanium composite oxide powder of Comparative Example 2 was produced in the same manner as in Comparative Example 1, except that the raw material powder was weighed and mixed so as to become the composition of No. 2 (Li 2 Ba 2 Ti 6 O 14 ). did. The physical properties of the obtained lithium barium titanium composite oxide powder were measured by the methods described in [Methods for measuring physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium barium titanium composite oxide powder of Comparative Example 2 are shown in Table 1 together with other examples and comparative examples.

(比較例3)
ナトリウム原料のNaCO(Alfa Aesar(ALF)製 製品番号:L13098)に代えて、マグネシウム原料のMgCO(Strem Chemicals, Inc.製 製品番号:93―1220)を用い、表1に示す比較例3の組成物(LiMgTi14)になるように原料粉末を秤量し混合したこと以外は比較例1と同様の方法で、比較例3のリチウムマグネシウムチタン複合酸化物粉末を製造した。得られたリチウムマグネシウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の比較例3のリチウムマグネシウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Comparative Example 3)
In place of sodium raw material Na 2 CO 3 (Alfa Aesar (ALF) product number: L13098), magnesium raw material MgCO 3 (Strem Chemicals, Inc. product number: 93-1220) was used, and the comparison shown in Table 1 The lithium magnesium titanium composite oxide powder of Comparative Example 3 was prepared in the same manner as in Comparative Example 1 except that the raw material powder was weighed and mixed so as to be the composition of Example 3 (Li 2 Mg 2 Ti 6 O 14 ). Manufactured. The physical properties of the obtained lithium magnesium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium magnesium titanium composite oxide powder of Comparative Example 3 are shown in Table 1 together with other Examples and Comparative Examples.

(比較例4)
ナトリウム原料のNaCO(Alfa Aesar(ALF)製 製品番号:L13098)に代えて、カルシウム原料のCaCO(Chempur Feinchemikalien und Forschungsbedarf GmbH製 製品番号:001089―1)を用い、表1に示す比較例4の組成物(LiCaTi14)になるように原料粉末を秤量し混合したこと以外は比較例1と同様の方法で、比較例4のリチウムカルシウムチタン複合酸化物粉末を製造した。得られたリチウムカルシウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の比較例4リチウムカルシウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Comparative Example 4)
In place of sodium raw material Na 2 CO 3 (manufactured by Alfa Aesar (ALF), product number: L13098), calcium raw material CaCO 3 (manufactured by Chempur Feinchemien und Forschungsbedgarf GmbH, product number: 001089-1) is used for comparison shown in Table 1. The lithium calcium titanium composite oxide powder of Comparative Example 4 was prepared in the same manner as in Comparative Example 1 except that the raw material powder was weighed and mixed so as to be the composition of Example 4 (Li 2 Ca 2 Ti 6 O 14 ). Manufactured. The physical properties of the obtained lithium calcium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the above comparative example 4 lithium calcium titanium composite oxide powder are shown in Table 1 together with other examples and comparative examples.

(比較例5)
チタンサイト置換元素の原料として、Al(SO・14〜18HO(和光純薬工業製、製品番号:010−02125)に代えてMnO(Strem Chemicals, Inc.製 製品番号:93―2510)を用い、表1に示す比較例5の組成物(LiNaTi5.9Mn0.114)になるように原料粉末を秤量し混合したこと以外は実施例1−1と同様の方法で、比較例5のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の比較例5のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Comparative Example 5)
As a raw material for the titanium site substitution element, instead of Al 2 (SO 4 ) 3 · 14 to 18H 2 O (manufactured by Wako Pure Chemical Industries, product number: 010-02125), MnO 2 (manufactured by Strem Chemicals, Inc., product number: 93-2510), except that the raw material powder was weighed and mixed so as to be the composition of Comparative Example 5 (Li 2 Na 2 Ti 5.9 Mn 0.1 O 14 ) shown in Table 1. The lithium sodium titanium composite oxide powder of Comparative Example 5 was produced by the same method as -1. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Comparative Example 5 are shown in Table 1 together with other examples and comparative examples.

(比較例6)
チタンサイト置換元素の原料として、Al(SO・14〜18HO(和光純薬工業製、製品番号010−02125)に代えてCo(Alfa Aesar(ALF)製 製品番号:040184)を用い、表1に示す比較例6の組成物(LiNaTi5.9Co0.114)になるように原料粉末を秤量し混合したこと以外は実施例1−1と同様の方法で、比較例6のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の比較例6のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Comparative Example 6)
As a raw material for the titanium site substitution element, instead of Al 2 (SO 4 ) 3 · 14 to 18H 2 O (manufactured by Wako Pure Chemical Industries, product number 010-02125), Co 3 O 4 (manufactured by Alfa Aesar (ALF) product number) Example 1 except that the raw material powder was weighed and mixed so as to be the composition of Comparative Example 6 shown in Table 1 (Li 2 Na 2 Ti 5.9 Co 0.1 O 14 ). 1 was used to produce lithium sodium titanium composite oxide powder of Comparative Example 6. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Comparative Example 6 are shown in Table 1 together with other examples and comparative examples.

(比較例7)
ナトリウム原料のNaCO(Alfa Aesar(ALF)製 製品番号:L13098)に代えて、バリウム原料のBaCO(和光純薬工業製 製品番号:028―08761)を用い、表1に示す比較例7の組成物(LiBaTi5.95Al0.0514)になるように原料粉末を秤量し混合したこと以外は実施例1−1と同様の方法で、比較例7のリチウムバリウムチタン複合酸化物粉末を製造した。得られたリチウムバリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の比較例7のリチウムバリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Comparative Example 7)
A comparative example shown in Table 1 was used instead of the sodium raw material Na 2 CO 3 (product number: L13098, manufactured by Alfa Aesar (ALF)) and barium raw material BaCO 3 (product number: 028-08761 manufactured by Wako Pure Chemical Industries, Ltd.). The lithium of Comparative Example 7 was the same as Example 1-1, except that the raw material powder was weighed and mixed so that the composition of No. 7 (Li 2 Ba 2 Ti 5.95 Al 0.05 O 14 ) was obtained. Barium titanium composite oxide powder was produced. The physical properties of the obtained lithium barium titanium composite oxide powder were measured by the methods described in [Methods for measuring physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium barium titanium composite oxide powder of Comparative Example 7 are shown in Table 1 together with other examples and comparative examples.

(比較例8)
チタンサイト置換元素の原料として、Al(SO・14〜18HO(和光純薬工業製、製品番号:010−02125)に代えてIn(Chempur Feinchemikalien und Forschungsbedarf GmbH製 製品番号:004424―100)を用い、表1に示す比較例8の組成物(LiBaTi5.95In0.0514)になるように原料粉末を秤量し混合したこと以外は比較例7と同様の方法で、比較例8のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の比較例8のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Comparative Example 8)
As a raw material for the titanium site substitution element, instead of Al 2 (SO 4 ) 3 · 14 to 18H 2 O (manufactured by Wako Pure Chemical Industries, product number: 010-02125), In 2 O 3 (Chempur Feinchemikalin und Forschungsbadgarf GmbH product) No .: 004424-100), and comparison was made except that raw material powder was weighed and mixed so as to be the composition of Comparative Example 8 shown in Table 1 (Li 2 Ba 2 Ti 5.95 In 0.05 O 14 ). In the same manner as in Example 7, lithium sodium titanium composite oxide powder of Comparative Example 8 was produced. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Comparative Example 8 are shown in Table 1 together with other examples and comparative examples.

(比較例9)
ナトリウム原料のNaCO(Alfa Aesar(ALF)製 製品番号:L13098)に加えて、ナトリウムサイト置換元素の原料としてKCO(和光純薬工業製、製品番号:160―03491)を用い、表1に示す比較例9の組成物(LiNa1.50.5Ti14)になるように原料粉末を秤量し混合したこと以外は比較例1と同様の方法で、比較例9のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の比較例9のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Comparative Example 9)
In addition to the sodium raw material Na 2 CO 3 (product number: L13098, manufactured by Alfa Aesar (ALF)), K 2 CO 3 (manufactured by Wako Pure Chemical Industries, product number: 160-03491) was used as the raw material for the sodium site substitution element. In the same manner as in Comparative Example 1, except that the raw material powder was weighed and mixed so as to be the composition of Comparative Example 9 shown in Table 1 (Li 2 Na 1.5 K 0.5 Ti 6 O 14 ). The lithium sodium titanium composite oxide powder of Comparative Example 9 was produced. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Comparative Example 9 are shown in Table 1 together with other examples and comparative examples.

(比較例10)
ナトリウム原料のNaCO(Alfa Aesar(ALF)製 製品番号:L13098)に加えて、ナトリウムサイト置換元素の原料としてKCO(和光純薬工業製、製品番号:160―03491)およびRbCO(Combi―Blocks製、製品番号:QA―6120)を用い、表1に示す比較例10の組成物(LiNa1.40.25Rb0.35Ti14)になるように原料粉末を秤量し混合したこと以外は比較例1と同様の方法で、比較例10のリチウムナトリウムチタン複合酸化物粉末を製造した。得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の比較例10のリチウムナトリウムチタン複合酸化物粉末の物性を、他の実施例、比較例と併せて表1に示す。
(Comparative Example 10)
In addition to the sodium raw material Na 2 CO 3 (manufactured by Alfa Aesar (ALF), product number: L13098), K 2 CO 3 (manufactured by Wako Pure Chemical Industries, product number: 160-03491) and Rb as the raw material for the sodium site substitution element Using 2 CO 3 (manufactured by Combi-Blocks, product number: QA-6120), the composition of Comparative Example 10 shown in Table 1 (Li 2 Na 1.4 K 0.25 Rb 0.35 Ti 6 O 14 ) was used. The lithium sodium titanium composite oxide powder of Comparative Example 10 was produced in the same manner as in Comparative Example 1 except that the raw material powder was weighed and mixed. The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Comparative Example 10 are shown in Table 1 together with other examples and comparative examples.

Figure 2017073765
Figure 2017073765

(実施例2−1〜2−5)
特性を評価するための電池に用いる非水電解液の非水溶媒を次のように変更したこと以外は、実施例1−10のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いることを含めて実施例1−10と同様にしてラミネート電池を作製し、実施例1−1と同様の方法でラミネート型電池の特性評価を行った。その結果を表2に示す。
実施例2−1; エチレンカーボネート(EC):メチルエチルカーボネート(MEC):ジメチルカーボネート(DMC)(体積比)=30:20:50
実施例2−2; エチレンカーボネート(EC):プロピレンカーボネート(PC):メチルエチルカーボネート(MEC):ジメチルカーボネート(DMC)(体積比)=15:15:20:50
実施例2−3; プロピレンカーボネート(PC):メチルエチルカーボネート(MEC):ジメチルカーボネート(DMC)(体積比)=30:20:50
実施例2−4; エチレンカーボネート(EC):プロピレンカーボネート(PC):ジエチルカーボネート(DEC)(体積比)=10:20:70
実施例2−5; エチレンカーボネート(EC):プロピレンカーボネート(PC):ジエチルカーボネート(DEC)(体積比)=17:33:50
(Examples 2-1 to 2-5)
The lithium sodium titanium composite oxide powder of Example 1-10 was used as the negative electrode active material, except that the nonaqueous solvent of the nonaqueous electrolyte used in the battery for evaluating the characteristics was changed as follows. In addition, a laminated battery was produced in the same manner as in Example 1-10, and the characteristics of the laminated battery were evaluated in the same manner as in Example 1-1. The results are shown in Table 2.
Example 2-1; ethylene carbonate (EC): methyl ethyl carbonate (MEC): dimethyl carbonate (DMC) (volume ratio) = 30: 20: 50
Example 2-2; ethylene carbonate (EC): propylene carbonate (PC): methyl ethyl carbonate (MEC): dimethyl carbonate (DMC) (volume ratio) = 15: 15: 20: 50
Example 2-3; propylene carbonate (PC): methyl ethyl carbonate (MEC): dimethyl carbonate (DMC) (volume ratio) = 30: 20: 50
Example 2-4; ethylene carbonate (EC): propylene carbonate (PC): diethyl carbonate (DEC) (volume ratio) = 10: 20: 70
Example 2-5; ethylene carbonate (EC): propylene carbonate (PC): diethyl carbonate (DEC) (volume ratio) = 17: 33: 50

(実施例2−6〜2−10)
特性を評価するための電池に用いる非水電解液の電解質塩の種類と、非水電解液における各電解質塩の濃度を次のように変更したこと以外は、実施例1−10のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いることを含めて実施例1−10と同様にしてラミネート電池を作製し、実施例1−1と同様の方法でラミネート型電池の特性評価を行った。その結果を表2に示す。
実施例2−6; 濃度1MのLiPF
実施例2−7; 濃度1MのLiPFおよび濃度0.05MのLiBF
実施例2−8; 濃度1MのLiPFおよび濃度0.05Mのリチウムビスフルオロスルホニルイミド(LiFSI)
実施例2−9; 濃度1MのLiPFおよび濃度0.05Mのリチウムビスオキサレートボラート(LiBOB)
実施例2−10; 濃度1MのLiPFおよび濃度0.5MのLiBF
(Examples 2-6 to 2-10)
Lithium sodium titanium of Example 1-10, except that the type of electrolyte salt of the non-aqueous electrolyte used in the battery for evaluating characteristics and the concentration of each electrolyte salt in the non-aqueous electrolyte were changed as follows: A laminated battery was produced in the same manner as in Example 1-10 including using the composite oxide powder as the negative electrode active material, and the characteristics of the laminated battery were evaluated in the same manner as in Example 1-1. The results are shown in Table 2.
Example 2-6; LiPF 6 at a concentration of 1M
Example 2-7; LiPF 6 at a concentration of 1M and LiBF 4 at a concentration of 0.05M
Example 2-8; LiPF 6 at a concentration of 1M and lithium bisfluorosulfonylimide (LiFSI) at a concentration of 0.05M
Example 2-9; concentration 1M LiPF 6 and concentration 0.05M lithium bisoxalate borate (LiBOB)
Example 2-10; LiPF 6 at a concentration of 1M and LiBF 4 at a concentration of 0.5M

(実施例2−11、2−12)
負極シートの作製に用いる塗料における導電剤の割合を、実施例2−11では、アセチレンブラックを3.0質量%、多層カーボンナノチューブを2.0質量%とし、実施例2−12では、アセチレンブラックを2.0質量%、多層カーボンナノチューブを3.0質量%としたこと以外は、実施例1−10のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いることを含めて実施例1−10と同様にしてラミネート電池を作製し、実施例1−1と同様の方法でラミネート型電池の特性評価を行った。その結果を表2に示す。
(Examples 2-11 and 2-12)
In Example 2-11, the proportion of the conductive agent in the coating material used for preparing the negative electrode sheet was 3.0% by mass for acetylene black and 2.0% by mass for the multi-walled carbon nanotubes. In Example 2-12, acetylene black was used. Example 1 including the use of the lithium sodium titanium composite oxide powder of Example 1-10 as an active material of the negative electrode except that 2.0% by mass and 3.0% by mass of the multi-walled carbon nanotube were used. A laminated battery was produced in the same manner as in Example 10, and the characteristics of the laminated battery were evaluated in the same manner as in Example 1-1. The results are shown in Table 2.

Figure 2017073765
Figure 2017073765

(実施例3−1)
実施例1−10のリチウムナトリウムチタン複合酸化物粉末を、ハンマーミル(ダルトン製、AIIW−5型)を使用して、スクリーン目開き:0.5mm、回転数:8,000rpm、粉体フィード速度:25kg/hrの条件で解砕した。解砕して得られた粉末に、スラリーの固形分濃度が30質量%となるようにイオン交換水を加え撹拌して、スラリーを作製した。得られたスラリーを、スプレードライヤー(大河原化工機株式会社製L−8i)を使用して、アトマイザ回転数25000rpm、入口温度210℃で、噴霧・乾燥し、造粒した。次に篩を通過した粉末をアルミナ製の匣鉢に入れ、搬送式連続炉にて、500℃で1時間熱処理した。得られた粉末を篩(目の粗さ:53μm)分けし、篩を通過した粉末を回収して、実施例3−1のリチウムナトリウムチタン複合酸化物粉末を製造した。
(Example 3-1)
The lithium sodium titanium composite oxide powder of Example 1-10 was screened using a hammer mill (Dalton, AIIW-5 type) with a screen opening of 0.5 mm, a rotation speed of 8,000 rpm, and a powder feed rate. : Crushed under conditions of 25 kg / hr. To the powder obtained by pulverization, ion-exchanged water was added and stirred so that the solid content concentration of the slurry was 30% by mass to prepare a slurry. The obtained slurry was sprayed, dried and granulated using a spray dryer (L-8i, manufactured by Okawara Chemical Co., Ltd.) at an atomizer rotational speed of 25,000 rpm and an inlet temperature of 210 ° C. Next, the powder that passed through the sieve was placed in an alumina sagger and heat-treated at 500 ° C. for 1 hour in a continuous conveyor furnace. The obtained powder was sieved (mesh roughness: 53 μm), and the powder that passed through the sieve was collected to produce the lithium sodium titanium composite oxide powder of Example 3-1.

得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例3−1のリチウムナトリウムチタン複合酸化物粉末の物性およびラミネート型電池の特性評価結果を、実施例1−10のリチウムナトリウムチタン複合酸化物粉末の物性およびラミネート型電池の特性評価結果と併せて表3に示す。   The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical property of the lithium sodium titanium composite oxide powder of Example 3-1 and the property evaluation result of the laminate type battery were compared with the physical property of the lithium sodium titanium composite oxide powder of Example 1-10 and the property evaluation result of the laminate type battery. Table 3 also shows.

(実施例3−2、3−3)
熱処理の温度を、実施例3−2では350℃、実施例3−3では600℃としたこと以外は実施例3−1と同様にして、実施例3−2および実施例3−3のリチウムナトリウムチタン複合酸化物粉末を製造した。
(Examples 3-2 and 3-3)
The lithium of Example 3-2 and Example 3-3 was the same as Example 3-1, except that the heat treatment temperature was 350 ° C in Example 3-2 and 600 ° C in Example 3-3. Sodium titanium composite oxide powder was produced.

得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例3−2および実施例3−3のリチウムナトリウムチタン複合酸化物粉末の物性およびラミネート型電池の特性評価結果を、実施例1−10のリチウムナトリウムチタン複合酸化物粉末の物性およびラミネート型電池の特性評価結果と併せて表3に示す。   The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Example 3-2 and Example 3-3 and the evaluation results of the characteristics of the laminate-type battery were compared with the physical properties and laminate of the lithium sodium titanium composite oxide powder of Example 1-10. It shows in Table 3 together with the characteristic evaluation result of the type battery.

(実施例3−4)
リチウムナトリウムチタン複合酸化物粉末のスラリーを、スプレードライヤーを使用して、噴霧・乾燥し、造粒して得られた粉末を、熱処理を行わずに篩分けしたこと以外は実施例3−1と同様にして、実施例3−4のリチウムナトリウムチタン複合酸化物粉末を製造した。
(Example 3-4)
Example 3-1, except that the slurry obtained by spraying and drying the slurry of lithium sodium titanium composite oxide powder using a spray dryer and granulating the powder without performing heat treatment Similarly, lithium sodium titanium composite oxide powder of Example 3-4 was produced.

得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例3−4のリチウムナトリウムチタン複合酸化物粉末の物性およびラミネート型電池の特性評価結果を、実施例1−10のリチウムナトリウムチタン複合酸化物粉末の物性およびラミネート型電池の特性評価結果と併せて表3に示す。   The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical property of the lithium sodium titanium composite oxide powder of Example 3-4 and the results of the evaluation of the characteristics of the laminate type battery are the same as the physical properties of the lithium sodium titanium composite oxide powder of Example 1-10 and the results of the evaluation of the characteristics of the laminate type battery. Table 3 also shows.

(実施例3−5)
実施例1−1と同様の原料調製工程において得られた混合粉末に、スラリーの固形分濃度が30質量%となるようにイオン交換水を加え撹拌して、スラリーを作製した。得られたスラリーを、スプレードライヤー(大河原化工機株式会社製L−8i)を使用して、アトマイザ回転数25000rpm、入口温度210℃で、噴霧・乾燥し、造粒した。得られた粉末を実施例1−1と同様にして焼成した後、篩(目の粗さ:53μm)分けし、篩を通過した粉末を回収して、実施例3−5のリチウムナトリウムチタン複合酸化物粉末を製造した。
(Example 3-5)
To the mixed powder obtained in the same raw material preparation step as Example 1-1, ion-exchanged water was added and stirred so that the solid content concentration of the slurry was 30% by mass to prepare a slurry. The obtained slurry was sprayed, dried and granulated using a spray dryer (L-8i, manufactured by Okawara Chemical Co., Ltd.) at an atomizer rotational speed of 25,000 rpm and an inlet temperature of 210 ° C. The obtained powder was fired in the same manner as in Example 1-1, and then sieved (mesh roughness: 53 μm), and the powder that passed through the sieve was collected to obtain the lithium sodium titanium composite of Example 3-5. An oxide powder was produced.

得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例3−5のリチウムナトリウムチタン複合酸化物粉末の物性およびラミネート型電池の特性評価結果を、実施例1−10のリチウムナトリウムチタン複合酸化物粉末の物性およびラミネート型電池の特性評価結果と併せて表3に示す。   The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical property of the lithium sodium titanium composite oxide powder of Example 3-5 and the property evaluation result of the laminate type battery were compared with the physical property of the lithium sodium titanium composite oxide powder of Example 1-10 and the property evaluation result of the laminate type battery. Table 3 also shows.

(実施例3−6、3−7)
焼成時の最高温度(900℃)での保持時間を、実施例3−6では24時間に、実施例3−7では3時間に変更したこと以外は実施例3−1と同様にして、実施例3−6および実施例3−7のリチウムナトリウムチタン複合酸化物粉末を製造した。
(Examples 3-6 and 3-7)
Implementation was carried out in the same manner as in Example 3-1, except that the holding time at the maximum temperature (900 ° C.) during firing was changed to 24 hours in Example 3-6 and 3 hours in Example 3-7. The lithium sodium titanium composite oxide powders of Example 3-6 and Example 3-7 were produced.

得られたリチウムナトリウムチタン複合酸化物粉末の物性を[各種物性測定方法]で説明した方法で測定した。また、実施例1−1と同様の方法でラミネート電池を作製し、実施例1−1と同様の方法で充放電サイクル試験、および充放電サイクル後のガス発生量測定を行った。以上の実施例3−6のリチウムナトリウムチタン複合酸化物粉末の物性およびラミネート型電池の特性評価結果を、実施例1−10のリチウムナトリウムチタン複合酸化物粉末の物性およびラミネート型電池の特性評価結果と併せて表3に示す。   The physical properties of the obtained lithium sodium titanium composite oxide powder were measured by the methods described in [Methods for measuring various physical properties]. Moreover, the laminated battery was produced by the method similar to Example 1-1, the charge / discharge cycle test and the gas generation amount measurement after a charge / discharge cycle were performed by the method similar to Example 1-1. The physical properties of the lithium sodium titanium composite oxide powder of Example 3-6 and the results of evaluation of the characteristics of the laminate type battery were compared with the physical properties of the lithium sodium titanium composite oxide powder of Example 1-10 and the results of the evaluation of the characteristics of the laminate type battery. Table 3 also shows.

Figure 2017073765
Figure 2017073765

(実施例4−1〜4−5)
特性を評価するための電池に用いる非水電解液の非水溶媒を次のように変更したこと以外は、実施例3−6のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いることを含めて実施例3−6と同様にしてラミネート電池を作製し、実施例1−1と同様の方法でラミネート型電池の特性評価を行った。その結果を表4に示す。
実施例4−1; エチレンカーボネート(EC):メチルエチルカーボネート(MEC):ジメチルカーボネート(DMC)(体積比)=30:20:50
実施例4−2; エチレンカーボネート(EC):プロピレンカーボネート(PC):メチルエチルカーボネート(MEC):ジメチルカーボネート(DMC)(体積比)=15:15:20:50
実施例4−3; プロピレンカーボネート(PC):メチルエチルカーボネート(MEC):ジメチルカーボネート(DMC)(体積比)=30:20:50
実施例4−4; エチレンカーボネート(EC):プロピレンカーボネート(PC):ジエチルカーボネート(DEC)(体積比)=10:20:70
実施例4−5; エチレンカーボネート(EC):プロピレンカーボネート(PC):ジエチルカーボネート(DEC)(体積比)=17:33:50
(Examples 4-1 to 4-5)
Except that the nonaqueous solvent of the nonaqueous electrolyte used in the battery for evaluating the characteristics was changed as follows, the lithium sodium titanium composite oxide powder of Example 3-6 was used as the active material for the negative electrode. Including, a laminated battery was produced in the same manner as in Example 3-6, and the characteristics of the laminated battery were evaluated in the same manner as in Example 1-1. The results are shown in Table 4.
Example 4-1; ethylene carbonate (EC): methyl ethyl carbonate (MEC): dimethyl carbonate (DMC) (volume ratio) = 30: 20: 50
Example 4-2; ethylene carbonate (EC): propylene carbonate (PC): methyl ethyl carbonate (MEC): dimethyl carbonate (DMC) (volume ratio) = 15: 15: 20: 50
Example 4-3; propylene carbonate (PC): methyl ethyl carbonate (MEC): dimethyl carbonate (DMC) (volume ratio) = 30: 20: 50
Example 4-4; ethylene carbonate (EC): propylene carbonate (PC): diethyl carbonate (DEC) (volume ratio) = 10: 20: 70
Example 4-5; ethylene carbonate (EC): propylene carbonate (PC): diethyl carbonate (DEC) (volume ratio) = 17: 33: 50

(実施例4−6〜4−10)
特性を評価するための電池に用いる非水電解液の電解質塩の種類と、非水電解液における各電解質塩の濃度を次のように変更したこと以外は、実施例3−6のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いることを含めて実施例3−6と同様にしてラミネート電池を作製し、実施例1−1と同様の方法でラミネート型電池の特性評価を行った。その結果を表4に示す。
実施例4−6; 濃度1MのLiPF
実施例4−7; 濃度1MのLiPFおよび濃度0.05MのLiBF
実施例4−8; 濃度1MのLiPFおよび濃度0.05Mのリチウムビスフルオロスルホニルイミド(LiFSI)
実施例4−9; 濃度1MのLiPFおよび濃度0.05Mのリチウムビスオキサレートボラート(LiBOB)
実施例4−10; 濃度1MのLiPFおよび濃度0.5MのLiBF
(Examples 4-6 to 4-10)
Lithium sodium titanium of Example 3-6, except that the type of electrolyte salt of the non-aqueous electrolyte used in the battery for evaluating characteristics and the concentration of each electrolyte salt in the non-aqueous electrolyte were changed as follows: A laminated battery was produced in the same manner as in Example 3-6 including using the composite oxide powder as the negative electrode active material, and the characteristics of the laminated battery were evaluated in the same manner as in Example 1-1. The results are shown in Table 4.
Examples 4-6; LiPF 6 at a concentration of 1M
Examples 4-7; LiPF 6 at a concentration of 1M and LiBF 4 at a concentration of 0.05M
Examples 4-8; LiPF 6 at a concentration of 1M and lithium bisfluorosulfonylimide (LiFSI) at a concentration of 0.05M
Examples 4-9; LiPF 6 at a concentration of 1M and lithium bisoxalate borate (LiBOB) at a concentration of 0.05M
Examples 4-10; LiPF 6 at a concentration of 1M and LiBF 4 at a concentration of 0.5M

(実施例4−11、4−12)
負極シートの作製に用いる塗料における導電剤の割合を、実施例4−11では、アセチレンブラックを3.0質量%、多層カーボンナノチューブを2.0質量%とし、実施例4−12では、アセチレンブラックを2.0質量%、多層カーボンナノチューブを3.0質量%としたこと以外は、実施例3−6のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いることを含めて実施例3−6と同様にしてラミネート電池を作製し、実施例1−1と同様の方法でラミネート型電池の特性評価を行った。その結果を表4に示す。
(Examples 4-11 and 4-12)
In Example 4-11, the proportion of the conductive agent in the coating material used for the production of the negative electrode sheet was 3.0% by mass for acetylene black and 2.0% by mass for multi-walled carbon nanotubes. In Example 4-12, acetylene black was used. Example 3 including using the lithium sodium titanium composite oxide powder of Example 3-6 as the active material of the negative electrode except that 2.0% by mass and 3.0% by mass of the multi-walled carbon nanotube are used. A laminated battery was produced in the same manner as in Example 6, and the characteristics of the laminated battery were evaluated in the same manner as in Example 1-1. The results are shown in Table 4.

Figure 2017073765
Figure 2017073765

以上の通り、本発明の一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)で表されるリチウムナトリウムチタン複合酸化物を主相とするリチウムナトリウムチタン複合酸化物粉末が、Mが含まれない場合、MがAl、Ga、In、VおよびNb以外の元素の場合、あるいは、Naに代わって他のアルカリ系金属元素を含む場合に比べて、高温サイクル後の放電容量維持率が大きく、高温におけるガス発生量が少なかった。As described above, the general formula of the present invention: Li 2 + x Na 2 + y Ti 6-z M z O 14 (where M is at least one element selected from Al, Ga, In, V, Nb and Ta, and x Is −0.1 ≦ x ≦ 0.1, y is −0.1 ≦ y ≦ 0.1, and z is 0 <z ≦ 1.) When the lithium sodium titanium composite oxide powder having a main phase of M is not containing M, when M is an element other than Al, Ga, In, V and Nb, or other alkaline metal element instead of Na Compared with the case of containing, the discharge capacity maintenance rate after a high temperature cycle was large, and the amount of gas generation at high temperature was small.

また、本発明のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いたリチウムイオン二次電池において、非水電解液が、非水溶媒中に電解質塩を溶解させたものであり、前記非水溶媒中にエチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、および2,3−ブチレンカーボネートから選ばれる少なくとも一種の環状カーボネートが含まれており、全環状カーボネート中のプロピレンカーボネート、1,2−ブチレンカーボネートおよび2,3−ブチレンカーボネートから選ばれる少なくとも一種のアルキレン鎖を有する環状カーボネートの割合が55体積%以上100体積%以下である場合には、さらに高温サイクル後の放電容量維持率が大きく、さらに高温におけるガス発生量が少なかった。   Further, in the lithium ion secondary battery using the lithium sodium titanium titanium composite oxide powder of the present invention as an active material for a negative electrode, the non-aqueous electrolyte is obtained by dissolving an electrolyte salt in a non-aqueous solvent, The aqueous solvent contains at least one cyclic carbonate selected from ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, and 2,3-butylene carbonate, and propylene carbonate in the total cyclic carbonate, 1,2- When the ratio of the cyclic carbonate having at least one alkylene chain selected from butylene carbonate and 2,3-butylene carbonate is 55% by volume or more and 100% by volume or less, the discharge capacity maintenance rate after the high-temperature cycle is further large, Furthermore, the amount of gas generated at high temperature was small

また、本発明のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いたリチウムイオン二次電池において、非水電解液が、非水溶媒中に電解質塩を溶解させたものであり、前記非水溶媒中にジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチルおよび酢酸エチルから選ばれる少なくとも一種のメチル基を有する鎖状エステルを含み、非水溶媒中の全鎖状エステルの含有量が60体積%以上90体積%以下である場合には、さらに高温サイクル後の放電容量維持率が大きく、さらに高温におけるガス発生量が少なかった。   Further, in the lithium ion secondary battery using the lithium sodium titanium titanium composite oxide powder of the present invention as an active material for a negative electrode, the non-aqueous electrolyte is obtained by dissolving an electrolyte salt in a non-aqueous solvent, The aqueous solvent contains a chain ester having at least one methyl group selected from dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate, methyl acetate and ethyl acetate, When the total chain ester content in the solvent was 60% by volume or more and 90% by volume or less, the discharge capacity retention rate after the high-temperature cycle was further large, and the amount of gas generated at a high temperature was small.

また、本発明のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いたリチウムイオン二次電池において、非水電解液が、非水溶媒中に電解質塩を溶解させたものであり、前記電解質塩として少なくともLiPFを非水電解液中に含み、更にLiBF、LiPOおよびLiN(SOF)から選ばれる少なくとも一種のリチウム塩を0.001M以上1M以下の濃度で非水電解液中に含む場合には、さらに高温サイクル後の放電容量維持率が大きく、さらに高温におけるガス発生量が少なかった。Further, in the lithium ion secondary battery using the lithium sodium titanium composite oxide powder of the present invention as an active material for a negative electrode, the nonaqueous electrolytic solution is obtained by dissolving an electrolyte salt in a nonaqueous solvent, and the electrolyte At least LiPF 6 as a salt is contained in the non-aqueous electrolyte, and at least one lithium salt selected from LiBF 4 , LiPO 2 F 2 and LiN (SO 2 F) 2 is non-aqueous at a concentration of 0.001M to 1M. When it was contained in the electrolytic solution, the discharge capacity retention rate after the high temperature cycle was further large, and the amount of gas generated at a high temperature was small.

また、本発明のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いたリチウムイオン二次電池において、負極の導電剤として、グラファイト類およびカーボンブラック類から選ばれる少なくとも一種の導電剤を含み、全導電剤中のカーボンナノチューブ類の割合が1質量%以上49質量%以下である場合には、さらに高温サイクル後の放電容量維持率が大きく、さらに高温におけるガス発生量が少なかった。   Further, in the lithium ion secondary battery using the lithium sodium titanium composite oxide powder of the present invention as the negative electrode active material, the negative electrode conductive agent includes at least one conductive agent selected from graphites and carbon blacks, When the ratio of the carbon nanotubes in the total conductive agent was 1% by mass or more and 49% by mass or less, the discharge capacity retention rate after the high-temperature cycle was further large, and the amount of gas generated at a high temperature was small.

また、本発明のリチウムナトリウムチタン複合酸化物粉末において、D50が10μm以上35μm以下、D50とDBETの比D50/DBET(μm/μm)が25以上100以下、二次粒子の平均円形度が80%以上、二次粒子の平均圧縮強度が0.3MPa以上7MPa以下の粉体物性を有する場合には、さらに高温サイクル後の放電容量維持率が大きく、さらに高温におけるガス発生量が少なかった。この粉体物性を有する本発明のリチウムナトリウムチタン複合酸化物粉末を負極の活物質として用いたリチウムイオン二次電池において、段落0162〜段落0164にて特定した非水電解液を用いた場合は、特に高温サイクル後の放電容量維持率が大きく、特に高温におけるガス発生量が少なかった。Further, in the lithium sodium titanium composite oxide powder of the present invention, D50 is 10μm or 35μm or less, the ratio of D50 and D BET D50 / D BET (μm / μm) is 25 or more and 100 or less, the average circularity of the secondary particles In the case where the powder physical properties were 80% or more and the average compressive strength of the secondary particles was 0.3 MPa or more and 7 MPa or less, the discharge capacity retention rate after the high-temperature cycle was further large, and the amount of gas generated at high temperature was small. In the lithium ion secondary battery using the lithium sodium titanium composite oxide powder of the present invention having this powder physical property as the negative electrode active material, when the non-aqueous electrolyte specified in paragraphs 0162 to 0164 is used, In particular, the discharge capacity retention rate after the high-temperature cycle was large, and the amount of gas generated was particularly small at high temperatures.

本発明のリチウムナトリウムチタン複合酸化物粉末を使用すれば、エネルギー密度が大きく、高温環境下での充放電サイクル特性に優れ、充放電サイクル後のガス発生量が少ない蓄電デバイスを得ることができる。したがって、本発明のリチウムナトリウムチタン複合酸化物粉末は、特にHEV、PHEV、BEVなどに搭載される、長期にわたり性能が低下しないことが強く要求される蓄電デバイスの電極材料として好適である。   When the lithium sodium titanium composite oxide powder of the present invention is used, an energy storage device having a large energy density, excellent charge / discharge cycle characteristics in a high temperature environment, and a small amount of gas generated after the charge / discharge cycle can be obtained. Therefore, the lithium sodium titanium composite oxide powder of the present invention is particularly suitable as an electrode material for an electricity storage device that is mounted on HEV, PHEV, BEV or the like and whose performance is strongly required not to deteriorate over a long period of time.

Claims (22)

空間群Cmcaまたは空間群Fmmmに属する結晶構造を有する、一般式:Li2+xNa2+yTi6−z14(ただし、MはAl、Ga、In、V、NbおよびTaから選択される少なくとも一種の元素であり、xは−0.1≦x≦0.1であり、yは−0.1≦y≦0.1であり、zは0<z≦1である。)で表されるリチウムナトリウムチタン複合酸化物を主相とする、蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。Having a crystal structure belonging to the space group Cmca or space group Fmmm, the general formula: Li 2 + x Na 2 + y Ti 6-z M z O 14 ( provided that at least M is selected Al, Ga, an In, V, from Nb and Ta X is −0.1 ≦ x ≦ 0.1, y is −0.1 ≦ y ≦ 0.1, and z is 0 <z ≦ 1. A lithium sodium titanium composite oxide powder for an electrode active material for an electricity storage device, comprising a lithium sodium titanium composite oxide as a main phase. BET法によって求められる比表面積が1m/g〜50m/gであり、X線回折による、空間群Cmcaまたは空間群Fmmmに属する結晶構造を有するLiNaTi14の回折角2θ=17.6〜18.6°の範囲のピークの半値幅からScherrerの式より算出される結晶子径をDとしたときに、Dが80nm以上であることを特徴とする請求項1に記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。Specific surface area determined by the BET method is 1m 2 / g~50m 2 / g, the diffraction angle of Li 2 Na 2 Ti 6 O 14 having X-ray diffraction, a crystal structure belonging to the space group Cmca or space group Fmmm 2 [Theta] = 17.6 to 18.6 crystallite diameter calculated from the equation from the half width of Scherrer peaks ranging ° when the D x, claim 1, wherein the D x is 80nm or more A lithium sodium titanium composite oxide powder for an electrode active material of an electricity storage device according to 1. 前記比表面積より算出される比表面積相当径をDBETとしたときに、DBETとDの比DBET/D(μm/μm)が4以下であることを特徴とする請求項1または2に記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。2. The ratio D BET / D X (μm / μm) of D BET and D X is 4 or less, where D BET is a specific surface area equivalent diameter calculated from the specific surface area. 2. Lithium sodium titanium composite oxide powder for electrode active material of electricity storage device according to 2. 全細孔容積が0.001ml/g〜0.5ml/gであることを特徴とする請求項1〜3いずれか一項に記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。   4. The lithium sodium titanium composite oxide powder for an electrode active material for an electricity storage device according to claim 1, wherein the total pore volume is 0.001 ml / g to 0.5 ml / g. 前記リチウムナトリウムチタン複合酸化物からなる一次粒子が集合した二次粒子を含み、体積中位粒径をD50としたときに、D50が10μm以上35μm以下であり、D50とDBETの比D50/DBET(μm/μm)が25以上100以下であることを特徴とする請求項1〜4いずれか一項に記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。Including secondary particles in which primary particles composed of the lithium sodium titanium composite oxide are aggregated, and when the volume median particle size is D50, D50 is 10 μm or more and 35 μm or less, and the ratio D50 / D BET is D50 / D BET (micrometer / micrometer) is 25 or more and 100 or less, The lithium sodium titanium complex oxide powder for electrode active materials of the electrical storage device as described in any one of Claims 1-4 characterized by the above-mentioned. 前記二次粒子の平均圧縮強度が0.3MPa以上7MPa以下であることを特徴とする請求項1〜5いずれか一項に記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。   6. The lithium sodium titanium composite oxide powder for an electrode active material for an electricity storage device according to any one of claims 1 to 5, wherein the secondary particles have an average compressive strength of 0.3 MPa or more and 7 MPa or less. 前記二次粒子の平均円形度が80%以上であることを特徴とする請求項1〜6いずれか一項に記載の蓄電デバイスの電極活物質用リチウムナトリウムチタン複合酸化物粉末。   7. The lithium sodium titanium composite oxide powder for an electrode active material for an electricity storage device according to claim 1, wherein the secondary particles have an average circularity of 80% or more. 請求項1〜7いずれか一項に記載の蓄電デバイスの電極用リチウムナトリウムチタン複合酸化物粉末を含む活物質材料。   The active material material containing the lithium sodium titanium complex oxide powder for electrodes of the electrical storage device as described in any one of Claims 1-7. 請求項8に記載の活物質材料と、グラファイト類、カーボンブラック類、およびカーボンナノチューブ類から選ばれる少なくとも一種の導電剤と、結着剤とを含むことを特徴とする蓄電デバイス用電極シート。   An electrode sheet for an electricity storage device, comprising: the active material according to claim 8; at least one conductive agent selected from graphites, carbon blacks, and carbon nanotubes; and a binder. 前記導電剤として、カーボンナノチューブ類を少なくとも含むことを特徴とする請求項9に記載の蓄電デバイス用電極シート。   The power storage device electrode sheet according to claim 9, wherein the conductive agent includes at least carbon nanotubes. 前記導電剤として、カーボンナノチューブ類に加えて、グラファイト類およびカーボンブラック類から選ばれる少なくとも一種の導電剤を含み、全導電剤中のカーボンナノチューブ類の割合が1質量%以上49質量%以下であることを特徴とする請求項10に記載の蓄電デバイス用電極シート。   The conductive agent includes at least one conductive agent selected from graphites and carbon blacks in addition to carbon nanotubes, and the ratio of carbon nanotubes in the total conductive agent is 1% by mass or more and 49% by mass or less. The electrode sheet for an electricity storage device according to claim 10. 前記カーボンナノチューブ類が、そのグラファイト網面が閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位が、中心軸を共有して2〜30個層状に積み重なって形成された釣鐘状構造単位集合体を複数備え、
前記カーボンナノチューブ類は、複数の前記釣鐘状構造単位集合体が、Head−to−Tail様式で間隔をもって連結して繊維を形成することにより構成されていることを特徴とする請求項9〜11いずれか一項に記載の蓄電デバイス用電極シート。
A bell formed by stacking 2 to 30 bell-shaped structural units, each having the top of the carbon nanotubes having a closed graphite mesh surface and a trunk having an open lower portion, sharing a central axis. A plurality of structural unit assemblies,
The carbon nanotubes are configured by forming a plurality of bell-shaped structural unit assemblies connected at intervals in a head-to-tail manner to form fibers. An electrode sheet for an electricity storage device according to claim 1.
請求項9〜12いずれか一項に記載の電極シートを用いることを特徴とする蓄電デバイス。   An electrical storage device using the electrode sheet according to any one of claims 9 to 12. リチウムを吸蔵および放出可能な材料を活物質材料として含む正極と、負極と、前記正極と前記負極との間に配置されたセパレータと、非水電解液と、を含む蓄電デバイスであって、
前記負極が、請求項10〜13いずれか一項に記載の電極シートを含むことを特徴とする蓄電デバイス。
A positive electrode including a material capable of inserting and extracting lithium as an active material, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolytic solution,
The said negative electrode contains the electrode sheet as described in any one of Claims 10-13, The electrical storage device characterized by the above-mentioned.
前記非水電解液が、非水溶媒中に電解質塩を溶解させたものであり、前記非水溶媒中にエチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、および2,3−ブチレンカーボネートから選ばれる少なくとも一種の環状カーボネートが含まれており、全環状カーボネート中のプロピレンカーボネート、1,2−ブチレンカーボネートおよび2,3−ブチレンカーボネートから選ばれる少なくとも一種のアルキレン鎖を有する環状カーボネートの割合が55体積%以上100体積%以下であることを特徴とする請求項14に記載の蓄電デバイス。   The non-aqueous electrolyte solution is obtained by dissolving an electrolyte salt in a non-aqueous solvent, and selected from ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, and 2,3-butylene carbonate in the non-aqueous solvent. The ratio of the cyclic carbonate having at least one alkylene chain selected from propylene carbonate, 1,2-butylene carbonate and 2,3-butylene carbonate in the total cyclic carbonate is 55 volumes. The power storage device according to claim 14, wherein the power storage device is not less than 100% and not more than 100% by volume. 前記非水電解液が、非水溶媒中に電解質塩を溶解させたものであり、前記非水溶媒中にジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチルおよび酢酸エチルから選ばれる少なくとも一種のメチル基を有する鎖状エステルを含み、非水溶媒中の全鎖状エステルの含有量が60体積%以上90体積%以下であることを特徴とする請求項14または15に記載の蓄電デバイス。   The non-aqueous electrolyte is obtained by dissolving an electrolyte salt in a non-aqueous solvent, and dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate in the non-aqueous solvent. Including a chain ester having at least one methyl group selected from methyl acetate and ethyl acetate, and the content of all chain esters in the non-aqueous solvent is 60% by volume or more and 90% by volume or less. The electricity storage device according to claim 14 or 15. 前記非水電解液が、非水溶媒中に電解質塩を溶解させたものであり、前記電解質塩として少なくともLiPFを非水電解液中に含み、更にLiBF、LiPOおよびLiN(SOF)から選ばれる少なくとも一種のリチウム塩を0.001M以上1M以下の濃度で非水電解液中に含むことを特徴とする請求項14〜16いずれか一項に記載の蓄電デバイス。The non-aqueous electrolyte is obtained by dissolving an electrolyte salt in a non-aqueous solvent, and includes at least LiPF 6 as the electrolyte salt in the non-aqueous electrolyte, and further includes LiBF 4 , LiPO 2 F 2 and LiN (SO 2 F) storage device as claimed in any one claims 14 to 16, characterized in that it comprises at least one lithium salt selected from 2 in the nonaqueous electrolytic solution in 1M concentrations below or 0.001 M. 請求項13〜17いずれか一項に記載の蓄電デバイスがリチウムイオン二次電池であり、
前記リチウムイオン二次電池の負極の完全充電状態における充電電位が、リチウム基準極に対して1.05V以上であることを特徴とするリチウムイオン二次電池。
The electricity storage device according to any one of claims 13 to 17 is a lithium ion secondary battery,
The lithium ion secondary battery, wherein a charging potential in a fully charged state of the negative electrode of the lithium ion secondary battery is 1.05 V or more with respect to a lithium reference electrode.
前記負極の完全放電状態における放電電位が、リチウム基準極に対して1.8V以下であることを特徴とする請求項18記載のリチウムイオン二次電池。   19. The lithium ion secondary battery according to claim 18, wherein a discharge potential of the negative electrode in a completely discharged state is 1.8 V or less with respect to a lithium reference electrode. 前記正極に含まれる活物質材料が、スピネル構造を有する複合金属酸化物であることを特徴とする請求項18または19に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 18 or 19, wherein the active material contained in the positive electrode is a composite metal oxide having a spinel structure. 前記複合金属酸化物が、マンガンを含有することを特徴とする請求項20に記載のリチウムイオン二次電池。   21. The lithium ion secondary battery according to claim 20, wherein the composite metal oxide contains manganese. 前記複合金属酸化物が、LiMnまたはLiNi0.5Mn1.5であることを特徴とする請求項21に記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 21, wherein the composite metal oxide is LiMn 2 O 4 or LiNi 0.5 Mn 1.5 O 4 .
JP2017547912A 2015-10-30 2016-10-28 Lithium sodium titanium composite oxide powder for electrode of electricity storage device, active material, and electrode sheet and electricity storage device using the same Pending JPWO2017073765A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015215066 2015-10-30
JP2015215066 2015-10-30
PCT/JP2016/082161 WO2017073765A1 (en) 2015-10-30 2016-10-28 Lithium-sodium-titanium complex oxide powder for electrode of storage device, active material, and electrode sheet and storage device using same

Publications (1)

Publication Number Publication Date
JPWO2017073765A1 true JPWO2017073765A1 (en) 2018-08-16

Family

ID=58630439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017547912A Pending JPWO2017073765A1 (en) 2015-10-30 2016-10-28 Lithium sodium titanium composite oxide powder for electrode of electricity storage device, active material, and electrode sheet and electricity storage device using the same

Country Status (2)

Country Link
JP (1) JPWO2017073765A1 (en)
WO (1) WO2017073765A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950121B1 (en) 2014-12-02 2019-02-19 가부시끼가이샤 도시바 Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle
EP3051612B1 (en) 2015-01-30 2017-07-19 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
CN106104866B (en) 2015-01-30 2020-01-21 株式会社东芝 Battery pack and battery pack
JP6067902B2 (en) 2015-03-13 2017-01-25 株式会社東芝 Active materials, non-aqueous electrolyte batteries, battery packs, assembled batteries, and automobiles
JP6567446B2 (en) * 2016-03-15 2019-08-28 株式会社東芝 Lithium ion non-aqueous electrolyte secondary battery active material, lithium ion non-aqueous electrolyte secondary battery electrode, lithium ion non-aqueous electrolyte secondary battery, battery pack and vehicle
JP6696689B2 (en) 2016-03-16 2020-05-20 株式会社東芝 Active materials, electrodes, non-aqueous electrolyte batteries, battery packs, and vehicles
JP6633434B2 (en) * 2016-03-16 2020-01-22 株式会社東芝 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack and vehicle
JP6622242B2 (en) * 2017-03-24 2019-12-18 株式会社東芝 Electrode structure, electrode, secondary battery, battery pack, battery pack, and vehicle
JP6980587B2 (en) 2018-03-23 2021-12-15 株式会社東芝 Electrodes, rechargeable batteries, battery packs, and vehicles
JP6845176B2 (en) * 2018-03-26 2021-03-17 株式会社東芝 Electrodes, rechargeable batteries, battery packs and vehicles
DE102018206383A1 (en) * 2018-04-25 2019-10-31 Bayerische Motoren Werke Aktiengesellschaft A method of operating a lithium ion battery, lithium ion battery and motor vehicle
US11456449B2 (en) 2018-08-02 2022-09-27 Kabushiki Kaisha Toshiba Electrode for a secondary battery, secondary battery, battery pack and vehicle
KR102628075B1 (en) * 2018-10-12 2024-01-25 주식회사 엘지에너지솔루션 Methode for producing sodium composite transition metal oxide, positive electrode active material for sodium secondary battery, positive electrode and sodium secondary battery comprising the same
JP7106754B2 (en) * 2019-03-29 2022-07-26 株式会社東芝 Electrodes, batteries and battery packs
WO2022035606A1 (en) * 2020-08-12 2022-02-17 Cabot Corporation Compositions containing carbon black, graphite and carbon nanotubes, related electrodes and related batteries
CN116830315B (en) * 2021-11-23 2024-08-09 宁德时代新能源科技股份有限公司 Electrode assembly, secondary battery, battery module, battery pack and electricity utilization device
CN116868430B (en) * 2021-12-16 2024-08-09 宁德时代新能源科技股份有限公司 Battery cell, battery, power utilization device, manufacturing method and manufacturing equipment
CN114583138B (en) * 2022-03-18 2024-07-19 杭州怡莱珂科技有限公司 Sodium ion carrier-carbon composite powder, self-isolating electrode and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182077A (en) * 2011-03-02 2012-09-20 Toshiba Corp Nonaqueous electrolyte battery and battery pack
JP2012209031A (en) * 2011-03-29 2012-10-25 Toray Ind Inc Metal compound-conductive agent complex manufacturing method, metal compound-conductive agent complex, electrode agent for alkali metal secondary battery using the same, and alkali metal secondary battery
JP2014086164A (en) * 2012-10-19 2014-05-12 Jgc Catalysts & Chemicals Ltd Negative electrode material for lithium ion secondary battery, method for manufacturing the negative electrode material, and secondary battery using the negative electrode material
WO2014194996A1 (en) * 2013-06-05 2014-12-11 Clariant Produkte (Deutschland) Gmbh Process for the preparation of lithium titanium spinel and its use
WO2015030192A1 (en) * 2013-08-30 2015-03-05 宇部興産株式会社 Lithium titanate powder, active material, and electricity storage device using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182077A (en) * 2011-03-02 2012-09-20 Toshiba Corp Nonaqueous electrolyte battery and battery pack
JP2012209031A (en) * 2011-03-29 2012-10-25 Toray Ind Inc Metal compound-conductive agent complex manufacturing method, metal compound-conductive agent complex, electrode agent for alkali metal secondary battery using the same, and alkali metal secondary battery
JP2014086164A (en) * 2012-10-19 2014-05-12 Jgc Catalysts & Chemicals Ltd Negative electrode material for lithium ion secondary battery, method for manufacturing the negative electrode material, and secondary battery using the negative electrode material
WO2014194996A1 (en) * 2013-06-05 2014-12-11 Clariant Produkte (Deutschland) Gmbh Process for the preparation of lithium titanium spinel and its use
WO2015030192A1 (en) * 2013-08-30 2015-03-05 宇部興産株式会社 Lithium titanate powder, active material, and electricity storage device using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TORRES-MARTINEZ,L.M. ET AL: ""Phase formation and crystal structure of ternary compound Na2Li2Ti6O14"", SOLID STATE SCIENCES, vol. 8, JPN6017001390, 17 October 2006 (2006-10-17), pages 1281 - 1289, ISSN: 0004347531 *
WANG,P. ET AL: ""Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution", JOURNAL OF POWER SOURCES, vol. 293, JPN6017001389, 20 May 2015 (2015-05-20), pages 33 - 41, XP055285710, ISSN: 0004472840, DOI: 10.1016/j.jpowsour.2015.05.076 *

Also Published As

Publication number Publication date
WO2017073765A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
WO2017073765A1 (en) Lithium-sodium-titanium complex oxide powder for electrode of storage device, active material, and electrode sheet and storage device using same
JP2018006164A (en) Lithium titanate powder for power storage device electrode, active substance material, and power storage device using the active substance material
JP5450284B2 (en) Lithium titanate particles and manufacturing method thereof, negative electrode for lithium ion battery, and lithium battery
JP6809473B2 (en) Fibrous carbon-containing lithium-titanium composite oxide powder, electrode sheet using it, and power storage device using it
JP6519202B2 (en) Lithium titanate powder, active material, and storage device using the same
JP2017084788A (en) Lithium titanium composite oxide powder and active substance material for power storage device electrode, and electrode sheet and power storage device which are arranged by use thereof
KR20130061038A (en) Manufacturing method of lithium-titanium composite doped by different metal, and lithium-titanium composite doped with different metal made by same
US20200006761A1 (en) Lithium titanate powder for electrode of energy storage device, active material, and electrode sheet and energy storage device using the same
JP2016000681A5 (en)
US10759673B2 (en) Lithium titanate powder including phosphorous, active material, electrode sheet, and energy storage device using the same
JP6220365B2 (en) Lithium titanate powder and active material for electrode of power storage device, and electrode sheet and power storage device using the same
JP2008056561A (en) Lithium nickel manganese composite oxide and positive electrode material for lithium secondary battery using same, positive electrode for lithium secondary battery, and lithium secondary battery
JP6125838B2 (en) Lithium composite oxide production apparatus and production method, lithium composite oxide obtained by the production method, positive electrode active material for secondary battery including the same, positive electrode for secondary battery including the same, and lithium ion using the same as positive electrode Secondary battery
JP2017063043A (en) Lithium titanate powder for power storage device electrode, active material material, and electrode sheet and power storage device which are arranged by use thereof
JP6120493B2 (en) Method for producing lithium / manganese composite oxide, method for producing positive electrode for secondary battery containing lithium / manganese composite oxide obtained by the production method, and method for producing lithium ion secondary battery using the same as positive electrode
JP6023522B2 (en) Method for producing lithium composite oxide
JP4872164B2 (en) Layered lithium nickel manganese composite oxide
JP6045194B2 (en) Method for producing lithium / manganese composite oxide, lithium / manganese composite oxide obtained by the production method, positive electrode active material for secondary battery containing the same, and lithium ion secondary battery using the same as positive electrode active material
KR20240013735A (en) Non-aqueous electrolyte secondary battery
JP2023035188A (en) Lithium titanate powder, electrode using the same, and electric storage device
WO2024166953A1 (en) Niobium-containing oxide powder, electrode using same, and power storage device
JP2024146389A (en) Niobium-titanium composite oxide powder for electrodes, electrodes using the same, and power storage devices
JP2024085264A (en) Niobium-containing oxide powder, electrode using them, and power storage device
JP2024080490A (en) Lithium titanate powder, electrode using the same, and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210330