JPWO2017065226A1 - Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element Download PDF

Info

Publication number
JPWO2017065226A1
JPWO2017065226A1 JP2017545464A JP2017545464A JPWO2017065226A1 JP WO2017065226 A1 JPWO2017065226 A1 JP WO2017065226A1 JP 2017545464 A JP2017545464 A JP 2017545464A JP 2017545464 A JP2017545464 A JP 2017545464A JP WO2017065226 A1 JPWO2017065226 A1 JP WO2017065226A1
Authority
JP
Japan
Prior art keywords
liquid crystal
formula
crystal aligning
aligning agent
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017545464A
Other languages
Japanese (ja)
Other versions
JP6881309B2 (en
Inventor
早紀 相馬
早紀 相馬
佳道 森本
佳道 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2017065226A1 publication Critical patent/JPWO2017065226A1/en
Application granted granted Critical
Publication of JP6881309B2 publication Critical patent/JP6881309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/42Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Thiazole And Isothizaole Compounds (AREA)

Abstract

ラビング耐性に優れ、蓄積電荷の緩和が早く、かつ配向規制力の高い液晶配向膜が得られる液晶配向剤、表示特性に優れた、特に横電界方式の液晶表示素子、及び該液晶配向剤の原料となる新規なジアミンを提供する。
下記式(1)で表される構造を主鎖に有する重合体を含有する液晶配向剤。
[化1]

Figure 2017065226

(Rは水素、又は一価の有機基であり、Arは、置換基を有してもよいフェニル基若しくはナフタレン基であり、*は他の基に結合する部位を示す。)Liquid crystal aligning agent with excellent rubbing resistance, quick relaxation of accumulated charge, and high alignment regulating power, liquid crystal aligning agent excellent in display characteristics, especially horizontal electric field type liquid crystal display element, and raw material for the liquid crystal aligning agent A novel diamine is provided.
The liquid crystal aligning agent containing the polymer which has a structure represented by following formula (1) in a principal chain.
[Chemical 1]
Figure 2017065226

(R 1 is hydrogen or a monovalent organic group, Ar is a phenyl group or a naphthalene group which may have a substituent, and * represents a site bonded to another group.)

Description

本発明は、液晶表示素子に用いられる液晶配向剤、液晶配向膜、液晶表示素子、及び、液晶配向剤に含有する重合体の原料となる新規なジアミン化合物に関する。   The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, a liquid crystal display element, and a novel diamine compound used as a raw material for a polymer contained in the liquid crystal aligning agent.

液晶表示素子は、スマートフォン、パソコン、携帯電話、テレビ等の表示部として幅広く用いられている。液晶表示素子は、例えば素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN方式、VA方式等の縦電界方式や、IPS方式、FFS方式等の横電界方式が知られている。基板の片側のみに電極を形成させ、基板と平行方向に電界を印加する横電界方式では、従来の上下基板に形成された電極に電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有し、また高品位な表示が可能な液晶表示素子として知られている。   Liquid crystal display elements are widely used as display units for smartphones, personal computers, mobile phones, televisions, and the like. The liquid crystal display element includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode that apply an electric field to the liquid crystal layer, an alignment film that controls the alignment of liquid crystal molecules in the liquid crystal layer, and a pixel A thin film transistor (TFT) for switching an electric signal supplied to the electrode is provided. As a driving method of liquid crystal molecules, a vertical electric field method such as a TN method and a VA method, and a horizontal electric field method such as an IPS method and an FFS method are known. The horizontal electric field method in which an electrode is formed only on one side of the substrate and an electric field is applied in a direction parallel to the substrate is wider than the vertical electric field method in which voltage is applied to the electrodes formed on the upper and lower substrates to drive the liquid crystal. It is known as a liquid crystal display element having viewing angle characteristics and capable of high-quality display.

横電界方式の液晶セルは視野角特性に優れているものの、基板内に形成される電極部分が少ないために、電圧保持率が低いと液晶に十分な電圧がかからず表示コントラストが低下する。また、液晶配向の安定性が小さいと、液晶を長時間駆動させた際に液晶が初期の状態に戻らなくなり、コントラスト低下や残像の原因となるため、液晶配向の安定性が重要である。また、静電気が液晶セル内に蓄積されやすく、駆動によって生じる正負非対称電圧の印加によっても液晶セル内に電荷が蓄積され、これらの蓄積された電荷が液晶配向の乱れや残像として表示に影響を与え、液晶素子の表示品位を著しく低下させる。また、駆動直後にバックライト光が液晶セルに照射されることによっても電荷が蓄積され、短時間の駆動でも残像が発生する、駆動中にフリッカー(ちらつき)の大きさが変化する等の問題を生じてしまう。   Although the horizontal electric field type liquid crystal cell is excellent in viewing angle characteristics, since there are few electrode portions formed in the substrate, if the voltage holding ratio is low, a sufficient voltage is not applied to the liquid crystal and the display contrast is lowered. Further, if the stability of the liquid crystal alignment is small, the liquid crystal does not return to the initial state when the liquid crystal is driven for a long time, which causes a decrease in contrast and an afterimage. Therefore, the stability of the liquid crystal alignment is important. In addition, static electricity is easily accumulated in the liquid crystal cell, and charges are accumulated in the liquid crystal cell even when a positive / negative asymmetric voltage generated by driving is applied. These accumulated charges affect the display as a disorder of liquid crystal alignment or an afterimage. The display quality of the liquid crystal element is significantly reduced. In addition, charges are accumulated by irradiating the liquid crystal cell with backlight light immediately after driving, and afterimages are generated even during short-time driving, and the size of flicker (flicker) changes during driving. It will occur.

一方、液晶表示素子の製造工程において、液晶配向膜は液晶配向剤を印刷し、乾燥、焼成を行った後にラビング処理を行って形成されるのが一般的である。横電界方式液晶セルでは、基板の片側のみに電極構造を有するため基板の凹凸が大きく、また、窒化珪素などの絶縁体が基板表面に形成されていることもあり、従来の配向剤と比較してより印刷性に優れた液晶配向剤が求められている。さらには、液晶配向の安定性を向上させるために従来の液晶セルよりも強くラビング処理を施すことから、ラビング処理による剥離やラビング削れを引き起こし易く、これらの剥がれや傷が表示品位を低下させる問題点がある。   On the other hand, in the manufacturing process of a liquid crystal display element, the liquid crystal alignment film is generally formed by printing a liquid crystal aligning agent, performing drying and baking, and then performing a rubbing treatment. The lateral electric field type liquid crystal cell has an electrode structure only on one side of the substrate, so that the substrate has large irregularities, and an insulator such as silicon nitride is sometimes formed on the surface of the substrate. Therefore, a liquid crystal aligning agent having more excellent printability is required. Furthermore, since the rubbing treatment is applied stronger than conventional liquid crystal cells in order to improve the stability of the liquid crystal alignment, peeling and rubbing due to the rubbing treatment are likely to occur, and these peelings and scratches deteriorate the display quality. There is a point.

このような横電界駆動液晶素子に用いた際、電圧保持率に優れ、かつ電荷蓄積を低減した液晶配向剤として、特許文献1には、特定ジアミンと脂肪族テトラカルボン酸誘導体とを含有する液晶配向剤が開示されている。また、液晶配向性、ラビング耐性、光透過率に優れ、広い温度範囲での残像低減に有効な液晶配向膜を形成する手段として、特許文献2には、特定ジアミンと芳香族テトラカルボン酸誘導体を含む液晶配向剤が開示されている。長時間熱ストレスが印加されても電圧保持率が低下することのなく、液晶配向性に優れる液晶配向剤として、特許文献3には、特定構造を有するポリアミック酸及びポリイミドよりなる群から選択される少なくとも一種の重合体を含有する液晶配向剤が開示される。
しかし、液晶表示素子の高性能化に伴い、液晶配向膜に要求される特性も厳しくなってきており、従来の技術のみでは全ての要求特性を満足することは難しい。
Patent Document 1 discloses a liquid crystal containing a specific diamine and an aliphatic tetracarboxylic acid derivative as a liquid crystal aligning agent having excellent voltage holding ratio and reduced charge accumulation when used in such a lateral electric field drive liquid crystal element. An alignment agent is disclosed. In addition, as a means for forming a liquid crystal alignment film that is excellent in liquid crystal alignment, rubbing resistance, and light transmittance and effective in reducing afterimages over a wide temperature range, Patent Document 2 discloses specific diamines and aromatic tetracarboxylic acid derivatives. A liquid crystal aligning agent is disclosed. As a liquid crystal aligning agent excellent in liquid crystal alignment without decreasing the voltage holding ratio even when a thermal stress is applied for a long time, Patent Document 3 is selected from the group consisting of polyamic acid and polyimide having a specific structure. A liquid crystal aligning agent containing at least one polymer is disclosed.
However, with the improvement in performance of liquid crystal display elements, the characteristics required for the liquid crystal alignment film are becoming stricter, and it is difficult to satisfy all the required characteristics only with the conventional technology.

国際公開公報WO2004/021076号パンフレットInternational Publication WO2004 / 021076 Pamphlet 国際公開公報WO2013/062115号パンフレットInternational Publication No. WO2013 / 062115 Pamphlet 特開2010−026503JP2010-026503

本発明は、ラビング耐性に優れ、蓄積電荷の緩和が早く、かつ液晶配向の安定性が高い、特に横電界駆動方式用液晶表示素子に適した液晶配向膜を得ることを課題とする。   An object of the present invention is to obtain a liquid crystal alignment film that is excellent in rubbing resistance, has a fast relaxation of accumulated charges, and has a high stability of liquid crystal alignment, and is particularly suitable for a liquid crystal display element for a lateral electric field drive system.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、液晶配向剤に含まれる重合体中に特定構造を導入することで種々の特性が同時に改善されることを見出し、本発明を完成した。
本発明は、下記を要旨とするものである。
1.下記式(1)で表される構造を主鎖に有する重合体を含有する液晶配向剤。

Figure 2017065226
(Rは水素、又は一価の有機基を表す。Arは、置換基を有してもよいフェニル基若しくはナフタレン基である*は他の基に結合する部位を示す。)As a result of intensive studies to solve the above problems, the present inventors have found that various properties can be improved simultaneously by introducing a specific structure into the polymer contained in the liquid crystal aligning agent. Completed the invention.
The gist of the present invention is as follows.
1. The liquid crystal aligning agent containing the polymer which has a structure represented by following formula (1) in a principal chain.
Figure 2017065226
(R 1 represents hydrogen or a monovalent organic group. Ar represents a phenyl group or naphthalene group which may have a substituent. * Represents a site bonded to another group.)

本発明の液晶配向剤によれば、ラビング耐性に優れ、蓄積電荷の緩和が早く、かつ配向規制力の高い、特に横電界駆動方式用液晶表示素子に適した液晶配向膜、及び表示特性に優れた、特に横電界駆動方式の液晶表示素子が提供される。   According to the liquid crystal aligning agent of the present invention, the liquid crystal alignment film excellent in rubbing resistance, quickening of accumulated charge, and high in alignment regulating power, particularly suitable for a liquid crystal display element for a lateral electric field drive system, and excellent display characteristics. In particular, a lateral electric field drive type liquid crystal display element is provided.

本発明の液晶配向剤は、下記式(1)で表される2価の基を主鎖に有する重合体(以下、特定重合体とも言う)を含有する液晶配向剤である。

Figure 2017065226
式(1)のRは水素、又は一価の有機基を表す。一価の有機基としては、炭素数1〜20のアルキル基やアルケニル基、シクロアルキル基、フェニル基、フッ素原子、又はこれらの組み合わせからなる基などが挙げられる。なかでも、水素原子、又は炭素数1〜3の直鎖アルキル基が好ましく、水素原子、又はメチル基がより好ましくい。The liquid crystal aligning agent of this invention is a liquid crystal aligning agent containing the polymer (henceforth a specific polymer) which has a bivalent group represented by following formula (1) in a principal chain.
Figure 2017065226
R 1 in formula (1) represents hydrogen or a monovalent organic group. Examples of the monovalent organic group include a group having 1 to 20 carbon atoms, an alkenyl group, a cycloalkyl group, a phenyl group, a fluorine atom, or a combination thereof. Especially, a hydrogen atom or a C1-C3 linear alkyl group is preferable, and a hydrogen atom or a methyl group is more preferable.

また、Rは、熱により脱離反応を生じ、水素原子に置き換わる保護基であってもよい。液晶配向剤の保存安定性の点から、この保護基は、室温においては脱離せず、好ましくは、80℃以上、より好ましくは100℃以上、特に好ましくは150〜200℃で脱離し、水素原子になるのが好適である。例えば、1,1−ジメチル−2−クロロエトキシカルボニル基、1,1−ジメチル−2−シアノエトキシカルボニル基、tert−ブトキシカルボニル基等が挙げられ、好ましくはtert−ブトキシカルボニル基である。
式(1)のArは、置換基を有してもよいフェニル基若しくはナフタレン基を表す。これらのうち、フェニル基が好ましい。また、これらのフェニル基又はナフタレン基の環部分に置換基が結合されていてもよい。置換基の具体例としては、フッ素原子やメチル基などが挙げられる。
R 1 may be a protecting group that undergoes elimination reaction by heat and replaces a hydrogen atom. From the viewpoint of the storage stability of the liquid crystal aligning agent, this protecting group does not desorb at room temperature, and preferably desorbs at 80 ° C. or higher, more preferably 100 ° C. or higher, particularly preferably 150 to 200 ° C. It is preferable to become. Examples thereof include a 1,1-dimethyl-2-chloroethoxycarbonyl group, a 1,1-dimethyl-2-cyanoethoxycarbonyl group, a tert-butoxycarbonyl group, and the like, and preferably a tert-butoxycarbonyl group.
Ar in Formula (1) represents a phenyl group or a naphthalene group which may have a substituent. Of these, a phenyl group is preferred. Moreover, the substituent may be couple | bonded with the ring part of these phenyl groups or naphthalene groups. Specific examples of the substituent include a fluorine atom and a methyl group.

本発明において、式(1)で表される2価の基を主鎖に有する重合体の種類は特に限定されない。具体的にはポリアミド、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリウレア、ポリシロキサン、ポリエステル等、一般的に液晶配向膜として用いられる重合体が挙げられる。なかでも、ポリアミック酸やポリアミック酸エステルなどのポリイミド前駆体、又はそれをイミド化して得られるポリイミドのうちの少なくとも1種の重合体が好ましい。   In the present invention, the type of the polymer having a divalent group represented by the formula (1) in the main chain is not particularly limited. Specific examples include polymers generally used as liquid crystal alignment films, such as polyamide, polyamic acid, polyamic acid ester, polyimide, polyurea, polysiloxane, and polyester. Among these, a polyimide precursor such as polyamic acid or polyamic acid ester, or at least one polymer among polyimides obtained by imidizing it is preferable.

上記のポリイミド前駆体としては、テトラカルボン酸誘導体とジアミンとの反応で得られるポリアミック酸又はポリアミック酸エステルが挙げられる。このポリイミド前駆体の主鎖に、式(1)で表される2価の基を導入する手段としては、式(1)で表される2価の基を主鎖方向に有するテトラカルボン酸誘導体、又は、式(1)で表される2価の基を主鎖方向に有するジアミンから選ばれる少なくとも1種を、前記の反応に用いるテトラカルボン酸誘導体及びジアミンの一部又は全部に用いる方法が挙げられる。   As said polyimide precursor, the polyamic acid or polyamic acid ester obtained by reaction with a tetracarboxylic-acid derivative and diamine is mentioned. As means for introducing a divalent group represented by the formula (1) into the main chain of the polyimide precursor, a tetracarboxylic acid derivative having a divalent group represented by the formula (1) in the main chain direction. Or a method in which at least one selected from diamines having a divalent group represented by the formula (1) in the main chain direction is used for a part or all of the tetracarboxylic acid derivative and diamine used in the above reaction. Can be mentioned.

上記ポリイミド前駆体の製造に用いるテトラカルボン酸誘導体としては、テトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドが挙げられる。例えば、式(1)で表される2価の基を主鎖方向に有するテトラカルボン酸は、下記式(1−1)で表すことができる。   Examples of the tetracarboxylic acid derivative used in the production of the polyimide precursor include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide. For example, a tetracarboxylic acid having a divalent group represented by the formula (1) in the main chain direction can be represented by the following formula (1-1).

Figure 2017065226
式(1−1)中、R及びArは前記式(1)の定義と同じであり、Aは3価の基を表し、2つのAは同一であっても異なってもよい。Aの例としては、シクロブタン環構造、シクロペンタン環構造、シクロヘキサン環構造、ベンゼン環構造及び下記式(A−1)よりなる群から選ばれる少なくとも一種を有する3価の有機基が挙げられる。
Figure 2017065226
Figure 2017065226
In Formula (1-1), R 1 and Ar are the same as defined in Formula (1), A represents a trivalent group, and two A may be the same or different. Examples of A include a trivalent organic group having at least one selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure, a cyclohexane ring structure, a benzene ring structure and the following formula (A-1).
Figure 2017065226

また、式(1)で表される2価の基を主鎖方向に有するジアミンは、下記式(1−2)で表すことができる。

Figure 2017065226
式(1−2)中、R及びArは前記式(1)の定義と同じであり、Bは単結合又は2価の基を表し、2つのBは同一であっても異なってもよい。Bが2価の基である場合、その例としては、ベンゼン環構造、炭素数が1〜10、好ましくは1〜5を有する、アルキル構造、アルケニル構造、アルコキシ構造、フルオロアルキル構造、及びアミド構造よりなる群から選ばれる少なくとも一種を有する2価の有機基が挙げられる。Moreover, the diamine which has a bivalent group represented by Formula (1) in a principal chain direction can be represented by following formula (1-2).
Figure 2017065226
In Formula (1-2), R 1 and Ar are the same as defined in Formula (1), B represents a single bond or a divalent group, and two Bs may be the same or different. . When B is a divalent group, examples thereof include a benzene ring structure, an alkyl structure, an alkenyl structure, an alkoxy structure, a fluoroalkyl structure, and an amide structure having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms. And a divalent organic group having at least one selected from the group consisting of:

なお、上記式(1−2)で示されるジアミンは、式(1)で表される2価の基を主鎖方向に有するポリウレアを得るのに用いることもできる。ポリウレアはジイソシアネートとジアミンの反応によって得られ、この反応の一部又は全部に式(1−2)のジアミンを用いて得られたポリウレアは、本発明の液晶配向剤に含有される特定重合体の一種となる。   The diamine represented by the above formula (1-2) can also be used to obtain a polyurea having a divalent group represented by the formula (1) in the main chain direction. Polyurea is obtained by the reaction of diisocyanate and diamine, and polyurea obtained by using the diamine of formula (1-2) in part or all of this reaction is the specific polymer contained in the liquid crystal aligning agent of the present invention. It becomes a kind.

本発明に用いられる特定重合体は、下記式(2)で表される構造単位を含むポリイミド前駆体、及びそれをイミド化して得られるポリイミドから選ばれる少なくとも1種が好ましい。

Figure 2017065226
The specific polymer used in the present invention is preferably at least one selected from a polyimide precursor containing a structural unit represented by the following formula (2) and a polyimide obtained by imidizing it.
Figure 2017065226

上記式(2)において、Xはテトラカルボン酸誘導体に由来する4価の有機基である。Yは式(1)の構造を主鎖方向に含むジアミンに由来する2価の有機基である。R2は水素原子又は炭素数1〜5のアルキル基である。R2は、加熱によるイミド化のしやすさの点から、水素原子、メチル基又はエチル基が好ましい。In the above formula (2), X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative. Y 1 is a divalent organic group derived from a diamine containing the structure of formula (1) in the main chain direction. R 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. R 2 is preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoint of ease of imidization by heating.

は、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類でも、2種類以上でもよい。
の具体例を示すならば、国際公開公報2015/119168の13項〜14項に掲載される、式(X−1)〜(X−46)の構造などが挙げられる。
X 1 depends on the required properties such as solubility of the polymer in the solvent, coating property of the liquid crystal aligning agent, orientation of the liquid crystal when the liquid crystal aligning film is used, voltage holding ratio, accumulated charge, and the like. It is appropriately selected, and one type or two or more types may be used in the same polymer.
If Specific examples of X 1, are listed in paragraph 13 to 14, wherein the WO 2015/119168, such as the structure of formula (X-1) ~ (X -46) are mentioned.

以下に、好ましいXの構造を示すが、本発明はこれらに限定されるものではない。

Figure 2017065226
Below, shows the structure of a preferred X 1, the present invention is not limited thereto.
Figure 2017065226

Figure 2017065226
Figure 2017065226

上記の構造のうち、(A−1)、(A−2)はラビング耐性の更なる向上という観点から特に好ましい。(A−4)は蓄積電荷の緩和速度の更なる向上という観点から特に好ましい。(A−15)〜(A−17)は、液晶配向性と蓄積電荷の緩和速度の更なる向上という観点から特に好ましい。
式(2)において、Yの具体例としては前記式(1−2)のジアミンから2つのアミノ基を除いた構造を挙げることができる。なかでも、Yは下記式(3)の構造であるとより好ましい。
Among the above structures, (A-1) and (A-2) are particularly preferable from the viewpoint of further improving the rubbing resistance. (A-4) is particularly preferable from the viewpoint of further improving the rate of relaxation of accumulated charges. (A-15) to (A-17) are particularly preferable from the viewpoint of further improving the liquid crystal orientation and the relaxation rate of the accumulated charges.
In Formula (2), specific examples of Y 1 include a structure in which two amino groups are removed from the diamine of Formula (1-2). Of these, Y 1 is more preferably a structure of the following formula (3).

Figure 2017065226
式(3)において、R及びArは前記式(1)の定義と同じである。Rは単結合又は置換基を有してもよいフェニル基を表す。*は―NH−に結合する部位を示す。Rはフェニル基が特に好ましい。
Figure 2017065226
In Formula (3), R 1 and Ar are the same as defined in Formula (1). R 3 represents a single bond or a phenyl group which may have a substituent. * Indicates a site bonded to -NH-. R 3 is particularly preferably a phenyl group.

の特に好ましい構造を以下に示す。下記式において、Bocはtert−ブトキシカルボニル基を表し、*は―NH−に結合する部位を表す。A particularly preferred structure of Y 1 is shown below. In the following formula, Boc represents a tert-butoxycarbonyl group, and * represents a site bonded to —NH—.

Figure 2017065226
Figure 2017065226

なお、前記式(3)の構造を有するジアミンとしては、下記式(4)で表されるジアミンを挙げることができる。かかるジアミンの製造方法については後述する。

Figure 2017065226
式(4)において、R及びArは上記式(1)の定義と同じである。Rは単結合、又は置換基を有してもよいフェニル基を表す。Rはフェニル基が特に好ましい。In addition, as diamine which has a structure of said Formula (3), the diamine represented by following formula (4) can be mentioned. A method for producing such a diamine will be described later.
Figure 2017065226
In the formula (4), R 1 and Ar are the same as defined in the above formula (1). R 3 represents a single bond or a phenyl group which may have a substituent. R 3 is particularly preferably a phenyl group.

式(2)で表される構造単位を含むポリイミド前駆体は、本発明の効果を損なわない範囲において、下記式(5)で表される構造単位を含んでいてもよい。

Figure 2017065226
The polyimide precursor containing the structural unit represented by the formula (2) may contain a structural unit represented by the following formula (5) as long as the effects of the present invention are not impaired.
Figure 2017065226

式(5)において、Xはテトラカルボン酸誘導体に由来する4価の有機基である。Yは、式(1)におけるY1の構造を主鎖方向に含まないジアミンに由来する2価の有機基である。Rは、前記式(2)における定義と同じであり、Rは水素原子又は炭素数1〜4のアルキル基である。また、2つあるRの少なくとも一方は水素原子であることが好ましい。In the formula (5), X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative. Y 2 is a divalent organic group derived from a diamine that does not include the structure of Y 1 in the formula (1) in the main chain direction. R 2 is the same as defined in Formula (2), and R 4 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Moreover, it is preferable that at least one of two R < 4 > is a hydrogen atom.

の具体例としては、好ましい例も含めて式(2)のXで例示したものと同じ構造を挙げることができる。また、Yは式(1)の構造を主鎖方向に含まないジアミンに由来する二価の有機基であり、その構造は特に限定されない。また、Yは重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類でも又は2種類以上でもよい。Specific examples of X 2 include the same structures as those exemplified for X 1 in formula (2), including preferred examples. Y 2 is a divalent organic group derived from a diamine that does not contain the structure of formula (1) in the main chain direction, and the structure is not particularly limited. Y 2 depends on the degree of required properties such as the solubility of the polymer in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal when it is used as the liquid crystal alignment film, the voltage holding ratio, and the accumulated charge. And may be one type or two or more types in the same polymer.

の具体例を示すならば、国際公開公報2015/119168の4頁に掲載される式(2)の構造、及び、8〜12頁に掲載される、式(Y−1)〜(Y−97)、(Y−101)〜(Y−118);国際公開公報2013/008906の6項に掲載される、式(2)からアミノ基を2つ除いた2価の有機基;国際公開公報2015/122413の8頁に掲載される式(1)からアミノ基を2つ除いた2価の有機基;国際公開公報2015/060360の8頁に掲載される式(3);日本国公開特許公報2012−173514の8頁に記載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2010−050523の9頁に掲載される式(A)〜(F)からアミノ基を2つ除いた二価の有機基などが挙げられる。If Specific examples of Y 2, the structure of the formulas listed in page 4 of WO 2015/119168 (2), and is posted on 8-12 pages, Formula (Y-1) ~ (Y -97), (Y-101) to (Y-118); a divalent organic group obtained by removing two amino groups from the formula (2) described in paragraph 6 of International Publication No. 2013/008906; Divalent organic group obtained by removing two amino groups from formula (1) published on page 8 of publication 2015/122413; formula (3) published on page 8 of international publication 2015/060360; A divalent organic group obtained by removing two amino groups from Formula (1) described on page 8 of Patent Publication 2012-173514; Formulas (A) to (F) published on page 9 of International Publication 2010-050523 And divalent organic groups obtained by removing two amino groups from The

の好ましい構造を以下に示すが、これらに限定されるものではない。

Figure 2017065226
It shows the preferred structure of Y 2 below, but the invention is not limited thereto.
Figure 2017065226

Figure 2017065226
Figure 2017065226

Figure 2017065226
Figure 2017065226

Figure 2017065226
Figure 2017065226

上記のうち、(B−28)、(B−29)は、ラビング耐性の更なる向上という観点から特に好ましい。(B−1)〜(B−3)は、液晶配向性の更なる向上という観点から特に好ましい。(B−14)〜(B−18)及び(B−27)は、蓄積電荷の緩和速度の更なる向上という観点から特に好ましい。   Among the above, (B-28) and (B-29) are particularly preferable from the viewpoint of further improving rubbing resistance. (B-1) to (B-3) are particularly preferable from the viewpoint of further improving the liquid crystal orientation. (B-14) to (B-18) and (B-27) are particularly preferable from the viewpoint of further improving the relaxation rate of accumulated charges.

式(2)で表される構造単位を含むポリイミド前駆体が、式(5)で表される構造単位を含む場合、式(2)で表される構造単位は、式(2)と式(5)の合計に対して10モル%以上であることが好ましく、より好ましくは20モル%以上であり、特に好ましくは30モル%以上である。
本発明に用いるポリイミド前駆体の分子量は、重量平均分子量で2,000〜500,000が好ましく、より好ましくは5,000〜300,000であり、さらに好ましくは、10,000〜100,000である。
When the polyimide precursor containing the structural unit represented by Formula (2) includes the structural unit represented by Formula (5), the structural unit represented by Formula (2) is represented by Formula (2) and Formula ( It is preferable that it is 10 mol% or more with respect to the sum total of 5), More preferably, it is 20 mol% or more, Most preferably, it is 30 mol% or more.
The molecular weight of the polyimide precursor used in the present invention is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. is there.

式(1)で表される2価の基を主鎖に有するポリイミドとしては、前記のポリイミド前駆体を閉環させて得られるポリイミドが挙げられる。このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
Examples of the polyimide having a divalent group represented by the formula (1) in the main chain include a polyimide obtained by ring-closing the polyimide precursor. In this polyimide, the ring closure rate (also referred to as imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the use and purpose.
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, or catalytic imidization in which a catalyst is added to the polyimide precursor solution.

本発明の液晶配向剤は、上記特定重合体を含有するものであるが、異なる構造の特定重合体を2種以上含有していてもよい。また、特定重合体に加えて、その他の重合体、即ち式(1)で表される2価の基を主鎖に有さない重合体を含有していてもよい。その他の重合体の種類としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン−フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。本発明の液晶配向剤がその他の重合体を含有する場合、含有される全重合体成分に対する特定重合体の割合は5質量%以上であることが好ましく、その一例として5〜95質量%が挙げられる。   Although the liquid crystal aligning agent of this invention contains the said specific polymer, it may contain 2 or more types of specific polymers of a different structure. Further, in addition to the specific polymer, other polymers, that is, polymers having no divalent group represented by the formula (1) in the main chain may be contained. Other polymer types include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or derivatives thereof, poly (styrene-phenylmaleimide) derivative, poly (meth) acrylate. And so on. When the liquid crystal aligning agent of this invention contains another polymer, it is preferable that the ratio of the specific polymer with respect to all the polymer components contained is 5 mass% or more, and 5-95 mass% is mentioned as the example. It is done.

液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、一般的には溶液の形態をとる。本発明の液晶配向剤においても前記した重合体成分と、この重合体成分を溶解させる有機溶媒とを含有する溶液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2〜8質量%である。   The liquid crystal aligning agent is used for producing a liquid crystal aligning film, and generally takes the form of a solution from the viewpoint of forming a uniform thin film. Also in the liquid crystal aligning agent of this invention, it is preferable that it is a solution containing an above-described polymer component and the organic solvent in which this polymer component is dissolved. At that time, the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, the content is preferably 1% by mass or more, and from the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. A particularly preferable concentration of the polymer is 2 to 8% by mass.

液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、ジメチルスルホキシド、γ−ブチロラクトン、1,3−ジメチル−イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノンなどを挙げることができる。なかでも、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、又はγ−ブチロラクトンを用いることが好ましい。   The organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the polymer component is uniformly dissolved. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl. -Imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone and the like can be mentioned. Among these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or γ-butyrolactone is preferably used.

また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を併用した混合溶媒を使用することが一般的であり、本発明の液晶配向剤においてもこのような混合溶媒は好適に用いられる。併用する有機溶媒の具体例は、液晶配向剤に関する公知の文献に種々開示されているとおりであるが、その一例を示すなら、国際公開公報2015/060357号パンフレットの53頁[0104]〜55頁[0105]に開示されている溶媒などが挙げられる。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。   Moreover, the organic solvent contained in the liquid crystal aligning agent uses a mixed solvent that is used in combination with a solvent that improves the coating properties and the surface smoothness of the coating film when the liquid crystal aligning agent is applied in addition to the above-described solvents. Such a mixed solvent is also preferably used in the liquid crystal aligning agent of the present invention. Specific examples of the organic solvent to be used in combination are as disclosed in various known literatures relating to liquid crystal aligning agents. For example, pages 53 [0104] to 55 of the pamphlet of International Publication No. 2015/060357. And the solvent disclosed in [0105]. The kind and content of such a solvent are appropriately selected according to the application device, application conditions, application environment, and the like of the liquid crystal aligning agent.

本発明の液晶配向剤は、本発明の効果を損なわない範囲において、重合体成分及び有機溶媒以外の成分を追加的に含有してもよい。このような追加成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール材との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための架橋剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。これら追加成分の具体例としては、液晶配向剤に関する公知の文献に種々開示されているとおりであるが、その例を示すなら、国際公開公報2015/060357号パンフレットの53頁[0105]〜55頁[0116]に開示されている成分などが挙げられる。   The liquid crystal aligning agent of this invention may contain additionally components other than a polymer component and an organic solvent in the range which does not impair the effect of this invention. Examples of such additional components include an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealing material, a crosslinking agent for increasing the strength of the liquid crystal alignment film, and the liquid crystal alignment. Examples thereof include dielectrics and conductive materials for adjusting the dielectric constant and electric resistance of the film. Specific examples of these additional components are as disclosed in various known literatures relating to liquid crystal aligning agents. For example, page 53 [0105] to page 55 of International Publication No. 2015/060357. Ingredients disclosed in [0116].

本発明の液晶配向剤から液晶配向膜を得る方法の一例を挙げるなら、塗布液形態の液晶配向剤を基板に塗布し、乾燥し、焼成して得られた膜に対してラビング処理法又は光配向処理法で配向処理を施す方法が挙げられる。
液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
If an example of the method of obtaining a liquid crystal aligning film from the liquid crystal aligning agent of this invention is given, the liquid-crystal aligning agent of a coating liquid form will be apply | coated to a board | substrate, it will dry, and it will rub with respect to the film | membrane obtained by baking. The method of performing an alignment process by the alignment process method is mentioned.
The substrate to which the liquid crystal alignment agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque object such as a silicon wafer can be used as long as only one substrate is used, and a material that reflects light such as aluminum can be used for the electrode in this case.

液晶配向剤の塗布方法は、特に限定されないが、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などが一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。
液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50〜120℃で1〜10分焼成し、その後、150〜300℃で、5〜120分焼成する手段が挙げられる。
The method for applying the liquid crystal aligning agent is not particularly limited, but screen printing, offset printing, flexographic printing, inkjet method, and the like are common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
After the liquid crystal aligning agent is applied on the substrate, the solvent is evaporated and baked by a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent. Usually, in order to sufficiently remove the contained solvent, there is a means of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes.

焼成後の液晶配向膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5〜300nmであることが好ましく、10〜200nmがより好ましい。
本発明の液晶配向膜は、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。
本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。
Although the thickness of the liquid crystal aligning film after baking is not specifically limited, Since the reliability of a liquid crystal display element may fall when too thin, it is preferable that it is 5-300 nm, and 10-200 nm is more preferable.
The liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a horizontal electric field type liquid crystal display element such as an IPS mode or an FFS mode, and is particularly useful as a liquid crystal alignment film of an FFS mode liquid crystal display element.
The liquid crystal display device of the present invention is a device in which a liquid crystal cell is prepared by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent, and the liquid crystal cell is used as an element.

液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル−ゲル法によって形成されたSiO−TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成する。
As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
Specifically, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method. Next, a liquid crystal alignment film is formed on each substrate under the above conditions.

次いで、液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外線硬化性のシール材を配置し、さらに液晶配向膜面上の所定の数カ所に液晶を配置した後、液晶配向膜が対向するように他方の基板を貼り合わせて圧着することにより液晶を液晶配向膜前面に押し広げた後、基板の全面に紫外線を照射してシール材を硬化することで液晶セルを得る。   Next, for example, an ultraviolet curable sealing material is disposed at a predetermined position on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystals are disposed at predetermined positions on the liquid crystal alignment film surface. After that, the other substrate is bonded and pressure-bonded so that the liquid crystal alignment film faces, and the liquid crystal is spread on the front surface of the liquid crystal alignment film, and then the entire surface of the substrate is irradiated with ultraviolet rays to cure the sealing material. Get a cell.

また、基板の上に液晶配向膜を形成した後の工程として、一方の基板上の所定の場所にシール材を配置する際に、外部から液晶を充填可能な開口部を設けておき、液晶を配置しないで基板を貼り合わせた後、シール材に設けた開口部を通じて液晶セル内に液晶材料を注入し、次いで、この開口部を接着剤で封止して液晶セルを得る。液晶材料の注入には、真空注入法でもよいし、大気中で毛細管現象を利用した方法でもよい。
上記のいずれの方法においても、液晶セル内に液晶材料が充填される空間を確保する為に、一方の基板上に柱状の突起を設けるか、一方の基板上にスペーサーを散布するか、シール材にスペーサーを混入するか、又はこれらを組み合わせるなどの手段を取ることが好ましい。
In addition, as a step after forming the liquid crystal alignment film on the substrate, an opening that can be filled with liquid crystal from the outside is provided when a sealing material is disposed at a predetermined location on one substrate. After the substrates are bonded without being arranged, a liquid crystal material is injected into the liquid crystal cell through an opening provided in the sealing material, and then the opening is sealed with an adhesive to obtain a liquid crystal cell. The liquid crystal material may be injected by a vacuum injection method or a method utilizing capillary action in the atmosphere.
In any of the above methods, in order to secure a space filled with a liquid crystal material in the liquid crystal cell, columnar protrusions are provided on one substrate, spacers are scattered on one substrate, or a sealing material It is preferable to take a means such as mixing a spacer with these or combining them.

上記の液晶材料としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。
なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り上記の記載に限定されるものではなく、その他の公知の手法で作製されたものであってもよい。液晶配向剤から液晶表示素子を得るまでの工程は、例えば日本特開2015−135393の17頁[0074]〜19頁[0081]に開示されている。
Examples of the liquid crystal material include a nematic liquid crystal and a smectic liquid crystal. Among them, a nematic liquid crystal is preferable, and either a positive liquid crystal material or a negative liquid crystal material may be used. Next, a polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
The liquid crystal alignment film and the liquid crystal display element of the present invention are not limited to the above description as long as the liquid crystal aligning agent of the present invention is used, and may be manufactured by other known methods. Good. The process from obtaining a liquid crystal display element from a liquid crystal aligning agent is disclosed, for example, in Japanese Patent Application Laid-Open No. 2015-135393, page 17 [0074] to page 19 [0081].

<本発明のジアミン>
以下に、前述した下記式(4)で表されるジアミンを得る方法について説明する。

Figure 2017065226
<Diamine of the present invention>
Hereinafter, a method for obtaining the diamine represented by the following formula (4) will be described.
Figure 2017065226

式(4)において、R及びArは上記式(1)の定義と同じである。Rは単結合、又は置換基を有してもよいフェニル基を表す。Rはフェニル基が特に好ましい。
式(4)で表されるジアミンの好ましい具体例としては、下記式(4−1)〜(4−7)のジアミンを挙げることができる。式中、Bocは、tert−ブトキシカルボニル基を表し、Meはメチル基を表す。
In the formula (4), R 1 and Ar are the same as defined in the above formula (1). R 3 represents a single bond or a phenyl group which may have a substituent. R 3 is particularly preferably a phenyl group.
Preferable specific examples of the diamine represented by the formula (4) include diamines represented by the following formulas (4-1) to (4-7). In the formula, Boc represents a tert-butoxycarbonyl group, and Me represents a methyl group.

Figure 2017065226
Figure 2017065226

上記式(4)で表されるジアミンを製造する方法は特に限定されないが、好ましい方法としては、以下の製法が挙げられる。
チアゾール骨格を有するアミン化合物(a1)と、ニトロ化合物(a2)を反応させることにより以下のジニトロ体(a3)を製造する。その後ニトロ基を還元することで目的のジアミン(a4)を得ることができる。
Although the method to manufacture diamine represented by the said Formula (4) is not specifically limited, As the preferable method, the following manufacturing methods are mentioned.
The following dinitro compound (a3) is produced by reacting an amine compound (a1) having a thiazole skeleton with a nitro compound (a2). Thereafter, the target diamine (a4) can be obtained by reducing the nitro group.

Figure 2017065226
Figure 2017065226

Figure 2017065226
Figure 2017065226

上記反応式[1]、[2]中、R’、R”は1価の有機基であり、Xはハロゲン原子を示し、F、Cl、Br又はI原子を意味する。
上記は式(4)におけるRが水素原子である場合の例であるが、Rが水素原子以外の場合はジニトロ体(a3)に、Rに対応する1価の有機基を導入すればよい。1価の有機基を導入するにあたっては、アミン類と反応が可能な化合物であればよく、例えば、酸ハライド、酸無水物、イソシアネート類、エポキシ類、オキセタン類、ハロゲン化アリール類、ハロゲン化アルキル類が挙げられる。また、アルコールの水酸基をOMs、OTf、OTs等の脱離基に置換したアルコール類などが使用できる。
In the reaction formulas [1] and [2], R ′ and R ″ are monovalent organic groups, X represents a halogen atom, and represents an F, Cl, Br, or I atom.
The above is an example when R 1 in formula (4) is a hydrogen atom. When R 1 is other than a hydrogen atom, a monovalent organic group corresponding to R 1 is introduced into the dinitro compound (a3). That's fine. In order to introduce a monovalent organic group, any compound capable of reacting with amines may be used. For example, acid halides, acid anhydrides, isocyanates, epoxies, oxetanes, halogenated aryls, halogenated alkyls. Kind. In addition, alcohols in which a hydroxyl group of alcohol is substituted with a leaving group such as OMs, OTf, OTs, or the like can be used.

チアゾール骨格を有するアミン化合物(a1)の合成法は特に限定されないが、一般的な合成法として、下記に示すように、ニトロ基を有するα-ハロケトン(a5)とチオ尿素との反応により合成することができる。

Figure 2017065226
The method for synthesizing the amine compound (a1) having a thiazole skeleton is not particularly limited. As a general synthesis method, as shown below, the amine compound (a1) is synthesized by reacting an α-haloketone (a5) having a nitro group with thiourea. be able to.
Figure 2017065226

使用する塩基は、例えば、炭酸水素ナトリウム、炭酸水素カリウム、燐酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウムなどの無機塩基、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリイソプロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、ピリジン、キノリン、コリジンなどのアミン類、水素化ナトリウム、水素化カリウムなどの塩基を使用できる。   Examples of the base used include inorganic bases such as sodium hydrogen carbonate, potassium hydrogen carbonate, potassium phosphate, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, trimethylamine, triethylamine, tripropylamine, triisopropylamine, tributylamine, diisopropyl Amines such as ethylamine, pyridine, quinoline and collidine, and bases such as sodium hydride and potassium hydride can be used.

溶媒に関しても、原料と反応しない溶媒であれば使用することができ、非プロトン性極性有機溶媒(N,N−ジメチルホルムアミド 、ジメチルスルホキシド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン など)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、メチルtertブチルエーテル 、シクロペンチルメチルエーテル、テトラヒドロフラン、ジオキサンなど)、脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど)、芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど)、ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど)、低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)が使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、この場合、上記溶媒は1種単独で又は2種以上混合して用いることができる。また場合によっては、適当な脱水剤や乾燥剤を用いて非水溶媒として用いることもできる。反応温度は−100℃から使用する溶媒の沸点までの範囲で任意の温度を選択することができるが、好ましくは−50〜150℃の範囲である。反応時間は0.1〜1000時間の範囲で任意に選択することができる。生成物は、再結晶、蒸留、シリカゲルカラムクロマトグラフィーなどで精製してもよい。   As for the solvent, any solvent that does not react with the raw material can be used, and aprotic polar organic solvents (N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc. ), Ethers (diethyl ether, diisopropyl ether, methyl tertbutyl ether, cyclopentyl methyl ether, tetrahydrofuran, dioxane, etc.), aliphatic hydrocarbons (pentane, hexane, heptane, petroleum ether, etc.), aromatic hydrocarbons (benzene) , Toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.), halogenated hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.), lower fatty acid esters (methyl acetate) , Ethyl acetate, butyl acetate, methyl propionate, etc.) and nitriles (acetonitrile, propionitrile, butyronitrile, etc.) can be used. These solvents can be appropriately selected in consideration of the ease of reaction and the like. In this case, the above solvents can be used alone or in combination of two or more. In some cases, an appropriate dehydrating agent or desiccant can be used as a non-aqueous solvent. Although reaction temperature can select arbitrary temperature in the range from -100 degreeC to the boiling point of the solvent to be used, Preferably it is the range of -50-150 degreeC. The reaction time can be arbitrarily selected within the range of 0.1 to 1000 hours. The product may be purified by recrystallization, distillation, silica gel column chromatography or the like.

上記反応式[1]に関して、XがF又はClであって、かつ、NO基がXに対して2位、又は4位にあれば、塩基の存在下、ハロゲン化アリールと脂肪族アミン化合物とを反応させ、ジニトロ体(a3)を得ることができる。使用する塩基は、前述の塩基を使用することができる。反応溶媒、反応温度は前記の記載に準ずる。生成物は、再結晶、蒸留、シリカゲルカラムクロマトグラフィーなどで精製してもよい。With respect to the above reaction formula [1], if X is F or Cl and the NO 2 group is at the 2-position or 4-position with respect to X, the aryl halide and aliphatic amine compound in the presence of a base Can be reacted to obtain the dinitro compound (a3). As the base to be used, the above-mentioned bases can be used. The reaction solvent and reaction temperature are as described above. The product may be purified by recrystallization, distillation, silica gel column chromatography or the like.

また、Xが、Br又はIであれば、NO基がXに対して2位でも3位でも4位でもよく、適当な金属触媒、配位子、塩基存在下でC−Nクロスカップリング反応を用いることでもジニトロ体を得ることができる。金属触媒の例としては、酢酸パラジウム、塩化パラジウム、塩化パラジウム-アセトニトリル錯体、パラジウム−活性炭、ビス(ジベンジリデンアセトン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(アセトニトリル)ジクロロパラジウム、ビス(ベンゾニトリル)ジクロロパラジウム、CuCl、CuBr、CuI、CuCN等が挙げられる。配位子の例としては、トリフェニルホスフィン、トリ−o−トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、1,2−ビス(ジフェニルホスフィノ)エタン、1,3−ビス(ジフェニルホスフィノ)プロパン、1,4−ビス(ジフェニルホスフィノ)ブタン、1,1’−ビス(ジフェニルホスフィノ)フェロセン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、トリ−tert−ブチルホスフィン等が挙げられる。塩基の例としては前述の塩基を用いることができる。反応溶媒、反応温度は、前記の記載に準ずる。生成物は、再結晶、蒸留、シリカゲルカラムクロマトグラフィーなどで精製してもよい。If X is Br or I, the NO 2 group may be 2-position, 3-position or 4-position relative to X, and C—N cross-coupling in the presence of a suitable metal catalyst, ligand and base A dinitro compound can also be obtained by using a reaction. Examples of metal catalysts include palladium acetate, palladium chloride, palladium chloride-acetonitrile complex, palladium-activated carbon, bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium, bis (acetonitrile) dichloropalladium, bis (benzo Nitrile) dichloropalladium, CuCl, CuBr, CuI, CuCN and the like. Examples of ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane 1,4-bis (diphenylphosphino) butane, 1,1′-bis (diphenylphosphino) ferrocene, trimethyl phosphite, triethyl phosphite, triphenyl phosphite, tri-tert-butylphosphine and the like. As examples of the base, the aforementioned bases can be used. The reaction solvent and reaction temperature are the same as described above. The product may be purified by recrystallization, distillation, silica gel column chromatography or the like.

上記反応[2]にかける還元反応は、触媒の存在下における水素添加反応、プロトンの共存下に行う還元反応、蟻酸を水素源とする還元、ヒドラジンを水素源とする還元反応などがあり、これらの還元反応を組み合わせでもよい。ジニトロ化合物の構造と還元反応の反応性を考慮し、水素添加反応が好ましい。
還元反応に用いられる触媒は、市販品として入手できる活性炭担持金属が好ましく、例えば、パラジウム−活性炭、白金−活性炭、ロジウム−活性炭などが挙げられる。また、水酸化パラジウム、酸化白金、ラネーニッケルなど必ずしも活性炭担持型の金属触媒でなくてもよい。一般的に広く使用されているパラジウム−活性炭が、良好な結果が得られるので好ましい。
The reduction reaction applied to the above reaction [2] includes a hydrogenation reaction in the presence of a catalyst, a reduction reaction performed in the presence of protons, a reduction reaction using formic acid as a hydrogen source, a reduction reaction using hydrazine as a hydrogen source, and the like. These reduction reactions may be combined. In view of the structure of the dinitro compound and the reactivity of the reduction reaction, a hydrogenation reaction is preferred.
The catalyst used for the reduction reaction is preferably an activated carbon-supported metal available as a commercial product, and examples thereof include palladium-activated carbon, platinum-activated carbon, and rhodium-activated carbon. Further, the catalyst may not necessarily be an activated carbon-supported metal catalyst such as palladium hydroxide, platinum oxide, or Raney nickel. Palladium-activated carbon that is generally widely used is preferred because good results are obtained.

還元反応をより効果的に進行させるため、活性炭の共存下で反応を実施することもある。この時、使用する活性炭の量は特に限定されないが、ジニトロ化合物(a3,X1)に対して1〜30質量%の範囲が好ましく、10〜20質量%がより好ましい。同様な理由により、加圧下で反応を実施する場合もある。この場合、ベンゼン核の還元を避けるため、20気圧までの加圧範囲で行う。好ましくは10気圧までの範囲で反応を実施する。   In order to make the reduction reaction proceed more effectively, the reaction may be carried out in the presence of activated carbon. At this time, the amount of the activated carbon to be used is not particularly limited, but is preferably in the range of 1 to 30% by mass, more preferably 10 to 20% by mass with respect to the dinitro compound (a3, X1). For the same reason, the reaction may be carried out under pressure. In this case, in order to avoid reduction of benzene nuclei, it is carried out in a pressure range up to 20 atm. The reaction is preferably carried out in the range up to 10 atm.

溶媒は、各原料と反応しない溶媒であれば、制限なく使用することができる。例えば、非プロトン性極性有機溶媒(N,N−ジメチルホルムアミド 、ジメチルスルホキシド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン など);エーテル類(ジエチルエーテル、ジイソプロピルエーテル、メチルtertブチルエーテル 、シクロペンチルメチルエーテル、テトラヒドロフラン、ジオキサンなど);脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等);などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、1種単独で又は2種以上混合して用いることができる。必要に応じて、適当な脱水剤や乾燥剤を用いて溶媒を乾燥し、非水溶媒として用いることもできる。   If a solvent does not react with each raw material, it can be used without a restriction | limiting. For example, aprotic polar organic solvents (N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc.); ethers (diethyl ether, diisopropyl ether, methyl tertbutyl ether, cyclopentyl) Methyl ether, tetrahydrofuran, dioxane, etc.); Aliphatic hydrocarbons (pentane, hexane, heptane, petroleum ether, etc.); Aromatic hydrocarbons (benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin, etc.) ); Halogenated hydrocarbons (chloroform, dichloromethane, carbon tetrachloride, dichloroethane, etc.); lower fatty acid esters (methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.); Rils (acetonitrile, propionitrile, butyronitrile, etc.); These solvents can be appropriately selected in consideration of the ease of reaction and the like, and can be used singly or in combination of two or more. If necessary, the solvent can be dried using a suitable dehydrating agent or desiccant and used as a non-aqueous solvent.

溶媒の使用量(反応濃度)は特に限定されないが、ジニトロ化合物に対し、0.1〜100質量倍である。好ましくは0.5〜30質量倍であり、さらに好ましくは1〜10質量倍である。
反応温度は特に限定されないが、−100℃から使用する溶媒の沸点までの範囲、好ましくは、−50〜150℃である。反応時間は、通常0.05〜350時間、好ましくは0.5〜100時間である。
Although the usage-amount (reaction concentration) of a solvent is not specifically limited, It is 0.1-100 mass times with respect to a dinitro compound. Preferably it is 0.5-30 mass times, More preferably, it is 1-10 mass times.
Although reaction temperature is not specifically limited, It is the range from -100 degreeC to the boiling point of the solvent to be used, Preferably, it is -50-150 degreeC. The reaction time is usually 0.05 to 350 hours, preferably 0.5 to 100 hours.

以下に実施例等を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下における化合物の略号及び特性評価の方法は、以下のとおりである。   EXAMPLES The present invention will be specifically described below with reference to examples and the like, but the present invention is not limited to these examples. In addition, the abbreviations of the compounds and the methods for property evaluation are as follows.

Figure 2017065226
Figure 2017065226
Figure 2017065226
Figure 2017065226

<有機溶媒>
NMP:N−メチル−2−ピロリドン、 GBL:γ―ブチロラクトン
BCS:ブチルセロソルブ、 Pd/C:パラジウムカーボン
DMSO:ジメチルスルオキシド、 THF:テトラヒドロフラン
<添加剤>
LS−4668:3−グリシドキシプロピルトリエトキシシラン
<Organic solvent>
NMP: N-methyl-2-pyrrolidone, GBL: γ-butyrolactone BCS: butyl cellosolve, Pd / C: palladium carbon DMSO: dimethyl sulfoxide, THF: tetrahydrofuran <additive>
LS-4668: 3-glycidoxypropyltriethoxysilane

(1H−NMRの測定)
装置:Varian NMR system 400NB(400MHz)(Varian社製)、及びJMTC−500/54/SS(500MHz)(JEOL社製)
測定溶媒:CDCl3(重水素化クロロホルム),DMSO−d6(重水素化ジメチルスルホキシド)
基準物質:TMS(テトラメチルシラン)(δ:0.0ppm,1H)及びCDCl3(δ:77.0ppm,13C)
(Measurement of 1H-NMR)
Apparatus: Varian NMR system 400NB (400 MHz) (manufactured by Varian), and JMTC-500 / 54 / SS (500 MHz) (manufactured by JEOL)
Measurement solvent: CDCl3 (deuterated chloroform), DMSO-d6 (deuterated dimethyl sulfoxide)
Reference materials: TMS (tetramethylsilane) (δ: 0.0 ppm, 1H) and CDCl 3 (δ: 77.0 ppm, 13C)

<ジアミン化合物(DA-1)の合成>

Figure 2017065226
<Synthesis of diamine compound (DA-1)>
Figure 2017065226

2L(リットル)の四つ口フラスコに2−ブロモー4−ニトロフェニルアセトフェノン(100g,410mmol)、チオ尿素(31.2g, 410mmol)、及びNMP(600g)を仕込み、羽攪拌下に60℃にまで昇温し、トリエチルアミン(83.0g,820mmol)を10分掛けて滴下し,1時間攪拌した。HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、メタノール(1500g)加え、5℃に冷却後1時間攪拌した。析出した結晶を減圧濾過し、2−プロパノール(200g)で洗浄した後、乾燥し、粉末結晶(1)を得た(収量87g,収率96%)。
1H-NMR(CDCl3,δppm);8.25-8.20(2H, m), 8.10-8.03(2H, m),7.42(1H, s), 7.25(1H, s)
A 2-L (liter) four-necked flask was charged with 2-bromo-4-nitrophenylacetophenone (100 g, 410 mmol), thiourea (31.2 g, 410 mmol), and NMP (600 g), and the mixture was heated to 60 ° C. with stirring with a feather. The temperature was raised, and triethylamine (83.0 g, 820 mmol) was added dropwise over 10 minutes, followed by stirring for 1 hour. After confirming the completion of the reaction by HPLC (high performance liquid chromatography), methanol (1500 g) was added, and the mixture was cooled to 5 ° C. and stirred for 1 hour. The precipitated crystals were filtered under reduced pressure, washed with 2-propanol (200 g), and dried to obtain powder crystals (1) (yield 87 g, yield 96%).
1H-NMR (CDCl3, δppm); 8.25-8.20 (2H, m), 8.10-8.03 (2H, m), 7.42 (1H, s), 7.25 (1H, s)

Figure 2017065226
Figure 2017065226

1Lの四つ口フラスコに化合物(1)(50g,226mmol)、4−フルオロニトロベンゼン(38.3g, 271mmol)、炭酸セシウム(73.6g, 226mmol)、DMSO(500g)、水(10g)を仕込み、羽攪拌下に60℃にまで昇温し、12時間攪拌した。その後更に炭酸セシウム(73.6g, 226mmol)を加え、12時間撹拌した。得られた反応液を濾過することにより、塩を除去し、メタノール(500g)―水(500g)を滴下し、5℃に冷却後1時間攪拌した。析出した結晶を減圧濾過し、メタノール(500g)で3回リパルプ洗浄した後、乾燥し、粉末結晶(2)を得た(収量42g,収率54%)。
1H-NMR(DMSO-d6,δppm);11.2(1H, s), 8.30-8.22(6H, m), 7.98-7.94(3H, m)
Compound (1) (50 g, 226 mmol), 4-fluoronitrobenzene (38.3 g, 271 mmol), cesium carbonate (73.6 g, 226 mmol), DMSO (500 g), and water (10 g) are charged into a 1 L four-necked flask. The temperature was raised to 60 ° C. with wing stirring, and the mixture was stirred for 12 hours. Thereafter, cesium carbonate (73.6 g, 226 mmol) was further added, and the mixture was stirred for 12 hours. The resulting reaction solution was filtered to remove the salt, methanol (500 g) -water (500 g) was added dropwise, and the mixture was cooled to 5 ° C. and stirred for 1 hour. The precipitated crystals were filtered under reduced pressure, washed with repulp 3 times with methanol (500 g), and then dried to obtain powder crystals (2) (yield 42 g, yield 54%).
1H-NMR (DMSO-d6, δ ppm); 11.2 (1H, s), 8.30-8.22 (6H, m), 7.98-7.94 (3H, m)

Figure 2017065226
Figure 2017065226

化合物(2)(20g,29.2mmol)、5質量%Pd/C(50%含水型)、及びTHF(200g)の混合物を、水素加圧条件下に60℃で12時間攪拌した。反応終了後、触媒をろ過した後、濃縮を行い、トルエン(200g)にてスラリー洗浄した。析出した結晶を減圧濾過し、トルエン(40g)で洗浄した後、乾燥し、粉末結晶DA−1を得た(収量16g,収率91%)。
1H-NMR(DMSO-d6,δppm);9.55(1H, s), 7.55-7.50(2H, m), 7.28-7.25(2H, m),6.72(1H, s),6.58-6.45(m-4H),5.20(1H, s), 4.82(2H, s)
A mixture of compound (2) (20 g, 29.2 mmol), 5 mass% Pd / C (50% hydrous type), and THF (200 g) was stirred at 60 ° C. for 12 hours under hydrogen pressure. After completion of the reaction, the catalyst was filtered, concentrated, and slurry washed with toluene (200 g). The precipitated crystals were filtered under reduced pressure, washed with toluene (40 g), and then dried to obtain powder crystals DA-1 (yield 16 g, yield 91%).
1H-NMR (DMSO-d6, δ ppm); 9.55 (1H, s), 7.55-7.50 (2H, m), 7.28-7.25 (2H, m), 6.72 (1H, s), 6.58-6.45 (m-4H ), 5.20 (1H, s), 4.82 (2H, s)

<化合物(DA-3)の合成>

Figure 2017065226
<Synthesis of Compound (DA-3)>
Figure 2017065226

合成原料である2−アミノ−6−ニトロベンゾチアゾールは、東京化成工業社の製品をそのまま使用した。2−アミノ−6−ニトロベンゾチアゾール(97.6g、0.50mol)、5質量%Pd/C(50%含水型)、及びエタノール(3000g)の混合物を、水素加圧条件下に60℃で12時間攪拌した。反応終了後、触媒をろ過した後、濃縮を行い、得られた結晶を2−プロパノール(200g)にてスラリー洗浄した。結晶を減圧濾過し、2−プロパノール(40g)で洗浄した後、乾燥し、粉末結晶DA−3を得た(収量44.8g,収率54%)。   As a raw material for synthesis, 2-amino-6-nitrobenzothiazole was directly used as a product of Tokyo Chemical Industry Co., Ltd. A mixture of 2-amino-6-nitrobenzothiazole (97.6 g, 0.50 mol), 5 wt% Pd / C (50% hydrous type), and ethanol (3000 g) was heated at 60 ° C. under hydrogen pressure conditions. Stir for 12 hours. After completion of the reaction, the catalyst was filtered and concentrated, and the resulting crystals were slurry washed with 2-propanol (200 g). The crystals were filtered under reduced pressure, washed with 2-propanol (40 g), and dried to obtain powdered crystals DA-3 (yield 44.8 g, yield 54%).

<重合体の合成>
[合成例1]
撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコにDA−1を(2.26g,8.0mmol)加えた後、NMP26.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA−2を(1.57g,8.0mmol)加え、NMPを6.5g加えた後、さらに25℃条件下にて12時間攪拌することで樹脂固形分濃度12質量%のポリアミック酸溶液(PAA−1)を得た。このポリアミック酸溶液の粘度は300mPa・sであった。
<Synthesis of polymer>
[Synthesis Example 1]
DA-1 (2.26 g, 8.0 mmol) was added to a 50 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube, and then 26.0 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, CA-2 (1.57 g, 8.0 mmol) was added, 6.5 g of NMP was added, and the mixture was further stirred for 12 hours at 25 ° C. % Polyamic acid solution (PAA-1) was obtained. The viscosity of this polyamic acid solution was 300 mPa · s.

[合成例2]
撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコにDA−1を(1.98g,7.0mmol)加えた後、NMP23.4gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA−1を(1.39g,6.4mmol)加え、NMPを5.9g加えた後、さらに50℃条件下にて12時間攪拌することで樹脂固形分濃度12質量%のポリアミック酸溶液(PAA−2)を得た。このポリアミック酸溶液の粘度は275mPa・sであった。
[Synthesis Example 2]
DA-1 (1.98 g, 7.0 mmol) was added to a 50 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, and then 23.4 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring the diamine solution, CA-1 (1.39 g, 6.4 mmol) was added, 5.9 g of NMP was added, and the mixture was further stirred for 12 hours at 50 ° C. % Polyamic acid solution (PAA-2) was obtained. The viscosity of this polyamic acid solution was 275 mPa · s.

[合成例3]
撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコにDA−1を(1.81g,6.4mmol)、DA−4を(0.39g、1.6mmol)加えた後、NMP20.4gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA−2を(0.64g,3.3mmol)加え、NMPを2.1g加えた後、25℃条件下にて1時間攪拌した。その後、CA−1を(0.87g,4.0mmol)加え、NMPを3.0g加えた後、さらに50℃条件下にて12時間攪拌することで樹脂固形分濃度15質量%のポリアミック酸溶液(PAA−3)を得た。このポリアミック酸溶液の粘度は593mPa・sであった。
[Synthesis Example 3]
After DA-1 (1.81 g, 6.4 mmol) and DA-4 (0.39 g, 1.6 mmol) were added to a 50 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 20.4 g of NMP was added. In addition, the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, CA-2 (0.64 g, 3.3 mmol) was added, 2.1 g of NMP was added, and the mixture was stirred at 25 ° C. for 1 hour. Thereafter, (0.87 g, 4.0 mmol) of CA-1 was added, 3.0 g of NMP was added, and the mixture was further stirred for 12 hours under the condition of 50 ° C., so that a polyamic acid solution having a resin solid content concentration of 15 mass% (PAA-3) was obtained. The viscosity of this polyamic acid solution was 593 mPa · s.

[合成例4]
合成例1で得られたポリアミック酸溶液(PAA−1)を8.3g分取し、攪拌しながらNMPを6.5g、BCSを5.2g、LS−4668を1重量%含むNMP溶液を0.8g加え、更に室温で2時間撹拌し液晶配配向剤(Q−1)を得た。
[Synthesis Example 4]
8.3 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, and while stirring, NMP solution containing 6.5 g of NMP, 5.2 g of BCS, and 1% by weight of LS-4668 was 0. And 8 g were further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-1).

[合成例5]
合成例2で得られたポリアミック酸溶液(PAA−2)を10.2g分取し、攪拌しながらNMPを5.8g、BCSを5.7g、LS−4668を1重量%含むNMP溶液を1.0g加え、更に室温で2時間撹拌し液晶配配向剤(Q−2)を得た。
[Synthesis Example 5]
10.2 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was collected, and 1 NMP solution containing 5.8 g of NMP, 5.7 g of BCS, and 1% by weight of LS-4668 was stirred while stirring. 0.0 g was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-2).

[合成例6]
合成例3で得られたポリアミック酸溶液(PAA−3)を7.1g分取し、攪拌しながらNMPを4.1g、BCSを4.9g、GBLを7.42g、LS−4668を1重量%含むNMP溶液を1.1g加え、更に室温で2時間撹拌し液晶配配向剤(Q−3)を得た。
[Synthesis Example 6]
7.1 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 was taken, and while stirring, 4.1 g of NMP, 4.9 g of BCS, 7.42 g of GBL, and 1 weight of LS-4668 % NMP solution was added, and the mixture was further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-3).

[比較合成例1]
撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコにDA−2を(1.39g,7.0mmol)加えた後、NMP19.4gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA−2を(1.15g,5.9mmol)加え、NMPを4.2g加えた後、さらに25℃条件下にて12時間攪拌することで樹脂固形分濃度12質量%のポリアミック酸溶液(PAA−4)を得た。このポリアミック酸溶液の粘度は280mPa・sであった。
[Comparative Synthesis Example 1]
DA-2 (1.39 g, 7.0 mmol) was added to a 50 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, and then 19.4 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring the diamine solution, CA-2 (1.15 g, 5.9 mmol) was added, 4.2 g of NMP was added, and the mixture was further stirred for 12 hours at 25 ° C. % Polyamic acid solution (PAA-4) was obtained. The viscosity of this polyamic acid solution was 280 mPa · s.

[比較合成例2]
撹拌装置付き及び窒素導入管付きの100ml四つ口フラスコにDA−4を(4.89g,20.0mmol)加えた後、NMP59.1gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA−2(1.57g,8.0mmol)、CA−1を(2.18g,10.0mmol)加え、NMPを14.8g加えた後、さらに50℃条件下にて12時間攪拌することで樹脂固形分濃度12質量%のポリアミック酸溶液(PAA−5)を得た。このポリアミック酸溶液の粘度は270mPa・sであった。
[Comparative Synthesis Example 2]
DA-4 (4.89 g, 20.0 mmol) was added to a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, and then 59.1 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, CA-2 (1.57 g, 8.0 mmol), CA-1 (2.18 g, 10.0 mmol) were added, and 14.8 g of NMP was added. The mixture was stirred for 12 hours to obtain a polyamic acid solution (PAA-5) having a resin solid content concentration of 12% by mass. The viscosity of this polyamic acid solution was 270 mPa · s.

[比較合成例3]
撹拌装置付き及び窒素導入管付きの50ml四つ口フラスコにDA−3を(1.32g,8.0mmol)加えた後、NMP24.6gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA−1を(1.69g,7.8mmol)加え、NMPを6.2g加えた後、さらに25℃条件下にて12時間攪拌することで樹脂固形分濃度10質量%のポリアミック酸溶液(PAA−6)を得た。このポリアミック酸溶液の粘度は150mPa・sであった。
[Comparative Synthesis Example 3]
DA-3 (1.32 g, 8.0 mmol) was added to a 50 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, and then 24.6 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, CA-1 (1.69 g, 7.8 mmol) was added, 6.2 g of NMP was added, and then the mixture was further stirred at 25 ° C. for 12 hours, whereby the resin solid content concentration was 10 mass. % Polyamic acid solution (PAA-6) was obtained. The viscosity of this polyamic acid solution was 150 mPa · s.

[比較合成例4]
比較合成例1で得られたポリアミック酸溶液(PAA−4)を10.8g分取し、攪拌しながらNMPを6.8g、BCSを6.2g、LS−4668を1重量%含むNMP溶液を1.1g加え、更に室温で2時間撹拌し液晶配配向剤(Q−4)を得た。
[Comparative Synthesis Example 4]
10.8 g of the polyamic acid solution (PAA-4) obtained in Comparative Synthesis Example 1 was collected, and an NMP solution containing 6.8 g of NMP, 6.2 g of BCS, and 1% by weight of LS-4668 was stirred while stirring. 1.1 g was added and further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-4).

[比較合成例5]
比較合成例2で得られたポリアミック酸溶液(PAA−5)を7.3g分取し、攪拌しながらNMPを6.8g、BCSを4.7g、LS−4668を1重量%含むNMP溶液を0.9g加え、更に室温で2時間撹拌し液晶配配向剤(Q−5)を得た。
[Comparative Synthesis Example 5]
7.3 g of the polyamic acid solution (PAA-5) obtained in Comparative Synthesis Example 2 was collected, and an NMP solution containing 6.8 g of NMP, 4.7 g of BCS, and 1% by weight of LS-4668 was stirred. 0.9 g was added and further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-5).

[比較合成例6]
比較合成例3で得られたポリアミック酸溶液(PAA−6)を10.7g分取し、攪拌しながらNMPを5.5g、BCSを5.0g、LS−4668を1重量%含むNMP溶液を1.1g加え、更に室温で2時間撹拌し液晶配配向剤(Q−6)を得た。
[Comparative Synthesis Example 6]
10.7 g of the polyamic acid solution (PAA-6) obtained in Comparative Synthesis Example 3 was collected, and while stirring, an NMP solution containing 5.5 g of NMP, 5.0 g of BCS, and 1% by weight of LS-4668 was obtained. 1.1 g was added, and further stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (Q-6).

<ポリイミド前駆体及びイミド化重合体の分子量測定>
ポリイミド前駆体及びイミド化重合体の分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC−101)(昭和電工社製)、及びカラム(KD−803,KD−805)(Shodex社製)を用いて、以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・H2O)が30mmol/L(リットル)、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000、及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000、及び1,000)(ポリマーラボラトリー社製)。
<Molecular weight measurement of polyimide precursor and imidized polymer>
The molecular weights of the polyimide precursor and the imidized polymer are the room temperature gel permeation chromatography (GPC) apparatus (GPC-101) (made by Showa Denko KK) and the columns (KD-803, KD-805) (made by Shodex). And measured as follows.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L , Tetrahydrofuran (THF) at 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000, and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; (About 12,000, 4,000, and 1,000) (manufactured by Polymer Laboratory).

<粘度測定>
ポリアミック酸溶液の粘度は、E型粘度計TVE−22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE−1(1°34’、R24)にて、25℃で測定した。
<Viscosity measurement>
The viscosity of the polyamic acid solution was measured at 25 ° C. using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample amount of 1.1 mL and cone rotor TE-1 (1 ° 34 ′, R24). did.

<ラビング耐性評価>
得られた液晶配向剤を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、230℃で20分間焼成して、膜厚100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布で1回ラビング(ロール径120mm、回転数1000rpm、移動速度20mm/sec、押し込み量0.4mm)した。この膜表面を、共焦点レーザー顕微鏡を用いて表面状態を観察し、倍率100倍で削れカスの有無と傷の有無を観察した。削れカスや傷がほとんど見られないものを「良好」と定義して評価し、多くの削れカスやラビング傷が見られるものは「不良」と定義して評価した。
<Rubbing resistance evaluation>
The obtained liquid crystal aligning agent is filtered through a 1.0 μm filter, spin-coated on a glass substrate with a transparent electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked at 230 ° C. for 20 minutes. A polyimide film having a thickness of 100 nm was obtained. This polyimide film was rubbed once with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 20 mm / sec, pushing amount 0.4 mm). The surface of the film was observed using a confocal laser microscope, and was scraped at a magnification of 100 times to observe the presence of scraps and the presence of scratches. The evaluation was defined as “good” when the scraped scraps and scratches were hardly seen, and defined as “bad” when the scraped scraps and rubbing scratches were observed.

<液晶表示素子の作製>
始めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
<Production of liquid crystal display element>
First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. On the substrate, an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by the CVD method is formed as the second layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film. On the second SiN film, a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.

第3層目の画素電極は、日本国特開2014−77845に記載の図と同様、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「くの字」に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。   The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent, as in the drawing described in Japanese Patent Application Laid-Open No. 2014-77845. . The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold “Koji”. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.

各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が−10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。   When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel. The electrode element of the electrode is formed so as to form an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.

次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と対向基板として裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサーを有するガラス基板のそれぞれにスピンコートした。次いで、80℃のホットプレート上で5分間乾燥後、230℃で20分間焼成して膜厚60nmの塗膜として、各基板上にポリイミド膜を得た。このポリイミド膜上を、所定のラビング方向で、レーヨン布によりラビング(ロール径120mm、回転数500rpm、移動速度30mm/sec、押し込み量0.3mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。   Next, after the obtained liquid crystal aligning agent is filtered through a 1.0 μm filter, an ITO film is formed on the back surface as the prepared substrate with electrodes and a counter substrate, and a columnar spacer having a height of 4 μm. Each of the glass substrates having was spin-coated. Subsequently, after drying for 5 minutes on an 80 degreeC hotplate, it baked at 230 degreeC for 20 minutes, and obtained the polyimide film on each board | substrate as a 60 nm-thick coating film. The polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. And dried at 80 ° C. for 10 minutes.

その後、上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.8μmの空セルを作製した。この空セルに液晶(MLC−3019、メルク社製)を常温で真空注入したのち、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから各評価に使用した。   Then, using the two types of substrates with the liquid crystal alignment film, the rubbing directions are combined so that they are antiparallel, the periphery is sealed leaving the liquid crystal injection port, and an empty cell with a cell gap of 3.8 μm is formed. Produced. After liquid crystal (MLC-3019, manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell at room temperature, the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell. The obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.

<残像消去時間の評価>
以下の光学系等を用いて残像の評価を行った。作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。
<Evaluation of afterimage erasing time>
The afterimage was evaluated using the following optical system and the like. The prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.

次に、この液晶セルに周波数30Hzの交流電圧を印加しながらV−Tカーブ(電圧−透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
残像評価では、相対透過率が23%となる周波数30Hzの交流電圧を印加して液晶セルを駆動させながら、同時に1Vの直流電圧を印加し、30分間駆動させた。その後、印加直流電圧値を0Vにして直流電圧の印加のみを停止し、その状態でさらに15分駆動した。
Next, a VT curve (voltage-transmittance curve) was measured while applying an AC voltage with a frequency of 30 Hz to the liquid crystal cell, and an AC voltage with a relative transmittance of 23% was calculated as a drive voltage.
In the afterimage evaluation, a DC voltage of 1 V was applied at the same time while driving the liquid crystal cell by applying an AC voltage of 30 Hz with a relative transmittance of 23%, and the liquid crystal cell was driven for 30 minutes. Thereafter, the applied DC voltage value was set to 0 V, and only the application of the DC voltage was stopped, and the device was further driven for 15 minutes in this state.

残像評価は、直流電圧の印加を開始した時点から60分間が経過するまでに、相対透過率が30%以下に低下した時間を数値化した。相対透過率が30%以下に低下するまでに60分間以上を要した場合には、残像消去不可と定義して評価した。そして、上述した方法に従う残像評価は、液晶セルの温度が23℃の状態の温度条件下で行った。   In the afterimage evaluation, the time during which the relative transmittance was reduced to 30% or less by the time 60 minutes elapsed from the start of application of the DC voltage was quantified. When it took 60 minutes or more before the relative transmittance decreased to 30% or less, it was defined as an afterimage erasure impossible. And the afterimage evaluation according to the method mentioned above was performed on the temperature conditions of the state whose temperature of a liquid crystal cell is 23 degreeC.

<液晶配向の安定性評価>
この液晶セルを用い、60℃の恒温環境下、周波数30Hzで10VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま室温に一日放置した。
放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。この液晶セルの角度Δの値が低いほど良好、高いほど不良として評価した。
<Stability evaluation of liquid crystal alignment>
Using this liquid crystal cell, an AC voltage of 10 VPP was applied at a frequency of 30 Hz in a constant temperature environment of 60 ° C. for 168 hours. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle Δ. Similarly, for the second pixel, the second area was compared with the first area, and a similar angle Δ was calculated. Then, the average value of the angle Δ values of the first pixel and the second pixel was calculated as the angle Δ of the liquid crystal cell. The lower the value of the angle Δ of the liquid crystal cell, the better, and the higher the value, the poorer the evaluation.

<実施例1〜3>
合成例4〜6で得られた液晶配向剤を(Q−1〜Q−3)を用いて、ラビング耐性評価、残像消去時間の評価、液晶配向の安定性評価を行った。結果を表1に示す。
<Examples 1-3>
Using the liquid crystal aligning agents obtained in Synthesis Examples 4 to 6, (Q-1 to Q-3) were subjected to rubbing resistance evaluation, evaluation of afterimage erasing time, and stability evaluation of liquid crystal alignment. The results are shown in Table 1.

<比較例1〜3>
比較合成例4〜6で得られた液晶配向剤(Q−4〜Q−6)を用いて、ラビング耐性、残像消去時間、及び液晶配向の安定性の各評価を行った。結果を表1に示す。
<Comparative Examples 1-3>
Using the liquid crystal aligning agents (Q-4 to Q-6) obtained in Comparative Synthesis Examples 4 to 6, each evaluation of rubbing resistance, afterimage erasing time, and stability of liquid crystal alignment was performed. The results are shown in Table 1.

Figure 2017065226
Figure 2017065226

以上の結果より、本発明の液晶配向剤によって、ラビング耐性に優れ、蓄積電荷の緩和が早く、かつ液晶配向の安定性が高いなどの特性を同時に実現することが可能な液晶配向膜が得られることが判る。   From the above results, the liquid crystal aligning agent of the present invention can provide a liquid crystal aligning film that can simultaneously realize characteristics such as excellent rubbing resistance, fast relaxation of accumulated charges, and high stability of liquid crystal alignment. I understand that.

本発明の液晶配向剤は、スマートフォン、携帯電話、パソコン、テレビ等の表示部に使用される液晶表示素子、特に、横電界方式の液晶表示素子における液晶配向膜の形成に広く使用される。
なお、2015年10月14日に出願された日本特許出願2015−203278号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal aligning agent of this invention is widely used for formation of the liquid crystal aligning film in the liquid crystal display element used for display parts, such as a smart phone, a mobile telephone, a personal computer, and a television, especially a horizontal electric field type liquid crystal display element.
It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2015-203278 filed on October 14, 2015 are cited herein as disclosure of the specification of the present invention. Incorporate.

Claims (10)

下記式(1)で表される構造を主鎖に有する重合体を含有することを特徴とする液晶配向剤。
Figure 2017065226
(Rは水素、又は一価の有機基である。Arは、置換基を有してもよいフェニル基若しくはナフタレン基である。*は他の基に結合する部位を示す。)
The liquid crystal aligning agent characterized by including the polymer which has a structure represented by following formula (1) in a principal chain.
Figure 2017065226
(R 1 is hydrogen or a monovalent organic group. Ar is a phenyl group or a naphthalene group which may have a substituent. * Indicates a site bonded to another group.)
式(1)で表される構造を主鎖に有する重合体が、ポリイミド前駆体、及びそれをイミド化して得られるポリイミドからなる群から選ばれる少なくとも1種の重合体である請求項1に記載の液晶配向剤。   The polymer having a structure represented by the formula (1) in the main chain is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide obtained by imidizing the polyimide precursor. Liquid crystal aligning agent. 前記重合体が、下記式(2)で表される構造単位を含むポリイミド前駆体、及びそれをイミド化して得られるポリイミドのうちの少なくとも1種の重合体である請求項1又は2に記載の液晶配向剤。
Figure 2017065226
(式(2)中、Xは4価の有機基である。Yは式(1)の構造を主鎖方向に含む2価の有機基である。Rは水素原子又は炭素数1〜5のアルキル基である。)
3. The polymer according to claim 1, wherein the polymer is a polyimide precursor containing a structural unit represented by the following formula (2), and at least one polymer obtained by imidizing the polyimide precursor. Liquid crystal aligning agent.
Figure 2017065226
(In Formula (2), X 1 is a tetravalent organic group. Y 1 is a divalent organic group containing the structure of Formula (1) in the main chain direction. R 2 is a hydrogen atom or a carbon number of 1). ˜5 alkyl groups.)
式(2)において、Yが下記式(3)で表される構造を有する請求項3に記載の液晶配向剤。
Figure 2017065226
(Rは水素、又は一価の有機基である。Arは、置換基を有してもよいフェニル若しくはナフタレンである。Rは単結合、又は置換基を有してもよいフェニル基を表す。*は―NH−に結合する部位を示す。)
In the formula (2), a liquid crystal aligning agent of claim 3 having the structure Y 1 is represented by the following formula (3).
Figure 2017065226
(R 1 is hydrogen or a monovalent organic group. Ar is phenyl or naphthalene which may have a substituent. R 3 is a single bond or a phenyl group which may have a substituent. * Represents a site bonded to —NH—.)
式(3)が、下記に式(3−1)〜式(3−7)のいずれかである請求項4に記載の液晶配向剤。
Figure 2017065226
The liquid crystal aligning agent according to claim 4, wherein the formula (3) is any one of the following formulas (3-1) to (3-7).
Figure 2017065226
前記式(2)で表される構造単位を含むポリイミド前駆体が、下記式(5)で表される構造単位を含む請求項3〜5に液晶配向剤。
Figure 2017065226
(式(5)中、Xはテトラカルボン酸誘導体に由来する4価の有機基である。Yは、式(1)におけるY1の構造を主鎖方向に含まないジアミンに由来する2価の有機基である。R、Rは、それぞれ独立して、水素原子又は炭素数1〜4のアルキル基である。)
The liquid crystal aligning agent in Claims 3-5 in which the polyimide precursor containing the structural unit represented by said Formula (2) contains the structural unit represented by following formula (5).
Figure 2017065226
(In Formula (5), X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative. Y 2 is a divalent derived from a diamine that does not include the structure of Y 1 in Formula (1) in the main chain direction). R 2 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
請求項1〜6のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。   The liquid crystal aligning film obtained from the liquid crystal aligning agent of any one of Claims 1-6. 請求項7の液晶配向膜を具備する液晶表示素子。   A liquid crystal display device comprising the liquid crystal alignment film of claim 7. 液晶表示素子が横電界駆動方式である請求項8に記載の液晶表示素子。   The liquid crystal display element according to claim 8, wherein the liquid crystal display element is of a horizontal electric field drive system. 下記式(4)で表されるジアミン。
Figure 2017065226
(Rは水素、又は一価の有機基である。Arは、置換基を有してもよいフェニル若しくはナフタレンである。Rは単結合、又は置換基を有してもよいフェニル基を表す。)
Diamine represented by following formula (4).
Figure 2017065226
(R 1 is hydrogen or a monovalent organic group. Ar is phenyl or naphthalene which may have a substituent. R 3 is a single bond or a phenyl group which may have a substituent. Represents.)
JP2017545464A 2015-10-14 2016-10-13 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Active JP6881309B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015203278 2015-10-14
JP2015203278 2015-10-14
PCT/JP2016/080407 WO2017065226A1 (en) 2015-10-14 2016-10-13 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020196944A Division JP2021038260A (en) 2015-10-14 2020-11-27 Novel diamine

Publications (2)

Publication Number Publication Date
JPWO2017065226A1 true JPWO2017065226A1 (en) 2018-08-02
JP6881309B2 JP6881309B2 (en) 2021-06-02

Family

ID=58518321

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017545464A Active JP6881309B2 (en) 2015-10-14 2016-10-13 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2020196944A Pending JP2021038260A (en) 2015-10-14 2020-11-27 Novel diamine

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020196944A Pending JP2021038260A (en) 2015-10-14 2020-11-27 Novel diamine

Country Status (5)

Country Link
JP (2) JP6881309B2 (en)
KR (1) KR20180069025A (en)
CN (1) CN108474981B (en)
TW (1) TWI729013B (en)
WO (1) WO2017065226A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161671B1 (en) 2017-09-29 2020-10-05 주식회사 엘지화학 Copolymer for liquid crystal aligning agent, liquid crystal aligning agent comprising the same, liquid crystal aligning film, and liquid crystal display device using the same
KR102195312B1 (en) * 2017-10-20 2020-12-24 주식회사 엘지화학 Liquid crystal alignment composition, process for preparing liquid crystal alignment film, and liquid crystal alignment film using the same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104270A (en) * 1979-02-05 1980-08-09 Hoffmann La Roche Novel pyrimidine derivative
DE3650278T2 (en) * 1985-05-30 1995-09-28 Matsushita Electric Ind Co Ltd Process for the production of graphite foils.
JPS61275116A (en) * 1985-05-30 1986-12-05 Res Dev Corp Of Japan Production of graphite film and fiber
JPH03220183A (en) * 1990-01-23 1991-09-27 Canon Inc Liquid crystal compound, liquid crystal composition containing the same and liquid crystal element produced by using the same
DE10001644A1 (en) * 1999-01-19 2000-07-20 Clariant Gmbh New fluorinated azole compounds, used in liquid crystal mixtures or as pharmaceuticals or agrochemicals or their intermediates
AU2001294240A1 (en) * 2000-10-12 2002-04-22 Ssp Co., Ltd. 2,2-diphenylbutanamide derivatives and medicines containing the same
WO2004021076A1 (en) 2002-08-29 2004-03-11 Nissan Chemical Industries, Ltd. Material for liquid crystal alignment and liquid crystal displays made by using the same
KR101257929B1 (en) * 2006-09-20 2013-04-24 엘지디스플레이 주식회사 Liquid Crystal Display Panel And Method for Fabricating Thereof
JP5041157B2 (en) * 2007-01-10 2012-10-03 Jsr株式会社 Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display element
JP2009258578A (en) * 2008-03-18 2009-11-05 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment film, forming method thereof, liquid crystal display element, and optical member
JP5585755B2 (en) 2008-06-17 2014-09-10 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5304174B2 (en) * 2008-10-29 2013-10-02 Jnc株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5716883B2 (en) * 2009-06-09 2015-05-13 Jsr株式会社 Manufacturing method of liquid crystal display element
WO2011074546A1 (en) * 2009-12-14 2011-06-23 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
JP5655507B2 (en) * 2010-11-01 2015-01-21 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6003882B2 (en) * 2011-03-07 2016-10-05 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20230048163A (en) 2011-10-27 2023-04-10 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
US20130317218A1 (en) * 2012-05-24 2013-11-28 Masaaki Sawa Novel bicyclic thiazole compounds
KR102255769B1 (en) * 2013-09-26 2021-05-27 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent and liquid crystal display element using same
JP6557963B2 (en) * 2014-02-25 2019-08-14 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN106462010B (en) * 2014-03-17 2019-05-28 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
CN107625766B (en) * 2016-07-19 2021-08-31 上海医药工业研究院 Application of thiazole compound as antibacterial synergist

Also Published As

Publication number Publication date
KR20180069025A (en) 2018-06-22
TWI729013B (en) 2021-06-01
TW201727341A (en) 2017-08-01
JP6881309B2 (en) 2021-06-02
CN108474981A (en) 2018-08-31
CN108474981B (en) 2021-04-16
WO2017065226A1 (en) 2017-04-20
JP2021038260A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6558245B2 (en) LIQUID CRYSTAL ORIENTING LIQUID CRYSTAL Alignment Agent, LIQUID CRYSTAL ALIGNMENT FILM, AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
TWI750165B (en) Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method thereof, liquid crystal element, polymer and compound
TWI691547B (en) Composition containing polyamide-based polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI658065B (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7173194B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
WO2013157586A1 (en) Liquid-crystal alignment material for use in photo-alignment method, liquid-crystal alignment film, and liquid-crystal display element
WO2015122413A1 (en) Novel liquid crystal orientation agent, diamine, and polyimide precursor
JP7243782B2 (en) Liquid crystal aligning agent containing polymer obtained from novel diamine
CN109971494B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7176601B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
JP7031606B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
WO2016043230A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2021038260A (en) Novel diamine
JP7488516B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018124140A1 (en) Novel polymer and diamine compound, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW202104362A (en) Coating solution for forming functional polymer film, and functional polymer film
JPWO2020166623A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
WO2019198671A1 (en) Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element including same
JP7428138B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TWI656174B (en) Liquid crystal alignment agent, method for producing liquid crystal alignment film, liquid crystal display element, polymer and compound
WO2018066607A1 (en) Diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2019142927A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using it
JP2024009757A (en) Liquid crystal alignment agent, manufacturing method therefor, liquid crystal alignment film, and liquid crystal element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R151 Written notification of patent or utility model registration

Ref document number: 6881309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151