JPWO2016203821A1 - Endoscope using flexible tube and flexible tube - Google Patents

Endoscope using flexible tube and flexible tube Download PDF

Info

Publication number
JPWO2016203821A1
JPWO2016203821A1 JP2017511975A JP2017511975A JPWO2016203821A1 JP WO2016203821 A1 JPWO2016203821 A1 JP WO2016203821A1 JP 2017511975 A JP2017511975 A JP 2017511975A JP 2017511975 A JP2017511975 A JP 2017511975A JP WO2016203821 A1 JPWO2016203821 A1 JP WO2016203821A1
Authority
JP
Japan
Prior art keywords
tube
outer layer
flexible tube
layer portion
spiral tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017511975A
Other languages
Japanese (ja)
Inventor
健人 森
健人 森
岸 孝浩
孝浩 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of JPWO2016203821A1 publication Critical patent/JPWO2016203821A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Abstract

可撓管は、自然長の螺旋管を覆う筒状の形状を成し螺旋管の外径に対して大きい内径を有する外層部を有する外層部を具備し、螺旋管の外径と外層部の内径との差による隙間により、螺旋管が直線状態から最大湾曲状態までの間、螺旋管の径方向の外周面上で接触する外層部の内周面とは非接触となる箇所が残るように螺旋管の径と外層部の径が設定される。The flexible tube has a cylindrical shape that covers the natural-length spiral tube and includes an outer layer portion having an outer layer portion having an inner diameter larger than the outer diameter of the spiral tube. Due to the gap due to the difference from the inner diameter, the portion where the spiral tube is in non-contact with the inner peripheral surface of the outer layer portion that contacts on the outer peripheral surface in the radial direction of the spiral tube remains between the straight state and the maximum curved state. The diameter of the spiral tube and the diameter of the outer layer portion are set.

Description

本発明は、挿入機器に搭載されて、湾曲自在で挿入性が良好な弾発性を有する可撓管及び可撓管を用いる内視鏡に関する。   The present invention relates to a flexible tube that is mounted on an insertion device and is flexible and has good elasticity, and an endoscope using the flexible tube.

一般に、挿入機器の1つである内視鏡の挿入部は、長尺で有り、湾曲箇所が存在する体腔内等の管孔内に挿入されて用いられている。挿入部は、挿入される先端側の先端部と、先端部の基端側に連なる湾曲部と、さらに湾曲部に連なり操作部までを繋ぐ可撓管とで構成される。   In general, an insertion portion of an endoscope which is one of insertion devices is long and is used by being inserted into a lumen such as a body cavity where a curved portion exists. The insertion portion includes a distal end portion on the distal end side to be inserted, a bending portion continuing to the proximal end side of the distal end portion, and a flexible tube continuing to the bending portion and connecting to the operation portion.

可撓管は、管孔内に挿入する際に湾曲部に続いて挿入され、管孔内の湾曲状況に適するように曲げられつつ、挿入される先端部へ推進力の伝達を担っている。その可撓性を実現する構成の一部として、特許文献1:特開2013−97327号公報に開示される可撓管内部に配置された螺旋管が知られている。この螺旋管は、薄く狭幅で長尺な金属板(素線)を隙間ができないように螺旋状に密に巻く所謂、密巻き部と、螺旋状に疎に巻く疎巻き部とが交互に連なるように巻回され、可撓性を持たせつつ、初張力を付加して弾発性を持たせた構造である。   When the flexible tube is inserted into the tube hole, the flexible tube is inserted following the bending portion, and is bent so as to be suitable for the bending state in the tube hole, and is responsible for transmitting the propulsive force to the inserted distal end portion. As a part of the configuration that realizes the flexibility, there is known a spiral tube disposed inside a flexible tube disclosed in Patent Document 1: Japanese Patent Application Laid-Open No. 2013-97327. In this spiral tube, a so-called densely wound portion and a loosely wound portion that is spirally wound in a spiral manner are alternately wound so that a thin, narrow and long metal plate (elementary wire) is densely wound spirally so as not to have a gap. The structure is wound so as to be continuous, and has elasticity by adding initial tension while giving flexibility.

前述した可撓管は、螺旋管の外周面を被覆するように、網目状の網状管と弾性体の外皮部とによる外層部に覆われた形態で構成されている。通常、螺旋管と外層部は、両端で固着され、その間は、互いに密着せずに移動可能となっている。この構成で螺旋管が曲がった場合に、外層部内で螺旋管が曲がりに応じて移動する。この移動がスムーズに行われない場合には、局所的に負荷が掛かり、曲げ操作し難くなる。   The flexible tube described above is configured to be covered with an outer layer portion of a mesh-like mesh tube and an outer skin portion of an elastic body so as to cover the outer peripheral surface of the spiral tube. Usually, the spiral tube and the outer layer portion are fixed at both ends, and can move without being in close contact with each other. When the spiral tube is bent in this configuration, the spiral tube moves in accordance with the bending in the outer layer portion. If this movement is not performed smoothly, a load is applied locally, and the bending operation becomes difficult.

また、交互に連続配置される密巻き部と疎巻き部が湾曲範囲に含まれると、密巻き部に比べて曲がり易い疎巻き部が大きく曲がるため、滑らかな弧の形状にならず、角張った部分が生じる多角形の形状に歪でしまう。同時に、密巻き部にも大きな圧力が掛かるため、螺旋管の隣接する素線間において、径方向にずれて素線の内側と外側が重なる事態(所謂、ピッチずれ)が連続的に発生する。この時、操作を行っている術者は、ずれ音と共に連続的で強弱がある反発や振動が伝達され、故障とは判断しないまでも、違和感を感じる事態が想定される。   Also, when the densely wound portion and the loosely wound portion that are alternately and continuously arranged are included in the curved range, the loosely wound portion that is easy to bend as compared to the densely wound portion bends greatly, so that it does not have a smooth arc shape but is angular. It will be distorted into the polygonal shape which a part produces. At the same time, since a large pressure is also applied to the closely wound portion, a situation in which the inner side and the outer side of the strands overlap each other (so-called pitch shift) continuously occurs between adjacent strands of the spiral tube. At this time, it is assumed that the surgeon performing the operation feels a sense of incongruity even if it is determined that the failure is not a failure because the repulsion and vibrations that are continuous and strong are transmitted along with the shift sound.

そこで本発明は、密巻き部と疎巻き部が組み合わせられた螺旋管を有し、曲げた際に常に違和感なく円滑に屈曲させることができる可撓管及び可撓管を用いる内視鏡を提供する。   Therefore, the present invention provides a flexible tube that has a spiral tube in which a densely wound portion and a loosely wound portion are combined, and can be bent smoothly without any sense of incongruity when bent, and an endoscope using the flexible tube. To do.

本発明に従う実施形態に係る可撓管は、板状の素線を螺旋状に巻回して長手軸方向に沿って延伸し、隣接する前記素線同士が互いに密着する部分を有する密巻き部と、隣接する前記素線同士が互いに離間する疎巻き部とを有する螺旋管と、自然長の前記螺旋管を覆う筒状の形状を成し、前記螺旋管の外径に対して大きい内径を有する外層部を具備し、前記螺旋管の外径と前記外層部の内径との差による隙間により、前記螺旋管が直線状態から最大湾曲状態までの間、前記螺旋管の径方向の外周面上で接触する前記外層部の内周面とは非接触となる箇所が残るように前記螺旋管の径と前記外層部の径が設定される。   The flexible tube according to the embodiment according to the present invention includes a densely wound portion having a portion in which a plate-like strand is wound spirally and stretched along the longitudinal axis direction, and the adjacent strands are in close contact with each other. A spiral tube having a sparsely wound portion in which the adjacent strands are separated from each other, and a cylindrical shape that covers the natural length of the spiral tube, and has a larger inner diameter than the outer diameter of the spiral tube An outer layer portion is provided, and on the outer peripheral surface in the radial direction of the spiral tube during the period from the straight state to the maximum curved state due to a gap due to the difference between the outer diameter of the spiral tube and the inner diameter of the outer layer portion. The diameter of the spiral tube and the diameter of the outer layer portion are set so that a portion that is not in contact with the inner peripheral surface of the outer layer portion that is in contact remains.

図1は、内視鏡本体の外観の構成を示す図である。FIG. 1 is a diagram showing an external configuration of an endoscope main body. 図2は、第1の実施形態の可撓管の断面構成を概念的に示す図である。FIG. 2 is a diagram conceptually illustrating a cross-sectional configuration of the flexible tube according to the first embodiment. 図3は、曲げた状態の可撓管を概念的に示す図である。FIG. 3 is a diagram conceptually showing the flexible tube in a bent state. 図4は、第2の実施形態の可撓管の断面構成例を示す図である。FIG. 4 is a diagram illustrating a cross-sectional configuration example of the flexible tube according to the second embodiment. 図5は、第2の実施形態の変形例の可撓管の断面構成例を示す図である。FIG. 5 is a diagram illustrating a cross-sectional configuration example of a flexible tube according to a modification of the second embodiment. 図6は、第3の実施形態の可撓管の断面構成を概念的に示す図である。FIG. 6 is a diagram conceptually showing a cross-sectional configuration of the flexible tube of the third embodiment. 図7は、第3の実施形態におけるコイルが編み込まれた網状管の概念的な構成を示す図である。FIG. 7 is a diagram showing a conceptual configuration of a mesh tube in which a coil is knitted in the third embodiment. 図8A、可撓管を曲げたときの概念的な形状を示す図である。FIG. 8A is a diagram showing a conceptual shape when the flexible tube is bent. 図8Bは、図8Aにおける湾曲箇所A−Aの断面構成を示す図である。FIG. 8B is a diagram showing a cross-sectional configuration of the curved portion AA in FIG. 8A. 図9は、断面形状が異なるコイルの例を示す図である。FIG. 9 is a diagram illustrating an example of coils having different cross-sectional shapes. 図10は、第3の実施形態の第1の変形例に係る可撓管の構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a flexible tube according to a first modification of the third embodiment. 図11は、第3の実施形態の第2の変形例に係る可撓管の構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of a flexible tube according to a second modification of the third embodiment.

以下、図面を参照して本発明の実施形態について詳細に説明する。
図1は、本実施形態の可撓管を適用する内視鏡本体の外観の構成を示す図である。
内視鏡1は、管腔内等に挿入される細長い挿入部2と、挿入部2の基端側と連結し、内視鏡1を操作する操作部3とで構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an external configuration of an endoscope main body to which the flexible tube of the present embodiment is applied.
The endoscope 1 includes an elongated insertion portion 2 that is inserted into a lumen or the like, and an operation portion 3 that is connected to the proximal end side of the insertion portion 2 and operates the endoscope 1.

本実施形態の内視鏡1は、生体内を観察するための内視鏡と、金属配管や内燃機関等の内部を観察するための内視鏡、所謂、工業内視鏡のいずれに対しても適用することができる。尚、以下の実施形態において記載する、弾発性及び初張力は、次の意味を示唆しているものとする。「弾発性は、外部から力を加えたときに、可撓管が屈曲変形した状態から元の形状に(直線状態)に戻る戻り易さ」を示唆し、「初張力は、素線を螺旋状に巻回した際に、変形しないように隣接する素線間に生じる内力(密着力)であること」を示唆している。また、以下の説明においては、弾発性及び初張力は、外部から力が加わった際に、同様な作用を生じさせているものとする。   The endoscope 1 according to this embodiment is an endoscope for observing the inside of a living body and an endoscope for observing the inside of a metal pipe, an internal combustion engine, or the like, that is, a so-called industrial endoscope. Can also be applied. Note that the elasticity and initial tension described in the following embodiments suggest the following meanings. “Resistance means that when a force is applied from the outside, the flexible tube is easy to return from its bent state to its original shape (straight state)”. This suggests that it is an internal force (adhesion force) generated between adjacent strands so as not to be deformed when spirally wound. In the following description, it is assumed that the resilience and initial tension cause the same effect when an external force is applied.

挿入部2は、主として、撮像光学系や照明窓等が搭載される硬質部材からなる先端部11と、この先端部11の基端側に連なり、能動的に湾曲する湾曲部12と、さらに湾曲部12に連なり操作部本体3aまでを繋ぐ軟性な可撓管13と、で構成されている。挿入部2は、用途によっては別途、挿入部2内部に、処置具を嵌装するための貫通孔や、洗浄液の送液及び送気吸引のための通路等が並設され、先端部11の先端面11aに、これらの貫通孔及び通路の各開口が形成されている。   The insertion portion 2 mainly includes a distal end portion 11 made of a hard member on which an imaging optical system and an illumination window are mounted, a bending portion 12 that is connected to the proximal end side of the distal end portion 11 and is actively curved, and further curved. And a flexible flexible tube 13 that continues to the portion 12 and connects the operation portion main body 3a. The insertion portion 2 is separately provided with a through-hole for fitting a treatment instrument, a passage for supplying a cleaning liquid and an air supply / aspiration, etc. Each opening of these through-holes and passages is formed in the distal end surface 11a.

湾曲部12は、複数の環状の駒部材(図示せず)が、互いの関節部を回動可能に連結する公知な構成であり、少なくとも直交する方向で交互に関節部が設けられている。先端側の駒部材に接続された複数のワイヤ(図示せず)を操作部3に設けられたアングルノブ14,15に接続して、各アングルノブ14,15を回動操作することで、ワイヤを牽引して、湾曲部12を能動的に湾曲動作させている。   The bending portion 12 has a known configuration in which a plurality of annular piece members (not shown) rotatably connect each other's joint portions, and the joint portions are alternately provided in at least orthogonal directions. A plurality of wires (not shown) connected to the piece member on the distal end side are connected to the angle knobs 14 and 15 provided in the operation unit 3, and the angle knobs 14 and 15 are rotated to operate the wires. To bend the bending portion 12 actively.

操作部3は、操作部本体3aが片手で把持し易い略長方体形状を成し、その側面上部にはユニバーサルケーブル5が接続され、下端には湾曲部12の基端側が連結されて、略L字形の形態を成している。ユニバーサルケーブル5は、図示しない画像・制御信号用ケーブル、電源ケーブル及び照明光を伝達するライトガイド等が束ねられて、樹脂からなる被覆部材で覆われ、ケーブル先端にはコネクタ端子6が設けられている。このコネクタ端子6は、少なくとも図示しない画像処理ユニット及び光源ユニットに接続される。内視鏡1は、システム構成として、他にも、モニタ及び入力機器を備え、必要に応じて、送気・送水及び吸引のためのポンプ機器や処置具ための機器等が配備される。   The operation unit 3 has a substantially rectangular parallelepiped shape that the operation unit main body 3a is easy to hold with one hand, the universal cable 5 is connected to the upper part of the side surface, and the base end side of the bending unit 12 is connected to the lower end, It has a substantially L-shaped form. The universal cable 5 includes an image / control signal cable (not shown), a power cable, a light guide that transmits illumination light, and the like, and is covered with a covering member made of resin. A connector terminal 6 is provided at the end of the cable. Yes. The connector terminal 6 is connected to at least an image processing unit and a light source unit (not shown). The endoscope 1 further includes a monitor and an input device as a system configuration, and a pump device for air supply / water supply and suction, a device for a treatment tool, and the like are provided as necessary.

操作部本体3aの正面には、湾曲部12を湾曲させる2つのアングルノブ(14,15)が同じ回転中心位置となるように重ねられて配置されている。ユニバーサルケーブル5が設けられた側面の反対側の側面で指掛かりがよい位置に、吸引スイッチ16及び送気・送水スイッチ17が並設されている。さらに、操作部本体3aの上面には、撮像光学系による内視鏡画像を撮影するためのシャッタスイッチを含む撮影用スイッチ18が設けられている。   Two angle knobs (14, 15) for bending the bending portion 12 are arranged on the front surface of the operation portion main body 3a so as to be at the same rotation center position. A suction switch 16 and an air / water supply switch 17 are juxtaposed at a position where the finger can be caught on the side surface opposite to the side surface on which the universal cable 5 is provided. Furthermore, a photographing switch 18 including a shutter switch for photographing an endoscopic image by the imaging optical system is provided on the upper surface of the operation unit main body 3a.

本実施形態のアングルノブ14,15は、それぞれが回動により、湾曲部12を上下(up/down)方向(第1の軸方向)に湾曲させるUDノブ(第1の操作部)14と、第1の軸方向と直交する左右(left/right)方向(第2の軸方向)に湾曲させるRLノブ(第2の操作部)15とで構成される。本実施形態では、手動のアングルノブを例として示しているが、モータ等の駆動源により湾曲動作させるモータスイッチからなるアングルノブであってもよい。   The angle knobs 14 and 15 of the present embodiment each have a UD knob (first operation portion) 14 that bends the bending portion 12 in the up / down direction (first axial direction) by rotation, It comprises an RL knob (second operation part) 15 that bends in a left / right (second axial direction) perpendicular to the first axial direction. In this embodiment, a manual angle knob is shown as an example, but an angle knob including a motor switch that is bent by a driving source such as a motor may be used.

[第1の実施形態]
次に、第1の実施形態に係る可撓管13の構造について説明する。
図2は、本実施形態の可撓管13(挿入部2)の断面構成を概念的に示す図である。図3は、曲げた状態の可撓管を概念的に示す図である。
[First Embodiment]
Next, the structure of the flexible tube 13 according to the first embodiment will be described.
FIG. 2 is a diagram conceptually showing a cross-sectional configuration of the flexible tube 13 (insertion portion 2) of the present embodiment. FIG. 3 is a diagram conceptually showing the flexible tube in a bent state.

この可撓管13は、中空パイプの形状を成し、図示していないが、内部には、湾曲部12の湾曲操作のためのワイヤと、照明光を導光するためのライトガイド(光ファイバーケーブル)と、撮像信号を送信する信号ケーブル等が配設され、さらに設計仕様に応じて、鉗子チャンネルや送気送水管路(チューブ)が配設されている。   The flexible tube 13 has a shape of a hollow pipe, and although not shown, a wire for bending operation of the bending portion 12 and a light guide (optical fiber cable) for guiding illumination light are provided inside. ) And a signal cable for transmitting an imaging signal, and a forceps channel and an air / water supply pipe (tube) are further provided according to design specifications.

この可撓管13は、螺旋管(フレックス管)21と、螺旋管21の外周面を所定間隔の隙間である後述するクリアランス(隙間)Sを空けて被覆する外層部20と、で構成されている。螺旋管21は、図2に示すように、狭幅で断面が矩形又は平行四辺形の長尺な金属製の薄板(フレックス(flex)素線)が、隣同士に隙間ができないように密着させて螺旋状に巻回される密巻き部21aと、設計に従った間隔を空けて螺旋状に巻回される疎巻き部21bとで構成される。螺旋管21は、密巻き部21a及び疎巻き部21bは、共に長手方向に沿って初張力を持つように巻回されて形成されている。   The flexible tube 13 includes a spiral tube (flex tube) 21 and an outer layer portion 20 that covers the outer circumferential surface of the spiral tube 21 with a clearance (gap) S, which will be described later, which is a gap having a predetermined interval. Yes. As shown in FIG. 2, the spiral tube 21 is made of a long thin metal plate (flex strand) having a narrow width and a rectangular or parallelogram cross section so that there is no gap between adjacent ones. And a densely wound portion 21a wound spirally and a loosely wound portion 21b wound spirally with an interval according to the design. The spiral tube 21 is formed by winding the closely wound portion 21a and the loosely wound portion 21b so as to have initial tension along the longitudinal direction.

外層部20は、線状の素線(金属繊維等)が編み込まれた網目状の網状管(ブレード)22と、網状管22の外周面を水密に被覆し弾性を有する樹脂製チューブからなる外皮部23が積層するように一体的に形成されている。本実施形態の外層部20は、全体的に一様な弾性及び硬さを有しているが、それぞれの厚さを変える、又は材料を変えることで弾性及び硬さを全体的又は部分的に変更することも可能である。   The outer layer portion 20 includes a mesh-like mesh tube (blade) 22 in which linear strands (metal fibers or the like) are knitted, and an outer skin made of a resin tube having water-tight coating on the outer peripheral surface of the mesh tube 22 and having elasticity. The portions 23 are integrally formed so as to be laminated. The outer layer portion 20 of the present embodiment has uniform elasticity and hardness as a whole, but the elasticity and hardness can be entirely or partially changed by changing the thickness or material of each. It is also possible to change.

また可撓管13は、自然長の状態において螺旋管21の両端の外周面を、外層部20で被覆して外皮部23の内面と固着することにより、その長手軸の軸方向に沿った全長が変化せずに、全長が略一定となるように規定している。その固着方法としては、一般的な固着方法でよく、例えば、半田、接着剤又は、レーザー溶接等が用いられている。   Further, the flexible tube 13 is covered with the outer layer portion 20 and fixed to the inner surface of the outer skin portion 23 by covering the outer peripheral surfaces of both ends of the spiral tube 21 in the natural length state, so that the entire length along the axial direction of the longitudinal axis thereof. Is defined so that the overall length is substantially constant without changing. The fixing method may be a general fixing method, and for example, solder, adhesive, laser welding or the like is used.

この螺旋管21は、図3に示すように、外力が加わると曲がり、円弧状態に変形する。密巻き部21aが曲げられると、外周側で隣り合う素線どうしが離間し、螺旋管21が直線状態の時の長手軸方向の長さに比べて、円弧外側の距離が長くなる。この外層部20に対して増加した距離分は、矢印に示すように、網状管22内で螺旋管21が移動して分散され、大半が疎巻き部21bに吸収される。   As shown in FIG. 3, the spiral tube 21 bends when an external force is applied, and deforms into an arc state. When the densely wound portion 21a is bent, adjacent wires on the outer peripheral side are separated from each other, and the distance outside the arc is longer than the length in the longitudinal axis direction when the spiral tube 21 is in a straight state. As shown by the arrow, the distance increased with respect to the outer layer portion 20 is dispersed by moving the spiral tube 21 in the mesh tube 22, and the majority is absorbed by the loosely wound portion 21b.

可撓管13が曲げられたときには、筒状の外層部20については中心軸の長さが伸びずに曲がるが、密巻き部21aについてはその中心軸長さが伸びるように曲がる。可撓管13の屈曲時、長さが伸びない外層部20に対して発生する密巻き部21aの伸びを吸収するために、密巻き部21aの伸びた部分が疎巻部21bの方向に摺動し、結果、疎巻部が縮む。この摺動時に、密巻き部21aと網状管22との摩擦が少ないほど、スムーズに移動することができる。
本実施形態では、このような摩擦を低減するため、図2に示すように、螺旋管21と網状管22との間にクリアランス(隙間)Sを有するように構成する。即ち、螺旋管21の外周径(外側面の直径)と筒状の外層部20の内周径(内周面の直径)との寸法差が隙間Sである。この隙間は、例えば、素線の肉厚の2倍以下が好ましい。
When the flexible tube 13 is bent, the cylindrical outer layer portion 20 bends without extending the length of the central axis, but the densely wound portion 21a bends so that the central axis length thereof is extended. In order to absorb the elongation of the densely wound portion 21a generated with respect to the outer layer portion 20 whose length does not extend when the flexible tube 13 is bent, the extended portion of the densely wound portion 21a slides in the direction of the loosely wound portion 21b. As a result, the sparse winding part shrinks. During this sliding, the smaller the friction between the densely wound portion 21a and the mesh tube 22, the smoother the movement.
In the present embodiment, in order to reduce such friction, a clearance (gap) S is provided between the spiral tube 21 and the mesh tube 22 as shown in FIG. That is, the gap S is a dimensional difference between the outer peripheral diameter (outer surface diameter) of the spiral tube 21 and the inner peripheral diameter (inner peripheral surface diameter) of the cylindrical outer layer portion 20. For example, the gap is preferably equal to or less than twice the thickness of the wire.

この隙間Sを設けることにより、直線状の螺旋管21と網状管22は、重力の作用で一部が接触する以外は、隙間Sにより非接触である。図3に示すように、螺旋管21が最大に曲がった最大湾曲状態の時に、螺旋管21の外側面が網状管22の内周面に接触しても、螺旋管21が円滑に移動できるように、湾曲の内側において螺旋管21と網状管22が非接触となる隙間Sが残るように、螺旋管21の外層部20の径が設定される。つまり、螺旋管21の外径と外層部20の網状管22の内径との差により発生する隙間により、螺旋管21が最大湾曲状態となった時に、螺旋管21の径方向の外周面上に網状管22の内周面とは非接触となる箇所が残るように、それぞれの、螺旋管21の外径と網状管22の内径が設定される。この隙間Sが残ることで、湾曲の進行具合に応じて、螺旋管21が徐々に移動でき、螺旋管21に加わる圧力が分散していく。   By providing the gap S, the linear spiral tube 21 and the mesh tube 22 are not in contact by the gap S except that a part of them is brought into contact by the action of gravity. As shown in FIG. 3, the spiral tube 21 can move smoothly even when the outer surface of the spiral tube 21 contacts the inner peripheral surface of the mesh tube 22 when the spiral tube 21 is bent to the maximum. In addition, the diameter of the outer layer portion 20 of the spiral tube 21 is set so that a gap S in which the spiral tube 21 and the mesh tube 22 are not in contact remains inside the curve. That is, when the spiral tube 21 is in the maximum curved state due to the gap generated by the difference between the outer diameter of the spiral tube 21 and the inner diameter of the mesh tube 22 of the outer layer portion 20, The outer diameter of the spiral tube 21 and the inner diameter of the mesh tube 22 are set so that a portion that is not in contact with the inner peripheral surface of the mesh tube 22 remains. By leaving this gap S, the spiral tube 21 can gradually move according to the progress of the bending, and the pressure applied to the spiral tube 21 is dispersed.

本実施形態によれば、可撓管13が曲げられた際に生じる螺旋管21と外層部20との長さの差は、螺旋管21の密巻き部21aが外層部20との間に隙間を設けたことで、非接触又は低い摩擦で円滑に移動して、隣り合う疎巻き部21bに吸収されやすくなる。よって、螺旋管21の密巻き部21aへ大きな圧力が掛かることが回避され、素線のピッチずれによるずれ音や反発及び振動の発生を防止することができる。また、曲げられた可撓管13の湾曲箇所の全体に分散して圧力が掛かることから、角張のない円弧の形状になる。   According to the present embodiment, the difference in length between the spiral tube 21 and the outer layer portion 20 that occurs when the flexible tube 13 is bent is that there is a gap between the tightly wound portion 21 a of the spiral tube 21 and the outer layer portion 20. By providing, it moves smoothly by non-contact or low friction, and becomes easy to be absorbed by the adjacent sparsely wound portion 21b. Therefore, it is avoided that a large pressure is applied to the closely wound portion 21a of the spiral tube 21, and it is possible to prevent the occurrence of a shift sound, repulsion and vibration due to a pitch shift of the strands. Further, since pressure is applied to the entire bent portion of the bent flexible tube 13, the shape of the arc is not angular.

[第2の実施形態]
図4は、第2の実施形態における隙間を設けた可撓管13の断面構成例を示す図である。
本実施形態は、螺旋管25に対して、疎巻き部25bの径Φ2よりも密巻き部25aの径Φ1を細径化する(Φ1<Φ2)ことで網状管22の内周面に対して隙間S1が存在するように構成する。この例では、径Φ2は、径Φ1の2倍未満が好ましい。また、この構成においては、疎巻き部25bに対しても、より円滑に曲がるように、隙間S1よりも狭い隙間S2が設けられている。隙間S2は、疎巻き部25bが伸縮に伴って移動することが可能であれば、特に限定されない。
[Second Embodiment]
FIG. 4 is a diagram illustrating a cross-sectional configuration example of the flexible tube 13 provided with a gap in the second embodiment.
In the present embodiment, the diameter Φ1 of the densely wound portion 25a is made smaller than the diameter Φ2 of the loosely wound portion 25b with respect to the spiral tube 25 (Φ1 <Φ2), whereby the inner peripheral surface of the mesh tube 22 is reduced. The gap S1 is configured to exist. In this example, the diameter Φ2 is preferably less than twice the diameter Φ1. Further, in this configuration, a gap S2 narrower than the gap S1 is provided so as to bend more smoothly with respect to the loosely wound portion 25b. The gap S2 is not particularly limited as long as the loosely wound portion 25b can move along with expansion and contraction.

第1の実施形態と同様に、可撓管13が曲げられた際に生じる螺旋管25と外層部20との長さの差は、螺旋管25の密巻き部25aが外層部20との間に隙間を設けたことで、非接触又は低い摩擦で円滑に移動して、隣り合う疎巻き部25bに吸収される。   Similar to the first embodiment, the difference in length between the spiral tube 25 and the outer layer portion 20 that occurs when the flexible tube 13 is bent is that the tightly wound portion 25 a of the spiral tube 25 is between the outer layer portion 20 and the outer tube portion 20. By providing a gap in the gap, it moves smoothly with no contact or with low friction and is absorbed by the adjacent loosely wound portions 25b.

また、本実施形態では、密巻き部25aの隙間S1に比べて疎巻き部25bの隙間S2が狭いため、曲げられた際に、疎巻き部25bの方が径が大きいため、網状管22に早く接触し且つ接触する面積も大きい。これにより、密巻き部25aよりも疎巻き部25bに摩擦力が大きく作用し、曲げに対する硬さが硬くなる。反対に隙間が大きく、網状管22に非接触であれば、曲げに対する硬さが柔らかくなる。   In the present embodiment, since the gap S2 of the loosely wound portion 25b is narrower than the gap S1 of the densely wound portion 25a, the diameter of the loosely wound portion 25b is larger when bent. The area that contacts quickly and contacts is large. As a result, the frictional force acts on the loosely wound portion 25b more than the densely wound portion 25a, and the hardness against bending is increased. On the other hand, if the gap is large and the mesh tube 22 is not contacted, the hardness against bending becomes soft.

従って、可撓管13の長手軸方向において、任意箇所により、螺旋管25と網状管22との間の隙間の大きさを変える、即ち、螺旋管25の径を変えることで、曲げに対する硬さを変更することができる。つまり、外層部20の硬さによらず、可撓管13の曲げに対する硬さを変更することができる。例えば、基端側を硬くして、先端側を柔らかくすることで挿入性が向上する。この例では、2つの隙間距離を例としているが、螺旋管25の径を適宜、変えることで複数段階の硬さ変更も可能である。   Therefore, by changing the size of the gap between the spiral tube 25 and the mesh tube 22 at an arbitrary position in the longitudinal axis direction of the flexible tube 13, that is, by changing the diameter of the spiral tube 25, the hardness against bending is increased. Can be changed. That is, the hardness against bending of the flexible tube 13 can be changed regardless of the hardness of the outer layer portion 20. For example, the insertion property is improved by hardening the proximal end side and softening the distal end side. In this example, the distance between two gaps is taken as an example, but by changing the diameter of the spiral tube 25 as appropriate, it is possible to change the hardness in a plurality of stages.

本実施形態では、密巻き部25aと疎巻き部25bを有する螺旋管25に対して、密巻き部25aよりも疎巻き部25bの径を大きくすることで、網状管22との隙間を狭くしている。この構成により、疎巻き部25bと密巻き部25aの曲げに対する硬さを同じにすることができる。これにより、曲げられた可撓管13の湾曲箇所の全体に分散して圧力が掛かることから、角張のない円弧の形状になる。   In this embodiment, with respect to the spiral tube 25 having the densely wound portion 25a and the loosely wound portion 25b, the diameter of the loosely wound portion 25b is made larger than that of the densely wound portion 25a, thereby narrowing the gap with the mesh tube 22. ing. With this configuration, the hardness of the loosely wound portion 25b and the densely wound portion 25a with respect to bending can be made the same. As a result, since pressure is applied to the entire bent portion of the bent flexible tube 13, the shape of the arc is not angular.

さらに、可撓管における操作部3に接続する基端側部分及び湾曲部12に接続する先端側部分については、螺旋管25と網状管22との隙間を狭くして、硬くすることが可能である。尚、本実施形態では、密巻き部25aと疎巻き部25bを有する螺旋管25を例として説明したが、密巻き部のみの螺旋管又は疎巻き部のみの螺旋管に対しても同様に硬さ変更を行うことができる。   Furthermore, the proximal end portion connected to the operation portion 3 and the distal end portion connected to the bending portion 12 in the flexible tube can be made hard by narrowing the gap between the spiral tube 25 and the mesh tube 22. is there. In the present embodiment, the spiral tube 25 having the densely wound portion 25a and the loosely wound portion 25b has been described as an example. However, a hard tube having only the densely wound portion or a spiral tube having only the loosely wound portion is similarly hard. Changes can be made.

本実施形態は、外層部20が長い軸方向に同一内径を維持し、螺旋管25の密巻き部25aと疎巻き部25bとの径の差により、外層部20との間に隙間を生じさせているため、外層部20の外径が同じ径で隙間を実現することができる。   In the present embodiment, the outer layer portion 20 maintains the same inner diameter in the long axial direction, and a gap is generated between the outer layer portion 20 due to the difference in diameter between the densely wound portion 25a and the loosely wound portion 25b of the spiral tube 25. Therefore, the outer diameter of the outer layer part 20 can be realized with the same diameter.

[第2の実施形態の変形例]
図5は、第2の実施形態における変形例の可撓管13の断面構成例を示す図である。前述した第1の実施形態では、螺旋管21と網状管22との間に均一に隙間Sを設けた構成を示している。しかし実際には、外力に対して疎巻き部21bは変形しやすいので、必ずしも十分な隙間Sが必要ではなく、実質的には、密巻き部21aに対して、曲がりに伴う長手軸方向における密巻き部21aの移動範囲Lに設ければよい。この移動範囲Lは、シミュレーションや試作品の作成等により得ることができる。
[Modification of Second Embodiment]
FIG. 5 is a diagram illustrating a cross-sectional configuration example of the flexible tube 13 according to a modified example of the second embodiment. In the first embodiment described above, a configuration in which the gaps S are uniformly provided between the spiral tube 21 and the mesh tube 22 is shown. However, in actuality, the loosely wound portion 21b is easily deformed by an external force, so that a sufficient gap S is not necessarily required. In practice, the densely wound portion 21a is densely aligned in the longitudinal axis direction due to bending. What is necessary is just to provide in the movement range L of the winding part 21a. This movement range L can be obtained by simulation or creation of a prototype.

本変形例は、密巻き部21aと疎巻き部21bが同じ径の螺旋管21に対して、密巻き部21aの移動範囲Lで隙間S2が存在するように、外層部20の網状管22の内径を大きくした構成例である。尚、網状管22の内径を大きくしたため、外層部20の外径も大きくなる。
本変形例によれば、密巻き部21aと外層部20との間に隙間を設けることにより、可撓管13が曲げられた時に、疎巻き部21bの湾曲により密巻き部21aに移動が生じても、螺旋管21が網状管22の内周面への摩擦を軽減し、可撓管13を円滑に曲げることができる。更に、外層部20の内径を変化させても、この内径が小さい箇所の樹脂の肉厚を厚くする事で、外層部20の外径を一定にした構造としてもよい。
In this modified example, the mesh tube 22 of the outer layer portion 20 has a gap S2 in the moving range L of the densely wound portion 21a with respect to the spiral tube 21 having the same diameter of the closely wound portion 21a and the loosely wound portion 21b. This is a configuration example in which the inner diameter is increased. Since the inner diameter of the mesh tube 22 is increased, the outer diameter of the outer layer portion 20 is also increased.
According to this modification, by providing a gap between the closely wound portion 21a and the outer layer portion 20, when the flexible tube 13 is bent, the densely wound portion 21a moves due to the bending of the loosely wound portion 21b. However, the spiral tube 21 can reduce the friction to the inner peripheral surface of the mesh tube 22, and the flexible tube 13 can be bent smoothly. Furthermore, even if the inner diameter of the outer layer part 20 is changed, the outer diameter of the outer layer part 20 may be made constant by increasing the thickness of the resin in a portion where the inner diameter is small.

[第3の実施形態]
次に、第3の実施形態に係る可撓管13の構造について説明する。
図6は、本実施形態の隙間を設けた可撓管の断面構成を概念的に示す図、図7は、コイルが編み込まれた網状管の概念的な構成を示す図、図8Aは、可撓管を曲げたときの概念的な形状を示す図、図8Bは、図8Aにおける湾曲箇所A−Aの断面構成を示す図である。尚、本実施形態において、前述した第1の実施形態と同等の構成部位には、同じ参照符号を付してその詳細な説明は省略する。
[Third Embodiment]
Next, the structure of the flexible tube 13 according to the third embodiment will be described.
6 is a diagram conceptually showing a cross-sectional configuration of a flexible tube having a gap according to the present embodiment, FIG. 7 is a diagram showing a conceptual configuration of a mesh tube in which coils are knitted, and FIG. FIG. 8B is a view showing a conceptual shape when a flexible tube is bent, and FIG. 8B is a view showing a cross-sectional configuration of a curved portion AA in FIG. 8A. In the present embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態は、図6に示すように、可撓管13の外層部20の網状管22の中にコイル31を編み込んだ構成である。
この可撓管13は、交互に連続配置される密巻き部21aと疎巻き部21bを有する螺旋管21と、螺旋管21を被覆し、コイル31が螺旋状に編み込まれている網状管32と、網状管32の外周面と一体的に形成される外皮部23とで構成される。本実施形態においても、螺旋管21の外周面と網状管32との間に、所定間隔の隙間Sを空けて被覆されている。
In the present embodiment, as shown in FIG. 6, a coil 31 is knitted into the mesh tube 22 of the outer layer portion 20 of the flexible tube 13.
The flexible tube 13 includes a spiral tube 21 having a densely wound portion 21a and a loosely wound portion 21b that are alternately and continuously arranged, a mesh tube 32 that covers the spiral tube 21 and a coil 31 is spirally knitted. The outer tube 23 is formed integrally with the outer peripheral surface of the mesh tube 32. Also in this embodiment, it is covered with a gap S of a predetermined interval between the outer peripheral surface of the spiral tube 21 and the mesh tube 32.

本実施形態では、1本のコイル31が螺旋管21の外周上を螺旋状に巻回するように編み込まれているが、基本的には、曲げられた際に外層部20の扁平が防止できるのであれば、特に限定されるものではなく、環状や縦横(又は、互いに斜めに交差)のクロス状に編み込まれていてもよい。尚、編み込まれているコイル31は、網状管32に固定されているものとする。   In the present embodiment, one coil 31 is knitted so as to spirally wind on the outer periphery of the spiral tube 21, but basically, the outer layer 20 can be prevented from being flattened when bent. If it is, it will not specifically limit, You may be knitted in the cross shape of cyclic | annular form, and horizontal and vertical (or crossing mutually diagonally). It is assumed that the knitted coil 31 is fixed to the mesh tube 32.

このように網状管32にコイル31を螺旋状に編み込むことで、図8A、図8Bに示すように、可撓管13が曲げられた際に、外層部20が扁平し難くなる。このため、扁平により螺旋管21と網状管32の間に設けられた隙間Sが不当に狭くなることによる引っ掛かり及び摩擦の増加が防止され、螺旋管21が網状管32内を円滑に移動する。   By knitting the coil 31 spirally into the mesh tube 32 in this way, the outer layer portion 20 is difficult to flatten when the flexible tube 13 is bent as shown in FIGS. 8A and 8B. For this reason, the gap S provided between the spiral tube 21 and the mesh tube 32 due to flattening is prevented from being unduly narrowed, and an increase in catch and friction is prevented, and the spiral tube 21 moves smoothly in the mesh tube 32.

本実施形態によれば、可撓管13が曲がった際に生じる螺旋管21と外層部20との長さの差を螺旋管21の密巻き部21aが円滑に移動されることで、隣り合う疎巻き部21bに吸収されやすくなる。よって、螺旋管21の密巻き部21aへ大きな圧力が掛かることが回避されて、素線のピッチずれによるずれ音や反発及び振動の発生を防止するとができる。さらに、外層部20の扁平を防止することで、湾曲した部分を滑らかな弧の形状にすることができる。また、外層部20に対して、同じ箇所で扁平が繰り返し行われることで生じる扁平癖、所謂、径方向における変形も防止できる。
更に、外層部20が扁平しにくいので、螺旋管21と網状管32の間に設けられる隙間を最小にすることができ、これにより可撓管13をより細径にすることができる。
According to the present embodiment, the closely wound portion 21a of the spiral tube 21 is moved adjacent to the difference in length between the spiral tube 21 and the outer layer portion 20 generated when the flexible tube 13 is bent. It becomes easy to be absorbed by the loosely wound portion 21b. Therefore, it is possible to prevent a large pressure from being applied to the tightly wound portion 21a of the spiral tube 21 and to prevent the occurrence of a shift sound, repulsion and vibration due to the pitch deviation of the strands. Further, by preventing the outer layer portion 20 from being flat, the curved portion can be formed into a smooth arc shape. Moreover, the flat wrinkles which arise when a flat part is repeatedly performed in the same location with respect to the outer layer part 20, and what is called deformation | transformation in radial direction can also be prevented.
Furthermore, since the outer layer portion 20 is not easily flattened, the gap provided between the spiral tube 21 and the mesh tube 32 can be minimized, thereby making the flexible tube 13 thinner.

本実施形態に適用することが可能なコイル31の変形例について説明する。図9は、コイル31の断面の変形例(a)乃至(f)を示す図である。
図9において、コイル31の断面は、(a)円形31a、(b)楕円形31b、(c)オーバル(トラック)形状31c、(d)矩形形状31d、(e)蒲鉾形状31e及び、(f)半円形状31f等が適用できる。これらは、弾性が高い線材によりされる製作される。ここでは、中実(ソリッド)構造のコイルを挙げているが、空中(パイプ)構造のコイルを用いても同等の効果を得ることができる。軽量化という面では、空中構造が好適する。また、本実施形態では、1本のコイルを例としたが、複数の細い線材を縒り線にしたワイヤでコイルを形成してもよい。
A modification of the coil 31 that can be applied to the present embodiment will be described. FIG. 9 is a diagram showing modifications (a) to (f) of the cross section of the coil 31.
In FIG. 9, the cross section of the coil 31 includes (a) a circle 31a, (b) an ellipse 31b, (c) an oval (track) shape 31c, (d) a rectangular shape 31d, (e) a saddle shape 31e, and (f ) A semicircular shape 31f or the like can be applied. These are made of a highly elastic wire. Here, a solid (solid) structure coil is mentioned, but the same effect can be obtained even if an air (pipe) structure coil is used. In terms of weight reduction, an air structure is preferable. In the present embodiment, one coil is taken as an example, but the coil may be formed of a wire in which a plurality of thin wire rods are wound.

[第3の実施形態の第1の変形例]
次に、第3の実施形態の第1の変形例について説明する。
図10は、第1の変形例としてコイルが可撓管13の外皮部33に組み込まれた構成例を示す図である。尚、本変形例において、前述した第3の実施形態と同等の構成部位には、同じ参照符号を付してその詳細な説明は省略する。
本変形例は、外層部20の樹脂製チューブからなる外皮部33の中に、前述したと同様に、螺旋状にコイル31を埋め込んだ構成である。
[First Modification of Third Embodiment]
Next, a first modification of the third embodiment will be described.
FIG. 10 is a diagram illustrating a configuration example in which a coil is incorporated in the outer skin portion 33 of the flexible tube 13 as a first modification. In this modification, the same reference numerals are given to the same components as those in the third embodiment described above, and detailed description thereof will be omitted.
In this modification, the coil 31 is spirally embedded in the outer skin portion 33 made of a resin tube of the outer layer portion 20 as described above.

本変形例は、第3の実施形態と同等の作用効果を得ることができる。さらに、外皮部33内にコイル31を製造時に埋め込むため、網状管22に編み込むよりは製造作業が容易になり、工数が軽減される。また、本実施形態では、1本のコイルを埋め込む例について説明したが、高い弾性及び導電性を有する材料により線材を形成して、絶縁性を有する外皮部33内を、複数列で並行して螺旋状に巻回させることで、信号線(例えば、センサ信号等)としても利用することができる。   This modification can obtain the same operational effects as those of the third embodiment. Furthermore, since the coil 31 is embedded in the outer skin portion 33 at the time of manufacturing, the manufacturing operation is easier than the case where the coiled tube 22 is knitted, and the number of man-hours is reduced. In the present embodiment, an example in which one coil is embedded has been described. However, a wire is formed of a material having high elasticity and conductivity, and the inside of the outer skin portion 33 having insulating properties is arranged in parallel in a plurality of rows. It can be used as a signal line (for example, a sensor signal or the like) by being spirally wound.

[第3の実施形態の第2の変形例]
次に、第3の実施形態の第2の変形例について説明する。
図11は、第2の変形例として、コイル31が網状管22の内周面上に配置された構成例を示す図である。尚、本変形例において、前述した第2の実施形態と同等の構成部位には、同じ参照符号を付してその詳細な説明は省略する。
[Second Modification of Third Embodiment]
Next, a second modification of the third embodiment will be described.
FIG. 11 is a diagram showing a configuration example in which the coil 31 is arranged on the inner peripheral surface of the mesh tube 22 as a second modification. In this modification, the same reference numerals are given to the same components as those of the second embodiment described above, and detailed description thereof will be omitted.

本変形例は、網状管22の内周面上に、螺旋状のコイル31を含むコイル樹脂層34を配置した構成である。このコイル樹脂層34は、外層部20の形成時に併せて形成され、外層部20とは一体的に構成されている。尚、本変形例では、コイル樹脂層34は、層として内面を平坦な面としているが、コイルの断面方向で円弧状に覆う畝状に形成してもよい。   In this modification, a coil resin layer 34 including a spiral coil 31 is disposed on the inner peripheral surface of the mesh tube 22. The coil resin layer 34 is formed when the outer layer portion 20 is formed, and is configured integrally with the outer layer portion 20. In this modification, the coil resin layer 34 has a flat inner surface as a layer, but may be formed in a bowl shape covering the arc in the cross-sectional direction of the coil.

また、図示していないが、螺旋状のコイル31は樹脂層無しで、網状管22の内周面上に直接、接着するように設けてもよい。この場合に、図6に示した断面形状におけるいずれのコイル31を用いてもよいが、蒲鉾形状31e及び半円形状31f等の接着用平面を有し、螺旋管21に点(円周上では線)で接触して摩擦係数が低い形状が好適する。本変形例によれば、前述した第3の実施形態の第1の変形例と同等の作用効果を有している。   Although not shown, the spiral coil 31 may be provided directly on the inner peripheral surface of the mesh tube 22 without a resin layer. In this case, any of the coils 31 in the cross-sectional shape shown in FIG. 6 may be used. However, the coil 31 has a bonding plane such as a saddle shape 31e and a semicircular shape 31f, and has a point (on the circumference) on the spiral tube 21. A shape having a low coefficient of friction by contacting with a line is preferable. According to this modification, it has the same effect as the first modification of the third embodiment described above.

[第4の実施形態]
第4の実施形態について説明する。
本実施形態は、例えば、図2に示した螺旋管21の外周面及び/又は網状管22の内周面にフッ素樹脂コート等の表面摩擦を低減する層が形成されている。又は、粗面処理等により摩擦係数を大きくする処理が施された層が形成される。即ち、螺旋管21や網状管22に対して、部分的に表面の摩擦係数(摩擦力)を変える処理を行う。
この処理により、螺旋管21と網状管22との間の摩擦係数が大きくなれば、曲げに対する硬さが硬くなり、逆に、摩擦係数が小さくなれば、柔らかくなる。
[Fourth Embodiment]
A fourth embodiment will be described.
In the present embodiment, for example, a layer that reduces surface friction such as a fluororesin coat is formed on the outer peripheral surface of the spiral tube 21 and / or the inner peripheral surface of the mesh tube 22 shown in FIG. Alternatively, a layer that has been subjected to a treatment for increasing the friction coefficient by a rough surface treatment or the like is formed. That is, a process of partially changing the surface friction coefficient (friction force) is performed on the spiral tube 21 and the mesh tube 22.
If the friction coefficient between the spiral tube 21 and the mesh tube 22 is increased by this process, the hardness against bending is increased. Conversely, if the friction coefficient is decreased, the friction coefficient is decreased.

つまり、可撓管13の長手軸方向において、螺旋管21と網状管22との摩擦係数を変えることで、曲げに対する硬さを変更することができる。従って、外層部20の硬さによらず、可撓管13の曲げに対する硬さを変更することができる。例えば、基端側を硬くして、先端側を柔らかくすることで挿入性が向上する。   That is, the hardness against bending can be changed by changing the friction coefficient between the spiral tube 21 and the mesh tube 22 in the longitudinal axis direction of the flexible tube 13. Therefore, the hardness against bending of the flexible tube 13 can be changed regardless of the hardness of the outer layer portion 20. For example, the insertion property is improved by hardening the proximal end side and softening the distal end side.

本発明によれば、密巻き部と疎巻き部が組み合わせられた螺旋管を有し、曲げた際に常に違和感なく円滑に屈曲させることができる可撓管及び可撓管を用いる内視鏡を提供することができる。   According to the present invention, there is provided a flexible tube having a spiral tube in which a densely wound portion and a loosely wound portion are combined, and can be bent smoothly without any sense of incongruity when bent, and an endoscope using the flexible tube. Can be provided.

本発明に従う実施形態に係る可撓管は、板状の素線を螺旋状に巻回して長手軸方向に沿って延伸し、隣接する前記素線同士が互いに密着する部分を有する密巻き部と、隣接する前記素線同士が互いに離間する疎巻き部とを有する螺旋管と、自然長の前記螺旋管を覆う筒状の形状を成し、前記螺旋管の外径に対して大きい内径を有する外層部と、を具備し、前記螺旋管が直線状態から最大湾曲状態までの間、前記螺旋管における前記疎巻き部の外径と前記外層部の内径との差により生じる第1の隙間の寸法は、前記螺旋管における前記密巻き部の外周面と前記外層部の内径との差により生じる第2の隙間の寸法が大きくなるように前記螺旋管の径と前記外層部の径が設定される。 The flexible tube according to the embodiment according to the present invention includes a densely wound portion having a portion in which a plate-like strand is wound spirally and stretched along the longitudinal axis direction, and the adjacent strands are in close contact with each other. A spiral tube having a sparsely wound portion in which the adjacent strands are separated from each other, and a cylindrical shape that covers the natural length of the spiral tube, and has a larger inner diameter than the outer diameter of the spiral tube An outer layer portion, and a dimension of a first gap generated by a difference between an outer diameter of the loosely wound portion and an inner diameter of the outer layer portion in the spiral tube while the spiral tube is in a straight state to a maximum curved state. the diameter of the close coiled portion and the second diameter and the outer portion of the spiral tube to size increase of the gap caused by the difference between the outer peripheral surface and the inner diameter of the outer portion of the said spiral tube is set .

Claims (10)

板状の素線を螺旋状に巻回して長手軸方向に沿って延伸し、隣接する前記素線同士が互いに密着する部分を有する密巻き部と、隣接する前記素線同士が互いに離間する疎巻き部とを有する螺旋管と、
自然長の前記螺旋管を覆う筒状の形状を成し、前記螺旋管の外径に対して大きい内径を有する外層部を具備し、
前記螺旋管の外径と前記外層部の内径との差による隙間により、前記螺旋管が直線状態から最大湾曲状態までの間、前記螺旋管の径方向の外周面上で接触する前記外層部の内周面とは非接触となる箇所が残るように前記螺旋管の径と前記外層部の径が設定されることを特徴とする可撓管。
A plate-like wire is spirally wound and stretched along the longitudinal axis direction, and a densely wound portion having a portion where the adjacent strands are in close contact with each other, and a sparse separation where the adjacent strands are separated from each other A spiral tube having a winding portion;
It has a cylindrical shape covering the helical tube of natural length, and comprises an outer layer portion having an inner diameter larger than the outer diameter of the helical tube,
Due to the gap due to the difference between the outer diameter of the spiral tube and the inner diameter of the outer layer portion, the outer tube portion of the outer layer portion that contacts the outer peripheral surface in the radial direction of the spiral tube during the period from the straight state to the maximum curved state. A flexible tube characterized in that the diameter of the spiral tube and the diameter of the outer layer portion are set so that a portion that is not in contact with the inner peripheral surface remains.
前記外層部と前記螺旋管との間に、少なくとも前記可撓管が真っ直ぐな状態から曲げた状態までの間、前記螺旋管の外周面と前記外層部の内周面との間に隙間を有することを特徴とする請求項1に記載の可撓管。   Between the outer layer portion and the spiral tube, there is a gap between the outer peripheral surface of the spiral tube and the inner peripheral surface of the outer layer portion at least until the flexible tube is bent from a straight state to a bent state. The flexible tube according to claim 1. 前記外層部は、前記螺旋管の外周面と対向する内側に配置され、線状の素線を管状に編み込み形成され、前記長手軸方向に沿って延伸する網状管を有することを特徴とする請求項1に記載の可撓管。   The outer layer portion is disposed on the inner side facing the outer peripheral surface of the spiral tube, and has a net-like tube formed by weaving linear strands into a tubular shape and extending along the longitudinal axis direction. Item 2. The flexible tube according to Item 1. 前記可撓管は、曲げられた際に生じる前記螺旋管と前記外層部との長さの差は、前記螺旋管の前記密巻き部が前記外層部との隙間により一部非接触の移動により、隣り合う前記疎巻き部に吸収されることを特徴とする請求項1に記載の可撓管。   The flexible tube has a difference in length between the spiral tube and the outer layer portion that occurs when the flexible tube is bent, because the densely wound portion of the spiral tube is partially moved in a non-contact manner due to a gap with the outer layer portion. The flexible tube according to claim 1, wherein the flexible tube is absorbed by the adjacent sparsely wound portions. 前記螺旋管の外径を長手軸方向の位置によって変え、前記外層部の内周面との間の前記隙間の大きさを変化させていることを特徴とする請求項1に記載の可撓管。   2. The flexible tube according to claim 1, wherein an outer diameter of the spiral tube is changed depending on a position in a longitudinal axis direction, and a size of the gap between the inner peripheral surface of the outer layer portion is changed. . 前記外層部の内径を前記長手軸方向の位置によって変え、前記螺旋管の外周面との間の前記隙間の大きさを変化させることを特徴とする請求項1に記載の可撓管。   2. The flexible tube according to claim 1, wherein an inner diameter of the outer layer portion is changed depending on a position in the longitudinal axis direction to change a size of the gap between the outer peripheral surface of the spiral tube. 前記外層部の内径と前記螺旋管の外径との差により生じる前記隙間の寸法は、前記螺旋管の前記疎巻き部の外周面と前記外層部の内径との差よりも、前記螺旋管の前記密巻き部の外周面と前記外層部の内径との差が大きくなるように設定されていることを特徴とする請求項1に記載の可撓管。   The size of the gap generated by the difference between the inner diameter of the outer layer portion and the outer diameter of the spiral tube is greater than the difference between the outer peripheral surface of the loosely wound portion and the inner diameter of the outer layer portion of the spiral tube. The flexible tube according to claim 1, wherein the flexible tube is set so that a difference between an outer peripheral surface of the tightly wound portion and an inner diameter of the outer layer portion is increased. 前記隙間は、前記螺旋管における前記密巻き部と前記疎巻き部とが先端から交互に設けられる部分の全長に渡って設けられることを特徴とする請求項1に記載の可撓管。   2. The flexible tube according to claim 1, wherein the gap is provided over the entire length of a portion of the spiral tube in which the densely wound portion and the loosely wound portion are alternately provided from the tip. 前記外層部内には、線状の素線を螺旋状に巻回して前記長手軸方向に沿って、延伸する弾性部材から構成される第2の螺旋管が一体的に設けられていることを特徴とする請求項1に記載の可撓管。   In the outer layer portion, a second spiral tube is integrally provided which is formed of an elastic member which is wound in a spiral shape with a linear wire and extends along the longitudinal axis direction. The flexible tube according to claim 1. 請求項1に記載の可撓管を有する内視鏡。   An endoscope having the flexible tube according to claim 1.
JP2017511975A 2015-06-19 2016-04-05 Endoscope using flexible tube and flexible tube Pending JPWO2016203821A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015123624 2015-06-19
JP2015123624 2015-06-19
PCT/JP2016/061156 WO2016203821A1 (en) 2015-06-19 2016-04-05 Flexible tube and endoscope using flexible tube

Publications (1)

Publication Number Publication Date
JPWO2016203821A1 true JPWO2016203821A1 (en) 2017-08-03

Family

ID=57545208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017511975A Pending JPWO2016203821A1 (en) 2015-06-19 2016-04-05 Endoscope using flexible tube and flexible tube

Country Status (2)

Country Link
JP (1) JPWO2016203821A1 (en)
WO (1) WO2016203821A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104234A (en) * 1987-10-16 1989-04-21 Olympus Optical Co Ltd Flexible tube for endoscope
JPH0520702U (en) * 1991-09-03 1993-03-19 旭光学工業株式会社 Flexible tube for endoscope
JP2009213775A (en) * 2008-03-12 2009-09-24 Fujifilm Corp Flexible tube for endoscope
JP2009226008A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Flexible tube for endoscope
WO2015083645A1 (en) * 2013-12-06 2015-06-11 オリンパス株式会社 Flexible pipe section for endoscope and endoscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104234A (en) * 1987-10-16 1989-04-21 Olympus Optical Co Ltd Flexible tube for endoscope
JPH0520702U (en) * 1991-09-03 1993-03-19 旭光学工業株式会社 Flexible tube for endoscope
JP2009213775A (en) * 2008-03-12 2009-09-24 Fujifilm Corp Flexible tube for endoscope
JP2009226008A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Flexible tube for endoscope
WO2015083645A1 (en) * 2013-12-06 2015-06-11 オリンパス株式会社 Flexible pipe section for endoscope and endoscope

Also Published As

Publication number Publication date
WO2016203821A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
US9192288B2 (en) Endoscope
JP6109449B1 (en) Flexible tube, insertion device using the flexible tube, and endoscope
JP5885889B2 (en) Endoscope
AU2006213225A1 (en) Flexible tube for endoscope, and endoscope device
JP6157787B1 (en) Endoscope
JP6121077B1 (en) Endoscope using flexible tube and flexible tube
WO2015029503A1 (en) Endoscope
US9883789B2 (en) Flexible tube for endoscope, and endoscope
JP5021346B2 (en) Endoscope guide tube and endoscope apparatus
JP5897237B1 (en) Endoscope
JP2014113320A (en) Flexible tube of endoscope and endoscope including flexible tube
JP2008206699A (en) Wire member for bending operation of endoscope and method for manufacturing the same
WO2016088771A1 (en) Flexible tube and insertion device
WO2016203821A1 (en) Flexible tube and endoscope using flexible tube
JP6869350B2 (en) Flexible tubes for endoscopes and endoscopes
JPWO2021229792A5 (en)
JPH07213481A (en) Soft endoscope
JP2018121668A (en) Flexible tube, and endoscope using flexible tube
JP2001137178A (en) Endoscope
JP6402285B1 (en) Endoscope
KR101984951B1 (en) Endoscope tube steering structure
JP4394478B2 (en) Endoscope curvature
JP4583838B2 (en) Endoscope flexible tube
WO2017154172A1 (en) Flexible treatment instrument and medical tube
JP2020014487A (en) Endoscope

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170912