JPWO2016181993A1 - Copolymer, secondary battery electrode binder, secondary battery electrode composition, secondary battery electrode - Google Patents

Copolymer, secondary battery electrode binder, secondary battery electrode composition, secondary battery electrode Download PDF

Info

Publication number
JPWO2016181993A1
JPWO2016181993A1 JP2017517964A JP2017517964A JPWO2016181993A1 JP WO2016181993 A1 JPWO2016181993 A1 JP WO2016181993A1 JP 2017517964 A JP2017517964 A JP 2017517964A JP 2017517964 A JP2017517964 A JP 2017517964A JP WO2016181993 A1 JPWO2016181993 A1 JP WO2016181993A1
Authority
JP
Japan
Prior art keywords
copolymer
vinylacetamide
binder
secondary battery
monomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017517964A
Other languages
Japanese (ja)
Other versions
JP6878273B2 (en
Inventor
菅原 篤
篤 菅原
小西 淳
淳 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2016181993A1 publication Critical patent/JPWO2016181993A1/en
Application granted granted Critical
Publication of JP6878273B2 publication Critical patent/JP6878273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

不飽和カルボン酸単量体、不飽和カルボン酸単量体の塩、不飽和カルボン酸エステル単量体、ビニルエステル単量体、不飽和ニトリル単量体からなる群から選ばれる少なくとも1種の単量体と、N−ビニルアセトアミドとの共重合体であり、前記共重合体が、N−ビニルアセトアミド由来の構成単位のモル数と、前記N−ビニルアセトアミド由来の他の構成単位のモル数との比が、1.00:0.010〜1.00:0.250である共重合体とする。At least one unit selected from the group consisting of unsaturated carboxylic acid monomers, salts of unsaturated carboxylic acid monomers, unsaturated carboxylic acid ester monomers, vinyl ester monomers, and unsaturated nitrile monomers. A copolymer of N-vinylacetamide, and the copolymer includes a number of moles of a structural unit derived from N-vinylacetamide and a number of moles of another structural unit derived from N-vinylacetamide. The ratio is 1.00: 0.010 to 1.00: 0.250.

Description

本発明は、共重合体、二次電池の電極用バインダー、二次電池の電極用組成物、二次電池用電極に関する。
本出願は、2015年5月11日に日本に出願された特願2015−096330に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a copolymer, a binder for an electrode of a secondary battery, an electrode composition for a secondary battery, and an electrode for a secondary battery.
This application claims priority based on Japanese Patent Application No. 2015-096330 filed in Japan on May 11, 2015, the contents of which are incorporated herein by reference.

二次電池は、携帯電話などの民生機器用バッテリーや、ハイブリッド電気自動車、プラグインハイブリッド電気自動車、電気自動車などの車載用バッテリーとして用いられている。中でも、リチウムイオンバッテリーは、優れたエネルギー密度および充放電サイクル寿命を有しているため、広く利用されている。   The secondary battery is used as a battery for consumer equipment such as a mobile phone, and an in-vehicle battery such as a hybrid electric vehicle, a plug-in hybrid electric vehicle, and an electric vehicle. Among these, lithium ion batteries are widely used because they have excellent energy density and charge / discharge cycle life.

リチウムイオンバッテリーの正極は、アルミニウム箔などで形成された集電体と、集電体上に形成された活物質層とを有している。活物質層は、コバルト酸リチウムなどのリチウム遷移金属酸化物を含む活物質と、カーボンブラックなどの導電助剤と、バインダーとを含む。活物質層に含まれるバインダーは、活物質層を集電体上に固着させる結着材としての役割を担っている。活物質層は、一般に、バインダーを溶解させた溶媒中に、活物質などの活物質層の材料を分散させて活物質溶液とし、これを集電体上に塗布する方法により形成されている。   The positive electrode of the lithium ion battery has a current collector formed of aluminum foil or the like, and an active material layer formed on the current collector. The active material layer includes an active material containing a lithium transition metal oxide such as lithium cobalt oxide, a conductive aid such as carbon black, and a binder. The binder contained in the active material layer plays a role as a binder for fixing the active material layer on the current collector. The active material layer is generally formed by a method in which an active material layer material such as an active material is dispersed in a solvent in which a binder is dissolved to form an active material solution, which is applied onto a current collector.

現在、リチウムイオンバッテリーの正極では、主にバインダーとして、フッ素含有樹脂であるポリフッ化ビニリデン(PVDF)が用いられている。しかし、PVDFは、集電体との結着性が不十分である。
また、環境問題などへの将来的な対応から、近年、二次電池の電極用バインダーの溶媒として水を適用することが望まれている。しかし、PVDFは、N−メチル−2−ピロリドン(NMP)などの特殊な高極性溶媒にしか溶解しない。このため、水にも溶解または分散可能なバインダーが望まれている。
Currently, in the positive electrode of a lithium ion battery, polyvinylidene fluoride (PVDF), which is a fluorine-containing resin, is mainly used as a binder. However, PVDF has insufficient binding properties with the current collector.
In addition, in recent years, it is desired to apply water as a solvent for a binder for an electrode of a secondary battery in order to cope with environmental problems in the future. However, PVDF is only soluble in special high polarity solvents such as N-methyl-2-pyrrolidone (NMP). For this reason, a binder that can be dissolved or dispersed in water is desired.

結着性に優れる二次電池の電極用バインダーとして、例えば、特許文献1には、ヘキサフルオロプロピレンとフッ化ビニリデンとの共重合体を主成分とするフッ素ゴムや、トリフルオロクロルエチレンとフッ化ビニリデンとの共重合体を主成分とするフッ素ゴムを用いることが提案されている。
また、特許文献2には、−CH−CF−、−CF(CF)−CF−、−CF−CF−より主として構成されるフッ素系高分子共重合体を、バインダーとして用いることが提案されている。
また、特許文献3では、N−ビニルホルムアミド単位を有する重合体をバインダーとして使用することが提案されている。
As a binder for an electrode of a secondary battery having excellent binding properties, for example, Patent Document 1 discloses fluororubber mainly composed of a copolymer of hexafluoropropylene and vinylidene fluoride, and trifluorochloroethylene and fluoride. It has been proposed to use a fluororubber whose main component is a copolymer with vinylidene.
In Patent Document 2, a fluorine-based polymer copolymer mainly composed of —CH 2 —CF 2 —, —CF (CF 3 ) —CF 2 —, and —CF 2 —CF 2 — is used as a binder. It has been proposed to use.
Patent Document 3 proposes the use of a polymer having an N-vinylformamide unit as a binder.

特開平4−95363号公報JP-A-4-95363 特公平8−4007号公報Japanese Patent Publication No. 8-4007 国際公開第2012/176895号International Publication No. 2012/176895

しかしながら、従来の二次電池の電極用バインダーは、集電体との結着力が不十分であった。このため、従来の二次電池の電極では、活物質層が集電体から剥離する場合があった。二次電池の電極では、活物質層の剥離は、二次電池の性能寿命および安全性に大きく関わる。   However, the binder for electrodes of the conventional secondary battery has insufficient binding force with the current collector. For this reason, in the electrode of the conventional secondary battery, the active material layer may peel from the current collector. In the secondary battery electrode, the separation of the active material layer greatly affects the performance life and safety of the secondary battery.

また、従来の二次電池の電極では、活物質層に含まれる電極用バインダーが電解液に浸漬することより膨潤することが問題となっていた。活物質層に含まれる電極用バインダーが膨潤すると、活物質層の集電体からの剥離が促進されたり、活物質層の内部抵抗が増大して二次電池の性能が劣化したりする場合がある。   Moreover, in the electrode of the conventional secondary battery, it has been a problem that the electrode binder contained in the active material layer swells when immersed in the electrolytic solution. When the binder for an electrode contained in the active material layer swells, peeling of the active material layer from the current collector is promoted, or the internal resistance of the active material layer increases and the performance of the secondary battery may deteriorate. is there.

また、従来の二次電池の電極用バインダーでは、カーボンブラックなどの導電助剤を分散させる能力が不充分であった。このため、活物質層を形成する場合には、活物質溶液中にバインダーの他に分散剤を含有させる必要があった。分散剤は、二次電池内の内部抵抗を上昇させる因子となる場合がある。このため、含有しないことが望ましい。   In addition, conventional secondary battery electrode binders have insufficient ability to disperse a conductive auxiliary such as carbon black. For this reason, when forming an active material layer, it was necessary to contain a dispersing agent in addition to a binder in the active material solution. The dispersant may be a factor that increases the internal resistance in the secondary battery. For this reason, it is desirable not to contain.

本発明は、上記事情に鑑みてなされたものであり、水に対する溶解性、二次電池の電極を形成する際に通常使用されているNMPに対する溶解性、集電体との結着性、導電助剤の分散性に優れ、電解液に浸漬した場合の膨潤が抑制された共重合体であって、二次電池の電極用バインダーの材料として好適な共重合体を提供することを課題とする。
また、本発明は、上記の共重合体を含む二次電池の電極用バインダー、二次電池の電極用組成物および二次電池用電極を提供することを課題とする。
The present invention has been made in view of the above circumstances, and is soluble in water, soluble in NMP, which is usually used when forming an electrode of a secondary battery, binding with a current collector, electrical conductivity. An object of the present invention is to provide a copolymer excellent in dispersibility of an auxiliary agent and suppressed in swelling when immersed in an electrolyte solution, and suitable as a material for a binder for an electrode of a secondary battery. .
Moreover, this invention makes it a subject to provide the binder for electrodes of a secondary battery containing the said copolymer, the composition for electrodes of a secondary battery, and the electrode for secondary batteries.

本発明者は、上記課題を解決するために、水溶性単量体であるN−ビニルアセトアミドに着目し、鋭意検討した。
その結果、不飽和カルボン酸単量体、不飽和カルボン酸単量体の塩、不飽和カルボン酸エステル単量体、ビニルエステル単量体、不飽和ニトリル単量体からなる群から選ばれる少なくとも1種の単量体と、N−ビニルアセトアミドとの共重合体であって、N−ビニルアセトアミド由来の構成単位を十分に含む共重合体を、二次電池の電極用バインダーとして用いればよいことを見出し、本発明を想到した。
In order to solve the above-mentioned problems, the present inventor has paid attention to N-vinylacetamide, which is a water-soluble monomer, and has made extensive studies.
As a result, at least one selected from the group consisting of unsaturated carboxylic acid monomers, salts of unsaturated carboxylic acid monomers, unsaturated carboxylic acid ester monomers, vinyl ester monomers, and unsaturated nitrile monomers. What is necessary is just to use the copolymer which is a copolymer of a seed monomer and N-vinylacetamide, and fully contains the structural unit derived from N-vinylacetamide as a binder for electrodes of a secondary battery. The inventor came up with the present invention.

すなわち、本発明は以下の事項に関する。
(1) 不飽和カルボン酸単量体、不飽和カルボン酸単量体の塩、不飽和カルボン酸エステル単量体、ビニルエステル単量体、不飽和ニトリル単量体からなる群から選ばれる少なくとも1種の単量体と、N−ビニルアセトアミドとの共重合体であり、前記共重合体が、N−ビニルアセトアミド由来の構成単位のモル数と、前記N−ビニルアセトアミド由来の他の構成単位のモル数との比が、1.00:0.010〜1.00:0.250である共重合体。
(2) 不飽和カルボン酸単量体、不飽和カルボン酸単量体の塩、不飽和カルボン酸エステル単量体、ビニルエステル単量体、不飽和ニトリル単量体からなる群から選ばれる少なくとも1種の単量体が、溶解度パラメーターが13(cal/cm1/2以下である(1)に記載の共重合体。
That is, the present invention relates to the following matters.
(1) At least one selected from the group consisting of an unsaturated carboxylic acid monomer, a salt of an unsaturated carboxylic acid monomer, an unsaturated carboxylic acid ester monomer, a vinyl ester monomer, and an unsaturated nitrile monomer. It is a copolymer of a seed monomer and N-vinylacetamide, and the copolymer comprises the number of moles of the structural unit derived from N-vinylacetamide and other structural units derived from N-vinylacetamide. The copolymer whose ratio with the number of moles is 1.00: 0.010-1.00: 0.250.
(2) At least one selected from the group consisting of an unsaturated carboxylic acid monomer, a salt of an unsaturated carboxylic acid monomer, an unsaturated carboxylic acid ester monomer, a vinyl ester monomer, and an unsaturated nitrile monomer. The copolymer according to (1), wherein the seed monomer has a solubility parameter of 13 (cal / cm 3 ) 1/2 or less.

(3) 前記不飽和カルボン酸単量体が(メタ)アクリル酸である(1)に記載の共重合体。
(4) 前記不飽和カルボン酸エステル単量体が(メタ)アクリル酸エステルである(1)に記載の共重合体。
(5) 前記ビニルエステル単量体が酢酸ビニルである(1)に記載の共重合体。
(6) 前記不飽和ニトリル単量体がアクリロニトリルである(1)に記載の共重合体。
(7) (1)〜(6)のいずれかに記載の共重合体と、フッ素含有樹脂とを含み、前記共重合体と前記フッ素含有樹脂との合計量に対して、前記フッ素含有樹脂が90質量%以下である二次電池の電極用バインダー。
(3) The copolymer according to (1), wherein the unsaturated carboxylic acid monomer is (meth) acrylic acid.
(4) The copolymer according to (1), wherein the unsaturated carboxylic acid ester monomer is a (meth) acrylic acid ester.
(5) The copolymer according to (1), wherein the vinyl ester monomer is vinyl acetate.
(6) The copolymer according to (1), wherein the unsaturated nitrile monomer is acrylonitrile.
(7) The copolymer according to any one of (1) to (6) and a fluorine-containing resin, wherein the fluorine-containing resin is in a total amount of the copolymer and the fluorine-containing resin. The binder for electrodes of the secondary battery which is 90 mass% or less.

(8) (1)〜(6)のいずれかに記載の共重合体と、溶媒と、活物質と、導電助剤とを含む二次電池の電極用組成物。
(9) 集電体と、集電体上に形成された活物質層とを有し、前記活物質層が、活物質と、導電助剤と、(1)〜(6)のいずれかに記載の共重合体とを含む二次電池用電極。
(8) A composition for an electrode of a secondary battery, comprising the copolymer according to any one of (1) to (6), a solvent, an active material, and a conductive additive.
(9) It has an electrical power collector and the active material layer formed on the electrical power collector, and the said active material layer is an active material, a conductive support agent, and in any one of (1)-(6) The electrode for secondary batteries containing the copolymer of description.

本発明の共重合体は、水に対する溶解性、二次電池の電極を形成する際に通常使用されているNMPに対する溶解性、集電体との結着性、導電助剤の分散性に優れ、電解液に浸漬した場合の膨潤が抑制されたものである。したがって、本発明の共重合体は、二次電池の電極用バインダーとして好適である。   The copolymer of the present invention is excellent in solubility in water, solubility in NMP usually used when forming an electrode of a secondary battery, binding property with a current collector, and dispersibility of a conductive auxiliary agent. Swelling when immersed in an electrolytic solution is suppressed. Therefore, the copolymer of the present invention is suitable as a binder for electrodes of secondary batteries.

また、本発明の二次電池の電極用組成物は、水およびNMPに対する溶解性に優れるとともに、導電助剤の分散性に優れる本発明の共重合体を含む。このため、本発明の二次電池の電極用組成物は、共重合体を溶媒に溶解し、これに活物質と導電助剤とを分散させることにより、分散剤を用いることなく、容易に製造できる。また、本発明の二次電池の電極用組成物は、これを集電体上に塗布して乾燥することにより、集電体との結着性に優れ、電解液に浸漬した場合の膨潤が抑制された活物質層を形成できる。   Moreover, the composition for electrodes of the secondary battery of the present invention includes the copolymer of the present invention having excellent solubility in water and NMP and excellent dispersibility of the conductive auxiliary agent. For this reason, the composition for an electrode of the secondary battery of the present invention can be easily manufactured without using a dispersant by dissolving the copolymer in a solvent and dispersing the active material and the conductive additive therein. it can. In addition, the composition for an electrode of the secondary battery of the present invention is excellent in binding property with the current collector by applying the composition on a current collector and drying, and swelling when immersed in an electrolytic solution. A suppressed active material layer can be formed.

また、本発明の二次電池用電極は、活物質層が本発明の共重合体を含む。このため、活物質層と集電体との結着力が優れ、電解液に浸漬した場合の膨潤が抑制された活物質層を有する。したがって、本発明の二次電池用電極は、二次電池の劣化を抑制できる。   Moreover, as for the electrode for secondary batteries of this invention, an active material layer contains the copolymer of this invention. For this reason, it has the active material layer which was excellent in the binding force of an active material layer and an electrical power collector, and the swelling at the time of being immersed in electrolyte solution was suppressed. Therefore, the secondary battery electrode of the present invention can suppress deterioration of the secondary battery.

引張試験を行った試験体の形状と引張試験の状況を示す図である。It is a figure which shows the shape of the test body which performed the tension test, and the condition of a tension test.

以下、本実施形態の共重合体、二次電池の電極用バインダー、二次電池の電極用組成物、二次電池用電極について詳細に説明する。
「共重合体、二次電池の電極用バインダー」
本実施形態の共重合体は、不飽和カルボン酸単量体、不飽和カルボン酸単量体の塩、不飽和カルボン酸エステル単量体、ビニルエステル単量体、不飽和ニトリル単量体からなる群から選ばれる少なくとも1種の単量体と、N−ビニルアセトアミドとの共重合体(以下、「N−ビニルアセトアミド共重合体」という場合がある。)である。
Hereinafter, the copolymer of this embodiment, the binder for electrodes of a secondary battery, the composition for electrodes of a secondary battery, and the electrode for secondary batteries will be described in detail.
"Copolymer, binder for secondary battery electrodes"
The copolymer of this embodiment comprises an unsaturated carboxylic acid monomer, a salt of an unsaturated carboxylic acid monomer, an unsaturated carboxylic acid ester monomer, a vinyl ester monomer, and an unsaturated nitrile monomer. It is a copolymer of at least one monomer selected from the group and N-vinylacetamide (hereinafter sometimes referred to as “N-vinylacetamide copolymer”).

N−ビニルアセトアミド共重合体の重合に用いるN−ビニルアセトアミドの他の単量体(以下、「他の単量体」という場合がある。)は、不飽和カルボン酸単量体、不飽和カルボン酸単量体の塩、不飽和カルボン酸エステル単量体、ビニルエステル単量体、不飽和ニトリル単量体からなる群から選ばれる少なくとも1種の単量体である。
他の単量体としては、SP値δ(溶解度パラメーター)がN−ビニルアセトアミド(SP値δ(fedors推算法)13(cal/cm1/2)と比較して非極性側である(SP値が小さい)ものを用いることが好ましい。
Other monomers of N-vinylacetamide used for the polymerization of N-vinylacetamide copolymer (hereinafter sometimes referred to as “other monomers”) are unsaturated carboxylic acid monomers, unsaturated carboxylic acids. It is at least one monomer selected from the group consisting of a salt of an acid monomer, an unsaturated carboxylic acid ester monomer, a vinyl ester monomer, and an unsaturated nitrile monomer.
As another monomer, the SP value δ (solubility parameter) is non-polar compared to N-vinylacetamide (SP value δ (fedors estimation method) 13 (cal / cm 3 ) 1/2 ) ( It is preferable to use one having a small SP value.

本実施形態ではN−ビニルアセトアミド共重合体が、N−ビニルアセトアミド由来の構成単位を十分に含む。このため、他の単量体としてSP値δがN−ビニルアセトアミド以下(13(cal/cm1/2以下)のものを用いた場合、N−ビニルアセトアミド共重合体のSP値δがNMP(SP値δ(fedors推算法)11.3(cal/cm1/2)に近いものとなる。SP値δがNMPに近いN−ビニルアセトアミド共重合体は、NMPに対する溶解性に優れるため、好ましい。In this embodiment, the N-vinylacetamide copolymer sufficiently contains a structural unit derived from N-vinylacetamide. Therefore, when the other monomer having an SP value δ of N-vinylacetamide or less (13 (cal / cm 3 ) 1/2 or less) is used, the SP value δ of the N-vinylacetamide copolymer is It is close to NMP (SP value δ (fedors estimation method) 11.3 (cal / cm 3 ) 1/2 ). An N-vinylacetamide copolymer having an SP value δ close to NMP is preferable because of its excellent solubility in NMP.

SP値δがN−ビニルアセトアミドと比較して非極性側であって、N−ビニルアセトアミド共重合体の重合に用いる他の単量体として好適な単量体としては、例えば、表1に示す化合物が挙げられる。表1に、他の単量体として用いることができる単量体と、N−ビニルアセトアミドと、NMPの、fedors推算法を用いて算出したSP値δを示す。   Examples of monomers suitable for use as other monomers for the polymerization of the N-vinylacetamide copolymer having an SP value δ that is nonpolar compared to N-vinylacetamide are shown in Table 1, for example. Compounds. Table 1 shows the SP value δ calculated using the fedors estimation method for monomers that can be used as other monomers, N-vinylacetamide, and NMP.

Figure 2016181993
Figure 2016181993

N−ビニルアセトアミド共重合体の重合に用いる不飽和カルボン酸単量体は、重合性の不飽和基とカルボキシル基とを含む構造を有する。N−ビニルアセトアミド共重合体の重合に用いる不飽和カルボン酸単量体の塩は、上記の不飽和カルボン酸単量体に含まれるカルボキシル基の水素原子が金属等に置換されたものである。   The unsaturated carboxylic acid monomer used for the polymerization of the N-vinylacetamide copolymer has a structure containing a polymerizable unsaturated group and a carboxyl group. The salt of the unsaturated carboxylic acid monomer used for the polymerization of the N-vinylacetamide copolymer is obtained by replacing the hydrogen atom of the carboxyl group contained in the unsaturated carboxylic acid monomer with a metal or the like.

N−ビニルアセトアミド共重合体の重合において、N−ビニルアセトアミドの他の単量体として、不飽和カルボン酸単量体および/またはその塩を含む場合、単量体の有する重合性の不飽和基によって、N−ビニルアセトアミドと共重合できる。また、重合後に得られるN−ビニルアセトアミド共重合体は、極性基であるカルボキシル基を含む構造を有する。このため、金属表面との高い水素結合力が得られる。したがって、この共重合体を含む電極用バインダーを用いて金属からなる集電体上に活物質層を設けた場合、集電体との結着性に優れる活物質層が得られる。   In the polymerization of the N-vinylacetamide copolymer, when an unsaturated carboxylic acid monomer and / or a salt thereof is included as another monomer of N-vinylacetamide, the polymerizable unsaturated group of the monomer Can be copolymerized with N-vinylacetamide. Moreover, the N-vinylacetamide copolymer obtained after superposition | polymerization has a structure containing the carboxyl group which is a polar group. For this reason, high hydrogen bond strength with the metal surface is obtained. Therefore, when an active material layer is provided on a current collector made of metal using an electrode binder containing this copolymer, an active material layer having excellent binding properties with the current collector can be obtained.

他の単量体に用いる不飽和カルボン酸単量体および/またはその塩としては、具体的には、アクリル酸、メタクリル酸、クロトン酸、並びにこれらのアンモニウム塩、有機アミン塩、1価金属塩、2価金属塩が好ましい。これらの中でも特に、不飽和カルボン酸単量体および/またはその塩として、(メタ)アクリル酸および/またはその塩を用いることが好ましい。集電体との結着性を高めるとともに電解液に浸漬した場合の膨潤を抑制する観点から、不飽和カルボン酸単量体および/またはその塩として、アクリル酸またはその塩が好ましい。塩については、安定性の観点からナトリウム塩、アンモニウム塩が好ましい。   Specific examples of unsaturated carboxylic acid monomers and / or salts thereof used for other monomers include acrylic acid, methacrylic acid, crotonic acid, and ammonium salts, organic amine salts, and monovalent metal salts thereof. Divalent metal salts are preferred. Among these, it is preferable to use (meth) acrylic acid and / or a salt thereof as the unsaturated carboxylic acid monomer and / or a salt thereof. Acrylic acid or a salt thereof is preferable as the unsaturated carboxylic acid monomer and / or a salt thereof from the viewpoint of enhancing the binding property with the current collector and suppressing the swelling when immersed in the electrolytic solution. The salt is preferably a sodium salt or an ammonium salt from the viewpoint of stability.

本明細書において「(メタ)アクリル酸」とは、アクリル酸またはメタクリル酸を意味する。   In this specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid.

N−ビニルアセトアミド共重合体の重合に用いる不飽和カルボン酸エステル単量体としては、SP値δが13(cal/cm1/2以下であるものが好ましい。このような不飽和カルボン酸エステル単量体としては、(メタ)アクリル酸エステルが挙げられる。具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル等が挙げられる。これらの中でも特に、N−ビニルアセトアミドとの相互作用による凝集力向上が期待できるため、不飽和カルボン酸エステル単量体としてメタクリル酸メチルまたはアクリル酸メチルを用いることが好ましい。The unsaturated carboxylic acid ester monomer used for the polymerization of the N-vinylacetamide copolymer is preferably one having an SP value δ of 13 (cal / cm 3 ) 1/2 or less. Examples of such unsaturated carboxylic acid ester monomers include (meth) acrylic acid esters. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isopropyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth ) Methoxyethyl acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and the like. Among these, it is preferable to use methyl methacrylate or methyl acrylate as the unsaturated carboxylic acid ester monomer because an improvement in cohesive force due to interaction with N-vinylacetamide can be expected.

N−ビニルアセトアミド共重合体の重合において、他の単量体として不飽和カルボン酸エステル単量体を含む場合、重合後に得られるN−ビニルアセトアミド共重合体には、アミド基よりもNMPに対する親和性の高いエステル部位を含まれる。このため、NMPに対する溶解性に優れるN−ビニルアセトアミド共重合体となる。また、他の単量体として不飽和カルボン酸エステル単量体を含む場合、N−ビニルアセトアミドと不飽和カルボン酸エステル単量体との配合量の比率を調整することで、重合後に得られるN−ビニルアセトアミド共重合体の電解液への親和性を調整できる。   In the polymerization of an N-vinylacetamide copolymer, when an unsaturated carboxylic acid ester monomer is included as another monomer, the N-vinylacetamide copolymer obtained after the polymerization has an affinity for NMP rather than an amide group. Highly ester site is included. For this reason, it becomes the N-vinylacetamide copolymer excellent in the solubility with respect to NMP. In addition, when an unsaturated carboxylic acid ester monomer is included as another monomer, N obtained after polymerization is adjusted by adjusting the ratio of the amount of N-vinylacetamide and the unsaturated carboxylic acid ester monomer. -The affinity of the vinylacetamide copolymer to the electrolyte can be adjusted.

N−ビニルアセトアミド共重合体の重合に用いるビニルエステル単量体としては、SP値δが13(cal/cm1/2以下であるものが好ましい。このようなビニルエステル単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、ラウリル酸ビニル、デカン酸ビニル、ステアリン酸ビニル、ヘキサン酸ビニル、オクタン酸ビニル、パルミチン酸ビニル等が挙げられる。これらのビニルエステル単量体の中でも特に、反応速度および分子サイズがN−ビニルアセトアミドと類似しているため、酢酸ビニルを用いることが好ましい。As the vinyl ester monomer used for the polymerization of the N-vinylacetamide copolymer, those having an SP value δ of 13 (cal / cm 3 ) 1/2 or less are preferable. Examples of such vinyl ester monomers include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl laurate, vinyl decanoate, vinyl stearate, vinyl hexanoate, vinyl octoate, and vinyl palmitate. Etc. Among these vinyl ester monomers, it is preferable to use vinyl acetate because the reaction rate and molecular size are similar to those of N-vinylacetamide.

N−ビニルアセトアミド共重合体の重合において、他の単量体としてビニルエステル単量体を含む場合、N−ビニルアセトアミドとの共重合性が高く、好ましい。これは、ビニルエステル単量体がN−ビニルアセトアミドと同様に、Q値(共役効果)が0.2以下である非共役系モノマーであるためである。   In the polymerization of the N-vinylacetamide copolymer, when a vinyl ester monomer is included as another monomer, the copolymerizability with N-vinylacetamide is high, which is preferable. This is because the vinyl ester monomer is a non-conjugated monomer having a Q value (conjugation effect) of 0.2 or less, like N-vinylacetamide.

N−ビニルアセトアミド共重合体の重合に用いる不飽和ニトリル単量体としては、SP値δが13(cal/cm1/2以下であるものが好ましい。このような不飽和ニトリル単量体としては、例えば、アクリロニトリル、メタクリロニトリル、α-アルキルアクリロニトリルなどが挙げられる。これらの不飽和ニトリル単量体の中でも特に、N−ビニルアセトアミドとの共重合性および電気化学的安定性の観点からアクリロニトリルを用いることが好ましい。The unsaturated nitrile monomer used for the polymerization of the N-vinylacetamide copolymer is preferably one having an SP value δ of 13 (cal / cm 3 ) 1/2 or less. Examples of such unsaturated nitrile monomers include acrylonitrile, methacrylonitrile, α-alkylacrylonitrile and the like. Among these unsaturated nitrile monomers, acrylonitrile is preferably used from the viewpoints of copolymerizability with N-vinylacetamide and electrochemical stability.

N−ビニルアセトアミド共重合体の重合において、他の単量体として不飽和ニトリル単量体を含む場合、共重合において構造的に交互性が期待できるとともに、電気化学的安定性が向上する。これは、不飽和ニトリル単量体のe値(極性効果)が0超であってN−ビニルアセトアミドのe値が−1.57であり、双方の反応速度比の積が1未満であるためである。   In the polymerization of the N-vinylacetamide copolymer, when an unsaturated nitrile monomer is included as another monomer, structural alternation can be expected in the copolymerization, and electrochemical stability is improved. This is because the e-value (polar effect) of the unsaturated nitrile monomer is greater than 0 and the e-value of N-vinylacetamide is −1.57, and the product of both reaction rate ratios is less than 1. It is.

N−ビニルアセトアミド共重合体は、N−ビニルアセトアミド由来の構成単位のモル数と、前記N−ビニルアセトアミド由来の他の構成単位のモル数との比(N−ビニルアセトアミド由来の構成単位:他の構成単位)が、1.00:0.010〜1.00:0.250である。   The N-vinylacetamide copolymer is a ratio of the number of moles of structural units derived from N-vinylacetamide to the number of moles of other structural units derived from N-vinylacetamide (structural units derived from N-vinylacetamide: other Is 1.00: 0.010-1.00: 0.250.

N−ビニルアセトアミド共重合体が、N−ビニルアセトアミド由来の構成単位を1.00とした場合の前記N−ビニルアセトアミド由来の他の構成単位のモル数の比が0.250を超えるものであると、水に対する溶解性が不足する。また、上記の構成単位のモル数の比が0.250を超えるN−ビニルアセトアミド共重合体は、この共重合体を含む活物質層が集電体上に設けられた二次電池用電極を形成した場合に、電解液によって活物質層が大きく膨潤する。このため、活物質層が集電体から剥離したり、活物質層の内部抵抗が増大して二次電池の性能が劣化したりする。N−ビニルアセトアミド共重合体は、上記の構成単位のモル数の比が0.150以下のものであることが好ましく、0.100以下のものであることがより好ましい。   The N-vinylacetamide copolymer has a molar ratio of other structural units derived from N-vinylacetamide exceeding 0.250 when the structural unit derived from N-vinylacetamide is 1.00. And solubility in water is insufficient. The N-vinylacetamide copolymer having a molar ratio of the above structural units exceeding 0.250 is a secondary battery electrode in which an active material layer containing this copolymer is provided on a current collector. When formed, the active material layer is greatly swollen by the electrolytic solution. For this reason, an active material layer peels from a collector, or the internal resistance of an active material layer increases, and the performance of a secondary battery deteriorates. The N-vinylacetamide copolymer preferably has a molar ratio of the above structural units of 0.150 or less, more preferably 0.100 or less.

また、上記の構成単位のモル数の比が0.010未満であるN−ビニルアセトアミド共重合体は、二次電池の電極を形成する際に通常使用されているNMPに対する溶解性が不足する。また、上記の構成単位のモル数の比が0.010未満であるN−ビニルアセトアミド共重合体は、フッ素含有樹脂に対する相溶性が不充分となる。これらのことから、N−ビニルアセトアミド共重合体は、上記の構成単位のモル数の比が0.010以上であるものとし、0.050以上のものであることが好ましい。   In addition, the N-vinylacetamide copolymer having a molar ratio of the above structural units of less than 0.010 has insufficient solubility in NMP that is usually used when forming an electrode of a secondary battery. Further, the N-vinylacetamide copolymer having a molar ratio of the above structural units of less than 0.010 has insufficient compatibility with the fluorine-containing resin. For these reasons, the N-vinylacetamide copolymer has a molar ratio of the above structural units of 0.010 or more, and preferably 0.050 or more.

N−ビニルアセトアミド共重合体の重量平均分子量は、これを含む電極用組成物を製造する際の粘性の調整のしやすさ、導電助剤の分散性、これを含む活物質層を形成した場合の集電体との結着性などの観点から、0.1〜300万であることが好ましく、10〜150万であることがより好ましい。N−ビニルアセトアミド共重合体の重量平均分子量が0.1万以上であると、電解液に浸漬した場合の膨潤が抑制された二次電池の電極用バインダーが得られやすい。N−ビニルアセトアミド共重合体の重量平均分子量が300万以下であると、この共重合体を含む電極用組成物を製造した場合に、塗工しやすい粘度の電極用組成物が得られやすい。   The weight average molecular weight of the N-vinylacetamide copolymer is such that the viscosity can be easily adjusted when the electrode composition containing the N-vinylacetamide copolymer is produced, the dispersibility of the conductive assistant, and the active material layer containing the same are formed. From the standpoint of binding properties to the current collector, it is preferably 0.1 to 3 million, more preferably 10 to 1.5 million. When the weight average molecular weight of the N-vinylacetamide copolymer is 10,000 or more, it is easy to obtain a binder for an electrode of a secondary battery in which swelling when immersed in an electrolytic solution is suppressed. When the weight average molecular weight of the N-vinylacetamide copolymer is 3 million or less, when an electrode composition containing this copolymer is produced, an electrode composition having a viscosity that is easy to apply is easily obtained.

本実施形態におけるN−ビニルアセトアミド共重合体の重量平均分子量とは、以下に示す方法により算出した値である。GPC−MALS(多角度光散乱検出器)による各分子量帯のN−ビニルアセトアミドの絶対分子量の測定結果から作成した較正曲線を用いて、N−ビニルアセトアミド共重合体のGPC(ゲル透過クロマトグラフィー)測定の結果から算出した値である。   The weight average molecular weight of the N-vinylacetamide copolymer in the present embodiment is a value calculated by the following method. GPC (gel permeation chromatography) of N-vinylacetamide copolymer using a calibration curve created from the measurement result of absolute molecular weight of N-vinylacetamide in each molecular weight band by GPC-MALS (multi-angle light scattering detector) It is a value calculated from the measurement result.

本実施形態のN−ビニルアセトアミド共重合体は、二次電池の電極用バインダーとして単独で用いることができる。
電極用バインダーは、N−ビニルアセトアミド共重合体の他に、1種または2種以上のフッ素含有樹脂を含むものであってもよい。
フッ素含有樹脂としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニル(PVF)などが挙げられる。
The N-vinylacetamide copolymer of this embodiment can be used alone as a binder for an electrode of a secondary battery.
The electrode binder may contain one or more fluorine-containing resins in addition to the N-vinylacetamide copolymer.
Examples of the fluorine-containing resin include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), and polyvinyl fluoride (PVF).

N−ビニルアセトアミド共重合体は、フッ素含有樹脂との相溶性に優れる。このため、N−ビニルアセトアミド共重合体とフッ素含有樹脂とは、任意の割合で混合して用いることができる。
N−ビニルアセトアミド共重合体の他に、フッ素含有樹脂を含む電極用バインダーでは、フッ素含有樹脂を単独で用いる場合と比較して、導電助剤の分散性に優れ、電解液に浸漬した場合の膨潤が抑制された電極用バインダーとなるとともに、これを含む活物質層を製造した場合に集電体との結着性に優れるものとなる。
The N-vinylacetamide copolymer is excellent in compatibility with the fluorine-containing resin. Therefore, the N-vinylacetamide copolymer and the fluorine-containing resin can be mixed and used at an arbitrary ratio.
In addition to the N-vinylacetamide copolymer, the electrode binder containing a fluorine-containing resin is superior in the dispersibility of the conductive auxiliary agent compared to the case where the fluorine-containing resin is used alone, and when immersed in an electrolytic solution. In addition to being a binder for an electrode in which swelling is suppressed, when an active material layer containing the binder is produced, the binder with the current collector is excellent.

本実施形態の二次電池の電極用バインダーがフッ素含有樹脂を含む場合、N−ビニルアセトアミド共重合体とフッ素含有樹脂との合計量に対するフッ素含有樹脂の含有量は90質量%以下であることが好ましく、より好ましくは70質量%以下、さらに好ましくは50質量%以下であり、1質量%以上が好ましい。電極用バインダー中のフッ素含有樹脂の含有量が少ないほど、電極用バインダー中にN−ビニルアセトアミド共重合体が含まれていることによる効果が顕著となる。前記合計量に対するフッ素含有樹脂の含有量が50質量%以下であると、後述する剥離強度が十分に得られるとともに、導電助剤の分散性に優れる。   When the binder for electrodes of the secondary battery of this embodiment contains a fluorine-containing resin, the content of the fluorine-containing resin relative to the total amount of the N-vinylacetamide copolymer and the fluorine-containing resin is 90% by mass or less. More preferably, it is 70 mass% or less, More preferably, it is 50 mass% or less, and 1 mass% or more is preferable. The smaller the content of the fluorine-containing resin in the electrode binder, the more remarkable the effect due to the N-vinylacetamide copolymer being contained in the electrode binder. When the content of the fluorine-containing resin with respect to the total amount is 50% by mass or less, the peel strength described later is sufficiently obtained and the dispersibility of the conductive additive is excellent.

本実施形態の二次電池の電極用バインダーは、後述する方法によって測定した剥離強度が0.015N/m以上であることが好ましい。剥離強度が0.015N/m以上であると、この電極用バインダーを含む活物質層を有する二次電池用電極を形成した場合に、活物質層と集電体との結着力が充分に得られる。   The electrode binder of the secondary battery of the present embodiment preferably has a peel strength of 0.015 N / m or more measured by a method described later. When the peel strength is 0.015 N / m or more, when a secondary battery electrode having an active material layer containing the electrode binder is formed, sufficient binding force between the active material layer and the current collector is obtained. It is done.

また、本実施形態の二次電池の電極用バインダーは、後述する方法によって測定した電解液浸漬膨潤率が10%以下であることが好ましい。電解液浸漬膨潤率が10%以下であると、この電極用バインダーを含む活物質層を有する二次電池用電極を備える二次電池を形成した場合に、活物質層内での活物質と導電助剤との距離を適正に保つことができる。また、電解液浸漬膨潤率が10%以下であると、電極用バインダーを含む活物質層において、活物質層が膨潤することによりバインダーが電解液中へ溶け出すことを防止できる。これらのことにより、電解液浸漬膨潤率が10%以下であると、二次電池の性能劣化を防止できる。   Moreover, it is preferable that the binder for electrodes of the secondary battery of this embodiment has an electrolytic solution immersion swelling ratio measured by a method described later of 10% or less. When the electrolytic solution immersion swelling rate is 10% or less, when a secondary battery including an electrode for a secondary battery having an active material layer containing the electrode binder is formed, the active material and the conductive material in the active material layer are electrically conductive. The distance from the auxiliary agent can be kept appropriate. Moreover, it can prevent that a binder melt | dissolves in electrolyte solution because an active material layer swells in the active material layer containing the binder for electrodes as electrolyte solution immersion swelling rate is 10% or less. By these things, the performance deterioration of a secondary battery can be prevented as electrolyte solution immersion swelling rate is 10% or less.

本実施形態の二次電池の電極用バインダーは、二次電池の正極用に用いてもよいし、負極用に用いてもよい。   The binder for an electrode of the secondary battery of this embodiment may be used for the positive electrode of the secondary battery or may be used for the negative electrode.

「共重合体の製造方法、二次電池の電極用バインダーの製造方法」
次に、本実施形態の共重合体を製造する方法および二次電池の電極用バインダーを製造する方法について説明する。
本実施形態の二次電池の電極用バインダーを製造するには、まず、以下に示す方法により、N−ビニルアセトアミド共重合体を製造する。
"Method for producing copolymer, method for producing binder for electrode of secondary battery"
Next, a method for producing the copolymer of the present embodiment and a method for producing a binder for an electrode of a secondary battery will be described.
In order to manufacture the binder for an electrode of the secondary battery of the present embodiment, first, an N-vinylacetamide copolymer is manufactured by the following method.

N−ビニルアセトアミド共重合体は、反応装置内にて、不飽和カルボン酸単量体、不飽和カルボン酸単量体の塩、不飽和カルボン酸エステル単量体、ビニルエステル単量体、不飽和ニトリル単量体からなる群から選ばれる少なくとも1種の単量体(他の単量体)と、N−ビニルアセトアミドとを、重合開始剤の存在下で重合反応させることにより製造できる。   N-vinylacetamide copolymer is used in the reaction apparatus to produce unsaturated carboxylic acid monomer, salt of unsaturated carboxylic acid monomer, unsaturated carboxylic acid ester monomer, vinyl ester monomer, unsaturated It can be produced by polymerizing at least one monomer (other monomer) selected from the group consisting of nitrile monomers and N-vinylacetamide in the presence of a polymerization initiator.

N−ビニルアセトアミド共重合体の重合に用いる単量体の合計量(N−ビニルアセトアミドと他の単量体との合計量)のうちのN−ビニルアセトアミドの割合は、85.0〜99.9質量%であることが好ましい。N−ビニルアセトアミド共重合体の重合に用いるN−ビニルアセトアミドの割合が85.0〜99.9質量%であると、N−ビニルアセトアミド由来の構成単位のモル数と、前記N−ビニルアセトアミド由来の他の構成単位のモル数との比(N−ビニルアセトアミド由来の構成単位:他の構成単位)が、1.00:0.010〜1.00:0.250であるN−ビニルアセトアミド共重合体が容易に得られる。   The ratio of N-vinylacetamide in the total amount of monomers used for polymerization of the N-vinylacetamide copolymer (total amount of N-vinylacetamide and other monomers) is 85.0 to 99.99. It is preferably 9% by mass. When the ratio of N-vinylacetamide used for the polymerization of the N-vinylacetamide copolymer is 85.0 to 99.9% by mass, the number of moles of the structural unit derived from N-vinylacetamide and the above-mentioned N-vinylacetamide origin N-vinylacetamide copolymer in which the ratio of other structural units to the number of moles (structural units derived from N-vinylacetamide: other structural units) is 1.00: 0.010-1.00: 0.250 A polymer is easily obtained.

N−ビニルアセトアミド共重合体を製造する重合法としては、特に限定されるものではない。例えば、溶液重合、滴下重合、逆相懸濁重合、乳化重合、沈殿重合等の重合法が使用可能である。この中でも特に、N−ビニルアセトアミド共重合体の重合法としては、沈殿重合法が適している。   The polymerization method for producing the N-vinylacetamide copolymer is not particularly limited. For example, polymerization methods such as solution polymerization, dropping polymerization, reverse phase suspension polymerization, emulsion polymerization, and precipitation polymerization can be used. Of these, precipitation polymerization is particularly suitable as a method for polymerizing the N-vinylacetamide copolymer.

N−ビニルアセトアミド共重合体を製造する際には、重合に用いる単量体の全てを重合開始前に反応容器に供給してもよいし、重合に用いる単量体の一部を重合中の反応容器に供給してもよい。重合に用いる単量体の一部を重合中の反応容器に供給する場合、溶媒中に溶解した単量体を反応容器に供給することが好ましい。   When producing the N-vinylacetamide copolymer, all of the monomers used for the polymerization may be supplied to the reaction vessel before the start of the polymerization, or a part of the monomers used for the polymerization may be supplied during the polymerization. You may supply to a reaction container. When supplying a part of monomer used for polymerization to the reaction vessel during polymerization, it is preferable to supply the monomer dissolved in the solvent to the reaction vessel.

特に、重合に用いる単量体の合計量中における他の単量体の割合が5質量%を超える場合には、重合に用いる他の単量体の一部と溶媒との混和物を、重合中の反応容器に供給する方法を用いることが好ましい。これは、N−ビニルアセトアミドと他の単量体との反応速度の差を適正に制御するためである。なお、N−ビニルアセトアミド共重合体として、単量体成分が局在化(ブロック構造化)されたものを製造する場合には、予め重合に用いる単量体の全てを溶媒中に溶解混合しておく方法を用いることが好ましい。   In particular, when the proportion of other monomers in the total amount of monomers used for polymerization exceeds 5% by mass, a mixture of a part of other monomers used for polymerization and a solvent is polymerized. It is preferable to use the method of supplying to the reaction vessel inside. This is to properly control the difference in reaction rate between N-vinylacetamide and other monomers. In the case of producing an N-vinylacetamide copolymer in which the monomer component is localized (block structure), all monomers used for polymerization are dissolved and mixed in a solvent in advance. It is preferable to use a method that keeps the data.

N−ビニルアセトアミド共重合体を製造する際には、重合に用いる溶媒の全てを重合開始前に反応容器に供給してもよいし、重合に用いる溶媒の一部を重合中の反応容器に供給してもよい。   When the N-vinylacetamide copolymer is produced, all of the solvent used for the polymerization may be supplied to the reaction vessel before the start of polymerization, or a part of the solvent used for the polymerization is supplied to the reaction vessel during the polymerization. May be.

N−ビニルアセトアミド共重合体の重合反応に用いる溶媒としては、N−ビニルアセトアミド共重合体の重合に用いる上記の単量体が溶解し、生成する共重合体が析出する溶媒を用いることが好ましい。また、重合反応を行う際には、上記の単量体が溶解しやすい溶媒を使用し、共重合体の合成後、共重合体の析出しやすい別の溶媒を用いて共重合体を析出させてもよい。   As the solvent used for the polymerization reaction of the N-vinylacetamide copolymer, it is preferable to use a solvent in which the monomer used for the polymerization of the N-vinylacetamide copolymer is dissolved and the resulting copolymer is precipitated. . In addition, when performing the polymerization reaction, a solvent in which the above monomer is easily dissolved is used. After synthesizing the copolymer, the copolymer is precipitated using another solvent in which the copolymer is easily precipitated. May be.

N−ビニルアセトアミド共重合体の重合反応に用いられる溶媒としては、一般的にビニル化合物の重合反応で使用できる溶媒を使用できる。具体的には、例えば、水、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ベンゼン、トルエン、メタノール、エタノール、イソプロパノール等が挙げられる。上記溶媒の中でも特に酢酸エチルを用いることが好ましい。   As a solvent used for the polymerization reaction of the N-vinylacetamide copolymer, a solvent that can be generally used for the polymerization reaction of a vinyl compound can be used. Specific examples include water, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, methanol, ethanol, isopropanol, and the like. Of these solvents, it is particularly preferable to use ethyl acetate.

本実施形態では、溶媒として有機溶媒を用いる重合法で製造することにより、重量平均分子量が0.1〜150万であるN−ビニルアセトアミド共重合体が容易に得られる。また、溶媒として水を用いる重合法で製造することにより、重量平均分子量が5〜300万程度であるN−ビニルアセトアミド共重合体が容易に得られる。   In this embodiment, an N-vinylacetamide copolymer having a weight average molecular weight of 0.1 to 1,500,000 can be easily obtained by producing by a polymerization method using an organic solvent as a solvent. Moreover, the N-vinylacetamide copolymer whose weight average molecular weight is about 5 to 3 million is easily obtained by manufacturing by the polymerization method using water as a solvent.

N−ビニルアセトアミド共重合体の重合に用いる重合開始剤としては、ビニル化合物のラジカル重合に一般的に使用されるものを限定することなく使用できる。具体的には、ナトリウム、カリウムおよびアンモニウム等の過硫酸塩、過酸化ベンゾイル、過酸化水素、過酸化カプロイル、ナトリウムパーアセテーロ、ナトリウムパーカーボネート等の過酸素化合物、アゾビスイソブチロニトリル、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス[N−(カルボキシエチル)−2−メチルプロピオンアミド]、2,2’−アゾビス{2−[N−(2−カルボキシルエチル)アミジノ]プロパン}、ジメチル2,2’−アゾビス(2−メチルプロピオネート)、2,2’−アゾビス(2−メチルプロピオン酸)等のアゾ化合物などが挙げられる。   As a polymerization initiator used for the polymerization of the N-vinylacetamide copolymer, those generally used for radical polymerization of vinyl compounds can be used without limitation. Specifically, persulfates such as sodium, potassium and ammonium, benzoyl peroxide, hydrogen peroxide, caproyl peroxide, peroxygen compounds such as sodium peracetello, sodium percarbonate, azobisisobutyronitrile, 2 , 2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [N- (carboxyethyl) -2-methylpropionamide], 2,2′-azobis {2- [N- (2 Azo compounds such as -carboxylethyl) amidino] propane}, dimethyl 2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylpropionic acid), and the like.

上記の重合開始剤の中でも特に、有機溶媒に溶解可能なアゾビスイソブチロニトリルまたはジメチル−2,2’−アゾビス(2−メチルプロピオネート)を用いることが好ましい。さらに、重合開始剤として、ニトリル基及びハロゲンを含有していないジメチル−2,2’−アゾビス(2−メチルプロピオネート)を用いることが最も好ましい。
また、重合開始剤の使用量は、重合反応を開始、進行させることができればよく、例えば、重合に用いる単量体の合計の100質量部に対して0.005〜5.0質量部の範囲とすることができ、特に規定されるものではない。
Among the above polymerization initiators, it is particularly preferable to use azobisisobutyronitrile or dimethyl-2,2′-azobis (2-methylpropionate) that can be dissolved in an organic solvent. Furthermore, it is most preferable to use dimethyl-2,2′-azobis (2-methylpropionate) containing no nitrile group and halogen as the polymerization initiator.
Moreover, the usage-amount of a polymerization initiator should just be able to start and advance a polymerization reaction, for example, the range of 0.005-5.0 mass part with respect to 100 mass parts of the sum total of the monomer used for superposition | polymerization. And is not particularly specified.

N−ビニルアセトアミド共重合体を製造する際の反応温度は、30〜120℃であることが好ましい。上記範囲の反応温度とすることにより、N−ビニルアセトアミド共重合体の重合に適した反応速度で重合できる。反応温度は、重合開始から終了まで一定としてもよいし、重合反応中に変化させてもよい。   The reaction temperature when producing the N-vinylacetamide copolymer is preferably 30 to 120 ° C. By setting the reaction temperature within the above range, polymerization can be performed at a reaction rate suitable for polymerization of the N-vinylacetamide copolymer. The reaction temperature may be constant from the start to the end of the polymerization, or may be changed during the polymerization reaction.

N−ビニルアセトアミド共重合体の重合は、ラジカル重合であり、酸素の影響が大きいことから窒素ガス雰囲気中で行うことが好ましい。
本実施形態においては、重合反応によりN−ビニルアセトアミド共重合体を含む反応生成物を得た後に、必要に応じて溶媒を用いて反応生成物を洗浄してもよい。
The polymerization of the N-vinylacetamide copolymer is radical polymerization and is preferably performed in a nitrogen gas atmosphere because of the large influence of oxygen.
In this embodiment, after obtaining a reaction product containing an N-vinylacetamide copolymer by a polymerization reaction, the reaction product may be washed using a solvent as necessary.

このようにして得られたN−ビニルアセトアミド共重合体は、単独で二次電池の電極用バインダーとして用いることができる。
また、本実施形態の二次電池の電極用バインダーが、N−ビニルアセトアミド共重合体と、1種または2種以上のフッ素含有樹脂とを含む場合には、上記の製造方法により得られたN−ビニルアセトアミド共重合体と、1種または2種以上のフッ素含有樹脂とを前述の割合で混合したものを、二次電池の電極用バインダーとして用いることができる。
The N-vinylacetamide copolymer thus obtained can be used alone as a binder for an electrode of a secondary battery.
Moreover, when the binder for electrodes of the secondary battery of this embodiment contains an N-vinylacetamide copolymer and one or more fluorine-containing resins, the N obtained by the above production method. -What mixed the vinyl acetamide copolymer and 1 type, or 2 or more types of fluorine-containing resin in the above-mentioned ratio can be used as a binder for the electrodes of a secondary battery.

「二次電池の電極用組成物」
本実施形態の二次電池の電極用組成物は、本実施形態のN−ビニルアセトアミド共重合体と、溶媒と、活物質と、導電助剤とを含む。
溶媒としては、例えば、NMP、水、メタノール、ブタノール、プロピレングリコールモノメチルエーテル、ジメチルスルホキシド、エチレングリコールなどのN−ビニルアセトアミド共重合体が溶解する溶媒を用いることができる。
"Electrode composition for secondary battery"
The composition for electrodes of the secondary battery of this embodiment includes the N-vinylacetamide copolymer of this embodiment, a solvent, an active material, and a conductive additive.
As the solvent, for example, a solvent in which an N-vinylacetamide copolymer such as NMP, water, methanol, butanol, propylene glycol monomethyl ether, dimethyl sulfoxide, or ethylene glycol is dissolved can be used.

活物質としては、例えば、コバルト酸リチウムなどのリチウム遷移金属酸化物など、活物質として用いられる従来公知のものを、二次電池の用途等に応じて用いることができる。
導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛など、二次電池の用途等に応じて、導電助剤として用いられる従来公知のものを用いることができる。
As the active material, for example, a conventionally known material used as an active material such as a lithium transition metal oxide such as lithium cobaltate can be used depending on the use of the secondary battery.
As a conductive support agent, conventionally well-known things used as a conductive support agent can be used according to the use etc. of a secondary battery, such as carbon black, acetylene black, and graphite, for example.

本実施形態の二次電池の電極用組成物は、必要に応じて、N−ビニルアセトアミド共重合体と溶媒と活物質と導電助剤以外に、1種または2種以上のフッ素含有樹脂を含むものであってもよいし、従来公知の添加剤を含むものであってもよい。   The composition for an electrode of the secondary battery according to the present embodiment includes one or more fluorine-containing resins in addition to the N-vinylacetamide copolymer, the solvent, the active material, and the conductive auxiliary as necessary. It may be a thing and a conventionally well-known additive may be included.

本実施形態の二次電池の電極用組成物は、例えば、以下に示す方法により製造できる。
まず、本実施形態のN−ビニルアセトアミド共重合体と、必要に応じて含有される1種または2種以上のフッ素含有樹脂とを溶媒に溶解させる。次いで、N−ビニルアセトアミド共重合体(または、N−ビニルアセトアミド共重合体およびフッ素含有樹脂)の溶解した溶媒中に、活物質と導電助剤と必要に応じて含有される添加剤とを分散させる方法により得られる。
The composition for electrodes of the secondary battery of the present embodiment can be produced, for example, by the method shown below.
First, the N-vinylacetamide copolymer of this embodiment and one or more fluorine-containing resins contained as necessary are dissolved in a solvent. Next, an active material, a conductive additive, and an additive contained as necessary are dispersed in a solvent in which the N-vinylacetamide copolymer (or N-vinylacetamide copolymer and fluorine-containing resin) is dissolved. It is obtained by the method.

「二次電池用電極」
本実施形態の二次電池用電極は、集電体と、集電体上に形成された活物質層とを有する。
集電体としては、アルミニウム箔、ステンレス箔、銅箔などの金属箔を用いることができる。集電体としては、特に、本実施形態の二次電池の電極用バインダーとの結着性が良好であるアルミニウム箔を用いることが好ましい。
活物質層は、活物質と、導電助剤と、本実施形態のN−ビニルアセトアミド共重合体とを含む。活物質層は、本実施形態の二次電池の電極用組成物を、集電体上に塗布して乾燥させることにより製造されたものである。
"Secondary battery electrodes"
The electrode for secondary batteries of this embodiment has a current collector and an active material layer formed on the current collector.
As the current collector, a metal foil such as an aluminum foil, a stainless steel foil, or a copper foil can be used. As the current collector, it is particularly preferable to use an aluminum foil that has good binding properties with the binder for electrodes of the secondary battery of the present embodiment.
The active material layer includes an active material, a conductive additive, and the N-vinylacetamide copolymer of the present embodiment. The active material layer is manufactured by applying the electrode composition of the secondary battery of the present embodiment on a current collector and drying it.

本実施形態のN−ビニルアセトアミド共重合体は、N−ビニルアセトアミド由来の構成単位のモル数と、前記N−ビニルアセトアミド由来の他の構成単位のモル数との比が、1.00:0.010〜1.00:0.250である。このため、本実施形態のN−ビニルアセトアミド共重合体は、水およびNMPに対する溶解性、集電体との結着性、導電助剤の分散性に優れ、電解液に浸漬した場合の膨潤が抑制されたものである。   In the N-vinylacetamide copolymer of this embodiment, the ratio of the number of moles of the structural unit derived from N-vinylacetamide to the number of moles of the other structural unit derived from N-vinylacetamide is 1.00: 0. 0.010 to 1.00: 0.250. For this reason, the N-vinylacetamide copolymer of this embodiment is excellent in solubility in water and NMP, binding property with the current collector, and dispersibility of the conductive auxiliary agent, and swelling when immersed in the electrolytic solution. It has been suppressed.

しかも、本実施形態のN−ビニルアセトアミド共重合体は、NMPおよび水に対する増粘性を有しているため塗工しやすく、二次電池の電極用バインダーとして好適である。また、本実施形態のN−ビニルアセトアミド共重合体をNMPまたは水に溶解させた溶液は、容易に増粘し、高い結着力が得られる。このため、本実施形態のN−ビニルアセトアミド共重合体を含む電極用組成物を製造する際には、粘度および結着力を向上させるための混練工程を行わなくてもよいし、混練工程を行う場合であっても例えばPVDFを用いる場合と比較して簡略化できる。   Moreover, the N-vinylacetamide copolymer of the present embodiment has a thickening property against NMP and water, so that it is easy to apply and is suitable as a binder for electrodes of secondary batteries. Moreover, the solution which melt | dissolved the N-vinylacetamide copolymer of this embodiment in NMP or water easily thickens, and high binding force is obtained. For this reason, when manufacturing the composition for electrodes containing the N-vinylacetamide copolymer of this embodiment, it is not necessary to perform the kneading | mixing process for improving a viscosity and binding force, and a kneading | mixing process is performed. Even if it is a case, it can simplify compared with the case where PVDF is used, for example.

また、本実施形態の二次電池の電極用バインダーがフッ素含有樹脂を含まない場合は、これを用いて製造した二次電池が熱暴走などによって高温になっても、腐食性酸成分が発生しないため、好ましい。   Further, when the electrode binder of the secondary battery of this embodiment does not contain a fluorine-containing resin, no corrosive acid component is generated even if the secondary battery produced using the binder becomes high temperature due to thermal runaway or the like. Therefore, it is preferable.

また、本実施形態の電極用組成物は、NMPおよび水に対する溶解性に優れるとともに、導電助剤の分散性に優れる本実施形態のN−ビニルアセトアミド共重合体を含む。このため、本実施形態の電極用組成物は、N−ビニルアセトアミド共重合体を溶媒に溶解し、これに活物質と導電助剤とを分散させることにより、分散剤を用いることなく、容易に製造できる。また、本実施形態の電極用組成物は、これを集電体上に塗布して乾燥することにより、集電体との結着性に優れ、電解液に浸漬した場合の膨潤が抑制された活物質層を形成できる。   The electrode composition of the present embodiment includes the N-vinylacetamide copolymer of the present embodiment, which is excellent in solubility in NMP and water and excellent in dispersibility of the conductive additive. For this reason, the electrode composition of the present embodiment can be easily dissolved without using a dispersant by dissolving an N-vinylacetamide copolymer in a solvent and dispersing the active material and the conductive additive therein. Can be manufactured. In addition, the electrode composition of the present embodiment was coated on a current collector and dried, thereby being excellent in binding property with the current collector and suppressing swelling when immersed in an electrolytic solution. An active material layer can be formed.

また、本実施形態の二次電池用電極は、活物質層が本実施形態のN−ビニルアセトアミド共重合体を含む。このため、活物質層と集電体との結着力が優れ、電解液に浸漬した場合の膨潤が抑制された活物質層を有する。したがって、本実施形態の二次電池用電極によれば、二次電池の劣化を防止できる。   In the secondary battery electrode of the present embodiment, the active material layer includes the N-vinylacetamide copolymer of the present embodiment. For this reason, it has the active material layer which was excellent in the binding force of an active material layer and an electrical power collector, and the swelling at the time of being immersed in electrolyte solution was suppressed. Therefore, according to the secondary battery electrode of the present embodiment, the deterioration of the secondary battery can be prevented.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれら実施例に限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

(実施例1〜8、比較例2)
N−ビニルアセトアミドと、表2に示す他の単量体とを、表2に示す質量比(N−ビニルアセトアミド/他の単量体)で用い、重合開始剤としてジメチル−2,2’−アゾビス(2−メチルプロピオネート)(商品名:V−601(油溶性アゾ重合開始剤)和光純薬製)を、単量体の合計100質量部に対して表3に示す含有量(質量部)で使用し、以下に示す方法により重合し、実施例1〜8、比較例2の共重合体(バインダー)を得た。表2に実施例1〜8、比較例2のバインダーのポリマー形態を示す。
(Examples 1-8, Comparative Example 2)
N-vinylacetamide and other monomers shown in Table 2 were used at a mass ratio shown in Table 2 (N-vinylacetamide / other monomers), and dimethyl-2,2′- as a polymerization initiator. Content (mass) shown in Table 3 for azobis (2-methylpropionate) (trade name: V-601 (oil-soluble azo polymerization initiator) manufactured by Wako Pure Chemical Industries, Ltd.) with respect to 100 parts by mass in total of the monomers. The copolymer (binder) of Examples 1 to 8 and Comparative Example 2 was obtained by polymerization using the method described below. Table 2 shows polymer forms of the binders of Examples 1 to 8 and Comparative Example 2.

(比較例1)
重合に用いる単量体としてN−ビニルアセトアミドのみを用い、表3に示す重合開始剤を、N−ビニルアセトアミド100質量部に対して表3に示す含有量(質量部)で使用し、以下に示す方法により重合し、比較例1のバインダーを得た。表2に比較例1のバインダーのポリマー形態を示す。
(Comparative Example 1)
Only N-vinylacetamide was used as a monomer used for polymerization, and the polymerization initiator shown in Table 3 was used at a content (parts by mass) shown in Table 3 with respect to 100 parts by mass of N-vinylacetamide. Polymerization was performed by the method shown to obtain a binder of Comparative Example 1. Table 2 shows the polymer form of the binder of Comparative Example 1.

(比較例3)
フッ素含有樹脂であるポリフッ化ビニリデン(商品名:Kynar PVDF 760:ARKEMA社製)を用いた。
(Comparative Example 3)
Polyvinylidene fluoride (trade name: Kynar PVDF 760: manufactured by ARKEMA), which is a fluorine-containing resin, was used.

「実施例1、2、4〜6、8の共重合体(バインダー)の製造方法」
反応容器として3つ口セパラブルフラスコを用意し、窒素ガス挿入管、攪拌機、溶媒滴下装置、温度計を装着した。次に、反応容器内に、初期仕込み酢酸エチルと、酢酸エチルに対して質量比で20%のN−ビニルアセトアミドとを入れ、撹拌しながら窒素流入下で表3に示す重合開始温度まで反応容器内を昇温した。初期仕込み酢酸エチルの反応容器に対する容積比を表3に示す。
続いて、反応容器内を重合開始温度で維持しつつ、反応容器内に表2に示す他の単量体を表2に示す質量比となるように投入し、一定時間経過後に重合開始剤を表3に示す割合で投入した。
"Method for producing copolymers (binders) of Examples 1, 2, 4 to 6, 8"
A three-neck separable flask was prepared as a reaction vessel, and a nitrogen gas insertion tube, a stirrer, a solvent dropping device, and a thermometer were attached. Next, in the reaction vessel, initially charged ethyl acetate and N-vinylacetamide at a mass ratio of 20% with respect to ethyl acetate were added, and the reaction vessel was stirred up to the polymerization start temperature shown in Table 3 under nitrogen flow. The inside was heated up. Table 3 shows the volume ratio of the initially charged ethyl acetate to the reaction vessel.
Subsequently, while maintaining the inside of the reaction vessel at the polymerization initiation temperature, the other monomers shown in Table 2 were charged into the reaction vessel so as to have the mass ratio shown in Table 2, and after a certain time had elapsed, the polymerization initiator was added. The proportions shown in Table 3 were added.

その後、酢酸エチルを滴下しながら撹拌速度を段階的に上昇させ、表3に示す重合時間で重合反応させた。反応生成物は粉として析出した。その後、反応生成物を吸引濾過し、酢酸エチルを用いて洗浄し、表3に示す乾燥温度および乾燥時間で、窒素ガスを用いて風乾することにより、バインダーを得た。   Thereafter, the stirring speed was increased stepwise while dropping ethyl acetate, and the polymerization reaction was carried out with the polymerization time shown in Table 3. The reaction product precipitated as a powder. Thereafter, the reaction product was filtered with suction, washed with ethyl acetate, and air-dried with nitrogen gas at the drying temperature and drying time shown in Table 3 to obtain a binder.

「実施例3、7の共重合体(バインダー)の製造方法」
表3に示す初期仕込み酢酸エチルの反応容器に対する容積比(50%)としたことと、重合開始温度を62℃としたことと、他の単量体と重合開始剤とを同時に投入したこと以外は、実施例1、2、4〜6、8と同様にして重合した。
“Method for Producing Copolymer (Binder) of Examples 3 and 7”
Except that the volume ratio (50%) of the initially charged ethyl acetate to the reaction vessel shown in Table 3 was set, that the polymerization initiation temperature was 62 ° C., and that other monomers and a polymerization initiator were added simultaneously. Was polymerized in the same manner as in Examples 1, 2, 4 to 6, and 8.

「比較例1のバインダーの製造方法」
反応容器内に、他の単量体を投入しなかったこと以外は、実施例1、2、4〜6、8と同様にして重合した。
"Method for producing binder of Comparative Example 1"
Polymerization was carried out in the same manner as in Examples 1, 2, 4 to 6 and 8, except that no other monomer was charged into the reaction vessel.

「比較例2の共重合体(バインダー)の製造方法」
実施例1、2、4〜6、8と同様にして、反応容器内に他の単量体を投入する前までの工程を行った後、表3に示す割合で重合開始剤を投入した。その後、酢酸エチルにて20質量%に希釈した他の単量体を表2に示す質量比となるように反応容器内に滴下し、表3に示す重合時間で重合反応させた。実施例1、2、4〜6、8と同様にして反応生成物を吸引濾過し、酢酸エチルを用いて洗浄し、表3に示す乾燥温度および乾燥時間で、窒素ガスを用いて風乾することにより、バインダーを得た。
“Method for Producing Copolymer (Binder) of Comparative Example 2”
In the same manner as in Examples 1, 2, 4 to 6, and 8, after performing the steps up to the addition of another monomer into the reaction vessel, the polymerization initiator was added at the ratio shown in Table 3. Thereafter, another monomer diluted to 20% by mass with ethyl acetate was dropped into the reaction vessel so as to have a mass ratio shown in Table 2, and a polymerization reaction was carried out with a polymerization time shown in Table 3. The reaction product is suction filtered in the same manner as in Examples 1, 2, 4 to 6, and 8, washed with ethyl acetate, and air-dried with nitrogen gas at the drying temperature and drying time shown in Table 3. Thus, a binder was obtained.

表3に実施例1〜8および比較例1、2の重合反応条件を記載した。   Table 3 shows the polymerization reaction conditions of Examples 1 to 8 and Comparative Examples 1 and 2.

Figure 2016181993
Figure 2016181993

Figure 2016181993
Figure 2016181993

次に、実施例1〜8、比較例1、2のバインダーについて、HPLC(高速液体クロマトグラフィー)法にて残留単量体の測定を実施し、重合反応が完了していることを確認した。   Next, residual monomers were measured by HPLC (high performance liquid chromatography) for the binders of Examples 1 to 8 and Comparative Examples 1 and 2, and it was confirmed that the polymerization reaction was completed.

また、実施例1〜8、比較例1、2のバインダーについて、NMR(核磁気共鳴)測定により構造状態を確認した。具体的には、H−NMRでの実施例1〜8、比較例1、2の各バインダー(共重合体)中におけるN−ビニルアセトアミドおよび他の単量体由来のメチレン/メチン/メチルのプロトンの積算の比と13C−NMRにより各単量体由来のC=Oの積算の比により、その含有量を求めた。これを用いてN−ビニルアセトアミド由来およびその他の構成単位の割合(モル比)を求めた。なお、他の単量体として2種類の単量体を含む実施例8については、N−ビニルアセトアミド由来の他の2種類の構成単位について、その割合(モル比)をそれぞれ算出し、その合計値をN−ビニルアセトアミド由来の他の構成単位の割合(モル比)とした。その結果を表4に示す。Moreover, about the binder of Examples 1-8 and Comparative Examples 1 and 2, the structural state was confirmed by NMR (nuclear magnetic resonance) measurement. Specifically, methylene / methine / methyl derived from N-vinylacetamide and other monomers in the binders (copolymers) of Examples 1 to 8 and Comparative Examples 1 and 2 in 1 H-NMR. The content was determined from the ratio of proton accumulation and the ratio of C═O accumulation derived from each monomer by 13 C-NMR. Using this, the ratio (molar ratio) of N-vinylacetamide-derived and other structural units was determined. In addition, about Example 8 which contains two types of monomers as another monomer, the ratio (molar ratio) is calculated about other two types of structural units derived from N-vinylacetamide, respectively, and the total The value was the ratio (molar ratio) of other structural units derived from N-vinylacetamide. The results are shown in Table 4.

Figure 2016181993
Figure 2016181993

次に、実施例1〜8、比較例1〜3のバインダーについて、下記の各項目について調べた。その結果を表5に示す。   Next, the following items were examined for the binders of Examples 1 to 8 and Comparative Examples 1 to 3. The results are shown in Table 5.

Figure 2016181993
Figure 2016181993

(N−メチル−2−ピロリドン(NMP)および純水へのバインダーの溶解性)
密栓付ガラス瓶にNMPを入れ、バインダーの濃度が5質量%となるようにバインダーを添加して密栓した。そして、密栓付ガラス瓶を、手動で20回上下に振ってNMPとバインダーとを混合した。その後、密栓付ガラス瓶を20℃の恒温器内に静置し、バインダーの溶解状態を目視にて確認することにより、完全に溶解するまでに要する時間を測定した。
また、密栓付ガラス瓶に純水を入れ、バインダーの濃度が10質量%となるようにバインダーを添加したこと以外は、上記NMPへのバインダーの溶解性と同様にして、完全に溶解するまでに要する時間を測定した。
(Solubility of binder in N-methyl-2-pyrrolidone (NMP) and pure water)
NMP was placed in a glass bottle with a tight stopper, and the binder was added and sealed so that the binder concentration was 5% by mass. And the glass bottle with a sealing stopper was shaken up and down manually 20 times, and NMP and the binder were mixed. Thereafter, the glass bottle with a tight stopper was left in a thermostat at 20 ° C., and the time required for complete dissolution was measured by visually confirming the dissolution state of the binder.
In addition, it is necessary to completely dissolve in the same manner as the solubility of the binder in NMP except that pure water is put into a glass bottle with a stopper and the binder is added so that the concentration of the binder is 10% by mass. Time was measured.

(溶液粘度)
バインダーを5質量%の濃度でNMPに溶解させたバインダー溶液を、容器に入れた。その容器を、20℃に調温した循環型恒温水槽内に静置した。その後、容器に入れられたバインダー溶液の温度が20℃に調整されていることを確認し、下記の条件にて粘度を測定した。
また、バインダーを10質量%の濃度で純水に溶解させたバインダー溶液の粘度を、上記のバインダーをNMPに溶解させたバインダー溶液と同様にして測定した。
(Solution viscosity)
A binder solution in which the binder was dissolved in NMP at a concentration of 5% by mass was put in a container. The container was allowed to stand in a circulation type constant temperature water bath adjusted to 20 ° C. Then, it confirmed that the temperature of the binder solution put into the container was adjusted to 20 degreeC, and measured the viscosity on the following conditions.
The viscosity of the binder solution in which the binder was dissolved in pure water at a concentration of 10% by mass was measured in the same manner as the binder solution in which the binder was dissolved in NMP.

粘度計:DVE(ブルックフィールド)粘度計
スピンドル:No.4スピンドル
回転数:50rpm
温度:20℃
測定時間:粘度計のスピンドルをバインダー溶液中に入れ、スピンドルの回転を開始してから30分後の値を測定値とした。
Viscometer: DVE (Brookfield) viscometer Spindle: No. 4 spindle Rotation speed: 50 rpm
Temperature: 20 ° C
Measurement time: The viscometer spindle was placed in the binder solution, and the value 30 minutes after the spindle started rotating was taken as the measured value.

(電解液浸漬膨潤率)
バインダーを5質量%の濃度となるようにNMPに溶解させてシャーレに入れ、150℃で4時間、真空で乾燥し、1mm厚のフィルムを作成した。得られたフィルムを縦1cmの横1cm正方形に切出して質量を精秤した。
次いで、精秤したフィルムを試験管中の電解液(エチルカーボネート/ジメチルカーボネート/プロピレンカーボネート=1/1/1(体積比))に浸漬した。そして、フィルムと電解液を入れた試験管を95〜98℃に調整した温浴に入れ、30分後に温浴から出した。その後、電解液中からフィルムを取り出した。フィルムに付着した電解液をふき取ってフィルムの質量を精秤した。
(Electrolytic solution immersion swelling rate)
The binder was dissolved in NMP so as to have a concentration of 5% by mass, placed in a petri dish, and dried in vacuum at 150 ° C. for 4 hours to form a 1 mm thick film. The obtained film was cut into a 1 cm horizontal square with a length of 1 cm, and the mass was precisely weighed.
Subsequently, the precisely weighed film was immersed in an electrolytic solution (ethyl carbonate / dimethyl carbonate / propylene carbonate = 1/1/1 (volume ratio)) in a test tube. And the test tube which put the film and electrolyte solution was put into the warm bath adjusted to 95-98 degreeC, and it took out from the warm bath 30 minutes later. Thereafter, the film was taken out from the electrolytic solution. The electrolyte solution adhered to the film was wiped off, and the mass of the film was precisely weighed.

その後、電解液に浸漬する前と後のフィルムの質量から、下記式を用いて、電解液浸漬膨潤率を算出した。
電解液浸漬膨潤率(%)=(浸漬後フィルム質量−浸漬前フィルム質量)/浸漬前フィルム質量)×100
Thereafter, from the mass of the film before and after being immersed in the electrolytic solution, the electrolytic solution immersion swelling rate was calculated using the following formula.
Electrolytic solution immersion swelling rate (%) = (film mass after immersion−film mass before immersion) / film mass before immersion) × 100

(剥離強度)
バインダーを5質量%の濃度となるようにNMPに溶解させた溶解液1.5gを、アルミニウム箔試験片(3cm×10cm)上に、バーコーターを使用して均一に塗布した。次いで、溶解液を塗布した側のアルミニウム箔試験片上に、別のアルミニウム箔試験片を積層して貼り合わせ、ローラーにて密着させた。その後150℃で6時間、真空乾燥し、試験体とした。
(Peel strength)
1.5 g of a solution obtained by dissolving the binder in NMP so as to have a concentration of 5% by mass was uniformly coated on an aluminum foil test piece (3 cm × 10 cm) using a bar coater. Next, another aluminum foil test piece was laminated and bonded on the aluminum foil test piece on the side to which the solution was applied, and adhered with a roller. Thereafter, it was vacuum-dried at 150 ° C. for 6 hours to obtain a test specimen.

その後、引張試験機(ORIENTEC PTM−100)を用いて、500mm/minの速度で試験体の剥離強度を測定した。図1に示すように、引張試験を行った試験体における貼り合わせ面積は21cm(3cm×7cm)であり、チャック間距離は5cmである。引張試験を行った試験体の形状と引張試験の状況を図1に示す。
試験体は、各バインダーについて3個ずつ作成した。3個の試験体における引張試験の最大値を平均し、各バインダーの剥離強度とした。
Then, the peeling strength of the test body was measured at a speed of 500 mm / min using a tensile tester (ORIENTEC PTM-100). As shown in FIG. 1, the bonding area in the test body subjected to the tensile test is 21 cm 2 (3 cm × 7 cm), and the distance between chucks is 5 cm. FIG. 1 shows the shape of the specimen subjected to the tensile test and the state of the tensile test.
Three test specimens were prepared for each binder. The maximum value of the tensile test in the three specimens was averaged to obtain the peel strength of each binder.

(導電助剤の分散性)
常温でスターラーにより1000rpmで撹拌されている純水中に、1質量%の濃度となるようにバインダーを添加した。添加したバインダーが均一に溶解したことを目視にて確認し、バインダー水溶液を得た。次いで、バインダー水溶液中に、導電助剤としてカーボンブラック(商品名:VGCF、昭和電工株式会社製)を5質量%となるように添加した。20分後に撹拌を停止し、カーボンブラック分散液を得た。
(Dispersibility of conductive aid)
A binder was added to pure water stirred at 1000 rpm with a stirrer at room temperature so that the concentration would be 1% by mass. It was visually confirmed that the added binder was uniformly dissolved, and an aqueous binder solution was obtained. Subsequently, carbon black (trade name: VGCF, manufactured by Showa Denko KK) was added to the binder aqueous solution as a conductive auxiliary agent so as to be 5% by mass. Stirring was stopped after 20 minutes to obtain a carbon black dispersion.

得られたカーボンブラック分散液を2g採取して、0.2cm×5cm×10cmのガラスプレートに、バーコーターを用いて塗布し、乾燥機にて80℃で12時間乾燥した。乾燥後のガラスブレート上の状態を、マイクロスコープを用いて表示装置の画面上に表示し、目視にて観察して、以下のように、カーボンブラックの分散状態を評価した。なお、ガラスブレート上にカーボンブラックの凝集物が存在することが観察された場合には、表示装置の画面上のスケールを用いて、凝集物の直径を測定した。
◎: 凝集物無し、分散状態が均一
○: 直径200μm未満の微少な塊(凝集物)がみられる
△: 直径200μm〜1mm未満の中程度の凝集物がみられる
×: 直径1mm以上の大きな凝集物がみられる
2 g of the obtained carbon black dispersion was collected, applied to a 0.2 cm × 5 cm × 10 cm glass plate using a bar coater, and dried at 80 ° C. for 12 hours with a dryer. The state on the glass plate after drying was displayed on the screen of a display device using a microscope and visually observed, and the dispersion state of carbon black was evaluated as follows. In addition, when it was observed that the aggregate of carbon black existed on a glass brate, the diameter of the aggregate was measured using the scale on the screen of a display apparatus.
◎: No aggregate, uniform dispersion state ○: A small lump (aggregate) with a diameter of less than 200 μm is observed Δ: Medium aggregate with a diameter of 200 μm to less than 1 mm is observed ×: Large aggregation with a diameter of 1 mm or more You can see

(重量平均分子量)
バインダーを1質量%の濃度で蒸留水に溶解し、以下の条件でGPC(ゲル透過クロマトグラフィー)法にて測定した。その結果を用いて重量平均分子量(Mw)を算出した。
重量平均分子量の算出には、各分子量帯のN−ビニルアセトアミドの絶対分子量(GPC−MALS)の測定結果から作成した較正曲線を用いた。
(Weight average molecular weight)
The binder was dissolved in distilled water at a concentration of 1% by mass and measured by the GPC (gel permeation chromatography) method under the following conditions. The weight average molecular weight (Mw) was calculated using the result.
For the calculation of the weight average molecular weight, a calibration curve created from the measurement result of the absolute molecular weight (GPC-MALS) of N-vinylacetamide in each molecular weight band was used.

検出器(RI):RI−201H(SHODEX社製)
ポンプ:LC−20AD(株式会社島津製作所製)
カラムオーブン:AO−30C(SHODEX社製)
解析装置:SIC4802 Deta Station(株式会社島津製作所製)
カラム:SB806×2(SHODEX社製)
溶離液:DW(蒸留水)
流量:0.7ml/min
Detector (RI): RI-201H (manufactured by SHODEX)
Pump: LC-20AD (manufactured by Shimadzu Corporation)
Column oven: AO-30C (manufactured by SHODEX)
Analysis device: SIC4802 Data Station (manufactured by Shimadzu Corporation)
Column: SB806 × 2 (manufactured by SHODEX)
Eluent: DW (distilled water)
Flow rate: 0.7ml / min

(フッ素含有樹脂との相溶性)
バインダーを5質量%の濃度となるようにNMPに溶解させた(溶解液1)。ポリフッ化ビニリデン(PVDF)を5質量%の濃度となるようにNMPに溶解させた(溶解液2)。溶解液1と溶解液2とを、1:1の割合(質量比)で混合して混合液とし、室温にて24時間静置した。
その後、混合液について、濁りの有無と、溶解液1と溶解液2との分離の有無とを、目視により以下に示す基準で評価した。
(Compatibility with fluorine-containing resin)
The binder was dissolved in NMP to a concentration of 5% by mass (Solution 1). Polyvinylidene fluoride (PVDF) was dissolved in NMP so as to have a concentration of 5% by mass (solution 2). Dissolving solution 1 and dissolving solution 2 were mixed at a ratio (mass ratio) of 1: 1 to form a mixed solution, and allowed to stand at room temperature for 24 hours.
Then, about the mixed liquid, the presence or absence of turbidity and the presence or absence of separation of the dissolving liquid 1 and the dissolving liquid 2 were visually evaluated according to the following criteria.

「濁りの評価」
○:清澄
×:濁りあり
「分離の有無」
○:分離なし
×:分離あり
"Evaluation of turbidity"
○: Kiyosumi ×: Turbidity “Presence / absence of separation”
○: No separation ×: With separation

表5に示すように、実施例1〜8のバインダー(共重合体)は、単量体としてN−ビニルアセトアミドのみを用いた比較例1のバインダーと比較して、NMPに完全に溶解するまでに要する時間が短く、NMPに対する溶解性に優れている。しかも、実施例1〜8のバインダーは、N−ビニルアセトアミド由来の構成単位が少ない比較例2のバインダー(共重合体)と比較して、水に完全に溶解するまでに要する時間が短く、水に対する溶解性に優れている。
また、実施例1〜8のバインダーは、表5に示すように、溶液粘度が十分に高く、NMPまたは水に溶解させた溶液が十分な増粘性を有し、塗工する場合に好ましいものであった。
As shown in Table 5, the binders (copolymers) of Examples 1 to 8 were completely dissolved in NMP as compared with the binder of Comparative Example 1 using only N-vinylacetamide as a monomer. The time required for this is short and the solubility in NMP is excellent. In addition, the binders of Examples 1 to 8 are shorter in time required to completely dissolve in water than the binder (copolymer) of Comparative Example 2 having few structural units derived from N-vinylacetamide. Excellent solubility in
In addition, as shown in Table 5, the binders of Examples 1 to 8 have a sufficiently high solution viscosity, and a solution dissolved in NMP or water has a sufficient viscosity, which is preferable when coating is performed. there were.

また、実施例1〜8のバインダーは、電解液浸漬膨潤率が10%以下であり、電解液に浸漬した場合の膨潤が抑制されたものであった。
また、実施例1〜8のバインダーは、剥離強度が0.015N/m以上であり、集電体との結着性に優れている。
また、実施例1〜8のバインダーは、導電助剤の分散性の評価が◎または○であり、導電助剤の分散性に優れている。
また、実施例1〜8のバインダーは、濁りの評価が○であり、分離もなく、フッ素含有樹脂との相溶性が良好であった。
また、実施例1〜8のバインダーは、重量平均分子量も適正であった。
Moreover, the binder of Examples 1-8 had an electrolyte solution immersion swelling rate of 10% or less, and the swelling when immersed in the electrolyte solution was suppressed.
In addition, the binders of Examples 1 to 8 have a peel strength of 0.015 N / m or more, and are excellent in binding properties with the current collector.
Moreover, the binder of Examples 1-8 is (double-circle) or (circle) in the evaluation of the dispersibility of a conductive support agent, and is excellent in the dispersibility of a conductive support agent.
In addition, the binders of Examples 1 to 8 had a turbidity evaluation of ◯, no separation, and good compatibility with the fluorine-containing resin.
Moreover, the binder of Examples 1-8 was also appropriate in the weight average molecular weight.

これに対し、単量体としてN−ビニルアセトアミドのみを用いた比較例1は、NMPに対する溶解性が不十分である。また、比較例1のバインダーは、フッ素含有樹脂との相溶性が劣っていた。   On the other hand, Comparative Example 1 using only N-vinylacetamide as a monomer has insufficient solubility in NMP. Moreover, the binder of the comparative example 1 was inferior in compatibility with fluorine-containing resin.

また、N−ビニルアセトアミド由来の構成単位が少ない比較例2のバインダーは、実施例1〜8のバインダーと比較して、水に対する溶解性が低い。さらに、比較例2のバインダーは、電解液浸漬膨潤率が10%を超えており、実施例1〜8のバインダーと比較して、電解液に浸漬した場合の膨潤抑制効果が低い。   Moreover, the binder of the comparative example 2 with few structural units derived from N-vinylacetamide has low solubility with respect to water compared with the binder of Examples 1-8. Furthermore, the binder of Comparative Example 2 has an electrolytic solution immersion swelling ratio exceeding 10%, and the swelling suppressing effect when immersed in the electrolytic solution is low as compared with the binders of Examples 1-8.

また、フッ素含有樹脂である比較例3は、水に不溶である。また、比較例3のバインダーは、電解液浸漬膨潤率が非常に大きい。また、比較例3のバインダーは、導電助剤の分散性の評価が×であった。また、比較例3のバインダーは、剥離強度が0.015N/m未満であり、剥離強度が不足していた。   Moreover, the comparative example 3 which is a fluorine-containing resin is insoluble in water. Further, the binder of Comparative Example 3 has a very large electrolytic solution immersion swelling rate. Further, the binder of Comparative Example 3 was evaluated as x for the dispersibility of the conductive additive. Further, the binder of Comparative Example 3 had a peel strength of less than 0.015 N / m, and the peel strength was insufficient.

(実施例9〜13)
実施例1または実施例2のバインダー(共重合体)と、フッ素含有樹脂である比較例3のバインダーとを、混合した。実施例1または実施例2のバインダーと、フッ素含有樹脂との合計質量に対する実施例1または実施例2のバインダーの割合{〔(実施例1または実施例2)/(実施例1または実施例2+比較例3)×100(質量%)〕が、表5に示す割合となるように混合した。混合したバインダーが5質量%の濃度となるようにNMPに溶解させて溶解液とし、20℃で12時間静置した。
(Examples 9 to 13)
The binder (copolymer) of Example 1 or Example 2 and the binder of Comparative Example 3 which is a fluorine-containing resin were mixed. Ratio of binder of Example 1 or Example 2 to total mass of binder of Example 1 or Example 2 and fluorine-containing resin {[(Example 1 or Example 2) / (Example 1 or Example 2+ Comparative Example 3) × 100 (mass%)] was mixed so that the ratio shown in Table 5 was obtained. The mixed binder was dissolved in NMP so as to have a concentration of 5% by mass to obtain a solution, which was allowed to stand at 20 ° C. for 12 hours.

(比較例4)
フッ素含有樹脂である比較例3のバインダーを、5質量%の濃度となるようにNMPに溶解させて溶解液とし、20℃で12時間静置した。
(Comparative Example 4)
The binder of Comparative Example 3 which is a fluorine-containing resin was dissolved in NMP so as to have a concentration of 5% by mass to obtain a solution, which was allowed to stand at 20 ° C. for 12 hours.

このようにして得られた実施例9〜13、比較例4の溶解液をシャーレに入れて、上記と同様の方法により電解液浸漬膨潤率を測定した。また、実施例9〜13、比較例4の溶解液を用いて、上記と同様の方法により剥離強度を測定した。電解液浸漬膨潤率および剥離強度の結果を表6に示す。
また、実施例9〜13、比較例4の溶解液をそれぞれ用いて、以下に示す方法により、導電助剤の分散性を評価した。その結果を表6に示す。
Thus, the obtained solution of Examples 9-13 and the comparative example 4 was put into the petri dish, and electrolyte solution immersion swelling ratio was measured by the method similar to the above. Moreover, peeling strength was measured by the method similar to the above using the solution of Examples 9-13 and Comparative Example 4. Table 6 shows the results of the electrolytic solution immersion swelling rate and peel strength.
Moreover, the dispersibility of the conductive assistant was evaluated by the methods shown below using the solutions of Examples 9 to 13 and Comparative Example 4, respectively. The results are shown in Table 6.

(導電助剤の分散性)
500mlセパラブルフラスコに常温にてNMPを300g仕込み、撹拌翼を取り付けた攪拌機にて150rpmに撹拌しながら、実施例1または実施例2のバインダー(共重合体)とフッ素含有樹脂である比較例3のバインダーとを添加した。これらは、表6に示す割合(質量%)で、かつ実施例1または実施例2のバインダーと比較例3のバインダーとの合計の質量が1質量%濃度となるように添加した。添加したバインダーが完全に溶解したことを目視にて確認した。続いて、得られたバインダーを含むNMPに、導電助剤としてカーボンブラック(商品名:VGCF、昭和電工株式会社製)を5質量%となるように添加し、20分後に撹拌を停止した。
(Dispersibility of conductive aid)
Comparative Example 3 which is a binder (copolymer) of Example 1 or Example 2 and a fluorine-containing resin while stirring at 150 rpm with a stirrer equipped with a stirring blade with 300 g of NMP at room temperature in a 500 ml separable flask Of binder was added. These were added at a ratio (mass%) shown in Table 6 so that the total mass of the binder of Example 1 or Example 2 and the binder of Comparative Example 3 was 1% by mass. It was visually confirmed that the added binder was completely dissolved. Subsequently, carbon black (trade name: VGCF, manufactured by Showa Denko KK) was added to the NMP containing the obtained binder so as to be 5% by mass as a conductive assistant, and stirring was stopped after 20 minutes.

このようにして得たカーボンブラック分散液を2g採取して、0.2cm×5cm×10cmのガラスプレートに、バーコーターを用いて塗布し、乾燥機にて110℃で2時間乾燥した。そして、乾燥後のガラスブレート上の状態を、実施例1の導電助剤の分散性と同様にして評価した。   2 g of the carbon black dispersion thus obtained was collected, applied to a 0.2 cm × 5 cm × 10 cm glass plate using a bar coater, and dried at 110 ° C. for 2 hours with a dryer. And the state on the glass plate after drying was evaluated similarly to the dispersibility of the conductive support agent of Example 1.

Figure 2016181993
Figure 2016181993

表6に示すように、実施例9〜13(電極用バインダー)では、フッ素含有樹脂のみを用いた比較例4と比較して、集電体との結着性、導電助剤の分散性に優れ、電解液に浸漬した場合の膨潤が抑制されたものとなることが確認できた。   As shown in Table 6, in Examples 9 to 13 (binders for electrodes), compared with Comparative Example 4 using only the fluorine-containing resin, the binding property to the current collector and the dispersibility of the conductive auxiliary agent were improved. It was excellent and it was confirmed that the swelling when immersed in the electrolyte was suppressed.

Claims (9)

不飽和カルボン酸単量体、不飽和カルボン酸単量体の塩、不飽和カルボン酸エステル単量体、ビニルエステル単量体、不飽和ニトリル単量体からなる群から選ばれる少なくとも1種の単量体と、N−ビニルアセトアミドとの共重合体であり、
前記共重合体が、N−ビニルアセトアミド由来の構成単位のモル数と、前記N−ビニルアセトアミド由来の他の構成単位のモル数との比が、1.00:0.010〜1.00:0.250である共重合体。
At least one unit selected from the group consisting of unsaturated carboxylic acid monomers, salts of unsaturated carboxylic acid monomers, unsaturated carboxylic acid ester monomers, vinyl ester monomers, and unsaturated nitrile monomers. And a copolymer of N-vinylacetamide,
In the copolymer, the ratio of the number of moles of structural units derived from N-vinylacetamide to the number of moles of other structural units derived from N-vinylacetamide is 1.00: 0.010 to 1.00: A copolymer that is 0.250.
不飽和カルボン酸単量体、不飽和カルボン酸単量体の塩、不飽和カルボン酸エステル単量体、ビニルエステル単量体、不飽和ニトリル単量体からなる群から選ばれる少なくとも1種の単量体が、溶解度パラメーターが13(cal/cm1/2以下である請求項1に記載の共重合体。At least one unit selected from the group consisting of unsaturated carboxylic acid monomers, salts of unsaturated carboxylic acid monomers, unsaturated carboxylic acid ester monomers, vinyl ester monomers, and unsaturated nitrile monomers. The copolymer according to claim 1, wherein the monomer has a solubility parameter of 13 (cal / cm 3 ) 1/2 or less. 前記不飽和カルボン酸単量体が(メタ)アクリル酸である請求項1に記載の共重合体。   The copolymer according to claim 1, wherein the unsaturated carboxylic acid monomer is (meth) acrylic acid. 前記不飽和カルボン酸エステル単量体が(メタ)アクリル酸エステルである請求項1に記載の共重合体。   The copolymer according to claim 1, wherein the unsaturated carboxylic acid ester monomer is a (meth) acrylic acid ester. 前記ビニルエステル単量体が酢酸ビニルである請求項1に記載の共重合体。   The copolymer according to claim 1, wherein the vinyl ester monomer is vinyl acetate. 前記不飽和ニトリル単量体がアクリロニトリルである請求項1に記載の共重合体。   The copolymer according to claim 1, wherein the unsaturated nitrile monomer is acrylonitrile. 請求項1〜6のいずれか一項に記載の共重合体と、フッ素含有樹脂とを含み、前記共重合体と前記フッ素含有樹脂との合計量に対して、前記フッ素含有樹脂が90質量%以下である二次電池の電極用バインダー。   The copolymer according to any one of claims 1 to 6 and a fluorine-containing resin, wherein the fluorine-containing resin is 90% by mass with respect to the total amount of the copolymer and the fluorine-containing resin. The binder for electrodes of the secondary battery which is the following. 請求項1〜6のいずれか一項に記載の共重合体と、溶媒と、活物質と、導電助剤とを含む二次電池の電極用組成物。   The composition for electrodes of the secondary battery containing the copolymer as described in any one of Claims 1-6, a solvent, an active material, and a conductive support agent. 集電体と、集電体上に形成された活物質層とを有し、
前記活物質層が、活物質と、導電助剤と、請求項1〜6のいずれか一項に記載の共重合体とを含む二次電池用電極。
A current collector and an active material layer formed on the current collector;
The electrode for secondary batteries in which the said active material layer contains an active material, a conductive support agent, and the copolymer as described in any one of Claims 1-6.
JP2017517964A 2015-05-11 2016-05-11 Copolymers, binders for electrodes of secondary batteries, compositions for electrodes of secondary batteries, electrodes for secondary batteries Active JP6878273B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015096330 2015-05-11
JP2015096330 2015-05-11
PCT/JP2016/064004 WO2016181993A1 (en) 2015-05-11 2016-05-11 Copolymer, binder for secondary cell electrode, composition for secondary cell electrode, and electrode for secondary cell

Publications (2)

Publication Number Publication Date
JPWO2016181993A1 true JPWO2016181993A1 (en) 2018-03-01
JP6878273B2 JP6878273B2 (en) 2021-05-26

Family

ID=57248191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017517964A Active JP6878273B2 (en) 2015-05-11 2016-05-11 Copolymers, binders for electrodes of secondary batteries, compositions for electrodes of secondary batteries, electrodes for secondary batteries

Country Status (3)

Country Link
JP (1) JP6878273B2 (en)
TW (1) TWI675046B (en)
WO (1) WO2016181993A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200395616A1 (en) * 2018-03-23 2020-12-17 Zeon Corporation Binder composition for secondary battery, conductive material paste for secondary battery electrode, slurry composition for secondary battery electrode, method of producing slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP7327467B2 (en) 2019-03-22 2023-08-16 株式会社レゾナック Method for producing aqueous solution of N-vinylcarboxylic acid amide copolymer
JP2020181655A (en) * 2019-04-24 2020-11-05 松本油脂製薬株式会社 Dispersant composition for secondary battery positive electrode slurry and application thereof
JPWO2020235515A1 (en) * 2019-05-20 2020-11-26
WO2021253675A1 (en) * 2020-06-17 2021-12-23 Guangdong Haozhi Technology Co. Limited Binder composition for secondary battery
WO2024031518A1 (en) * 2022-08-11 2024-02-15 宁德时代新能源科技股份有限公司 Electrode slurry, electrode sheet, secondary battery, and electrical device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271517A (en) * 1992-03-27 1993-10-19 Hisamitsu Pharmaceut Co Inc Polymer gel composition
JPH08311290A (en) * 1995-05-23 1996-11-26 Showa Denko Kk Composition for liquid-absorbing material, molding of liquid-absorbing material, and production thereof
JPH09143061A (en) * 1995-11-20 1997-06-03 Showa Denko Kk Percutaneous absorption preparation for analgesic
JPH1146576A (en) * 1997-08-05 1999-02-23 Showa Denko Kk Solidification of culture soil for raising seedling
JPH11323334A (en) * 1998-05-14 1999-11-26 Nippon Shokubai Co Ltd Conditioner for water-containing soil and conditioning process
JPH11323332A (en) * 1998-05-12 1999-11-26 Nippon Shokubai Co Ltd Conditioner for water-containing soil and conditioning process
JP2002279980A (en) * 2001-01-10 2002-09-27 Hitachi Maxell Ltd Electrode and battery using the electrode
JP2003017045A (en) * 2001-06-28 2003-01-17 Hitachi Maxell Ltd Hydrogen storage alloy electrode paste and nickel- hydrogen storage battery using the same
JP2003045420A (en) * 2001-07-30 2003-02-14 Hitachi Maxell Ltd Non-sintered positive electrode, its manufacturing method, and alkaline storage battery using same
JP2008115170A (en) * 2006-10-13 2008-05-22 Showa Denko Kk Skin care preparation and cosmetic comprising ubiquinone derivative or salt thereof and method for use thereof
JP2013211345A (en) * 2012-03-30 2013-10-10 Nihon Gore Kk Polarizable electrode for electric double-layer capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140110893A (en) * 2011-12-02 2014-09-17 미쯔비시 레이온 가부시끼가이샤 Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271517A (en) * 1992-03-27 1993-10-19 Hisamitsu Pharmaceut Co Inc Polymer gel composition
JPH08311290A (en) * 1995-05-23 1996-11-26 Showa Denko Kk Composition for liquid-absorbing material, molding of liquid-absorbing material, and production thereof
JPH09143061A (en) * 1995-11-20 1997-06-03 Showa Denko Kk Percutaneous absorption preparation for analgesic
JPH1146576A (en) * 1997-08-05 1999-02-23 Showa Denko Kk Solidification of culture soil for raising seedling
JPH11323332A (en) * 1998-05-12 1999-11-26 Nippon Shokubai Co Ltd Conditioner for water-containing soil and conditioning process
JPH11323334A (en) * 1998-05-14 1999-11-26 Nippon Shokubai Co Ltd Conditioner for water-containing soil and conditioning process
JP2002279980A (en) * 2001-01-10 2002-09-27 Hitachi Maxell Ltd Electrode and battery using the electrode
JP2003017045A (en) * 2001-06-28 2003-01-17 Hitachi Maxell Ltd Hydrogen storage alloy electrode paste and nickel- hydrogen storage battery using the same
JP2003045420A (en) * 2001-07-30 2003-02-14 Hitachi Maxell Ltd Non-sintered positive electrode, its manufacturing method, and alkaline storage battery using same
JP2008115170A (en) * 2006-10-13 2008-05-22 Showa Denko Kk Skin care preparation and cosmetic comprising ubiquinone derivative or salt thereof and method for use thereof
JP2013211345A (en) * 2012-03-30 2013-10-10 Nihon Gore Kk Polarizable electrode for electric double-layer capacitor

Also Published As

Publication number Publication date
WO2016181993A1 (en) 2016-11-17
TWI675046B (en) 2019-10-21
JP6878273B2 (en) 2021-05-26
TW201710308A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2016181993A1 (en) Copolymer, binder for secondary cell electrode, composition for secondary cell electrode, and electrode for secondary cell
JP6758505B2 (en) Its application in acrylonitrile copolymer binders and lithium-ion batteries
CN111139002B (en) Water-soluble adhesive for lithium ion battery, preparation method of water-soluble adhesive, electrode plate and battery
JP6015649B2 (en) Binder resin composition for secondary battery electrode, slurry for secondary battery electrode, electrode for secondary battery, lithium ion secondary battery
JP5912814B2 (en) Aqueous electrode binder for secondary battery
TWI628838B (en) Binder resin for non-aqueous secondary battery electrode, binder resin composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous s
TWI746131B (en) A binder for battery, a negative electrode of lithium ion battery, and a lithium ion battery
CN109075343B (en) Binder composition, electrode mixture, electrode, and nonaqueous electrolyte secondary battery
JP2015018776A (en) Binder for aqueous electrode composition for battery
CN114560973B (en) Water-based binder for positive electrode of lithium ion battery and preparation method thereof
CN109075344B (en) Binder composition, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for producing binder composition
JP5689769B2 (en) Water dispersion for aqueous electrode composition
JP2016058185A (en) Binder composition for power storage device electrode, slurry for power storage device electrode, power storage device electrode, and power storage device
CN111082062A (en) Water-soluble binder for lithium ion battery and preparation method thereof
JP2014130702A (en) Aqueous electrode binder for secondary battery
JP6061563B2 (en) Aqueous electrode binder for secondary battery
JP2015195114A (en) Aqueous binder for electrode composition
JP6450453B2 (en) Binder for electrode of lithium ion secondary battery
JP6145638B2 (en) Water-soluble binder composition for secondary battery, mixture for secondary battery electrode, electrode for secondary battery, lithium ion secondary battery
JP2012059648A (en) Resin for binder of secondary battery electrode, and binder liquid using the same, secondary battery electrode, secondary battery
CN118064083A (en) Lithium ion battery binder, preparation method thereof, pole piece and lithium ion battery
JP2022061830A (en) Binder composition, electrode mixture, electrode, and non-aqueous electrolyte secondary battery
CN114605946A (en) Water-based binder and preparation method and application thereof
JP2024022549A (en) Composition including polymer and electrolyte, adhesive agent, cured product of adhesive agent, and bonded body
JP2024503131A (en) Block polymers and lithiation, their production methods and applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6878273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350