JPWO2016080516A1 - Drp1 polymerization inhibitor - Google Patents

Drp1 polymerization inhibitor Download PDF

Info

Publication number
JPWO2016080516A1
JPWO2016080516A1 JP2016560298A JP2016560298A JPWO2016080516A1 JP WO2016080516 A1 JPWO2016080516 A1 JP WO2016080516A1 JP 2016560298 A JP2016560298 A JP 2016560298A JP 2016560298 A JP2016560298 A JP 2016560298A JP WO2016080516 A1 JPWO2016080516 A1 JP WO2016080516A1
Authority
JP
Japan
Prior art keywords
cells
drp1
cilnidipine
group
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016560298A
Other languages
Japanese (ja)
Other versions
JP6688503B2 (en
Inventor
基宏 西田
基宏 西田
石川 達也
石川  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inter University Research Institute Corp National Institute of Natural Sciences
EA Pharma Co Ltd
Original Assignee
Inter University Research Institute Corp National Institute of Natural Sciences
EA Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inter University Research Institute Corp National Institute of Natural Sciences, EA Pharma Co Ltd filed Critical Inter University Research Institute Corp National Institute of Natural Sciences
Publication of JPWO2016080516A1 publication Critical patent/JPWO2016080516A1/en
Application granted granted Critical
Publication of JP6688503B2 publication Critical patent/JP6688503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/44221,4-Dihydropyridines, e.g. nifedipine, nicardipine

Abstract

本発明は、シルニジピン又はその薬学的に許容される塩を有効成分とする医薬組成物を提供する。本発明は、シルニジピン又はその薬学的に許容される塩を有効成分として含有し、Drp1(dynamin-related protein 1)の重合を阻害することを特徴とする、Drp1重合阻害剤、前記記載のDrp1重合阻害剤を有効成分とする、医薬用組成物、心筋梗塞後の慢性心不全の予防又は治療、有機水銀による心筋細胞毒性の軽減、又はインシュリン依存性高血糖状態の軽減に用いられる、前記記載の医薬用組成物である。The present invention provides a pharmaceutical composition comprising cilnidipine or a pharmaceutically acceptable salt thereof as an active ingredient. The present invention relates to a Drp1 polymerization inhibitor, which contains cilnidipine or a pharmaceutically acceptable salt thereof as an active ingredient and inhibits the polymerization of Drp1 (dynamin-related protein 1), the Drp1 polymerization described above The pharmaceutical composition according to the above, which is used for a pharmaceutical composition comprising an inhibitor as an active ingredient, prevention or treatment of chronic heart failure after myocardial infarction, reduction of cardiomyocyte toxicity by organic mercury, or reduction of insulin-dependent hyperglycemia Composition.

Description

本発明は、シルニジピン又はその薬学的に許容される塩を有効成分とするDrp1重合阻害剤、及び当該Drp1重合阻害剤を用いた新規医薬用組成物に関する。
本願は、2014年11月21日に日本国に出願された特願2014−236941号に基づく優先権を主張し、その内容をここに援用する。
The present invention relates to a Drp1 polymerization inhibitor containing cilnidipine or a pharmaceutically acceptable salt thereof as an active ingredient, and a novel pharmaceutical composition using the Drp1 polymerization inhibitor.
This application claims the priority based on Japanese Patent Application No. 2014-236941 for which it applied to Japan on November 21, 2014, and uses the content here.

ミトコンドリアは、ほぼ全ての真核細胞にある細胞小器官であり、主に、電子伝達系による酸化的リン酸化によるATPの産生(ADPのリン酸化)を担っている。ミトコンドリアは、融合と分裂を繰り返しており、その異常により、がん、心血管疾患、神経変性疾患等の発症に関与していることが知られている。例えば、心筋梗塞後の非梗塞巣において、ミトコンドリアの形態機能異常(リモデリング)が引き起こされることによるエネルギー代謝異常が慢性心不全の原因となることが示唆されている。   Mitochondria are organelles in almost all eukaryotic cells, and are mainly responsible for ATP production (ADP phosphorylation) by oxidative phosphorylation by the electron transport system. It is known that mitochondria repeat fusion and division and are involved in the onset of cancer, cardiovascular diseases, neurodegenerative diseases and the like due to their abnormalities. For example, it has been suggested that in a non-infarcted lesion after myocardial infarction, mitochondrial morphological function abnormality (remodeling) causes an abnormal energy metabolism to cause chronic heart failure.

ミトコンドリアの分裂は、GTP結合タンパク質Drp1(dynamin-related protein 1)の活性化により引き起こされる。活性化されたDrp1は重合し、ミトコンドリアの周囲にリング状の多量体を形成する。このDrp1多量体がミトコンドリアを切断することにより、分裂が起こる。   Mitochondrial fission is caused by activation of the GTP-binding protein Drp1 (dynamin-related protein 1). The activated Drp1 polymerizes to form a ring-shaped multimer around the mitochondria. This Drp1 multimer cleaves mitochondria to cause division.

一方で、シルニジピンは、ジヒドロピリジン系カルシウム拮抗薬の一種であり、L型及びN型カルシウム拮抗作用を併せ持ち、血圧降下作用を有することが知られている。シルニジピンの降圧効果は、他の降圧薬よりも持続時間が長いことが特徴的である。このため、シルニジピンは、心不全、不整脈等の心血管系疾患の治療剤として有用である(例えば、特許文献1〜3参照。)。また、カルシウム拮抗作用を利用して、シルニジピンは、通常使用されている降圧治療以外にも脳梗塞及び脳出血の治療又は予防に有用であること(例えば、特許文献4参照。)や、腎機能障害の治療又は予防に有用であること(例えば、特許文献5参照。)が報告されている。その他にも、シルニジピンには、抗癌剤の副作用軽減作用を有することも報告されている(特許文献6参照。)。   On the other hand, cilnidipine is a kind of dihydropyridine calcium antagonist and has both L-type and N-type calcium antagonistic activity and is known to have a blood pressure lowering effect. The antihypertensive effect of cilnidipine is characterized by a longer duration than other antihypertensive drugs. For this reason, cilnidipine is useful as a therapeutic agent for cardiovascular diseases such as heart failure and arrhythmia (see, for example, Patent Documents 1 to 3). Further, cilnidipine is useful for the treatment or prevention of cerebral infarction and cerebral hemorrhage in addition to the commonly used antihypertensive treatment by utilizing calcium antagonism (see, for example, Patent Document 4), and renal dysfunction. It is reported to be useful for the treatment or prevention of (see, for example, Patent Document 5). In addition, cilnidipine has also been reported to have a side effect reducing action of an anticancer drug (see Patent Document 6).

特許第4613496号公報Japanese Patent No. 4613396 特開2008−044871号公報JP 2008-048771 A 国際公開第2013/147137号International Publication No. 2013/147137 特開2004−359675号公報JP 2004-359675 A 国際公開第2008/016171号International Publication No. 2008/016171 特開2013−014549号公報JP 2013-014549 A

本発明は、ミトコンドリアの分裂が誘導されることによって引き起こされる疾患の治療又は予防に有用な、Drp1重合阻害剤、及び当該Drp1重合阻害剤を有効成分とする医薬用組成物を提供することを目的とする。   An object of the present invention is to provide a Drp1 polymerization inhibitor useful for the treatment or prevention of diseases caused by induction of mitochondrial fission, and a pharmaceutical composition comprising the Drp1 polymerization inhibitor as an active ingredient. And

本発明者らは、上記課題を解決すべく鋭意検討した結果、シルニジピンがDrp1の重合を阻害し得ることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that cilnidipine can inhibit the polymerization of Drp1, and have completed the present invention.

すなわち、本発明は、以下の[1]〜[7]のDrp1重合阻害剤、医薬用組成物、及び細胞老化抑制剤を提供する。
[1] シルニジピン又はその薬学的に許容される塩を有効成分として含有し、Drp1(dynamin-related protein 1)の重合を阻害することを特徴とする、Drp1重合阻害剤。
[2] 前記[1]のDrp1重合阻害剤を有効成分とする、医薬用組成物。
[3] 心筋梗塞後の慢性心不全の予防又は治療に用いられる、前記[2]の医薬用組成物。
[4] 有機水銀による心筋細胞毒性の軽減に用いられる、前記[2]の医薬用組成物。
[5] インシュリン依存性高血糖状態の軽減に用いられる、前記[2]の医薬用組成物。
[6] 筋委縮性側索硬化症又はアルツハイマー病の予防又は治療に用いられる、前記[2]の医薬用組成物。
[7] 前記[1]のDrp1重合阻害剤を有効成分とする、細胞老化抑制剤。
That is, the present invention provides the following Drp1 polymerization inhibitors, pharmaceutical compositions, and cell aging inhibitors of [1] to [7].
[1] A Drp1 polymerization inhibitor characterized by containing cilnidipine or a pharmaceutically acceptable salt thereof as an active ingredient and inhibiting polymerization of Drp1 (dynamin-related protein 1).
[2] A pharmaceutical composition comprising the Drp1 polymerization inhibitor of [1] as an active ingredient.
[3] The pharmaceutical composition according to the above [2], which is used for prevention or treatment of chronic heart failure after myocardial infarction.
[4] The pharmaceutical composition according to the above [2], which is used for reducing cardiomyocyte toxicity due to organic mercury.
[5] The pharmaceutical composition according to the above [2], which is used for reducing insulin-dependent hyperglycemia.
[6] The pharmaceutical composition according to the above [2], which is used for prevention or treatment of amyotrophic lateral sclerosis or Alzheimer's disease.
[7] A cell aging inhibitor comprising the Drp1 polymerization inhibitor of [1] as an active ingredient.

本発明に係るDrp1重合阻害剤は、ミトコンドリアの分裂を阻害し得る。このため、当該Drp1重合阻害剤及びこれを有効成分とする医薬用組成物は、ミトコンドリアの過剰な分裂により引き起こされる各種疾患の予防薬や治療薬として利用できる。特に、当該Drp1重合阻害剤の有効成分であるシルニジピンは、降圧剤として既に臨床に適用されていることから、当該Drp1重合阻害剤は、ヒトをはじめとする動物に比較的安全に使用することができる。   The Drp1 polymerization inhibitor according to the present invention can inhibit mitochondrial division. For this reason, the said Drp1 polymerization inhibitor and the pharmaceutical composition which uses this as an active ingredient can be utilized as a preventive or therapeutic agent of various diseases caused by excessive division of mitochondria. In particular, since cilnidipine, which is an active ingredient of the Drp1 polymerization inhibitor, has already been clinically applied as an antihypertensive agent, the Drp1 polymerization inhibitor can be used relatively safely in animals including humans. it can.

図1は、参考例1において、各細胞のミトコンドリアの形態の解析結果を示した図である。FIG. 1 is a diagram showing the results of analysis of the mitochondrial morphology of each cell in Reference Example 1. 図2は、参考例1において、各細胞のSA−β−Gal活性がポジティブな老化細胞の割合(%)の測定結果を示した図である。FIG. 2 is a diagram showing the measurement results of the ratio (%) of senescent cells in which SA-β-Gal activity of each cell is positive in Reference Example 1. 図3は、参考例1において、各細胞のミトコンドリアの活性酸素量の相対値(%)の算出結果を示した図である。FIG. 3 is a diagram showing the calculation result of the relative value (%) of the amount of active oxygen in mitochondria of each cell in Reference Example 1. 図4は、参考例1において、各細胞のミトコンドリアの形態の解析結果を示した図である。FIG. 4 is a diagram showing the results of analysis of the mitochondrial morphology of each cell in Reference Example 1. 図5は、実施例1において、シルニジピン存在下又は非存在下で低酸素刺激及び再酸素化した細胞のミトコンドリアの形態の解析結果を示した図である。FIG. 5 shows the results of analysis of the mitochondrial morphology of cells hypoxically stimulated and reoxygenated in the presence or absence of cilnidipine in Example 1. 図6は、実施例1において、シルニジピン存在下又は非存在下で低酸素刺激及び再酸素化した細胞のSA−β−Gal活性がポジティブな老化細胞の割合(%)の測定結果を示した図である。FIG. 6 is a graph showing the measurement results of the percentage of senescent cells with positive SA-β-Gal activity in hypoxic stimulated and reoxygenated cells in the presence or absence of cilnidipine in Example 1. It is. 図7は、実施例1において、シルニジピン存在下又は非存在下で低酸素刺激した細胞における、Drp1とミトコンドリアの局在を示した顕微鏡写真である。FIG. 7 is a photomicrograph showing the localization of Drp1 and mitochondria in cells stimulated with hypoxia in the presence or absence of cilnidipine in Example 1. 図8は、実施例2において、各群のマウスの生存率(%)の経時的変化を示した図である。FIG. 8 is a graph showing changes over time in the survival rate (%) of mice in each group in Example 2. 図9は、実施例2において、心筋梗塞後(LADの結紮手術後)4週間目の各群のマウスの体重当たりの心臓重量(mg/g)の測定結果を示した図である。FIG. 9 is a graph showing measurement results of heart weight (mg / g) per body weight of each group of mice 4 weeks after myocardial infarction (after LAD ligation surgery) in Example 2. 図10は、実施例2において、各群のマウスの左心室心筋細胞面積(μm)の測定結果を示した図である。FIG. 10 is a graph showing the measurement results of the left ventricular cardiomyocyte area (μm 2 ) of each group of mice in Example 2. 図11は、実施例2において、各群のマウスのコラーゲン陽性組織領域(CVF)(%)の測定結果を示した図である。FIG. 11 is a diagram showing measurement results of collagen positive tissue region (CVF) (%) of mice in each group in Example 2. 図12は、実施例2において、各群のマウスの心筋梗塞後の非梗塞領域心筋におけるSA−β−Gal活性がポジティブな老化組織の割合(面積比)(%)の測定結果を示した図である。FIG. 12 is a graph showing the measurement results of the ratio (area ratio) (%) of aged tissue having positive SA-β-Gal activity in non-infarcted myocardium after myocardial infarction in mice of each group in Example 2. It is. 図13は、実施例2において、各群のマウスの左室の心筋梗塞周辺領域のウエスタンブロッティングによりDrp1を検出した結果を示した図である。FIG. 13 is a diagram showing the results of detecting Drp1 by Western blotting of the area around the myocardial infarction in the left ventricle of each group of mice in Example 2. 図14は、実施例2において、各群のマウスのFS(左室内径短縮率)の測定結果を示した図である。FIG. 14 is a diagram showing measurement results of FS (left ventricular diameter shortening rate) of mice in each group in Example 2. 図15は、実施例3において、各細胞のSA−β−Gal活性がポジティブな細胞の割合(%)の測定結果を示した図である。FIG. 15 is a graph showing the measurement results of the percentage (%) of cells positive for SA-β-Gal activity of each cell in Example 3. 図16は、参考例2において、各群のマウスのTAC処置時点からの生存率(%)の経時的変化を示した図である。FIG. 16 is a graph showing changes over time in survival rate (%) from the time point of TAC treatment for mice in each group in Reference Example 2. 図17は、実施例4において、0又は0.5μMのメチル水銀と各種既存薬剤を添加した培地で培養した細胞の相対生存率(%)の測定結果を示した図である。FIG. 17 is a graph showing the results of measuring the relative survival rate (%) of cells cultured in a medium supplemented with 0 or 0.5 μM methylmercury and various existing drugs in Example 4. 図18は、実施例5において、シルニジピン投与開始14日目のSTZマウスの随時血糖値(左図)及び空腹時血糖値(右図)の測定結果を示した図である。図中、「STZ」はシルニジピンを投与していないSTZマウスの結果を、「STZ+cil」はシルニジピンを投与したSTZマウスの結果を、それぞれ示す。FIG. 18 is a graph showing the measurement results of the adventitious blood glucose level (left diagram) and fasting blood glucose level (right diagram) of STZ mice on Day 14 of cilnidipine administration in Example 5. In the figure, “STZ” indicates the results of STZ mice not administered with cilnidipine, and “STZ + cil” indicates the results of STZ mice administered with cilnidipine. 図19は、実施例6において、シルニジピンの存在下と非存在下でアミロイドβ負荷をかけた場合の細胞の生存率(%)を測定した結果を示した図である。FIG. 19 is a graph showing the results of measuring the cell viability (%) when amyloid β loading was applied in the presence and absence of cilnidipine in Example 6.

本発明に係るDrp1重合阻害剤は、シルニジピン又はその薬学的に許容される塩を有効成分とすることを特徴とする。当該Drp1重合阻害剤により、Drp1の重合が阻害される結果、ミトコンドリアの分裂が阻害される。すなわち、本発明に係るDrp1重合阻害剤は、ミトコンドリア分裂阻害剤として機能する。   The Drp1 polymerization inhibitor according to the present invention comprises cilnidipine or a pharmaceutically acceptable salt thereof as an active ingredient. As a result of inhibition of Drp1 polymerization by the Drp1 polymerization inhibitor, mitochondrial fission is inhibited. That is, the Drp1 polymerization inhibitor according to the present invention functions as a mitochondrial division inhibitor.

シルニジピンは、L型カルシウムチャネル及びN型カルシウムチャネルを共に阻害するL/N型カルシウム拮抗薬として公知の化合物であり、具体的には、以下の構造式:   Silnidipine is a compound known as an L / N-type calcium antagonist that inhibits both L-type and N-type calcium channels. Specifically, the following structural formula:

で示される、(±)-2-メトキシエチル 3-フェニル-2-(E)プロペニル 1,4-ジヒドロ-2,6-ジメチル-4-(3-ニトロフェニル)-3,5-ピリジンジカルボキシレートである。本発明におけるシルニジピンには、上記構造式に基づく光学異性体も含まれ、いずれも公知の製造方法を用いて製造することができる(特公平3-14307号公報、特公平6-43397号公報等を参照)。また、商業的にも入手可能である。 (±) -2-methoxyethyl 3-phenyl-2- (E) propenyl 1,4-dihydro-2,6-dimethyl-4- (3-nitrophenyl) -3,5-pyridinedicarboxy Rate. The cilnidipine in the present invention includes optical isomers based on the above structural formula, and any of them can be produced using a known production method (Japanese Patent Publication No. 3-14307, Japanese Patent Publication No. 6-43397, etc.) See). It is also commercially available.

シルニジピンは、必要に応じて、その薬学的に許容される塩、水和物又は溶媒和物とすることができる。薬学的に許容される塩としては、特に限定されないが、例えば無機酸との塩(塩酸塩、臭化水素酸塩、リン酸塩、硝酸塩、硫酸塩等)、又は有機酸との塩(酢酸塩、コハク酸塩、マレイン酸塩、フマル酸塩、リンゴ酸塩、酒石酸塩、乳酸塩、クエン酸塩等)等が挙げられる。以下、シルニジピン又はその薬学的に許容される塩を、単にシルニジピンと称する場合がある。   Silnidipine can be converted to a pharmaceutically acceptable salt, hydrate or solvate thereof as required. The pharmaceutically acceptable salt is not particularly limited, but for example, a salt with an inorganic acid (hydrochloride, hydrobromide, phosphate, nitrate, sulfate, etc.) or a salt with an organic acid (acetic acid) Salt, succinate, maleate, fumarate, malate, tartrate, lactate, citrate, etc.). Hereinafter, cilnidipine or a pharmaceutically acceptable salt thereof may be simply referred to as cilnidipine.

高血糖、低酸素、環境汚染物質、一酸化窒素等の刺激により、Drp1が活性化されて重合し、形成されたDrp1多量体による締め付けによってミトコンドリアが分裂する。その後の再酸素化により、分裂したミトコンドリアが融合し、ATPと活性酸素が過剰に生産される結果、糖尿病、心不全、筋委縮性側索硬化症、アルツハイマー病、パーキンソン病等が誘発される。シルニジピンは、Drp1の重合を阻害することによってミトコンドリアの分裂を抑制する。このため、シルニジピンは、糖尿病、心不全、筋委縮性側索硬化症、アルツハイマー病、パーキンソン病等のミトコンドリアの分裂によって誘発される疾患の治療及び予防に有効である。   Drp1 is activated and polymerized by stimulation of hyperglycemia, hypoxia, environmental pollutants, nitric oxide, etc., and mitochondria are disrupted by tightening with the formed Drp1 multimer. Subsequent reoxygenation fuses split mitochondria and produces excessive amounts of ATP and active oxygen, leading to diabetes, heart failure, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and the like. Silnidipine suppresses mitochondrial division by inhibiting Drp1 polymerization. For this reason, cilnidipine is effective in the treatment and prevention of diseases induced by mitochondrial division such as diabetes, heart failure, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and the like.

心筋梗塞後の非梗塞巣においては、低酸素誘導因子の発現が増加し、これに伴う心筋細胞の早期老化が誘導され、これが慢性心不全や突然死の原因となる。後記実施例に示すように、心筋細胞を低酸素刺激すると、一過的にミトコンドリアの分裂が誘導され、その後の再酸素化により、細胞障害や細胞老化が誘導される。シルニジピンは、低酸素刺激による心筋細胞のミトコンドリアの分裂を抑制し、ひいては再酸素化後の細胞障害や細胞老化を抑制する。このため、シルニジピンは、細胞老化抑制の有効成分として用いることができ、特に、心筋梗塞後の慢性心不全の予防又は治療、及び突然死の予防に好適に用いられる。   In non-infarcted lesions after myocardial infarction, the expression of hypoxia-inducing factors is increased, leading to premature cardiomyocyte aging, which causes chronic heart failure and sudden death. As shown in Examples below, when cardiomyocytes are stimulated with hypoxia, mitochondrial division is induced transiently, and subsequent reoxygenation induces cell damage and cellular senescence. Silnidipine suppresses mitochondrial division of cardiomyocytes due to hypoxic stimulation, and thus suppresses cell damage and aging after reoxygenation. For this reason, cilnidipine can be used as an active ingredient for suppressing cell aging, and is particularly preferably used for prevention or treatment of chronic heart failure after myocardial infarction and prevention of sudden death.

また、メチル水銀等の有機水銀は、心血管リスクを高める環境汚染物質であることが知られている。後記実施例に示すように、心筋細胞を、細胞毒性を示さない程度に低濃度の有機水銀に暴露すると、ミトコンドリアの分裂が誘発され、細胞死が誘導されたり、伸展ストレス感受性が増大する。シルニジピンは、有機水銀による心筋細胞のミトコンドリアの分裂を抑制し、ひいては細胞死を抑制する。このため、シルニジピンは、有機水銀による心筋細胞毒性の軽減に好適に用いられ、特に、心不全における有機水銀による心機能悪化亢進抑制に好適に用いられる。   Organic mercury such as methylmercury is known to be an environmental pollutant that increases cardiovascular risk. As shown in Examples below, exposure of cardiomyocytes to organic mercury at a low concentration that does not exhibit cytotoxicity induces mitochondrial division, induces cell death, and increases stretch stress sensitivity. Silnidipine suppresses mitochondrial division of cardiomyocytes by organic mercury, and thus cell death. For this reason, cilnidipine is suitably used for reducing myocardial cell toxicity due to organic mercury, and particularly suitably used for suppressing the deterioration of cardiac function due to organic mercury in heart failure.

また、後記実施例に示すように、シルニジピンは、健常状態における血糖値に対しては特に影響を与えないが、インシュリン依存性高血糖状態では、血糖値を低下させる作用を有する。このため、シルニジピンは、インシュリン依存性高血糖状態の軽減に好適に用いられ、インシュリン依存性糖尿病薬として好適である。   In addition, as shown in Examples below, cilnidipine does not particularly affect blood glucose levels in a healthy state, but has an action of lowering blood glucose levels in an insulin-dependent hyperglycemia state. For this reason, cilnidipine is suitably used for the reduction of an insulin-dependent hyperglycemia state, and is suitable as an insulin-dependent diabetes drug.

本発明に係るDrp1重合阻害剤は、動物に投与されるものであることが好ましく、哺乳動物に投与されるものであることがより好ましく、ヒトや、マウス、ラット、ウサギ、モルモット、ハムスター、サル、ヒツジ、ウマ、ウシ、ブタ、ロバ、イヌ、ネコ等の家畜や実験動物に投与されるものであることがさらに好ましい。また、本発明に係るDrp1重合阻害剤は、単独で動物へ投与してもよく、シルニジピン以外の物質を有効成分とする医薬用組成物と併用投与してもよい。本発明に係るDrp1重合阻害剤は、例えば、抗がん剤等の親電子性の高い薬剤に誘発される、ミトコンドリア分裂を主原因とする副作用の軽減目的にも使用可能である。例えば、糖尿病、心不全、筋委縮性側索硬化症、アルツハイマー病、パーキンソン病等の治療又は予防の効果を有する医薬用組成物を、本発明に係るDrp1重合阻害剤と併用投与してもよく、これらをキットとしていてもよい。   The Drp1 polymerization inhibitor according to the present invention is preferably administered to animals, more preferably administered to mammals, humans, mice, rats, rabbits, guinea pigs, hamsters, monkeys. It is more preferable to administer to livestock and experimental animals such as sheep, horses, cows, pigs, donkeys, dogs and cats. Further, the Drp1 polymerization inhibitor according to the present invention may be administered alone to an animal, or may be administered in combination with a pharmaceutical composition containing a substance other than cilnidipine as an active ingredient. The Drp1 polymerization inhibitor according to the present invention can also be used for the purpose of reducing side effects mainly caused by mitochondrial fission induced by highly electrophilic drugs such as anticancer agents. For example, a pharmaceutical composition having an effect of treating or preventing diabetes, heart failure, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and the like may be administered in combination with the Drp1 polymerization inhibitor according to the present invention, These may be used as a kit.

本発明に係るDrp1重合阻害剤は医薬として投与することができる。   The Drp1 polymerization inhibitor according to the present invention can be administered as a medicament.

本発明に係るDrp1重合阻害剤又はこれを有効成分とする医薬用組成物(以下、単に「本発明に係る医薬用組成物」ということがある。)を、ヒトをはじめとする動物に投与する場合、その投与形態は、経口投与及び非経口投与のいずれでもよく、その剤形としては、経口投与剤であれば、例えば散剤、顆粒剤、カプセル剤、錠剤、チュアブル剤等の固形剤;溶液剤、シロップ剤等の液剤が挙げられ、また、非経口投与剤であれば、例えば注射剤、輸液剤、経鼻・経肺用スプレー剤等が挙げられる。本発明に係る医薬用組成物は、通常の方法によって、これらの剤型の医薬に製剤化することができる。   The Drp1 polymerization inhibitor according to the present invention or a pharmaceutical composition comprising this as an active ingredient (hereinafter sometimes simply referred to as “the pharmaceutical composition according to the present invention”) is administered to animals including humans. In this case, the administration form may be either oral administration or parenteral administration. As the dosage form, if it is an oral administration agent, for example, a solid agent such as powder, granule, capsule, tablet, chewable agent; solution And liquids such as syrups and syrups, and in the case of parenteral agents, for example, injections, infusions, nasal and pulmonary sprays, and the like. The pharmaceutical composition according to the present invention can be formulated into pharmaceuticals of these dosage forms by an ordinary method.

患者への負担を軽減する観点から、本発明に係る医薬用組成物は対象者に対して経口投与することが好ましい。経口投与する場合の剤形は、錠剤が好ましい。一方、経口投与が困難な対象者に対しては、本発明に係る医薬用組成物を輸液として経静脈又は動脈投与することができる。また、本発明に係る医薬用組成物は、製剤上の必要に応じて、適宜の薬学的に許容される担体、例えば、賦形剤、結合剤、滑沢剤、溶剤、崩壊剤、溶解補助剤、懸濁化剤、乳化剤、等張化剤、安定化剤、無痛化剤、防腐剤、抗酸化剤、矯味矯臭剤、着色剤等を配合して製剤化することができる。   From the viewpoint of reducing the burden on the patient, the pharmaceutical composition according to the present invention is preferably orally administered to the subject. A tablet is preferable as the dosage form for oral administration. On the other hand, for a subject who is difficult to administer orally, the pharmaceutical composition according to the present invention can be intravenously or arterally administered as an infusion. In addition, the pharmaceutical composition according to the present invention comprises an appropriate pharmaceutically acceptable carrier, such as an excipient, a binder, a lubricant, a solvent, a disintegrant, a solubilizing aid, as necessary in the formulation. An agent, a suspending agent, an emulsifier, an isotonic agent, a stabilizer, a soothing agent, an antiseptic, an antioxidant, a corrigent, a coloring agent, and the like can be formulated.

賦形剤としては、乳糖、ブドウ糖、D−マンニトール等の糖類、デンプン類、結晶セルロース等のセルロース類等の有機系賦形剤、炭酸カルシウム、カオリン等の無機系賦形剤等が、結合剤としては、α化デンプン、ゼラチン、アラビアゴム、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、結晶セルロース、D−マンニトール、トレハロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、ポリビニルアルコール等が、滑沢剤としては、ステアリン酸、ステアリン酸塩等の脂肪酸塩、タルク、珪酸塩類等が、溶剤としては、精製水、生理的食塩水等が、崩壊剤としては、低置換度ヒドロキシプロピルセルロース、化学修飾されたセルロースやデンプン類等が、溶解補助剤としては、ポリエチレングリコール、プロピレングリコール、トレハロース、安息香酸ベンジル、エタノール、炭酸ナトリウム、クエン酸ナトリウム、サリチル酸ナトリウム、酢酸ナトリウム等が、懸濁化剤或いは乳化剤としては、ラウリル硫酸ナトリウム、アラビアゴム、ゼラチン、レシチン、モノステアリン酸グリセリン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム等のセルロース類、ポリソルベート類、ポリオキシエチレン硬化ヒマシ油等が、等張化剤としては、塩化ナトリウム、塩化カリウム、糖類、グリセリン、尿素等が、安定化剤としては、ポリエチレングリコール、デキストラン硫酸ナトリウム、その他のアミノ酸類等が、無痛化剤としては、ブドウ糖、グルコン酸カルシウム、塩酸プロカイン等が、防腐剤としては、パラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸等が、抗酸化剤としては、亜硫酸塩、アスコルビン酸等が、矯味矯臭剤としては、医薬及び食品分野において通常に使用される甘味料、香料等が、着色剤としては、医薬及び食品分野において通常に使用される着色料が挙げられる。   Examples of excipients include sugars such as lactose, glucose and D-mannitol, organic excipients such as starches and celluloses such as crystalline cellulose, and inorganic excipients such as calcium carbonate and kaolin. As a lubricant, pregelatinized starch, gelatin, gum arabic, methylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, crystalline cellulose, D-mannitol, trehalose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, etc. Are stearic acid, fatty acid salts such as stearate, talc, silicates, etc., as solvent, purified water, physiological saline, etc., as disintegrant, low substituted hydroxypropylcellulose, chemically modified Cellulose and de Pungs, etc. include polyethylene glycol, propylene glycol, trehalose, benzyl benzoate, ethanol, sodium carbonate, sodium citrate, sodium salicylate, sodium acetate, etc. as suspending agents or emulsifiers. Sodium sulfate, gum arabic, gelatin, lecithin, glyceryl monostearate, polyvinyl alcohol, polyvinyl pyrrolidone, carboxymethyl cellulose sodium and other celluloses, polysorbates, polyoxyethylene hydrogenated castor oil, etc. , Potassium chloride, saccharides, glycerin, urea, etc., as stabilizer, polyethylene glycol, sodium dextran sulfate, other amino acids, etc., as soothing agent, glucose, Calcium gluconate, procaine hydrochloride, etc., as preservatives, paraoxybenzoates, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid, etc., as antioxidants, sulfite, ascorbic acid, etc. Examples of the flavoring agent include sweeteners and fragrances commonly used in the pharmaceutical and food fields, and examples of the coloring agent include colorants commonly used in the pharmaceutical and food fields.

本発明に係る医薬用組成物の投与量は、抗癌剤の種類、対象者の年齢、体重、病態、投与方法等によって異なり、通常、有効成分のシルニジピン又はその薬学的に許容される塩の臨床用量を考慮して適宜設定することができる。例えば、成人1人あたり1日量として有効成分0.0001〜1000mg、好ましくは0.001〜100mg、特に好ましくは0.01〜50mgを1回又は数回に分けて経口投与するか、成人1人あたり1日量として、0.0000001〜100mg、好ましくは0.000001〜50mg、特に好ましくは0.0001〜20mgを1日1回から数回に分けて非経口投与し、又は1日1時間から24時間の範囲で静脈内に持続投与することができる。   The dosage of the pharmaceutical composition according to the present invention varies depending on the type of anticancer agent, the age, weight, disease state, administration method, etc. of the subject, and is usually a clinical dose of the active ingredient cilnidipine or a pharmaceutically acceptable salt thereof. Can be set as appropriate. For example, the daily dose per adult is 0.0001 to 1000 mg, preferably 0.001 to 100 mg, particularly preferably 0.01 to 50 mg of the active ingredient is orally administered in one or several divided doses, or adult 1 As a daily dose per person, 0.0000001 to 100 mg, preferably 0.000001 to 50 mg, particularly preferably 0.0001 to 20 mg can be parenterally administered once a day to several times, or 1 hour per day To 24 hours and can be administered intravenously.

次に実施例等を示して本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example etc. are shown and this invention is demonstrated further in detail, this invention is not limited to these.

[マウス]
以降の実験において、C57BL/6J(SLC)マウスは、九動株式会社から購入したものを用いた。
[mouse]
In subsequent experiments, C57BL / 6J (SLC) mice purchased from Kudo Co., Ltd. were used.

[マウス心筋梗塞モデルの作製]
マウス心筋梗塞モデルは、Nishidaらの方法(Nature Chemical Biology, vol.8, p.714-724 (2012))を参考に作製した。
具体的には、8週齢マウス(C57BL/6J(SLC))に、三種混合麻酔薬(ドミトール:0.75mg/kg、ミダゾラム:4mg/kg、ベトルファール:5mg/kg)を腹腔内投与して麻酔をかけた後、開胸し、左冠動脈前下行枝(LAD)を絹縫合糸(6-0号)を用いて結紮した(MI群)。結紮による心筋梗塞が成功しているか否かは、心電図にてST(心室興奮極期)上昇を観察することにより確かめた。同様に麻酔して開胸したが、LADを結紮しなかったマウスをsham群とした。
[Preparation of mouse myocardial infarction model]
A mouse myocardial infarction model was prepared with reference to the method of Nishida et al. (Nature Chemical Biology, vol. 8, p. 714-724 (2012)).
Specifically, an 8-week-old mouse (C57BL / 6J (SLC)) was intraperitoneally administered with a triple anesthetic (dmitol: 0.75 mg / kg, midazolam: 4 mg / kg, betorfal: 5 mg / kg). After anesthesia, the thorax was opened and the left anterior descending coronary artery (LAD) was ligated using silk suture (No. 6-0) (MI group). Whether or not myocardial infarction due to ligation was successful was confirmed by observing an increase in ST (ventricular excitement) on the electrocardiogram. Similarly, mice that had been anesthetized and thoracotomy but did not ligate LAD were assigned to the sham group.

[細胞]
NRCM(Preparation of neonatal rat cardiac myocytes)細胞は、以下のようにして得た。
まず、哺乳一日目のSDラットの胎児を冷温麻酔後、心臓を取り出し、0.05%トリプシン−EDTAにて4℃で16時間インキュベートした。その後、トリプシンを除去し、1mg/mLとなるようにPBS(リン酸生理食塩水)にて希釈したコラゲナーゼII溶液にて37℃で15分間インキュベートした。残渣はさらにコラゲナーゼIIにて37℃で15分間インキュベートした後、70μm nyloncell strainer(BD-Falcon Biosciences社製)を通過させた後、遠心分離(1000rpm、2分間)してコラゲナーゼを除去した。得られた細胞は、FBS(ウシ胎児血清)含有DMEM(10容量% FBS、100unit/mL ペニシリン、及び100μg/mL ストレプトマイシンを含有するDMEM)に懸濁した後、non-coatディッシュに播種し、5容量%二酸化炭素(95容量%空気)、加湿雰囲気下で37℃、1時間培養した。次いで、ディッシュに接着しなかった細胞をNRCM細胞として回収し、ゼラチンコートしたディッシュ又はプレートに播種した。播種したNRCM細胞を、5容量%二酸化炭素(95容量%空気)、加湿雰囲気下で37℃、24時間培養した後、タウリン含有DMEM(5mM タウリン、100unit/mL ペニシリン、及び100μg/mL ストレプトマイシンを含有するDMEM)に培地交換して48時間培養したものを、各実験に用いた。
[cell]
NRCM (Preparation of neonatal rat cardiac myocytes) cells were obtained as follows.
First, after the cold anesthesia of the SD rat fetus on the first day of feeding, the heart was taken out and incubated with 0.05% trypsin-EDTA at 4 ° C. for 16 hours. Then, trypsin was removed and incubated at 37 ° C. for 15 minutes in a collagenase II solution diluted with PBS (phosphate physiological saline) to 1 mg / mL. The residue was further incubated with collagenase II at 37 ° C. for 15 minutes, passed through a 70 μm nylon cell strainer (BD-Falcon Biosciences), and then centrifuged (1000 rpm, 2 minutes) to remove collagenase. The obtained cells were suspended in DMEM containing FBS (fetal bovine serum) (DMEM containing 10% by volume FBS, 100 unit / mL penicillin, and 100 μg / mL streptomycin), and then seeded in a non-coat dish. The culture was performed at 37 ° C. for 1 hour in a humidified atmosphere with vol% carbon dioxide (95 vol% air). Cells that did not adhere to the dish were then collected as NRCM cells and seeded on gelatin-coated dishes or plates. The seeded NRCM cells were cultured in 5% by volume carbon dioxide (95% by volume air) in a humidified atmosphere at 37 ° C. for 24 hours, and then taurine-containing DMEM (containing 5 mM taurine, 100 unit / mL penicillin, and 100 μg / mL streptomycin). The culture medium was changed to DMEM) and cultured for 48 hours and used for each experiment.

Hela細胞は、FBS含有DMEM(10容量% FBS、100unit/mL ペニシリン、及び100μg/mL ストレプトマイシンを含有するDMEM)にて、5容量%二酸化炭素(95容量%空気)、加湿雰囲気下、37℃で培養した。トランスフェクションは、前日にFBS非含有DMEM(100unit/mL ペニシリン、及び100μg/mL ストレプトマイシンを含有するDMEM)に培地交換して一晩培養したHela細胞に対して、X-tremeGENE9 DNA transfection reagent(Roche社製)を用い、付属の説明書に従い、35mmディッシュあたり3μgのプラスミドを12時間遺伝子導入することにより行った。   Hela cells were prepared in DMEM containing FBS (DMEM containing 10% by volume FBS, 100 unit / mL penicillin, and 100 μg / mL streptomycin) at 5 ° C. carbon dioxide (95% by volume air) in a humidified atmosphere at 37 ° C. Cultured. Transfection was performed on X-tremeGENE9 DNA transfection reagent (Roche) on Hela cells cultured overnight after changing the medium to DMEM without DBS (DMEM containing 100 units / mL penicillin and 100 μg / mL streptomycin) the day before. And 3 μg of plasmid per 35 mm dish was introduced for 12 hours according to the attached instructions.

[Drp1−EGFP及びDrp1−Flagの発現用プラスミドの作製]
C末端側にEGFPを融合させたDrp1(Drp1−EGFP)の発現用プラスミド、及びC末端側にFlagを融合させたDrp1(Drp1−Flag)の発現用プラスミドは、次のようにして作製した。
まず、ラットの心臓よりRNeasy fibrous tissue mini kit(Qiagen社製)を用いて調製したRNAを鋳型として、Prime Script RT(タカラバイオ社製)を用いて調製した。得られたcDNAを鋳型とし、GFPタグ用FwプライマーとGFPタグ用Rvプライマーを用いてPCRを行い、得られたPCR産物をBamHIとXhoIにより消化した後にpEGFP−C1ベクターにライゲーションすることにより、Drp1−EGFPの発現用プラスミドを得た。同様に、得られたcDNAを鋳型とし、GFPタグ用FwプライマーとGFPタグ用Rvプライマーを用いてPCRを行い、得られたPCR産物をBamHIとXhoIにより消化した後にpcDNA3.1ベクターにライゲーションすることにより、Drp1−Flagの発現用プラスミドを得た。
ライゲーション産物は大腸菌DH5α株に形質転換してシングルコロニーを培養した後、LaboPass(北海道システム・サイエンス社製)によりプラスミドを得た。得られたプラスミドは、シークエンスによる配列の確認後、Qiagen plasmid Maxi kit(Qiagen社製)にて精製し、各実験に用いた。
[Preparation of plasmids for expression of Drp1-EGFP and Drp1-Flag]
An expression plasmid for Drp1 (Drp1-EGFP) fused with EGFP on the C-terminal side and an expression plasmid for Drp1 (Drp1-Flag) fused with Flag on the C-terminal side were prepared as follows.
First, RNA prepared from a rat heart using RNeasy fibrous tissue mini kit (Qiagen) was used as a template, and Prime Script RT (Takara Bio) was used. Using the obtained cDNA as a template, PCR was performed using the Fw primer for GFP tag and the Rv primer for GFP tag, and the obtained PCR product was digested with BamHI and XhoI and then ligated to the pEGFP-C1 vector to obtain Drp1 -A plasmid for expression of EGFP was obtained. Similarly, PCR is performed using the obtained cDNA as a template, Fw primer for GFP tag and Rv primer for GFP tag, and the obtained PCR product is digested with BamHI and XhoI and then ligated to pcDNA3.1 vector. Thus, a plasmid for expression of Drp1-Flag was obtained.
The ligation product was transformed into Escherichia coli DH5α strain, a single colony was cultured, and then a plasmid was obtained by LaboPass (Hokkaido System Science Co., Ltd.). The obtained plasmid was purified by Qiagen plasmid Maxi kit (manufactured by Qiagen) after confirming the sequence by sequencing, and used for each experiment.

また、Drp1のC624S変異体(624番目のシステインをセリンに置換した変異体)のC末端側にEGFPを融合させたタンパク質(Drp1(C624S)−EGFP)の発現用プラスミドは、Drp1−EGFPの発現用プラスミドを鋳型とし、C624S用FwプライマーとC624S用RvプライマーとPCR試薬(製品名:KOD Fx、東洋紡社製)を用いてPCRを行い、得られたPCR産物をBamHIとXhoIにより消化した後にpEGFP−C1ベクターにライゲーションした後、Drp1−EGFPの発現用プラスミドと同様にして調製した。   In addition, the expression plasmid for the protein (Drp1 (C624S) -EGFP) in which EGFP is fused to the C-terminal side of the C624S mutant of Drp1 (mutant in which the 624th cysteine is substituted with serine) is an expression of Drp1-EGFP. PCR was carried out using the C624S Fw primer, C624S Rv primer and PCR reagent (product name: KOD Fx, manufactured by Toyobo Co., Ltd.) after digesting the resulting PCR product with BamHI and XhoI. After ligation to the -C1 vector, it was prepared in the same manner as the expression plasmid for Drp1-EGFP.

[MTTアッセイ]
MTTアッセイは、ミトコンドリアのNADHデヒドロゲナーゼ活性を調べるアッセイである。
具体的には、96ウェルプレートに培養したNRCM細胞に、MTT溶液(MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-triphenyltetrazolium bromide)を5mg/mLとなるようにPBSに溶解させた溶液)を、MTTの最終濃度が0.125mg/mLとなるように添加し、5容量%二酸化炭素(95容量%空気)、加湿雰囲気下で37℃、1時間培養した。培養後、培地を除去し、100μLのDMSOを添加して室温で30分間穏やかに振とうさせることにより、産生されたホルマザンを溶解させた。その後、595nmの吸光度(Abs595)をプレートリーダー(製品名:SpectraMax i3 、Molecular devices社製)を用いて測定した。
[MTT assay]
The MTT assay is an assay that examines mitochondrial NADH dehydrogenase activity.
Specifically, MTT solution (MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-triphenyltetrazolium bromide)) was added to NRCM cells cultured in a 96-well plate at 5 mg / mL. The solution was dissolved so that the final concentration of MTT was 0.125 mg / mL, and cultured at 37 ° C. for 1 hour in a humidified atmosphere of 5% by volume carbon dioxide (95% by volume air). After culturing, the formazan produced was dissolved by removing the medium, adding 100 μL of DMSO, and gently shaking at room temperature for 30 minutes. Thereafter, the absorbance at 595 nm (Abs595) was measured using a plate reader (product name: SpectraMax i3, manufactured by Molecular devices).

[参考例1]
NRCM細胞において、低酸素刺激によりミトコンドリアの分裂が誘発され、再酸素化により細胞老化が誘導されることを確認した。具体的には、無刺激のNRCM細胞と、低酸素刺激後のNRCM細胞と、低酸素刺激後再酸素化したNRCM細胞について、ミトコンドリアの形態と老化した細胞の割合(%)と、細胞内活性酸素量(相対値)と、細胞内ATP濃度(μM/ウェル)を調べた。
[Reference Example 1]
In NRCM cells, it was confirmed that hypoxia stimulation induced mitochondrial division and reoxygenation induced cellular senescence. Specifically, for unstimulated NRCM cells, NRCM cells after hypoxic stimulation, and NRCM cells reoxygenated after hypoxic stimulation, mitochondrial morphology and percentage of aged cells and intracellular activity The amount of oxygen (relative value) and intracellular ATP concentration (μM / well) were examined.

<低酸素刺激と再酸素化>
NRCM細胞の低酸素刺激は、NRCM細胞を、1容量%酸素及び5容量%二酸化炭素(94容量%窒素)、加湿雰囲気下で37℃、16時間培養することにより行った。再酸素化は、低酸素刺激後のNRCM細胞を、5容量%二酸化炭素(95容量%空気)、加湿雰囲気下で37℃、24時間培養することにより行った。
<Hypoxic stimulation and reoxygenation>
Hypoxic stimulation of NRCM cells was performed by culturing NRCM cells at 37 ° C. for 16 hours in a humidified atmosphere with 1 vol% oxygen and 5 vol% carbon dioxide (94 vol% nitrogen). Reoxygenation was performed by culturing NRCM cells after hypoxic stimulation at 37 ° C. for 24 hours in a humidified atmosphere of 5% by volume carbon dioxide (95% by volume air).

<ミトコンドリアの形態>
ミトコンドリア形態は、各細胞のミトコンドリアをMitoTracker Green FM reagent(Life technologies社製)を用いて染色した後、共焦点レーザ走査型顕微鏡(製品名:FV10i、オリンパス社製、倍率:×300)により観察して解析した。ミトコンドリア染色は、より詳細には、まず、35mmガラスボトムディッシュに播種した細胞を、MitoTrakcer Green(0.5μM)を、5容量%二酸化炭素(95容量%空気)、加湿雰囲気下で37℃、10分間インキュベートして反応させた。反応後、PBSで2回洗浄してMitotTackerを除去した後、フェノールレッドフリーのDMEMに交換した。
<Mitochondrial morphology>
Mitochondrial morphology was observed with a confocal laser scanning microscope (product name: FV10i, Olympus, magnification: x300) after staining the mitochondria of each cell with MitoTracker Green FM reagent (Life technologies). And analyzed. In more detail, the mitochondrial staining is performed by firstly inoculating a cell seeded in a 35 mm glass bottom dish with MitoTrakcer Green (0.5 μM), 5 vol% carbon dioxide (95 vol% air), and 37 ° C. in a humidified atmosphere. The reaction was incubated for a minute. After the reaction, the plate was washed twice with PBS to remove MitotTacker and then replaced with phenol red-free DMEM.

各細胞のミトコンドリアの形態の形態を、小胞状(vesicle)、管状(tubule)、小胞状と管状の中間的な構造(intermediate)に分け、それぞれの存在比を求めた結果を図1に示す。図1中、「N」は無刺激の細胞の結果を、「H」は低酸素刺激後の細胞の結果を、「H/R」は低酸素刺激後に再酸素化した細胞の結果を、それぞれ示す。小胞状のミトコンドリアは、低酸素刺激により増大したが、再酸素後には減少していた。   The mitochondrial morphology of each cell is divided into vesicles, tubules, and intermediate structures between vesicles and tubes, and the results of the respective abundances are shown in FIG. In FIG. 1, “N” indicates the result of unstimulated cells, “H” indicates the results of cells after hypoxic stimulation, and “H / R” indicates the results of cells reoxygenated after hypoxic stimulation. Show. Vesicular mitochondria increased with hypoxic stimulation but decreased after reoxygenation.

<SA−β−gal活性測定>
老化に関係する酸性のβ−ガラクトシダーゼ(SA−β−Gal)活性を測定し、老化した細胞の割合を測定した。SA−β−Gal活性は、senescenceβ−Galactosidase Staining Kit(Cell signaling technology社製)を用いて測定した。
具体的には、まず、35mmディッシュに60%コンフルエントで播種したNRCM細胞を低酸素刺激後に再酸素化した後、PBSで1回洗浄した。対照として、無刺激のNRCM細胞も、PBSで1回洗浄した。また、Drp1に対する選択的阻害物質であり、ミトコンドリア分裂阻害剤であるMdivi−1(CAS No:338967-87-6、Sigma社製)をDMSOに溶解させた溶液として最終濃度が10μMとなるように添加した培養培地を用いた以外は同様にして、無刺激のNRCM細胞及び低酸素刺激後に再酸素化したNRCM細胞も調製した。
次いで、各細胞を、キットに含まれているFixative Solutionにて室温で15分間処理して固定した。固定された細胞を、PBSで1回洗浄後、キットに含まれているβ-galactosidase staining solutionを加え、37℃で一晩インキュベートした。インキュベート後の細胞を、カラーCCDカメラ(Nikon digital camera DXM1200F)付きの正立顕微鏡(製品名:Eclipse 80i、ニコン社製)により観察し、SA−β−Gal活性がポジティブな細胞(染色された細胞)の割合(%)を調べた。
<SA-β-gal activity measurement>
Acidic β-galactosidase (SA-β-Gal) activity related to aging was measured, and the proportion of aging cells was measured. SA-β-Gal activity was measured using senescence β-Galactosidase Staining Kit (manufactured by Cell signaling technology).
Specifically, first, NRCM cells seeded in a 35 mm dish at 60% confluence were reoxygenated after hypoxic stimulation, and then washed once with PBS. As a control, unstimulated NRCM cells were also washed once with PBS. Further, Mdivi-1 (CAS No: 338967-87-6, manufactured by Sigma), which is a selective inhibitor for Drp1 and is a mitochondrial division inhibitor, is dissolved in DMSO so that the final concentration is 10 μM. Unstimulated NRCM cells and NRCM cells reoxygenated after hypoxic stimulation were prepared in the same manner except that the added culture medium was used.
Next, each cell was fixed by treatment with Fixative Solution included in the kit for 15 minutes at room temperature. The fixed cells were washed once with PBS, added with β-galactosidase staining solution included in the kit, and incubated overnight at 37 ° C. The cells after incubation were observed with an upright microscope (product name: Eclipse 80i, manufactured by Nikon) equipped with a color CCD camera (Nikon digital camera DXM1200F), and cells positive for SA-β-Gal activity (stained cells) ) Percentage (%).

SA−β−Gal活性がポジティブな細胞の割合(%)の測定結果を図2に示す。図2中、「H/R」欄が「(−)」は無刺激のNRCM細胞の結果を、「(+)」は低酸素刺激後、再酸素化したNRCM細胞の結果を、それぞれ示す。また、図2中、「Midivi−1」欄が「(−)」はMidivi−1無添加のNRCM細胞の結果を、「(+)」はMidivi−1添加のNRCM細胞の結果を、それぞれ示す。Midivi−1無添加の場合、無刺激の細胞よりも低酸素刺激後、再酸素化した細胞のほうがSA−β−Gal活性がポジティブな細胞の割合が増大しており、低酸素刺激後、再酸素化することにより、細胞老化が誘発されることが確認された。一方で、Midivi−1添加の細胞では、低酸素刺激後、再酸素化した細胞におけるSA−β−Gal活性がポジティブな細胞の割合が低く、Midivi−1により、低酸素刺激後、再酸素化することにより誘発される細胞老化が抑制されることがわかった。   The measurement results of the percentage (%) of cells positive for SA-β-Gal activity are shown in FIG. In FIG. 2, “(−)” in the “H / R” column indicates the result of unstimulated NRCM cells, and “(+)” indicates the result of NRCM cells reoxygenated after hypoxic stimulation. In FIG. 2, in the “Midivi-1” column, “(−)” indicates the result of the NRCM cell without Midi-1, and “(+)” indicates the result of the NRCM cell with Midi-1 added. . In the case of no addition of midi-1, the proportion of cells positive for SA-β-Gal activity increased in the reoxygenated cells after hypoxic stimulation than in the unstimulated cells. It was confirmed that cell senescence was induced by oxygenation. On the other hand, in the cells to which Midi-1 was added, the proportion of cells with positive SA-β-Gal activity in the reoxygenated cells after hypoxic stimulation was low, and the reoxygenation after hypoxic stimulation by Midi-1 It was found that cell senescence induced by this is suppressed.

<ミトコンドリアの活性酸素量の測定>
ミトコンドリアからの活性酸素産生量は、MitoSOX Red (Life technologies社製)を用いて測定した。
具体的には、まず、35mmガラスボトムディッシュに播種したNRCM細胞を、低酸素刺激した後、又は低酸素刺激後に再酸素化した後、PBSで1回洗浄した。対照として、無刺激のNRCM細胞も、PBSで1回洗浄した。また、培養培地にDMSOに溶解させたMdivi−1(Sigma社製)を最終濃度が10μMとなるように添加した以外は同様にして、無刺激のNRCM細胞、低酸素刺激したNRCM細胞、及び低酸素刺激後に再酸素化したNRCM細胞も調製した。
次いで、各細胞に、MitoSOX(5μM)を添加し、5容量%二酸化炭素(95容量%空気)、加湿雰囲気下で37℃、10分間インキュベートして反応させた。反応後、PBSで2回洗浄してMitoSOXを除去した後、フェノールレッドフリーのDMEMに交換した。染色された細胞を、共焦点レーザ走査型顕微鏡(製品名:FV10i、オリンパス社製、倍率:×300)により観察して、各細胞について、細胞あたりの蛍光強度を測定し、無刺激かつMdivi−1無添加の細胞の細胞あたりの蛍光強度を100%とした相対値を、ミトコンドリアの活性酸素量の相対値(%)として算出した。
<Measurement of mitochondrial active oxygen content>
The amount of active oxygen produced from mitochondria was measured using MitoSOX Red (manufactured by Life technologies).
Specifically, first, NRCM cells seeded in a 35 mm glass bottom dish were washed once with PBS after hypoxic stimulation or after reoxygenation after hypoxic stimulation. As a control, unstimulated NRCM cells were also washed once with PBS. Further, except that Mdivi-1 (manufactured by Sigma) dissolved in DMSO was added to the culture medium so that the final concentration was 10 μM, unstimulated NRCM cells, hypoxia-stimulated NRCM cells, and low NRCM cells reoxygenated after oxygen stimulation were also prepared.
Subsequently, MitoSOX (5 μM) was added to each cell and reacted by incubating at 37 ° C. for 10 minutes in a humidified atmosphere with 5% by volume carbon dioxide (95% by volume air). After the reaction, it was washed twice with PBS to remove MitoSOX, and then replaced with phenol red-free DMEM. The stained cells were observed with a confocal laser scanning microscope (product name: FV10i, Olympus, magnification: x300), and the fluorescence intensity per cell was measured for each cell. The relative value with the fluorescence intensity per cell of one additive-free cell as 100% was calculated as the relative value (%) of the amount of active oxygen in mitochondria.

ミトコンドリアの活性酸素量の相対値(%)の算出結果を図3に示す。図3中、「N」、「H」、「H/R」は図2と同じ意味であり、図3中、「Midivi−1」欄が「(−)」はMidivi−1無添加のNRCM細胞の結果を、「(+)」はMidivi−1添加のNRCM細胞の結果を、それぞれ示す。図3に示すように、低酸素刺激及びその後の再酸素化によりミトコンドリアの活性酸素量は増大したが、Midivi−1処理により、低酸素刺激後及びその後の再酸素化におけるミトコンドリアの活性酸素量の増大は抑制された。   The calculation result of the relative value (%) of the amount of mitochondrial active oxygen is shown in FIG. In FIG. 3, “N”, “H”, and “H / R” have the same meaning as in FIG. 2. In FIG. 3, “(−)” in the “Midivi-1” column is NRCM without Midi-1 added. The result of the cell, “(+)” indicates the result of the NRCM cell added with Midiv-1. As shown in FIG. 3, the mitochondrial active oxygen amount was increased by hypoxic stimulation and subsequent reoxygenation, but the mitochondrial active oxygen amount after hypoxic stimulation and in the subsequent reoxygenation was reduced by the Midi-1 treatment. The increase was suppressed.

<細胞内ATP量の測定>
細胞内ATP量は、Luciferase assay (和光純薬工業社製) を用いて測定した。
具体的には、まず、96ウェルプレートに播種したNRCM細胞を、低酸素刺激した後、又は低酸素刺激後に再酸素化した後、PBSで1回洗浄した。対照として、無刺激のNRCM細胞も、PBSで1回洗浄した。また、培養培地にDMSOに溶解させたMdivi−1(Sigma社製)を最終濃度が10μMとなるように添加した以外は同様にして、無刺激のNRCM細胞、低酸素刺激したNRCM細胞、及び低酸素刺激後に再酸素化したNRCM細胞も調製した。
次いで、培地を除去してフレッシュなDMEM(100μL)に交換した後、ただちにLuciferase reagentを20μL添加し、10分間室温でインキュベートした。インキュベート後の細胞の発光を、SpectraMax i3 (Molecular devices社製) で測定し、発光強度からウェルあたりのATP濃度を求めた。発光強度からのATP濃度の算出には、ATPを最終濃度0、0.01、0.1、1、又は10μMとなるように含有するDMEMの発光強度を同様にして求め、得られた発光強度とATP濃度の関係から求めた検量線を用いた。
ウェルあたりのATP消費量は、細胞に10μMのcarbonyl cyanide m-chlorophenyl hydrazine (CCCP)を添加して5分間室温でインキュベートすることにより、ミトコンドリアからのATP合成を阻害する処理を行った後、Luciferase assayに供し、細胞内の残存ATP量を測定した。
<Measurement of intracellular ATP amount>
The amount of intracellular ATP was measured using Luciferase assay (manufactured by Wako Pure Chemical Industries, Ltd.).
Specifically, first, NRCM cells seeded in a 96-well plate were washed once with PBS after hypoxic stimulation or after reoxygenation after hypoxic stimulation. As a control, unstimulated NRCM cells were also washed once with PBS. Further, except that Mdivi-1 (manufactured by Sigma) dissolved in DMSO was added to the culture medium so that the final concentration was 10 μM, unstimulated NRCM cells, hypoxia-stimulated NRCM cells, and low NRCM cells reoxygenated after oxygen stimulation were also prepared.
Next, after removing the medium and replacing with fresh DMEM (100 μL), 20 μL of Luciferase reagent was immediately added and incubated at room temperature for 10 minutes. The luminescence of the cells after incubation was measured with SpectraMax i3 (Molecular devices), and the ATP concentration per well was determined from the luminescence intensity. For calculating the ATP concentration from the luminescence intensity, the luminescence intensity of DMEM containing ATP at a final concentration of 0, 0.01, 0.1, 1, or 10 μM was determined in the same manner, and the obtained luminescence intensity was obtained. A calibration curve obtained from the relationship between ATP concentration and ATP concentration was used.
The amount of ATP consumed per well was determined by adding 10 μM carbonyl cyanide m-chlorophenyl hydrazine (CCCP) to the cells and incubating for 5 minutes at room temperature to inhibit ATP synthesis from mitochondria, followed by Luciferase assay The amount of residual ATP in the cells was measured.

各細胞の細胞内ATP量(ウェルあたりのATP濃度)の測定結果を図4に示す。図4中、「N」、「H」、「H/R」は図2と同じ意味であり、「control」はMidivi−1無添加のNRCM細胞の結果を、「Midivi−1」はMidivi−1添加のNRCM細胞の結果を、それぞれ示す。低酸素刺激後再酸素化により細胞内ATP量は増大するが、この増大傾向は、Midivi−1処理により抑制された。   The measurement results of the intracellular ATP amount (ATP concentration per well) of each cell are shown in FIG. In FIG. 4, “N”, “H”, and “H / R” have the same meaning as in FIG. 2, “control” indicates the result of NRCM cells without Midi-1, and “Midivi-1” indicates Midi−. The results of 1 added NRCM cells are shown respectively. The amount of intracellular ATP increases due to reoxygenation after hypoxic stimulation, but this increase tendency was suppressed by Midi-1 treatment.

[実施例1]
Drp1−EGFPを発現させたNRCM細胞に、各種カルシウム拮抗剤の存在下で低酸素刺激及び再酸素化処理を行い、細胞内ATP量、ミトコンドリアの形態、老化した細胞の割合(%)、及びDrp1の局在を調べた。
具体的には、NRCM細胞に、Drp1−EGFPの発現用プラスミドをトランスフェクションした後、シルニジピン(CIL)、アムロジピン(Aml)、ベラパミル(Ver)、ジルチアゼム(Dil)のDMSO溶液又はω−コノトキシン(ω−Ctx)のリン酸緩衝液(PBS)を最終濃度が10μMとなるように添加した培養培地にて低酸素刺激及び再酸素化を行い、各処理後の細胞の細胞内ATP量、ミトコンドリアの形態、老化した細胞の割合(%)、及びDrp1の局在を調べた。対照として、等量のDMSOのみを添加した培養培地で培養したNRCM細胞についても同様に測定した。低酸素刺激及び再酸素化処理は参考例1と同様にして行い、細胞内ATP量、ミトコンドリアの形態、及び老化した細胞の割合(%)は、参考例1と同様にして測定した。Drp1の局在は、融合しているEGFPの蛍光を共焦点レーザ走査型顕微鏡により観察して調べた。
[Example 1]
NRCM cells expressing Drp1-EGFP are subjected to hypoxic stimulation and reoxygenation treatment in the presence of various calcium antagonists, intracellular ATP content, mitochondrial morphology, percentage of aged cells (%), and Drp1 The localization of was investigated.
Specifically, NRCM cells were transfected with a plasmid for expression of Drp1-EGFP, and then a DMSO solution of cilnidipine (CIL), amlodipine (Aml), verapamil (Ver), diltiazem (Dil) or ω-conotoxin (ω -Ctx) phosphate buffer solution (PBS) was added to the culture medium so that the final concentration was 10 μM, and hypoxia stimulation and reoxygenation were performed. The percentage of senescent cells (%) and the localization of Drp1 were examined. As a control, NRCM cells cultured in a culture medium to which only an equal amount of DMSO was added were measured in the same manner. Hypoxic stimulation and reoxygenation treatment were performed in the same manner as in Reference Example 1, and the amount of intracellular ATP, mitochondrial morphology, and percentage of aged cells (%) were measured in the same manner as in Reference Example 1. The localization of Drp1 was examined by observing the fluorescence of fused EGFP with a confocal laser scanning microscope.

この結果、シルニジピン以外のカルシウム拮抗剤の存在下で低酸素刺激及び再酸素化を行った細胞では、対照(DMSOのみを添加した培養培地の細胞)と同様に、低酸素刺激及び再酸素化により細胞内ATP量が増大していたが、シルニジピン存在下で低酸素刺激及び再酸素化を行った細胞では、対照に比べて再酸素化後の細胞内ATP量が明らかに低かった。これらの結果から、シルニジピンにより、低酸素刺激及び再酸素化による細胞内ATP量の増大が抑制されるが、この抑制効果は、カルシウム拮抗作用とは関係のない作用であることが示唆された。   As a result, in the cells subjected to hypoxic stimulation and reoxygenation in the presence of a calcium antagonist other than cilnidipine, the hypoxic stimulation and reoxygenation were performed in the same manner as in the control (culture medium cells added with DMSO alone). Although the amount of intracellular ATP was increased, the amount of intracellular ATP after reoxygenation was clearly lower in the cells subjected to hypoxic stimulation and reoxygenation in the presence of cilnidipine compared to the control. From these results, it was suggested that cilnidipine suppresses an increase in intracellular ATP level due to hypoxic stimulation and reoxygenation, but this inhibitory effect is an action unrelated to calcium antagonism.

対照の細胞(DMSOのみを添加した培養培地の細胞)とシルニジピン存在下で低酸素刺激及び再酸素化を行った細胞のミトコンドリアの形態の形態を、参考例1と同様に小胞状、管状、小胞状と管状の中間的な構造に分け、それぞれの存在比を求めた。結果を図5に示す。図5中、「N」、「H」、及び「H/R」は図1と同じ意味であり、「control」が対照の細胞の結果を、「CIL」がシルニジピン存在下で低酸素刺激及び再酸素化を行った細胞の結果を、それぞれ示す。シルニジピンにより、低酸素刺激による小胞状のミトコンドリアはほとんど増えておらず、低酸素刺激によるミトコンドリアの分裂が抑制されることが示された。   The mitochondrial morphology of the control cells (culture medium cells to which only DMSO was added) and the hypoxic-stimulated and reoxygenated cells in the presence of cilnidipine were vesicular, tubular, small as in Reference Example 1. It was divided into an intermediate structure between the vesicular and tubular, and the abundance of each was determined. The results are shown in FIG. In FIG. 5, “N”, “H”, and “H / R” have the same meaning as in FIG. 1, “control” is the result of the control cell, “CIL” is hypoxic stimulation in the presence of cilnidipine and The results of the cells subjected to reoxygenation are shown respectively. Silnidipine showed that vesicular mitochondria by hypoxia stimulation hardly increased, and mitochondria division by hypoxia stimulation was suppressed.

シルニジピン存在下又は非存在下で低酸素刺激及び再酸素化した細胞のSA−β−Gal活性がポジティブな細胞の割合(%)の測定結果を図6に示す。図6中、「H/R」欄が「(−)」は無刺激のNRCM細胞の結果を、「(+)」は低酸素刺激後、再酸素化したNRCM細胞の結果を、それぞれ示す。また、図6中、「CIL」欄が「(−)」は対照のNRCM細胞(DMSOのみを添加した培養培地の細胞)の結果を、「(+)」はシルニジピンを添加したNRCM細胞の結果を、それぞれ示す。対照の細胞では、低酸素刺激及び再酸素化によりSA−β−Gal活性がポジティブな細胞の割合(%)は増大するが、シルニジピン存在下の細胞では、低酸素刺激及び再酸素化によるSA−β−Gal活性がポジティブな細胞の増大が抑制されていた。すなわち、シルニジピンにより、低酸素刺激及び再酸素化による細胞老化が抑制されることが示された。   FIG. 6 shows the measurement results of the percentage of cells with positive SA-β-Gal activity in hypoxic stimulated and reoxygenated cells in the presence or absence of cilnidipine. In FIG. 6, “(−)” in the “H / R” column indicates the result of unstimulated NRCM cells, and “(+)” indicates the result of NRCM cells reoxygenated after hypoxic stimulation. In FIG. 6, “(−)” in the “CIL” column indicates the result of the control NRCM cells (culture medium cells added with DMSO alone), and “(+)” indicates the results of the NRCM cells added with cilnidipine. Are shown respectively. In the control cells, hypoxia stimulation and reoxygenation increase the percentage of cells positive for SA-β-Gal activity, whereas in the presence of cilnidipine, SA- by hypoxia stimulation and reoxygenation increases. The increase in cells positive for β-Gal activity was suppressed. That is, it was shown that cell senescence due to hypoxic stimulation and reoxygenation is suppressed by cilnidipine.

シルニジピン存在下又は非存在下で低酸素刺激した細胞における、Drp1とミトコンドリアの局在を示した顕微鏡写真を図7に示す。図7中、「N」は無刺激の細胞の結果を、「H(Control)」は対照の細胞の低酸素刺激後の結果を、「H(CIL)」はシルニジピンを添加した細胞の低酸素刺激後の結果を、それぞれ示す。無刺激の細胞では、シルニジピン添加の細胞におけるDrp1−EGFPとミトコンドリアの細胞内局在は、対照の細胞と特に差はなく、Drp1−EGFPは細胞質にブロードに存在していた。低酸素刺激後の細胞では、対照の細胞では、Drp1−EGFPはミトコンドリアの小胞近傍に小胞状に局在していたのに対して、シルニジピンを添加した細胞のDrp1−EGFPは、小胞状に局在するものが少なく、また、ミトコンドリアとの共局在も観察されなかった。   FIG. 7 shows a photomicrograph showing the localization of Drp1 and mitochondria in cells hypoxia stimulated in the presence or absence of cilnidipine. In FIG. 7, “N” indicates the result of unstimulated cells, “H (Control)” indicates the result after hypoxic stimulation of the control cells, and “H (CIL)” indicates hypoxia of the cells to which cilnidipine was added. The results after stimulation are shown respectively. In unstimulated cells, the intracellular localization of Drp1-EGFP and mitochondria in silnidipine-added cells was not particularly different from control cells, and Drp1-EGFP was broadly present in the cytoplasm. In the cells after hypoxic stimulation, in the control cells, Drp1-EGFP was localized in the vicinity of mitochondrial vesicles, whereas Drp1-EGFP in the cells to which cilnidipine was added was in vesicles. There were few localities, and no co-localization with mitochondria was observed.

[実施例2]
C57BL/6Jマウスから作製したマウス心筋梗塞モデル(MI群)と対照とするsham群に対してシルニジピンを投与し、心筋梗塞後の心臓に対するシルニジピンの影響を調べた。
[Example 2]
Cirnidipine was administered to a mouse myocardial infarction model (MI group) prepared from C57BL / 6J mice and a control sham group, and the influence of cilnidipine on the heart after myocardial infarction was examined.

<シルニジピンの投与>
シルニジピンの投与は、DMSOとPEG300を容量比3:7で混合した混合溶媒に溶解させた状態で、浸透圧ポンプ(製品名:model2004、Alzet社製)を用いて、心筋梗塞後(LADの結紮手術後)24時間後より持続投与した。シルニジピンの投与量が30mg/kg/dayとなるように投与したマウスのうち、MI群のマウスに投与したものをCIL30−MI群、sham群のマウスに投与したものをCIL30−sham群とした。同様に、シルニジピンの投与量が100mg/kg/dayとなるように投与したマウスのうち、MI群のマウスに投与したものをCIL100−MI群、sham群のマウスに投与したものをCIL100−sham群とした。さらに、対照として、DMSOとPEG300を容量比3:7で混合した混合溶媒のみをMI群及びsham群に投与したマウスを、それぞれ、Vehicle−MI群及びVehicle−sham群とした。
<Administration of cilnidipine>
The administration of cilnidipine was performed after myocardial infarction (LAD ligation) using an osmotic pump (product name: model 2004, manufactured by Alzet) in a state where DMSO and PEG300 were dissolved in a mixed solvent mixed at a volume ratio of 3: 7. Administration was continued from 24 hours after surgery. Of the mice administered so that the dose of cilnidipine was 30 mg / kg / day, those administered to mice in the MI group were designated as CIL30-MI group, and those administered to mice in the sham group were designated as CIL30-sham group. Similarly, among mice administered so that the dose of cilnidipine is 100 mg / kg / day, those administered to mice in the MI group were administered to mice in the CIL100-MI group, and mice administered to the mice in the sham group were treated with the CIL100-sham group. It was. Further, as a control, mice in which only a mixed solvent in which DMSO and PEG300 were mixed at a volume ratio of 3: 7 were administered to the MI group and the sham group were designated as the Vehicle-MI group and the Vehicle-sham group, respectively.

図8に、Vehicle−MI群、CIL30−MI群、及びCIL100−MI群の生存率(%)の経時的変化を示す。この結果、CIL30−MI群及びCIL100−MI群の生存率は、Vehicle−MI群に比べて明らかに高く、また、CIL30−MI群よりもCIL100−MI群の生存率のほうが高かった。これらの結果から、シルニジピンは、心筋梗塞後の突然死を抑制し得ることが示唆された。   FIG. 8 shows changes over time in the survival rate (%) of the Vehicle-MI group, the CIL30-MI group, and the CIL100-MI group. As a result, the survival rates of the CIL30-MI group and the CIL100-MI group were clearly higher than those of the Vehicle-MI group, and the survival rate of the CIL100-MI group was higher than that of the CIL30-MI group. These results suggested that cilnidipine can suppress sudden death after myocardial infarction.

図9に、心筋梗塞後(LADの結紮手術後)4週間目の各群のマウスの体重当たりの心臓重量(mg/g)の測定結果を示す。心臓重量は、心臓超音波検査を常法に従って行い、測定した。図9中、「CIL」欄が「(−)」はVehicle群の結果を、「30」はCIL30群の結果を、「100」はCIL100群の結果を、それぞれ示す。この結果、sham群では、心重量に対するシルニジピンの投与の有無や投与量の影響は観察されなかったが、MI群では、心重量の増大がシルニジピンの投与により抑制されていた。これらの結果から、シルニジピンは、心筋梗塞後の心重量の増大を抑制し得ることが示唆された。   FIG. 9 shows the measurement results of heart weight (mg / g) per body weight of each group of mice 4 weeks after myocardial infarction (after LAD ligation surgery). The heart weight was measured by performing a cardiac ultrasonography according to a conventional method. In FIG. 9, “(−)” in the “CIL” column indicates the result of the Vehicle group, “30” indicates the result of the CIL 30 group, and “100” indicates the result of the CIL 100 group. As a result, in the sham group, the presence or absence of the administration of cilnidipine and the influence of the dosage on the heart weight were not observed, but in the MI group, the increase in the heart weight was suppressed by the administration of cilnidipine. From these results, it was suggested that cilnidipine can suppress the increase in heart weight after myocardial infarction.

<線維化及び心筋細胞面積の観察>
心筋梗塞後(LADの結紮手術後)4週間目の各マウスの心臓を1−6 picrosirius red染色及びHE(ヘマトキシリン・エオジン)染色し、心筋の繊維化及び心筋細胞面積を、Nishidaらの方法(The EMBO Journal (2008) vol.27, p.3104−3115)に準じて調べた。
まず、マウスの心臓をホルマリン処理により固定した後、心室中央の部位を切り出し、パラフィンにより包埋した心室標本を作製した。次いで、この心室標本を、厚さ3μmに薄切し、キシレン、エタノールによりパラフィンを除去した。パラフィン除去後の心室標本を、ヘマトキシリン液又はピクリン酸飽和溶液を用いて調製した0.1% Direct Red 80溶液に浸漬させて60分間処置した後、さらに1% 塩酸アルコールにより分別し、エタノール、キシレンにより脱水し、封入した。封入された標本、特に非梗塞領域を、顕微鏡(製品名:BZ-9000、Keyence社製)により観察した。コラーゲン含量の比率は、染色されて染まった面積を心臓横断総面積で除したものを百分率で表示したものとして算出した。
<Observation of fibrosis and cardiomyocyte area>
The heart of each mouse 4 weeks after myocardial infarction (after LAD ligation surgery) was stained with 1-6 picirius red and HE (hematoxylin and eosin), and myocardial fibrosis and myocardial cell area were determined by the method of Nishida et al. The EMBO Journal (2008) vol.27, p.3104-3115).
First, the heart of a mouse was fixed by formalin treatment, and then a central part of the ventricle was cut out to prepare a ventricular specimen embedded with paraffin. Subsequently, this ventricular specimen was sliced into a thickness of 3 μm, and paraffin was removed with xylene and ethanol. After removing the paraffin, the ventricular specimen was immersed in a 0.1% Direct Red 80 solution prepared using a hematoxylin solution or a saturated picric acid solution, treated for 60 minutes, and further fractionated with 1% hydrochloric alcohol to obtain ethanol, xylene. Was dehydrated and sealed. The encapsulated specimen, particularly the non-infarct region, was observed with a microscope (product name: BZ-9000, manufactured by Keyence). The ratio of the collagen content was calculated as a percentage obtained by dividing the dyed area by the total cross-cardiac area.

1−6 picrosirius red染色像及びHE染色像の結果から、CSA(cross sectional area; 心筋細胞面積(μm))の測定結果を図10に、CVF(Collagen volume fraction; コラーゲン陽性領域)(%)の測定結果を図11に、それぞれ示す。この結果、CSAとCVFは、共に心筋梗塞により増大するが、この増大がシルニジピンの投与により抑制されていた。これらの結果から、シルニジピンは、心筋梗塞後の左室リモデリングを濃度依存的に抑制し得ることが示唆された。1-6 From the results of the Picirius red stained image and the HE stained image, the measurement results of CSA (cross sectional area; myocardial cell area (μm 2 )) are shown in FIG. 10, CVF (Collagen volume fraction; collagen positive area) (%) The measurement results are shown in FIG. As a result, both CSA and CVF increased due to myocardial infarction, but this increase was suppressed by administration of cilnidipine. From these results, it was suggested that cilnidipine can suppress left ventricular remodeling after myocardial infarction in a concentration-dependent manner.

<心臓切片におけるSA−β−gal活性測定>
心臓切片におけるSA−β−Gal活性を、Shlushらの方法(BMC Cell Biology,2011,vol.12,16)に準じて測定し、老化した細胞の割合を測定した。
具体的には、まず、心筋梗塞後(LADの結紮手術後)4週間目に心臓を摘出した。摘出された心臓は、PBS中で洗った後、4% PFA含有PBSで固定した後、スクロース置換を行い、O.C.T. compound(Sakura社製)を用いて凍結包埋した。凍結包埋標本からLEICA CM1100を用いて10μmに薄切した心臓切片は、Senescence β−Galactosidase Staining Kit(Cell signaling technology社製)のプロトコールを改変し、pH4.0中のβ−Galactosidase溶液中で37℃、一晩インキュベートすることにより反応を行った。インキュベート後の細胞をPBSで洗浄した後、VECTASHIELD Mounting Mediumで封入した。この封入された標本を、カラーCCDカメラ(Nikon digital camera DXM1200F)付きの正立顕微鏡(製品名:Eclipse 80i、ニコン社製)により観察し、[SA−β−Gal活性がポジティブな領域の面積(β−Galactosidase陽性面積、青色発色)]/[全体の組織切片面積]×100(%)で解析及び定量を行った。
<SA-β-gal activity measurement in heart section>
SA-β-Gal activity in heart sections was measured according to the method of Shlush et al. (BMC Cell Biology, 2011, vol. 12, 16), and the proportion of aging cells was measured.
Specifically, first, the heart was removed 4 weeks after myocardial infarction (after LAD ligation surgery). The excised heart was washed in PBS, fixed with PBS containing 4% PFA, replaced with sucrose, and frozen and embedded using OCT compound (Sakura). Heart sections sliced to 10 μm from a frozen-embedded specimen using LEICA CM1100 were modified from the Senescence β-Galactosidase Staining Kit (manufactured by Cell signaling technology), and 37 in a β-Galactosidase solution at pH 4.0. The reaction was performed by incubating overnight at 0 ° C. The cells after incubation were washed with PBS and then encapsulated with VECTASHIELD Mounting Medium. The encapsulated specimen was observed with an upright microscope (product name: Eclipse 80i, manufactured by Nikon Corporation) equipped with a color CCD camera (Nikon digital camera DXM1200F), and [area of a region positive for SA-β-Gal activity ( β-Galactosidase positive area, blue color development)] / [total tissue section area] × 100 (%).

図12に、各群のマウスの心筋梗塞後の非梗塞領域心筋におけるSA−β−Gal活性がポジティブな組織の割合(面積比)(%)の測定結果を示した。図12中、「CIL」欄が「(−)」はVehicle群の結果を、「(+)」はCIL100群の結果を、それぞれ示す。また、「MI」欄が「(−)」はsham群の結果を、「(+)」はMI群の結果を、それぞれ示す。この結果、Vehicle群では、MI群ではsham群よりも明らかにSA−β−Gal活性がポジティブな組織が増大しており、心筋梗塞後に非梗塞領域心筋において老化する細胞が増大することが確認された。一方で、CIL100−MI群では、SA−β−Gal活性がポジティブな組織はあまり増大していなかった。これらの結果から、シルニジピンは、心筋梗塞後の非梗塞領域心筋における細胞老化を抑制し得ることが示唆された。   FIG. 12 shows the measurement results of the ratio (area ratio) (%) of the tissue with positive SA-β-Gal activity in the non-infarcted myocardium after myocardial infarction in each group of mice. In FIG. 12, “(−)” in the “CIL” column indicates the result of the Vehicle group, and “(+)” indicates the result of the CIL100 group. In the “MI” column, “(−)” indicates the result of the sham group, and “(+)” indicates the result of the MI group. As a result, in the Vehicle group, it was confirmed that the tissue positive in SA-β-Gal activity was clearly increased in the MI group than in the sham group, and cells aging in the non-infarcted myocardium increased after myocardial infarction. It was. On the other hand, in the CIL100-MI group, tissues positive for SA-β-Gal activity did not increase so much. From these results, it was suggested that cilnidipine can suppress cell aging in non-infarcted myocardium after myocardial infarction.

<Drp1の二量体量の測定>
心筋梗塞後(LADの結紮手術後)1週目及び4週目の各マウスの心臓の左室の心筋梗塞周辺領域を、200μLのGTP-binding buffer(50 mM HEPES (pH 7.5),1 mM EGTA,1.5 mM MgCl2,150 mM NaCl,10%(v/v) Glycerol,1%(v/v) TritonX-100,及びprotease inhibitor cocktail (ナカライテスク社製))中でポリトロンホモジナイザーにより破砕し、遠心分離処理後(9000×g、10分間、4℃)、上清を回収した。各サンプル(回収された上清)は、Bradford assayによりタンパク質濃度を測定した。
各サンプル中のタンパク質は、SDS−PAGEにより分離した後、2mA/cmで電気的にPVDF膜に転写した。タンパク質を転写したPVDF膜は、ウエスタンブロッティングを行う前に、1%BSA溶液にて1時間ブロッキングした。ブロッキング後のPVDF膜を、一次抗体として、抗Drp1抗体又は抗GAPDH抗体(いずれも、Santa Cruz Biotechnology社製)溶液でインキュベートし、次いで二次抗体として、抗西洋ワサビペルオキシダーゼ(HRP)抗体でインキュベートした後、ECLシステム(ナカライテスク社製)を用いて、Drp1及びGAPDHのバンドを検出した。
<Measurement of the amount of the dimer of Drp1>
After myocardial infarction (after ligation surgery of LAD), the area around the myocardial infarction in the left ventricle of each mouse 1 week and 4 weeks was treated with 200 μL of GTP-binding buffer (50 mM HEPES (pH 7.5), 1 mM EGTA). , 1.5 mM MgCl 2 , 150 mM NaCl, 10% (v / v) Glycerol, 1% (v / v) TritonX-100, and protease inhibitor cocktail (manufactured by Nacalai Tesque)) After separation (9000 × g, 10 minutes, 4 ° C.), the supernatant was collected. Each sample (collected supernatant) was measured for protein concentration by Bradford assay.
The proteins in each sample were separated by SDS-PAGE and then electrically transferred to a PVDF membrane at 2 mA / cm 2 . The PVDF membrane to which the protein was transferred was blocked with a 1% BSA solution for 1 hour before Western blotting. The PVDF membrane after blocking was incubated with anti-Drp1 antibody or anti-GAPDH antibody (both manufactured by Santa Cruz Biotechnology) solution as a primary antibody, and then incubated with anti-horseradish peroxidase (HRP) antibody as a secondary antibody. Then, bands of Drp1 and GAPDH were detected using an ECL system (manufactured by Nacalai Tesque).

図13に、各群のマウスの左室の心筋梗塞周辺領域のウエスタンブロッティングによりDrp1を検出した結果を示す。図13中、「sham」はsham群の結果を、「MI」はMI群の結果を、それぞれ示す。また、「Vehicle」がVehicle群の結果を、「Cilnidipine」はCIL100群の結果を、それぞれ示す。sham群では、シルニジピンの投与の有無にかかわらず、Drp1の二量体は検出されなかった。一方で、MI群では、Drp1の二量体が検出されたが、Vehicle群よりもCIL100群のほうが、Drp1の二量体量が明らかに少なかった。この結果から、シルニジピンは、Drp1の二量体化を抑制することが分かった。   FIG. 13 shows the results of detecting Drp1 by Western blotting of the area around the myocardial infarction in the left ventricle of each group of mice. In FIG. 13, “sham” indicates the result of the sham group, and “MI” indicates the result of the MI group. In addition, “Vehicle” indicates the result of the Vehicle group, and “Cilinipine” indicates the result of the CIL100 group. In the sham group, no Drp1 dimer was detected regardless of whether or not cilnidipine was administered. On the other hand, in the MI group, a Drp1 dimer was detected, but the DIL dimer amount was clearly lower in the CIL100 group than in the Vehicle group. From this result, it was found that cilnidipine suppresses the dimerization of Drp1.

<FS(左室内径短縮率)の測定>
マウスに心筋梗塞処置前から処置後4週間までの間、1週間ごとに心臓超音波検査を常法に従って行い、FS(%)を測定した(Nature Chemical Biology,vol.8,p.714-724 (2012))。
<Measurement of FS (Left chamber inner diameter reduction rate)>
From a pre-myocardial infarction treatment period to 4 weeks after the treatment, mice were subjected to cardiac ultrasonography every week according to a conventional method, and FS (%) was measured (Nature Chemical Biology, vol. 8, p. 714-724). (2012)).

図14に、各群のマウスのFSの測定結果を示した。図14中、「CIL」欄が「(−)」はVehicle群の結果を、「30」はCIL30群の結果を、「100」はCIL100群の結果を、それぞれ示す。この結果、心筋梗塞により低下したFSが、シルニジピン投与により回復することがわかった。   FIG. 14 shows the measurement results of FS of each group of mice. In FIG. 14, “(−)” in the “CIL” column indicates the result of the Vehicle group, “30” indicates the result of the CIL 30 group, and “100” indicates the result of the CIL 100 group. As a result, it was found that FS decreased by myocardial infarction was recovered by cilnidipine administration.

[実施例3]
NRCM細胞を、シルニジピン又はMdivi−1の存在下で培養した場合の細胞老化を調べた。
具体的には、最終濃度が1μMとなるようにシルニジピンを添加した培地と、最終濃度が10μMとなるようにMdivi−1を添加した培地で、それぞれNRCM細胞を72時間培養した後、参考例1と同様にしてSA−β−Gal活性を測定した。対照として、シルニジピンとMdivi−1のいずれも添加していない培地でも同様にNRCM細胞を培養し、SA−β−Gal活性を測定した。
[Example 3]
Cell senescence when NRCM cells were cultured in the presence of cilnidipine or Mdiv-1 was examined.
Specifically, after culturing NRCM cells for 72 hours in a medium added with cilnidipine to a final concentration of 1 μM and a medium added with Mdiv-1 to a final concentration of 10 μM, Reference Example 1 In the same manner, SA-β-Gal activity was measured. As a control, NRCM cells were similarly cultured in a medium to which neither cilnidipine nor Mdivi-1 was added, and SA-β-Gal activity was measured.

図15に、各細胞のSA−β−Gal活性がポジティブな細胞の割合(%)の測定結果を示した。この結果、Mdivi−1存在下で培養した場合には、SA−β−Gal活性がポジティブな細胞が増大していたが、シルニジピン存在下で培養した場合には、無添加の場合よりもSA−β−Gal活性がポジティブな細胞の割合が低下しており、Mdivi−1とは異なり、シルニジピンは、細胞老化を抑制し得ることが示唆された。   FIG. 15 shows the measurement results of the percentage (%) of cells positive for SA-β-Gal activity of each cell. As a result, when cultured in the presence of Mdiv-1, the number of cells positive for SA-β-Gal activity was increased. However, when cultured in the presence of cilnidipine, SA- The proportion of cells with positive β-Gal activity was reduced, and it was suggested that cilnidipine can suppress cell senescence unlike Mdiv-1.

[参考例2]
10ppmのメチル水銀を含む水を摂取させたマウスに対して横大動脈狭窄(TAC)処置を行い、体重変化(%)、生存率(%)、体重当たりの心臓重量(mg/g)を調べた。
まず、5週齢マウス(C57BL/6J(SLC))22匹に、10ppmのメチル水銀を含む飲水の投与を開始した(MeHg群)。メチル水銀を含む飲水はマウスに自由に摂取させた。同じく5週齢マウス(C57BL/6J(SLC))23匹には、メチル水銀を含まない飲水を自由摂取させた(Vehicle群)。
メチル水銀摂取開始から10日後のマウスに開胸手術を行い、MeHg群の14匹とVehicle群の15匹にTAC処置を行い(TAC群)、MeHg群の8匹とVehicle群の8匹にTAC処置を行わずそのまま縫合した(sham群)。
TAC処置から4週間マウスを飼育し、体重と生存率の変化を調べた。また、TAC処置から1週間目、2週間目、3週間目、及び4週間目に心臓超音波検査を常法に従って行い、心臓重量を測定した。なお、メチル水銀を含む飲水の摂取は、4週間目まで継続した。
[Reference Example 2]
Mice fed with water containing 10 ppm methylmercury were treated with transverse aortic stenosis (TAC), and body weight change (%), survival rate (%), and heart weight per body weight (mg / g) were examined. .
First, 22 5-week-old mice (C57BL / 6J (SLC)) were started to receive drinking water containing 10 ppm of methylmercury (MeHg group). Drinking water containing methylmercury was freely given to mice. Similarly, 23 5-week-old mice (C57BL / 6J (SLC)) were allowed to freely take drinking water not containing methylmercury (Vehicle group).
Mice 10 days after the start of methylmercury intake, thoracotomy was performed, 14 in the MeHg group and 15 in the Vehicle group were treated with TAC (TAC group), 8 in the MeHg group and 8 in the Vehicle group were TAC. The suture was performed without any treatment (sham group).
Mice were bred for 4 weeks after TAC treatment, and changes in body weight and survival rate were examined. In addition, cardiac ultrasonography was performed according to a conventional method at 1 week, 2 weeks, 3 weeks, and 4 weeks after TAC treatment, and the heart weight was measured. The intake of drinking water containing methylmercury continued until the 4th week.

図16に、各群のマウスのTAC処置時点からの生存率(%)の経時的変化を示した。この結果、各群とも体重には特に差がなかった。一方で、生存率は、MeHg−sham群はVehicle−sham群と同様に、全てのマウスが最後まで生存していたが、MeHg−TAC群は最終的な生存率が60%程度しかなかった。これらの結果から、健常な個体には細胞毒性を誘発しない低濃度のメチル水銀の摂取であっても、TACによる心機能悪化を亢進する作用があることがわかった。   FIG. 16 shows the change over time in the survival rate (%) of the mice in each group from the time of TAC treatment. As a result, there was no particular difference in body weight in each group. On the other hand, as for the survival rate, in the MeHg-sham group, as in the Vehicle-sham group, all mice survived to the end, but the MeHg-TAC group had a final survival rate of only about 60%. From these results, it was found that even ingestion of a low concentration of methylmercury that does not induce cytotoxicity in healthy individuals has an effect of enhancing cardiac function deterioration due to TAC.

なお、TAC処置から1週間目及び4週間目のマウスの体重当たりの心臓重量(mg/g)を調べたところ、MeHg−TAC群とVehicle−TAC群はいずれも心臓重量が増大しており、MeHg−TAC群のほうがVehicle−TAC群よりもより心臓重量が増大していた。   In addition, when the heart weight per body weight (mg / g) of the mice at 1 week and 4 weeks after the TAC treatment was examined, both the MeHg-TAC group and the Vehicle-TAC group had increased heart weight. The heart weight increased more in the MeHg-TAC group than in the Vehicle-TAC group.

[参考例3]
NRCM細胞を、Midivi−1の存在下及び非存在下において、細胞毒性を誘発しない低濃度のメチル水銀(0.1μM)に暴露し、ATP産生量や伸展ストレス感受性への影響を調べた。
具体的には、96ウェルプレートにNRCM細胞を播種し、0.1μMのメチル水銀を含有する培養培地、10μMのMidivi−1を含有する培養培地、0.1μMのメチル水銀と10μMのMidivi−1を含有する培養培地、又はメチル水銀とMidivi−1のいずれも含有しない培養培地中で、5容量%二酸化炭素(95容量%空気)、加湿雰囲気下で37℃、24時間培養した。
[Reference Example 3]
NRCM cells were exposed to low concentrations of methylmercury (0.1 μM) that did not induce cytotoxicity in the presence and absence of Midivi-1, and the effects on ATP production and stretch stress sensitivity were examined.
Specifically, NRCM cells are seeded in a 96-well plate, a culture medium containing 0.1 μM methylmercury, a culture medium containing 10 μM Midi-1, 0.1 μM methylmercury and 10 μM Midi-1 Was cultured in a culture medium containing NO or methylmercury and Midi-1 at 37 ° C. for 24 hours in a humidified atmosphere with 5% by volume carbon dioxide (95% by volume air).

この培養後の細胞について、参考例1と同様にして、ウェルあたりのATP濃度(μM)を求め、対照の細胞(メチル水銀とMidivi−1のいずれも含有しない培養培地で培養した細胞)のウェルあたりのATP濃度を100%とした相対値を算出した。各細胞の細胞内ATP量は、メチル水銀の暴露により低下するが、このメチル水銀によるATP産生量低減は、Midivi−1により回復できることがわかった。   About the cell after this culture | cultivation, ATP density | concentration (micromol) per well was calculated | required similarly to the reference example 1, and the well of the control cell (The cell cultured in the culture medium which does not contain any of methylmercury and Midi-1) The relative value was calculated with the per-ATP concentration as 100%. The amount of intracellular ATP in each cell was reduced by exposure to methylmercury, but it was found that this reduction in ATP production by methylmercury can be recovered by Midi-1.

また、各培養培地で培養した後の細胞を細胞伸展装置にかけて20%伸展させた後、MTTアッセイを行った。各細胞の595nmの吸光度(MTT値)から、対照の細胞(メチル水銀とMidivi−1のいずれも含有しない培養培地で培養した細胞)のAbs595を100とした相対値を算出した。この結果、メチル水銀に暴露した細胞では、伸展ストレス後にMTT値が低下し、死細胞が増えていたが、Midivi−1の存在下でメチル水銀に暴露した細胞では、伸展ストレス後でもMTT値の低下は観察されなかった。これらの結果から、有機水銀は伸展ストレス感受性を増大させるが、Midivi−1は、有機水銀による効果を抑制し、伸展ストレスへの適応性を高めることが示唆された。   In addition, the cells after culturing in each culture medium were stretched by 20% using a cell stretcher, and then MTT assay was performed. From the absorbance (MTT value) at 595 nm of each cell, a relative value was calculated by setting Abs595 of the control cell (a cell cultured in a culture medium containing neither methylmercury nor Midi-1) as 100. As a result, in the cells exposed to methylmercury, the MTT value decreased after extension stress and the number of dead cells increased, but in the cells exposed to methylmercury in the presence of Midi-1, the MTT value was increased even after extension stress. No decrease was observed. From these results, it was suggested that organic mercury increases stretch stress sensitivity, but midi-1 suppresses the effect of organic mercury and increases adaptability to stretch stress.

[実施例4]
メチル水銀による心筋細胞毒性を軽減する既存薬剤を探索した。使用した薬剤は、シルニジピン(1μM)、Mdivi−1(10μM)、DIDS(4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid)(100μM)、ROX(1μM)、ジアゾキシド(Diazoxide)(100μM)、ロッテレリン(Rottelerin)(5μM)、AICAR(5-amino-1-b-D-ribofuranosyl-imidazole-4-carboxamide)(500μM)、アモルジピン(Amlodipine)(1μM)、及びET−1(0.1μM)である。
具体的には、96ウェルプレートにNRCM細胞を播種し、24時間培養した後、タウリン含有DMEM(5mM タウリン、100unit/mL ペニシリン、及び100μg/mL ストレプトマイシンを含有するDMEM)に培地を交換し、さらに24時間培養した。培養後、各薬剤を所定の濃度になるように培地に添加し、1時間培養した。培養後、培地を、0、0.5、又は1μMのメチル水銀を含有するDMEM培地に交換し、24時間培養した後、MTTアッセイを行い、各細胞のAbs595を測定した。各細胞のAbs595の測定値に基づき、薬剤を添加せず、メチル水銀も添加しなかった培地で培養した細胞の生存率を100%とした場合の各細胞の生存率を算出した。算出結果を図17に示す。この結果、シルニジピン、Mdivi−1、DIDS、ジアゾキシド、及びAICARが、メチル水銀の毒性を軽減させた。
[Example 4]
We searched for existing drugs that reduce myocardial cytotoxicity caused by methylmercury. The drugs used were cilnidipine (1 μM), Mdivi-1 (10 μM), DIDS (4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid) (100 μM), ROX (1 μM), diazoxide (Diazoxide) (100 μM) Rottererin (5 μM), AICAR (5-amino-1-bD-ribofuranosyl-imidazole-4-carboxamide) (500 μM), Amlodipine (1 μM), and ET-1 (0.1 μM). .
Specifically, after seeding NRCM cells in a 96-well plate and culturing for 24 hours, the medium was changed to taurine-containing DMEM (DMEM containing 5 mM taurine, 100 units / mL penicillin, and 100 μg / mL streptomycin), and Cultured for 24 hours. After culturing, each drug was added to the medium to a predetermined concentration and cultured for 1 hour. After the culture, the medium was replaced with a DMEM medium containing 0, 0.5, or 1 μM methylmercury, and after culturing for 24 hours, an MTT assay was performed to measure Abs595 of each cell. Based on the measured value of Abs595 of each cell, the survival rate of each cell was calculated when the survival rate of cells cultured in a medium to which no drug was added and methylmercury was not added was defined as 100%. The calculation results are shown in FIG. As a result, cilnidipine, Mdivi-1, DIDS, diazoxide, and AICAR reduced the toxicity of methylmercury.

[実施例5]
糖尿病モデルマウスにシルニジピンを投与し、血糖値に対する影響を調べた。
まず、48匹のC57BL/6J(SLC)マウスを12匹ずつ4群に分け、このうちの2群(24匹)のマウスに対して、DMSOとPEG300を容量比3:7で混合した混合溶媒に溶解させた状態のストレプトゾトシン(STZ)を200mg/kgとなるように腹腔内投与し、インシュリン依存性糖尿病モデルマウスであるSTZマウスを作製した。残りの2群(24匹)に対しては、対照として、DMSOとPEG300を容量比3:7で混合した混合溶媒のみを投与した(コントロールマウス)。
[Example 5]
Cirnidipine was administered to diabetic model mice, and the effect on blood glucose level was examined.
First, 48 C57BL / 6J (SLC) mice were divided into 4 groups of 12 mice each, and a mixed solvent in which DMSO and PEG300 were mixed at a volume ratio of 3: 7 to 2 groups (24 mice) of these mice. STZ mice, which are insulin-dependent diabetes model mice, were prepared by intraperitoneally administering streptozotocin (STZ) in a dissolved state to 200 mg / kg. For the remaining two groups (24 mice), only a mixed solvent in which DMSO and PEG300 were mixed at a volume ratio of 3: 7 was administered as a control (control mice).

STZの投与から18日経過後、シルニジピンを含ませた浸透圧ポンプを腹腔内に埋め込み、持続投与を開始した。2群のSTZマウスのうちの1群と2群のコントロールマウスのうちの1群に対して、シルニジピンの投与量が5mg/kg/dayとなるように投与し、それぞれSTZ+cil群、Veh+cil群とした。さらに、対照として、残りの1群のSTZマウスと残りの1群のコントロールマウスに対しては、DMSOとPEG300を容量比3:7で混合した混合溶媒のみを投与し、それぞれ、STZ群及びVeh群とした。   After 18 days from the administration of STZ, an osmotic pump containing cilnidipine was implanted into the abdominal cavity and continuous administration was started. 1 group of 2 groups of STZ mice and 1 group of 2 groups of control mice were administered so that the dose of cilnidipine was 5 mg / kg / day, which was used as STZ + cil group and Veh + cil group, respectively. . Further, as a control, the remaining one group of STZ mice and the remaining one group of control mice were administered only a mixed solvent in which DMSO and PEG300 were mixed at a volume ratio of 3: 7, respectively. Grouped.

STZ投与開始時点から3〜4日ごとに、各マウスの随時血糖値及び空腹時血糖値を測定した。コントロールマウス(Veh群及びVeh+cil群)では、血糖値に対するシルニジピンの投与の影響は観察されなかった。一方で、STZマウスでは、STZの投与から18日経過後、シルニジピン投与前の時点における随時血糖値及び空腹時血糖値は、STZ+veh群及びSTZ+cil群において差異は観察されなかったが、シルニジピン投与開始から10日後から、STZ+cil群において血糖値が低下する傾向が観察された。シルニジピン投与開始14日目(STZ投与後32日目)のSTZ群及びSTZ+cil群の随時血糖値及び空腹時血糖値の測定結果を図18に示す。これらの結果から、シルニジピンは、インシュリン依存性高血糖状態を軽減し得ることが示唆された。   The blood glucose level and fasting blood glucose level of each mouse were measured every 3 to 4 days from the start of STZ administration. In control mice (Veh group and Veh + cil group), no effect of cilnidipine administration on blood glucose level was observed. On the other hand, in STZ mice, no difference was observed between the STZ + veh group and the STZ + cil group in the occasional blood glucose level and the fasting blood glucose level at the time before 18 days after administration of STZ but before cilnidipine administration. After the day, a tendency for the blood glucose level to decrease in the STZ + cil group was observed. FIG. 18 shows the results of measurement of the blood glucose level and the fasting blood glucose level of the STZ group and STZ + cil group on the 14th day (32 days after the STZ administration) on the start of cilnidipine administration. These results suggest that cilnidipine can reduce insulin-dependent hyperglycemia.

[実施例6]
アルツハイマー病患者では、アミロイドβタンパク質を腫瘍成分とする沈着物が多く観察されており、アミロイドβタンパク質の蓄積は、アルツハイマー病の発症に関与すると考えられている。また、多量のアミロイドβタンパク質が細胞内に取り込まれると、小胞体ストレスが強くなり、アポトーシスが誘導される。そこで、ラットの褐色細胞腫由来の培養細胞株PC−12細胞を用いて、アミロイドβ負荷による細胞障害に対するシルニジピンの影響を調べた。アミロイドβタンパク質としては、Amyloid β25−35(シグマ・アルドリッチ社製、カタログ番号:A4559)を用いた。
[Example 6]
In Alzheimer's disease patients, many deposits containing amyloid β protein as a tumor component are observed, and accumulation of amyloid β protein is considered to be involved in the onset of Alzheimer's disease. In addition, when a large amount of amyloid β protein is taken into cells, endoplasmic reticulum stress becomes strong and apoptosis is induced. Therefore, the influence of cilnidipine on cell damage caused by amyloid β loading was examined using a cultured cell line PC-12 cells derived from rat pheochromocytoma. As the amyloid β protein, Amyloid β 25-35 (manufactured by Sigma-Aldrich, catalog number: A4559) was used.

未分化のPC−12細胞を培養するための培養用培地としては、D−MEM(High Glucose)(和光純薬社製)に、5%FBSと5%HS(ウマ血清)と1%ペニシリン−ストレプトマイシン(ナカライ社製)とを含有させた培地を用いた。また、PC−12にアミロイドβ負荷をかける際の培地としては、血清不含培地(D−MEM(High Glucose)(和光純薬社製)に、1%ペニシリン−ストレプトマイシン(ナカライ社製)を含有させた培地)を用いた。   As a culture medium for culturing undifferentiated PC-12 cells, D-MEM (High Glucose) (manufactured by Wako Pure Chemical Industries), 5% FBS, 5% HS (horse serum) and 1% penicillin- A medium containing streptomycin (Nacalai) was used. In addition, as a medium when PC-12 is loaded with amyloid β, a serum-free medium (D-MEM (High Glucose) (manufactured by Wako Pure Chemical Industries)) contains 1% penicillin-streptomycin (manufactured by Nacalai). Medium) was used.

まず、24ウェルプレートに、最終濃度0.001%のPoly−L−lysine(PLL)溶液を注入し、37℃で30分間静置した後、PBSで2回洗浄し、風乾させることにより、ウェル内壁をPLLでコートした。PLLコートした24ウェルプレートに、未分化のPC−12細胞を1×10個/ウェル(500μL/ウェル)となるように播種し、前記培養用培地で37℃、24時間培養した。
次いで、各ウェル内の細胞を、血清不含培地で1回洗浄した後、1ウェル当たり500μLのシルニジピン(最終濃度1μM)とAmyloid β25−35(最終濃度10μM)を含有させた血清不含培地、シルニジピン(最終濃度1μM)のみを含有させた血清不含培地、Amyloid β25−35(最終濃度10μM)のみを含有させた血清不含培地、又は血清不含培地を添加し、37℃で24時間培養した。その後、各ウェルから培地を除去した後、MTT溶液(MTTを5mg/mLとなるようにPBSに溶解させた溶液)を1ウェル当たり12.5μLずつ添加し、軽く振とうさせた後、37℃で1時間インキュベートした。その後、各ウェルからMTT溶液を除去した後、DMSOを1ウェル当たり500μLずつ添加し、しっかりと振とうさせることにより、産生されたホルマザンを溶解させた。その後、各ウェル中の溶液100μLをそれぞれ96ウェルプレートのウェルに分注し、この96ウェルプレートをプレートリーダー(製品名:SpectraMax i3 、Molecular devices社製)に設置し、595nmの吸光度(Abs595)を測定した。
First, a poly-L-lysine (PLL) solution having a final concentration of 0.001% was poured into a 24-well plate, allowed to stand at 37 ° C. for 30 minutes, washed twice with PBS, and air-dried. The inner wall was coated with PLL. Undifferentiated PC-12 cells were seeded at 1 × 10 5 cells / well (500 μL / well) in a PLL-coated 24-well plate and cultured at 37 ° C. for 24 hours in the culture medium.
Next, the cells in each well were washed once with a serum-free medium, and then serum-free medium containing 500 μL of cilnidipine (final concentration 1 μM) and Amyloid β 25-35 (final concentration 10 μM) per well. Then, a serum-free medium containing only cilnidipine (final concentration 1 μM), a serum-free medium containing only Amyloid β 25-35 (final concentration 10 μM), or a serum-free medium was added at 37 ° C. for 24 hours. Incubate for hours. Thereafter, after removing the medium from each well, 12.5 μL of MTT solution (a solution in which MTT was dissolved in PBS so as to be 5 mg / mL) was added at 12.5 μL per well and lightly shaken. And incubated for 1 hour. Thereafter, the MTT solution was removed from each well, and then DMSO was added at 500 μL per well and shaken firmly to dissolve the produced formazan. Thereafter, 100 μL of the solution in each well was dispensed into each well of a 96-well plate, and this 96-well plate was placed in a plate reader (product name: SpectraMax i3, manufactured by Molecular devices), and absorbance at 595 nm (Abs595) was measured. It was measured.

Amyloid β25−35を含有していない血清不含培地で培養した細胞のAbs595に対する、Amyloid β25−35を含有させた血清不含培地で培養した細胞のAbs595の割合(%)を、細胞の生存率(%)として算出した。算出結果を図19に示す。この結果、シルニジピン存在下でアミロイドβ負荷をかけた細胞の生存率(図中、「Cil(+)」)は、シルニジピン非存在下でアミロイドβ負荷をかけた細胞の生存率(図中、「Cil(−)」)よりも高く、シルニジピンによりアミロイドβ負荷によるアポトーシスの誘導が抑制された。これらの結果から、シルニジピンは、細胞に対するアミロイドβ負荷を軽減させることが明らかであり、アルツハイマー病の治療に有効であることが期待できる。For Amyloid β 25-35 Abs595 of cells cultured in serum-free medium containing no, Amyloid beta ratio of Abs595 of cells cultured in serum-free medium which contains 25-35 (percent), the cell The survival rate (%) was calculated. The calculation results are shown in FIG. As a result, the survival rate of cells subjected to amyloid β loading in the presence of cilnidipine (“Cil (+)” in the figure) is the survival rate of cells subjected to amyloid β loading in the absence of cilnidipine (in the figure, “ Cil (−) ”), and cilnidipine suppressed the induction of apoptosis due to amyloid β loading. From these results, it is clear that cilnidipine reduces the amyloid β load on cells, and can be expected to be effective in the treatment of Alzheimer's disease.

Claims (7)

シルニジピン又はその薬学的に許容される塩を有効成分として含有し、Drp1(dynamin-related protein 1)の重合を阻害することを特徴とする、Drp1重合阻害剤。   A Drp1 polymerization inhibitor comprising cilnidipine or a pharmaceutically acceptable salt thereof as an active ingredient, and inhibiting polymerization of Drp1 (dynamin-related protein 1). 請求項1に記載のDrp1重合阻害剤を有効成分とする、医薬用組成物。   A pharmaceutical composition comprising the Drp1 polymerization inhibitor according to claim 1 as an active ingredient. 心筋梗塞後の慢性心不全の予防又は治療に用いられる、請求項2に記載の医薬用組成物。   The pharmaceutical composition according to claim 2, which is used for prevention or treatment of chronic heart failure after myocardial infarction. 有機水銀による心筋細胞毒性の軽減に用いられる、請求項2に記載の医薬用組成物。   The pharmaceutical composition according to claim 2, which is used for reducing cardiomyocyte toxicity caused by organic mercury. インシュリン依存性高血糖状態の軽減に用いられる、請求項2に記載の医薬用組成物。   The pharmaceutical composition according to claim 2, which is used for reducing insulin-dependent hyperglycemia. 筋委縮性側索硬化症又はアルツハイマー病の予防又は治療に用いられる、請求項2に記載の医薬用組成物。   The pharmaceutical composition according to claim 2, which is used for prevention or treatment of amyotrophic lateral sclerosis or Alzheimer's disease. 請求項1に記載のDrp1重合阻害剤を有効成分とする、細胞老化抑制剤。   A cell aging inhibitor comprising the Drp1 polymerization inhibitor according to claim 1 as an active ingredient.
JP2016560298A 2014-11-21 2015-11-20 Pharmaceutical composition Active JP6688503B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014236941 2014-11-21
JP2014236941 2014-11-21
PCT/JP2015/082688 WO2016080516A1 (en) 2014-11-21 2015-11-20 Drp1 POLYMERIZATION INHIBITOR

Publications (2)

Publication Number Publication Date
JPWO2016080516A1 true JPWO2016080516A1 (en) 2017-08-31
JP6688503B2 JP6688503B2 (en) 2020-04-28

Family

ID=56014048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016560298A Active JP6688503B2 (en) 2014-11-21 2015-11-20 Pharmaceutical composition

Country Status (2)

Country Link
JP (1) JP6688503B2 (en)
WO (1) WO2016080516A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7333105B2 (en) * 2019-05-31 2023-08-24 アールディスカバリー エルエルシー Drp1-filamin complex formation inhibitor
EP4240356A1 (en) * 2020-11-03 2023-09-13 RDiscovery, LLC Therapies for treatment of cancer and phagocytosis-deficiency related diseases
JPWO2022114187A1 (en) * 2020-11-30 2022-06-02

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309535A (en) * 1999-02-25 2000-11-07 Ucb Japan Kk Therapeutic agent for cardiac failure
WO2012111643A1 (en) * 2011-02-14 2012-08-23 株式会社アミノアップ化学 Adiponectin production promoter, and medicinal composition, food, drink and feed containing adiponectin production promoter
JP2014503590A (en) * 2011-01-28 2014-02-13 ブリストル−マイヤーズ スクイブ カンパニー Compounds for reducing β-amyloid production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309535A (en) * 1999-02-25 2000-11-07 Ucb Japan Kk Therapeutic agent for cardiac failure
JP2014503590A (en) * 2011-01-28 2014-02-13 ブリストル−マイヤーズ スクイブ カンパニー Compounds for reducing β-amyloid production
WO2012111643A1 (en) * 2011-02-14 2012-08-23 株式会社アミノアップ化学 Adiponectin production promoter, and medicinal composition, food, drink and feed containing adiponectin production promoter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CORBIN BACHMEIER: "Selective dihydropyiridine compounds facilitate the clearance of β-amyloid across the blood-brain b", EUROPIAN JOURNAL OF PHARMACOLOGY, vol. 659, JPN6019032345, 2011, pages 125 - 129, ISSN: 0004099224 *
DAISUKE UENO ET AL.: "Cilinidipine regulates glucose metabolism and levels of high-molecular adiponectin in diet-induced o", HYPERTENSION RESEARCH, vol. 36, JPN6019032344, 2013, JP, pages 196 - 201, ISSN: 0004099223 *
伊藤一貴 他: "慢性心不全におけるNおよびL型Ca2+チャネル阻害薬"Cilnidipine"の有用性", 核医学, vol. 40巻4号, JPN6019032343, 2003, JP, pages 421 - 430, ISSN: 0004099222 *

Also Published As

Publication number Publication date
JP6688503B2 (en) 2020-04-28
WO2016080516A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
Ajoolabady et al. Mitophagy receptors and mediators: therapeutic targets in the management of cardiovascular ageing
AU2013259526B2 (en) New methods
Koch et al. Probenecid: novel use as a non-injurious positive inotrope acting via cardiac TRPV2 stimulation
US11234976B2 (en) Methods of using pyruvate kinase activators
JP2010285455A (en) Method for reducing hypertension and heart failure
JP2022051830A (en) Probenecid for treating cardiomyopathy, systolic cardiac dysfunction and symptoms of congestive heart failure
JP2010539078A (en) New uses for dimethyl fumarate
US20220193053A1 (en) Cystic fibrosis transmembrane conductance regulator modulators for treating autosomal dominant polycystic kidney disease
JP6688503B2 (en) Pharmaceutical composition
US20080027052A1 (en) Methods for treating cystic kidney disease
US10285962B2 (en) Glutarate compounds for treating ischemia-reperfusion injuries
KR101915016B1 (en) Compound for enhancing autophagy and its use
Cai et al. Up-regulation of Thioredoxin 1 by aerobic exercise training attenuates endoplasmic reticulum stress and cardiomyocyte apoptosis following myocardial infarction
JP2022544718A (en) Compositions and methods for treating septic cardiomyopathy
US20200069644A1 (en) Novel use of a formyl peptide receptor 2/ lipoxin a4 receptor (fpr2/alx) agonist for treatment of heart failure
KR20240012533A (en) Compositions for treating autoimmune, alloimmune, inflammatory and mitochondrial diseases and uses thereof
US20200087247A1 (en) Cannabidiol derivatives as inhibitors of the hif prolyl hydroxylases activity
US11129871B1 (en) Compositions and methods for treating and preventing endoplasmic reticulum (ER) stress-mediated kidney diseases
JP4886506B2 (en) Drug having inhibitory action on transcription factor KLF5 activation
US20180036332A1 (en) Use of nadph in preparing medicines for treatment of heart diseases
Shi et al. The histone deacetylase inhibitor SAHA exerts a protective effect against myocardial ischemia/reperfusion injury by inhibiting sodium-calcium exchanger
JP2009078977A (en) Inhibitor of endoplasmic reticulum stress in cardiac muscle
JP2021167279A (en) Pharmaceutical composition for preventing or treating mitochondrial disease
EP4252750A1 (en) Pharmaceutical preservation of creb activation in the treatment of alzheimer&#39;s disease
LU100526B1 (en) Ezetimibe and disulfiram for the treatment of cardiac diseases

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6688503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250