JPWO2016072167A1 - Low free formaldehyde amino resin and process for producing the same - Google Patents

Low free formaldehyde amino resin and process for producing the same Download PDF

Info

Publication number
JPWO2016072167A1
JPWO2016072167A1 JP2016504814A JP2016504814A JPWO2016072167A1 JP WO2016072167 A1 JPWO2016072167 A1 JP WO2016072167A1 JP 2016504814 A JP2016504814 A JP 2016504814A JP 2016504814 A JP2016504814 A JP 2016504814A JP WO2016072167 A1 JPWO2016072167 A1 JP WO2016072167A1
Authority
JP
Japan
Prior art keywords
amino resin
free formaldehyde
solvent
producing
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016504814A
Other languages
Japanese (ja)
Other versions
JP5928671B1 (en
Inventor
竹内 寛
寛 竹内
信介 狩浦
信介 狩浦
育恵 浜元
育恵 浜元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Application granted granted Critical
Publication of JP5928671B1 publication Critical patent/JP5928671B1/en
Publication of JPWO2016072167A1 publication Critical patent/JPWO2016072167A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08G12/30Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with substituted triazines
    • C08G12/32Melamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08G12/34Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds and acyclic or carbocyclic compounds
    • C08G12/36Ureas; Thioureas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

遊離ホルムアルデヒドの含有率を効果的に下げることができ、更に保存中でもホルムアルデヒド含有率の上昇がみられないアミノ樹脂の製造方法と、当該製法で得られる低遊離ホルムアルデヒドアミノ樹脂を提供すること。(1)アミノ系化合物とアルデヒド類とを溶剤中で重縮合反応させて、アミノ樹脂を含む反応混合物を得る工程、(2)前記工程の反応混合物を80〜150℃に加温し、有機相を還流又は脱溶剤させる工程を有することを特徴とする低遊離ホルムアルデヒドアミノ樹脂の製造方法、及び当該製造方法で得られる低遊離ホルムアルデヒドアミノ樹脂。To provide a method for producing an amino resin that can effectively lower the content of free formaldehyde and that does not increase the formaldehyde content even during storage, and a low free formaldehyde amino resin obtained by the production method. (1) a step of polycondensation reaction of an amino compound and aldehydes in a solvent to obtain a reaction mixture containing an amino resin, (2) the reaction mixture of the above step is heated to 80 to 150 ° C., and the organic phase A process for producing a low-free formaldehyde amino resin, characterized by comprising a step of refluxing or removing a solvent, and a low-free formaldehyde amino resin obtained by the production method.

Description

本発明は、アミノ樹脂に関するものであり、詳しくは、遊離ホルムアルデヒド含有率を低減させたアミノ樹脂及びその製造方法に関するものである。   The present invention relates to an amino resin, and more particularly to an amino resin having a reduced free formaldehyde content and a method for producing the same.

塗料用樹脂等として広く使用されている、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂等のアミノ樹脂には、その原料として使用するホルムアルデヒドの未反応成分やアミノ樹脂製造時に生成する副生成物の分解物として、遊離ホルムアルデヒドが数質量%程度含まれることが知られている。   Amino resins such as urea resins, melamine resins, and benzoguanamine resins that are widely used as paint resins, etc., are decomposed products of unreacted components of formaldehyde used as raw materials and by-products generated during amino resin production. It is known that about several percent by mass of free formaldehyde is contained.

この遊離ホルムアルデヒドは、塗料として用いた時の表面硬度や耐水性等に悪影響を及ぼすことが知られており、又近年のシックハウス症候群の原因物質としての注目もあり、アミノ樹脂に含まれる遊離ホルムアルデヒドは極力低減させることが重要な課題となっている。   This free formaldehyde is known to have an adverse effect on surface hardness and water resistance when used as a paint, and there is also attention as a causative substance of sick house syndrome in recent years. Reducing as much as possible is an important issue.

アミノ樹脂中の遊離ホルムアルデヒドの低減方法としては、例えば、塗料用組成物とする際にヒドラジン誘導体や結晶性層状リン酸化合物に金属をインターカレートした化合物、あるいは活性アルミナなどのホルマリン捕捉剤を含有させる方法(例えば、特許文献1参照)や、アミノ樹脂に、分子中に1級アミンと水酸基とを有し、かつ炭素数が3以上10未満であるアミノアルコールを含有させる方法(例えば、特許文献2参照)等が提供されている。   Methods for reducing free formaldehyde in amino resins include, for example, hydrazine derivatives and compounds obtained by intercalating metals into crystalline layered phosphate compounds, or formalin scavengers such as activated alumina in coating compositions. (For example, see Patent Document 1) or a method in which an amino alcohol has a primary amine and a hydroxyl group in the molecule and has 3 to 10 carbon atoms (for example, Patent Document 1). 2).

しかしながら、特許文献1で提供されているような、塗料用組成物中への未反応成分の導入は、硬化塗膜の強度等に影響を与えることがあり、更に塗料用組成物としての保存安定性が不良になることがあり、根本的な解決方法とは言い難い。一方、特許文献2で提供されている方法では、確かにアミノ樹脂としての低遊離ホルムアルデヒドという点での一定の効果は有するものの、その低減効果は実用レベルには到達しておらず、更に当該アミノ樹脂の長期保存においてもその効果が持続できるかどうかについての検証はなされていない。   However, the introduction of unreacted components into the coating composition as provided in Patent Document 1 may affect the strength of the cured coating film, and further, the storage stability as a coating composition. It is difficult to say that it is a fundamental solution. On the other hand, the method provided in Patent Document 2 certainly has a certain effect in terms of low free formaldehyde as an amino resin, but the reduction effect has not reached the practical level, and the amino No verification has been made as to whether or not the effect can be sustained even during long-term storage of the resin.

特開2005−298694号公報JP 2005-298694 A 特開平11−335521号公報JP 11-335521 A

上記実情に鑑み、本発明の課題は、遊離ホルムアルデヒドの含有率を効果的に下げることが出来るアミノ樹脂の製造方法の確立と、当該製法で得られる低遊離ホルムアルデヒドアミノ樹脂を提供することにある。   In view of the above circumstances, an object of the present invention is to establish an amino resin production method capable of effectively reducing the content of free formaldehyde and to provide a low free formaldehyde amino resin obtained by the production method.

本発明者らは、鋭意検討した結果、アミノ樹脂を得る工程の後、当該アミノ樹脂を含む反応混合物を、特定範囲の温度領域に加温し、還流又は脱溶剤を行うことで、樹脂中に含まれる未反応ホルムアルデヒド、及び保管中に分解しホルムアルデヒドを発生させる可能性のある副生成物を効果的に除去し、もって、低遊離ホルムアルデヒドアミノ樹脂を得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have heated the reaction mixture containing the amino resin in a temperature range within a specific range after the step of obtaining the amino resin, and refluxing or removing the solvent so that the resin is contained in the resin. The present invention is completed by finding that low-formaldehyde amino resin can be obtained by effectively removing unreacted formaldehyde contained therein and by-products that may decompose during storage to generate formaldehyde. It came to.

即ち、本発明は、(1)アミノ系化合物とアルデヒド類とを溶剤中で重縮合反応させて、アミノ樹脂を含む反応混合物を得る工程、
(2)前記工程の反応混合物を80〜150℃に加温し有機相を還流又は除去する工程、
を有することを特徴とする低遊離ホルムアルデヒドアミノ樹脂の製造方法、及び当該製造方法にて得られる低遊離ホルムアルデヒドアミノ樹脂を提供するものである。
That is, the present invention includes (1) a step of polycondensation reaction of an amino compound and an aldehyde in a solvent to obtain a reaction mixture containing an amino resin,
(2) heating the reaction mixture of the above step to 80 to 150 ° C. to reflux or remove the organic phase;
The present invention provides a method for producing a low free formaldehyde amino resin characterized by having a low free formaldehyde amino resin obtained by the production method.

本発明の製造方法で得られるアミノ樹脂は、従来のアミノ樹脂と比較し、その中に含まれる遊離ホルムアルデヒドがきわめて少ない。したがって、近年のホルムアルデヒド規制にも対応できる塗料用組成物として好適に用いることができる。   The amino resin obtained by the production method of the present invention contains very little free formaldehyde in comparison with conventional amino resins. Therefore, it can be suitably used as a coating composition that can meet the recent formaldehyde regulations.

本発明で製造するアミノ樹脂は、アミノ系化合物とアルデヒド類とを重縮合させてなるアミノ樹脂であればよく、アミノ系化合物として2種以上を併用してなる共重縮合体であってもよい。   The amino resin produced in the present invention may be an amino resin formed by polycondensation of an amino compound and an aldehyde, and may be a copolycondensate formed by using two or more kinds of amino compounds in combination. .

前記アミノ系化合物としては、例えば、メラミン、尿素、ベンゾグアナミン、アセトグアナミン、スピログアナミン、シクロヘキサンカルボグアナミン、シクロヘキセンカルボグアナミン、安息香酸グアナミン、2ジシアンジアミド等が挙げられる。これらの中でもアミノ樹脂としての汎用性の観点から、メラミン、尿素、ベンゾグアナミンを用いることが好ましい。   Examples of the amino compound include melamine, urea, benzoguanamine, acetoguanamine, spiroguanamine, cyclohexanecarboguanamine, cyclohexenecarboguanamine, guanamine benzoate, and dicyandiamide. Among these, from the viewpoint of versatility as an amino resin, it is preferable to use melamine, urea, or benzoguanamine.

前記アルデヒド類としては、アミノ系化合物と重縮合するものであれば良く、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられ、本発明の効果が高く、汎用性に優れる観点より、ホルムアルデヒドを用いることが好ましい。   The aldehyde may be any one that is polycondensed with an amino compound, and examples thereof include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde, etc. From the viewpoint that the effect of the present invention is high and versatility is excellent. It is preferable to use it.

又、アミノ樹脂としては、アミノ系化合物とアルデヒド類との反応によって得られるメチロール化アミノ樹脂をアルコールによってエーテル化したものであってもよい。特に得られる低遊離ホルムアルデヒドアミノ樹脂を塗料用樹脂組成物として用いる時の、得られる塗膜硬度や加工性の観点より、メチロール化アミノ樹脂中のメチロール基の一部または全部をアルコールによってエーテル化したものであることが好ましい。   The amino resin may be a methylolated amino resin obtained by a reaction between an amino compound and an aldehyde, which is etherified with an alcohol. In particular, when using the obtained low-free formaldehyde amino resin as a resin composition for coatings, some or all of the methylol groups in the methylolated amino resin are etherified with alcohol from the viewpoint of the obtained coating film hardness and processability. It is preferable.

本発明の製造方法における工程(1)は、通常のアミノ樹脂を製造する工程であり、特に限定されるものではなく、前述のアミノ系化合物とアルデヒド類を溶剤中で反応させるものである。ここで、溶剤としては、アルコールを含むものであることが好ましく、特に炭素原子数1〜8のアルコールを用いることが好ましい。   Step (1) in the production method of the present invention is a step of producing a normal amino resin, and is not particularly limited. The amino compound and aldehyde are reacted in a solvent. Here, as a solvent, it is preferable that it contains alcohol, and it is preferable to use especially C1-C8 alcohol.

アミノ系化合物とアルデヒド類との反応において、更に縮合を進めるために酸触媒を使用することが好ましい。酸触媒としては、溶剤に均一に溶解するものであることが好ましく、例えば、ギ酸、燐酸、フタル酸、塩酸、硝酸、硫酸等を用いることができる。   In the reaction between the amino compound and the aldehyde, it is preferable to use an acid catalyst for further condensation. The acid catalyst is preferably one that is uniformly dissolved in a solvent, and for example, formic acid, phosphoric acid, phthalic acid, hydrochloric acid, nitric acid, sulfuric acid, and the like can be used.

工程(1)におけるアミノ系化合物とアルデヒド類との使用割合としては、作業性、硬化性、塗膜物性の観点から、アミノ系化合物中のアミノ基1.0モルに対し、アルデヒド類中のアルデヒド基(モル比)が0.1〜5.0の範囲であることが好ましく、特に0.8〜3.2の範囲であることが好ましい。   The use ratio of the amino compound and aldehyde in the step (1) is from the viewpoint of workability, curability, and physical properties of the coating film, with respect to 1.0 mol of the amino group in the amino compound, the aldehyde in the aldehyde. The group (molar ratio) is preferably in the range of 0.1 to 5.0, particularly preferably in the range of 0.8 to 3.2.

前記酸触媒の反応系への仕込み時期としては、特に限定されるものではないが、作業性、硬化性、塗膜物性の観点より、メチロール化反応がある程度進行してからの投入が好ましく、例えば、アミノ系化合物とアルデヒド類とを溶剤中80〜100℃で0.1〜3.0時間反応させた後、添加することが好ましい。   The timing for charging the acid catalyst into the reaction system is not particularly limited, but from the viewpoint of workability, curability, and physical properties of the coating film, it is preferably charged after the methylolation reaction has progressed to some extent. It is preferable to add the amino compound and the aldehyde after reacting them in a solvent at 80 to 100 ° C. for 0.1 to 3.0 hours.

酸触媒の使用割合としては、反応が良好に進行する観点と、官能基の制御の観点より、アミノ化合物に対して0.001〜0.1質量%の範囲で用いることが好ましい。   The acid catalyst is preferably used in a range of 0.001 to 0.1% by mass with respect to the amino compound from the viewpoint that the reaction proceeds satisfactorily and from the viewpoint of controlling the functional group.

工程(1)の反応終点としては、例えば、ガードナー粘度、トレランスを測定し、目標値到達時点とすることで、容易に判断することが可能である。   As the reaction end point of the step (1), for example, it is possible to easily determine by measuring the Gardner viscosity and tolerance and setting it as the target value reaching point.

本発明の製造方法としては、工程(1)で得られたアミノ樹脂を含有する反応混合物をそのまま工程(2)に供してもよいが、より低遊離ホルムアルデヒドのアミノ樹脂とすることが容易である観点より、脱溶剤の工程を経ることが好ましい。脱溶剤の方法としては特に限定されるものではないが、40〜80Torr(5.3329×10〜1.0665×10Pa)程度の減圧下で除去することが好ましい。In the production method of the present invention, the reaction mixture containing the amino resin obtained in the step (1) may be used as it is in the step (2), but it is easy to obtain a lower free formaldehyde amino resin. From the viewpoint, it is preferable to go through a solvent removal step. The method for removing the solvent is not particularly limited, but it is preferably removed under reduced pressure of about 40 to 80 Torr (5.3329 × 10 3 to 1.0665 × 10 4 Pa).

脱溶剤のレベルとしては、反応混合物のガードナー粘度によって判断することができ、Z1〜Z6程度になった段階で終了することが好ましい。   The level of solvent removal can be determined by the Gardner viscosity of the reaction mixture, and it is preferable that the solvent removal is completed when it reaches about Z1 to Z6.

本発明の製造方法における工程(2)は、前記で得られた反応混合物を80〜150℃で還流又は脱溶剤する工程である。この時、減圧条件でも可能である。   Step (2) in the production method of the present invention is a step of refluxing or removing the solvent from the reaction mixture obtained above at 80 to 150 ° C. At this time, a reduced pressure condition is also possible.

脱溶剤後の反応混合物は粘度が高くなっており、このまま加温すると混合物中で温度のムラが生じやすい。したがって、加温する前に、反応混合物を均一に溶解できる溶剤を添加してから、工程(2)を行うことが好ましい。この時使用できる溶剤としては、加温する温度である80〜150℃で還流する溶剤であることが好ましく、例えば、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルイソブチルケトン等が挙げられ、単独でも、混合溶剤として使用してもよい。   The reaction mixture after the solvent removal has a high viscosity, and if it is heated as it is, temperature unevenness tends to occur in the mixture. Therefore, it is preferable to perform the step (2) after adding a solvent capable of uniformly dissolving the reaction mixture before heating. The solvent that can be used at this time is preferably a solvent that is refluxed at a temperature of 80 to 150 ° C., for example, toluene, xylene, ethyl acetate, butyl acetate, methyl isobutyl ketone, and the like. It may be used as a mixed solvent.

工程(2)で溶剤を用いる場合の使用割合としては、特に限定されるものではないが、工程(2)の前段階での反応混合物の質量に対し、0〜200%質量部用いることが、遊離ホルムアルデヒド低減化の点で好ましい。   The use ratio in the case of using a solvent in the step (2) is not particularly limited, but it is 0 to 200% by mass based on the mass of the reaction mixture in the previous stage of the step (2). It is preferable in terms of reducing free formaldehyde.

工程(2)における加温は、前述のように80〜150℃であることを必須とする。80℃未満では、反応混合物からのホルムアルデヒド(未反応分)及び副生成物であって分解してホルムアルデヒドになる可能性の物を効果的に除去することが困難であり、目的とする低遊離ホルムアルデヒドアミノ樹脂を得ることができない。また、150℃を超えると、アミノ樹脂の変質が起こりやすくなり、目的とするアミノ樹脂の分子量分布等に影響を与えやすくなるため、好ましくない。工程(2)における加温の温度としては、80〜130℃の範囲であることがより好ましい。   The heating in the step (2) is required to be 80 to 150 ° C. as described above. If it is less than 80 ° C., it is difficult to effectively remove formaldehyde (unreacted component) from the reaction mixture and by-products that can decompose to formaldehyde, and the target low free formaldehyde An amino resin cannot be obtained. On the other hand, when the temperature exceeds 150 ° C., the amino resin is likely to be altered, and the molecular weight distribution of the target amino resin is likely to be affected. The heating temperature in step (2) is more preferably in the range of 80 to 130 ° C.

工程(2)の終点の判断は、例えば、遊離ホルムアルデヒドの測定によって行うことができる。目安として、加温の時間としては、0.5〜6.0時間程度である。   The determination of the end point of step (2) can be performed, for example, by measuring free formaldehyde. As a guide, the heating time is about 0.5 to 6.0 hours.

工程(2)の後、アミノ樹脂の精製(単離)を行うが、この方法としては特に限定されるものではなく、通常のアミノ樹脂の合成の後に行う作業をそのまま使用することができる。例えば、室温まで冷却の後、必要に応じて触媒調整を行い、目的とする溶剤で不揮発分の調製を行えばよい。   After the step (2), the amino resin is purified (isolated), but this method is not particularly limited, and the work performed after the synthesis of a normal amino resin can be used as it is. For example, after cooling to room temperature, the catalyst may be adjusted as necessary, and the non-volatile component may be prepared with the target solvent.

上記工程を経て得られるアミノ樹脂は、オクチルアミン法で測定する遊離ホルムアルデヒドの含有率として1質量%以下、特に、0.5質量%以下のものとなる。この値は、例えば、不揮発分60%で、25℃、12か月保存した後においても、上昇することはなく、長期保管によっても分解物としてのホルムアルデヒドが生じないことが大きな特徴となっている。   The amino resin obtained through the above steps has a free formaldehyde content of 1% by mass or less, particularly 0.5% by mass or less, as measured by the octylamine method. This value, for example, has a non-volatile content of 60%, does not increase even after storage at 25 ° C. for 12 months, and is characterized by the fact that formaldehyde as a decomposition product does not occur even after long-term storage. .

本発明の低遊離ホルムアルデヒドアミノ樹脂の用途としては、特に限定されるものではなく、従来アミノ樹脂が使用される用途において好適に用いることができる。例えば、ポリエステル樹脂、アルキド樹脂、アクリル樹脂と組み合わせて組成物とし、焼付け一般塗料の用途に用いることができる。   The use of the low free formaldehyde amino resin of the present invention is not particularly limited, and can be suitably used in applications in which amino resins are conventionally used. For example, it can be combined with a polyester resin, an alkyd resin, and an acrylic resin to form a composition, and can be used for baking general paint applications.

以下、実施例を挙げて本発明をさらに説明するが、本発明はこれら実施例に何ら限定されるものではない。特に断りのない限り、部及び%はいずれも質量基準である。   EXAMPLES Hereinafter, although an Example is given and this invention is further demonstrated, this invention is not limited to these Examples at all. Unless otherwise indicated, both parts and% are based on mass.

実施例1
攪拌棒、温度センサー、デカンタを有するフラスコに、ノルマルブタノール847.4部、92%パラホルム329.4部、水142.3部、メラミン230.0部を仕込み、攪拌しながら93〜98℃に加熱したのち、蟻酸にてpH6.0〜6.2に調整した。続けて95〜110℃にてn−ブタノール還流反応を行なった。ノルマルヘキサントレランスが500%以上、メタノール/水=9/1トレランス400%以下となったところで反応を停止し、減圧脱溶剤を行なった。ガードナー粘度がZ1になったところで減圧をブレイクし工業用キシレン650.0部を添加し、120〜140℃にて脱溶剤を行った。遊離ホルムアルデヒド量が0.1%以下であることを確認し冷却後、不揮発分を58〜62%に調整した。遊離ホルムアルデヒド0.09%、不揮発分が60.2%、重量平均分子量(Mn)が1,350、酸価が1以下である、ブチル化メラミン樹脂(1)を得た。
Example 1
A flask having a stir bar, a temperature sensor, and a decanter was charged with 847.4 parts of normal butanol, 329.4 parts of 92% paraform, 142.3 parts of water, and 230.0 parts of melamine, and heated to 93 to 98 ° C. while stirring. After that, the pH was adjusted to 6.0 to 6.2 with formic acid. Subsequently, n-butanol refluxing reaction was performed at 95 to 110 ° C. The reaction was stopped when the normal hexane tolerance was 500% or more and the methanol / water = 9/1 tolerance was 400% or less, and the solvent was removed under reduced pressure. When the Gardner viscosity became Z1, the reduced pressure was broken, 650.0 parts of industrial xylene was added, and the solvent was removed at 120 to 140 ° C. After confirming that the amount of free formaldehyde was 0.1% or less and cooling, the nonvolatile content was adjusted to 58 to 62%. A butylated melamine resin (1) having a free formaldehyde of 0.09%, a non-volatile content of 60.2%, a weight average molecular weight (Mn) of 1,350, and an acid value of 1 or less was obtained.

実施例2
攪拌棒、温度センサー、デカンタを有するフラスコに、92%パラホルム900.0部、メタノール976.1部、水81.2部、25%苛性ソーダ水溶液0.56部及びメラミン400.0部を仕込み、攪拌しながら70〜80℃に加熱しメチロール化反応を行った。1時間後、メタノール1000.0部を仕込み40℃以下に冷却した。98%硫酸を添加しpH4以下に調整後、30〜50℃にて反応させた。9%NaCLトレランスが200%以下となったところで反応を停止し、25%苛性ソーダ水溶液にてpH10.0〜10.5に調整後、減圧脱溶剤を行った。ガードナー粘度がZ6〜Z7になったところで減圧をブレイクし工業用キシレン950部を添加し、130〜140℃にて脱溶剤を行った。遊離ホルムアルデヒド量が0.5%以下であることを確認し、冷却後、不揮発分を58〜62%に調整した。得られたアミノ樹脂は、遊離ホルムアルデヒド0.3%、不揮発分が60.1%、重量平均分子量(Mn)が515、酸価が1以下のメチル化メラミン樹脂(1)を得た。
Example 2
A flask having a stirring bar, a temperature sensor, and a decanter was charged with 90.0 parts of 92% paraform, 976.1 parts of methanol, 81.2 parts of water, 0.56 parts of 25% aqueous sodium hydroxide solution, and 400.0 parts of melamine, and stirred. Then, the reaction was heated to 70-80 ° C. to carry out a methylolation reaction. After 1 hour, 1000.0 parts of methanol was charged and cooled to 40 ° C. or lower. 98% sulfuric acid was added to adjust the pH to 4 or less, and then reacted at 30 to 50 ° C. The reaction was stopped when the 9% NaCL tolerance was 200% or less, and after adjusting the pH to 10.0 to 10.5 with a 25% aqueous sodium hydroxide solution, the solvent was removed under reduced pressure. When the Gardner viscosity became Z6 to Z7, the reduced pressure was broken, 950 parts of industrial xylene was added, and the solvent was removed at 130 to 140 ° C. It was confirmed that the amount of free formaldehyde was 0.5% or less, and after cooling, the nonvolatile content was adjusted to 58 to 62%. The resulting amino resin was a methylated melamine resin (1) having a free formaldehyde of 0.3%, a non-volatile content of 60.1%, a weight average molecular weight (Mn) of 515, and an acid value of 1 or less.

実施例3
攪拌棒、温度センサー、デカンタを有するフラスコに、ノルマルブタノール847.4部、92%パラホルム329.4部、水142.3部、メラミン230.0部を仕込み、攪拌しながら93〜98℃に加熱したのち、蟻酸にてpH6.0〜6.2に調整した。続けて95〜110℃にてn−ブタノール還流反応を行なった。ノルマルヘキサントレランスが500%以上、メタノール/水=9/1トレランス400%以下となったところで反応を停止し、減圧脱溶剤を行なった。ガードナー粘度がZ1になったところで減圧をブレイクし工業用キシレン650.0部を添加し、80〜120Torr減圧下、60〜100℃にて脱溶剤を行った。遊離ホルムアルデヒド量が0.6%以下であることを確認し冷却後、不揮発分を58〜62%に調整した。遊離ホルムアルデヒド0.5%、不揮発分が60.2%、重量平均分子量(Mn)が1,250、酸価が1以下である、ブチル化メラミン樹脂(2)を得た。
Example 3
A flask having a stir bar, a temperature sensor, and a decanter was charged with 847.4 parts of normal butanol, 329.4 parts of 92% paraform, 142.3 parts of water, and 230.0 parts of melamine, and heated to 93 to 98 ° C. while stirring. After that, the pH was adjusted to 6.0 to 6.2 with formic acid. Subsequently, n-butanol refluxing reaction was performed at 95 to 110 ° C. The reaction was stopped when the normal hexane tolerance was 500% or more and the methanol / water = 9/1 tolerance was 400% or less, and the solvent was removed under reduced pressure. When the Gardner viscosity became Z1, the reduced pressure was broken, 650.0 parts of industrial xylene was added, and the solvent was removed at 60-100 ° C. under reduced pressure of 80-120 Torr. After confirming that the amount of free formaldehyde was 0.6% or less and cooling, the nonvolatile content was adjusted to 58 to 62%. A butylated melamine resin (2) having a free formaldehyde of 0.5%, a non-volatile content of 60.2%, a weight average molecular weight (Mn) of 1,250, and an acid value of 1 or less was obtained.

実施例4
攪拌棒、温度センサー、デカンタを有するフラスコに、ノルマルブタノール847.4部、92%パラホルム329.4部、水142.3部、メラミン230.0部を仕込み、攪拌しながら93〜98℃に加熱したのち、蟻酸にてpH6.0〜6.2に調整した。続けて95〜110℃にてn−ブタノール還流反応を行なった。ノルマルヘキサントレランスが500%以上、メタノール/水=9/1トレランス400%以下となったところで反応を停止し、減圧脱溶剤を行なった。ガードナー粘度がZ1になったところで減圧をブレイクし工業用キシレン650.0部を添加し、250〜350Torr減圧下、80〜120℃にて脱溶剤を行った。遊離ホルムアルデヒド量が0.2%以下であることを確認し冷却後、不揮発分を58〜62%に調整した。遊離ホルムアルデヒド0.09%、不揮発分が60.2%、重量平均分子量(Mn)が1,230、分子量分布(Mw/Mn)が3.0、酸価が1以下である、ブチル化メラミン樹脂(3)を得た。
Example 4
A flask having a stir bar, a temperature sensor, and a decanter was charged with 847.4 parts of normal butanol, 329.4 parts of 92% paraform, 142.3 parts of water, and 230.0 parts of melamine, and heated to 93 to 98 ° C. while stirring. After that, the pH was adjusted to 6.0 to 6.2 with formic acid. Subsequently, n-butanol refluxing reaction was performed at 95 to 110 ° C. The reaction was stopped when the normal hexane tolerance was 500% or more and the methanol / water = 9/1 tolerance was 400% or less, and the solvent was removed under reduced pressure. When the Gardner viscosity became Z1, the reduced pressure was broken, 650.0 parts of industrial xylene was added, and the solvent was removed at 80 to 120 ° C. under a reduced pressure of 250 to 350 Torr. After confirming that the amount of free formaldehyde was 0.2% or less and cooling, the nonvolatile content was adjusted to 58 to 62%. Butylated melamine resin having 0.09% free formaldehyde, 60.2% non-volatile content, 1,230 weight average molecular weight (Mn), 3.0 molecular weight distribution (Mw / Mn), and acid value of 1 or less (3) was obtained.

比較例1
攪拌棒、温度センサー、デカンタを有するフラスコに、ノルマルブタノール847.4部、92%パラホルム329.4部、水142.3部、メラミン230.0部を仕込み、攪拌しながら93〜98℃に加熱したのち、蟻酸にてpH6.0〜6.2に調整した。続けて95〜110℃にてn−ブタノール還流反応を行なった。ノルマルヘキサントレランスが500%以上、メタノール/水=9/1トレランス400%以下となったところで反応を停止し、減圧脱溶剤を行なった。ガードナー粘度がZ1になったところで減圧をブレイクし冷却後、キシレンにて不揮発分を58〜62%に調整した。得られたアミノ樹脂は遊離ホルムアルデヒド3.0%、不揮発分59.8%、重量平均分子量(Mn)が1,200、酸価が1以下のブチル化メラミン樹脂(4)であった。
Comparative Example 1
A flask having a stir bar, a temperature sensor, and a decanter was charged with 847.4 parts of normal butanol, 329.4 parts of 92% paraform, 142.3 parts of water, and 230.0 parts of melamine, and heated to 93 to 98 ° C. while stirring. After that, the pH was adjusted to 6.0 to 6.2 with formic acid. Subsequently, n-butanol refluxing reaction was performed at 95 to 110 ° C. The reaction was stopped when the normal hexane tolerance was 500% or more and the methanol / water = 9/1 tolerance was 400% or less, and the solvent was removed under reduced pressure. When the Gardner viscosity became Z1, the reduced pressure was broken and cooled, and then the non-volatile content was adjusted to 58 to 62% with xylene. The obtained amino resin was a butylated melamine resin (4) having a free formaldehyde of 3.0%, a non-volatile content of 59.8%, a weight average molecular weight (Mn) of 1,200, and an acid value of 1 or less.

比較例2
攪拌棒、温度センサー、デカンタを有するフラスコに、92%パラホルム900.0部、メタノール976.1部、水81.2部、25%苛性ソーダ水溶液0.56部及びメラミン400.0部を仕込み、攪拌しながら70〜80℃に加熱しメチロール化反応を行った。1時間後、メタノール1000.0部を仕込み40℃以下に冷却した。98%硫酸を添加しpH4以下に調整後、30〜50℃にて反応させた。9%NaCLトレランスが200%以下となったところで反応を停止し、25%苛性ソーダ水溶液にてpH10.0〜10.5に調整後、減圧脱溶剤を行った。ガードナー粘度がZ6〜Z7になったところで減圧をブレイクし、冷却後、キシレン、イソブタノールにて不揮発分を58〜62%に調整した。得られたアミノ樹脂は、遊離ホルムアルデヒド4.6%、重量平均分子量(Mw)が500、酸価が1以下のメチル化メラミン樹脂(2)であった。
Comparative Example 2
A flask having a stirring bar, a temperature sensor, and a decanter was charged with 90.0 parts of 92% paraform, 976.1 parts of methanol, 81.2 parts of water, 0.56 parts of 25% aqueous sodium hydroxide solution, and 400.0 parts of melamine, and stirred. Then, the reaction was heated to 70-80 ° C. to carry out a methylolation reaction. After 1 hour, 1000.0 parts of methanol was charged and cooled to 40 ° C. or lower. 98% sulfuric acid was added to adjust the pH to 4 or less, and then reacted at 30 to 50 ° C. The reaction was stopped when the 9% NaCL tolerance was 200% or less, and after adjusting the pH to 10.0 to 10.5 with a 25% aqueous sodium hydroxide solution, the solvent was removed under reduced pressure. When the Gardner viscosity reached Z6 to Z7, the reduced pressure was broken, and after cooling, the nonvolatile content was adjusted to 58 to 62% with xylene and isobutanol. The obtained amino resin was a methylated melamine resin (2) having a free formaldehyde of 4.6%, a weight average molecular weight (Mw) of 500, and an acid value of 1 or less.

なお、アミノ樹脂の分析、反応経過の確認は、以下の方法で行っている。
<ノルマルヘキサントレランス>
100ml三角フラスコに上皿天秤で試料5.00gを採取する。
フラスコ内容物にノルマルヘキサンをビュレットで滴下しよく混合する。
フラスコ内を温度計にて正確に25.0℃に調整し診察物の上に置き上から覗き、三角フラスコの液層を透して活字が読めなくなる迄滴下し、溶剤の滴下量を測定する。
トレランス(%)=溶剤の使用量ml×20
In addition, analysis of amino resin and confirmation of reaction progress are performed by the following methods.
<Normal hexane tolerance>
Collect 5.00 g of sample with a pan balance in a 100 ml Erlenmeyer flask.
Add normal hexane dropwise to the flask contents with a burette and mix well.
Adjust the inside of the flask accurately to 25.0 ° C with a thermometer, place it on the examination object, peep from above, drop it through the liquid layer of the Erlenmeyer flask until it is no longer readable, and measure the amount of solvent dripped. .
Tolerance (%) = Amount of solvent used ml × 20

<メタノール/水=9/1トレランス>
100ml三角フラスコに上皿天秤で試料5.00gを採取する。
フラスコ内容物にメタノール/水=9/1溶液をビュレットで滴下しよく混合する。
フラスコ内を温度計にて正確に25.0℃に調整し診察物の上に置き上から覗き、三角フラスコの液層を透して活字が読めなくなる迄滴下し、溶剤の滴下量を測定する。
トレランス(%)=溶剤の使用量ml×20
<Methanol / water = 9/1 tolerance>
Collect 5.00 g of sample with a pan balance in a 100 ml Erlenmeyer flask.
A methanol / water = 9/1 solution is dropped into the flask contents with a burette and mixed well.
Adjust the inside of the flask accurately to 25.0 ° C with a thermometer, place it on the examination object, peep from above, drop it through the liquid layer of the Erlenmeyer flask until it is no longer readable, and measure the amount of solvent dripped. .
Tolerance (%) = Amount of solvent used ml × 20

<9%NaCLトレランス>
100ml三角フラスコに上皿天秤で試料5.00gを採取する。
フラスコ内容物に9%NaCL水溶液をビュレットで滴下しよく混合する。
フラスコ内を温度計にて正確に25.0℃に調整し診察物の上に置き上から覗き、三角フラスコの液層を透して活字が読めなくなる迄滴下し、溶剤の滴下量を測定する。
トレランス(%)=溶剤の使用量ml×20
<9% NaCl tolerance>
Collect 5.00 g of sample with a pan balance in a 100 ml Erlenmeyer flask.
A 9% NaCl aqueous solution is dropped into the flask contents with a burette and mixed well.
Adjust the inside of the flask accurately to 25.0 ° C with a thermometer, place it on the examination object, peep from above, drop it through the liquid layer of the Erlenmeyer flask until it is no longer readable, and measure the amount of solvent dripped. .
Tolerance (%) = Amount of solvent used ml × 20

<遊離ホルムアルデヒド量>
100ml三角フラスコに上皿天秤で試料1.50gを採取する。
100mlメスシリンダーで混合溶剤(キシレン(工業用)/イソブチルアルコール=1/1wt)70mlを加え溶解する。
これに、1mol/L 2−エチルヘキシルアミン混合液(2−エチルヘキシルアミン/混合溶剤=70/430mL)10mlをホールピペットで加える。
栓をして1時間撹拌する。
電位差計を用い、1mol/Lサリチル酸溶液でPH7.0を終点する。
同様に空試験を行う。
遊離ホルムアルデヒド含有率(%)=((B−T)×F×3)/S
B:空試験における1mol/Lサリチル酸溶液の使用量(ml)
T:本試験における1mol/Lサリチル酸溶液の使用量(ml)
F:1mol/Lサリチル酸溶液の力価
S:試料採取量(g)
<Amount of free formaldehyde>
Collect 1.50 g of sample with a pan balance in a 100 ml Erlenmeyer flask.
Add and dissolve 70 ml of mixed solvent (xylene (industrial) / isobutyl alcohol = 1/1 wt) with a 100 ml graduated cylinder.
To this, 10 ml of a 1 mol / L 2-ethylhexylamine mixed solution (2-ethylhexylamine / mixed solvent = 70/430 mL) is added with a whole pipette.
Cap and stir for 1 hour.
Using a potentiometer, PH 7.0 is terminated with a 1 mol / L salicylic acid solution.
A blank test is performed in the same manner.
Free formaldehyde content (%) = ((BT) × F × 3) / S
B: Amount of 1 mol / L salicylic acid solution used in the blank test (ml)
T: Amount of 1 mol / L salicylic acid solution used in this test (ml)
F: titer of 1 mol / L salicylic acid solution S: sampling amount (g)

<重量平均分子量(Mn)>
測定装置 ;東ソー株式会社製 HLC−8120GPC
カラム ;東ソー株式会社製 TSK−GUARDCOLUMN HXL−H
+東ソー株式会社製 TSK−GEL G5000HXL
+東ソー株式会社製 TSK−GEL G4000HXL
+東ソー株式会社製 TSK−GEL G3000HXL
+東ソー株式会社製 TSK−GEL G2000HXL
検出器 ;RI(示差屈折計)
データ処理;東ソー株式会社製 マルチステーションGPC−8020modelII
測定条件 ;カラム温度 40℃
溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 ;単分散ポリスチレン(東ソー株式会社製 A−500、F−2、F−20、F−80、F−288、A−2500、F−10、F−40、F−128、F−380)を用いて検量線を作成した。
試料 ;樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
<Weight average molecular weight (Mn)>
Measuring device: HLC-8120GPC manufactured by Tosoh Corporation
Column: TSK-GUARDCOLUMN H XL -H manufactured by Tosoh Corporation
+ Tosoh Corporation TSK-GEL G5000H XL
+ Tosoh Corporation TSK-GEL G4000H XL
+ Tosoh Corporation TSK-GEL G3000H XL
+ Tosoh Corporation TSK-GEL G2000H XL
Detector: RI (differential refractometer)
Data processing: Multi-station GPC-8020 model II manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Solvent tetrahydrofuran
Flow rate 1.0 ml / min Standard: Monodispersed polystyrene (A-500, F-2, F-20, F-80, F-288, A-2500, F-10, F-40, F- manufactured by Tosoh Corporation) 128, F-380) was used to create a calibration curve.
Sample: 0.5% by mass of a tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 μl)

<酸価>
100ml三角フラスコに上皿天秤で試料10.0gを採取する。
100mlメスシリンダーで混合溶剤(トルエン/メタノール=7/3wt)30mlを加え溶解する。
フェノールフタレイン指示薬を2〜4滴加える。
0.1molのアルコール性KOHで滴定し、変色が30秒間持続するところまで滴定する。
酸価(mgKOH/g)=(V×F×5.61)/S
V:0.1mol/Lアルコール性KOHの使用量(ml)
F:0.1mol/Lアルコール性KOHの力価
S:試料採取量(g)
<Acid value>
10.0 g of sample is collected in a 100 ml Erlenmeyer flask with an upper pan balance.
Add 30 ml of mixed solvent (toluene / methanol = 7/3 wt) with a 100 ml graduated cylinder and dissolve.
Add 2-4 drops of phenolphthalein indicator.
Titrate with 0.1 mol alcoholic KOH and titrate until discoloration persists for 30 seconds.
Acid value (mgKOH / g) = (V × F × 5.61) / S
V: Amount used of 0.1 mol / L alcoholic KOH (ml)
F: 0.1 mol / L alcoholic KOH titer S: Sampling amount (g)

<不揮発分>
金属シャーレの質量を上皿天秤で秤量する。
シャーレに上皿天秤で試料1.00gを採取する。
混合溶剤(トルエン/メタノール=7/3wt)5mlを加え溶解する。
107.5℃に調整された熱風循環乾燥機内で60分乾燥させる。
乾燥後、シャーレをデシケーターに入れ、常温まで法令後、上皿天秤で秤量する。
不揮発分(%)=(B−C)/(A−C)×100
A:金属シャーレ+乾燥前の試料質量(g)
B:金属シャーレ+乾燥後の試料質量(g)
C:金属シャーレの質量(g)
<Nonvolatile content>
Weigh the mass of the metal petri dish with an upper pan balance.
Collect 1.00 g of sample in a petri dish with an upper pan balance.
Add 5 ml of mixed solvent (toluene / methanol = 7/3 wt) and dissolve.
Dry in a hot air circulating drier adjusted to 107.5 ° C. for 60 minutes.
After drying, place the petri dish in a desiccator, and after weighing it to room temperature, weigh it with a pan balance.
Nonvolatile content (%) = (BC) / (AC) × 100
A: Metal Petri dish + Sample mass before drying (g)
B: Metal Petri dish + Sample mass after drying (g)
C: Mass of metal petri dish (g)

応用例1
表1に従い主剤を調製し、フィラーを添加後ビーズミルにて練肉後、硬化剤を加えて塗料用組成物を調製した。粘度は、キシレン/n−ブタノール/ブチルセロソルブ=75/15/10(質量比)を用いてイワタカップで20秒(25℃)に調整した。基材には、ボンデ処理鋼板#144ダルを用い、スプレー塗装後150℃×20分にて焼き付けた。(養生25℃×50%RH×1日)以上のようにして得られた塗装金属板について、光沢、エリクセン、デュポン衝撃、鉛筆硬度、碁盤目試験の測定を実施した。
Application example 1
The main agent was prepared according to Table 1, the filler was added, the meat was milled with a bead mill, and the curing agent was added to prepare a coating composition. The viscosity was adjusted to 20 seconds (25 ° C.) with an Iwata cup using xylene / n-butanol / butyl cellosolve = 75/15/10 (mass ratio). Bonded steel plate # 144 dull was used as the base material, and baked at 150 ° C. for 20 minutes after spray coating. (Curing 25 ° C. × 50% RH × 1 day) The coated metal plate obtained as described above was measured for gloss, Erichsen, DuPont impact, pencil hardness, and cross cut test.

応用例2
表1に示されるような組成比(配合割合)に変更する以外は、応用例1と同様にして、塗料を調製し、塗装評価を実施した。
Application example 2
A paint was prepared and evaluated for coating in the same manner as in Application Example 1 except that the composition ratio (mixing ratio) was changed as shown in Table 1.

応用例3
表1に従い主剤を調製、フィラーを添加後ビーズミルにて練肉後、硬化剤を加えて塗料用組成物を調製した。粘度は、キシレン/n−ブタノール/ブチルセロソルブ=75/15/10(質量比)を用いてフォードカップで100秒(25℃)に調整した。基材には、ボンデ処理鋼板#144ダルを用い、バーコーター塗装後250℃×40秒にて焼き付けた。(養生25℃×50%RH×1日)以上のように得られた塗装金属板について、光沢、エリクセン、デュポン衝撃、鉛筆硬度、碁盤目試験の測定を実施した。
Application example 3
The main agent was prepared according to Table 1, the filler was added, the meat was milled in a bead mill, and the curing agent was added to prepare a coating composition. The viscosity was adjusted to 100 seconds (25 ° C.) with a Ford cup using xylene / n-butanol / butyl cellosolve = 75/15/10 (mass ratio). Bonded steel plate # 144 dull was used as the base material, and baked at 250 ° C. for 40 seconds after bar coater coating. (Curing 25 ° C. × 50% RH × 1 day) The coated metal plate obtained as described above was measured for gloss, Erichsen, DuPont impact, pencil hardness, and cross cut test.

比較応用例1、2
表1に示されるような組成比(配合割合)に変更した以外は、応用例1と同様にして、塗料を調製し、塗装評価を実施した。
Comparative application examples 1 and 2
A coating material was prepared and evaluated for coating in the same manner as in Application Example 1 except that the composition ratio (mixing ratio) was changed as shown in Table 1.

比較応用例3
表1に示されるような組成比(配合割合)に変更した以外は、応用例3と同様にして、塗料を調製し、塗装評価を実施した。
Comparative application example 3
A coating material was prepared and evaluated for coating in the same manner as in Application Example 3 except that the composition ratio (mixing ratio) was changed as shown in Table 1.

各評価判定項目ならびにその評価判定要領は、次の通りである。
(1) 光沢:60度鏡面反射率を測定した。
(2) エリクセン・テスト:エリクセン試験器で以て押し出して、剥離するまでの押し出し長さ(mm)を測定した。
(3) デュポン衝撃値:デュポン衝撃試験器を使用し、荷重を1.0kgとし、1/2インチ・ノッチ付きで、所定の高さから、塗膜上に、此の重りを落下させて、塗面に割れを生じない、最大の高さを測定値とした(JISK−5460)。
(4) 硬度(エンピツ硬度):鋼板の塗面を、JIS S−6006に規定された高級鉛筆を用い、JIS K−5400に従って測定した。
(5)碁盤目試験:鋼板の塗面を、JIS K 5600−5−6に定められている碁盤目試験に従って測定した。
Each evaluation judgment item and its evaluation judgment point are as follows.
(1) Gloss: 60 degree specular reflectance was measured.
(2) Erichsen test: The extrusion length (mm) until extrusion was measured with an Erichsen tester until peeling was measured.
(3) DuPont impact value: Using a DuPont impact tester, with a load of 1.0 kg, with a 1/2 inch notch, drop this weight on the coating film from a predetermined height, The maximum height at which no cracks occur on the coated surface was taken as the measured value (JISK-5460).
(4) Hardness (Epits hardness): The coated surface of the steel sheet was measured according to JIS K-5400 using a high-grade pencil specified in JIS S-6006.
(5) Cross cut test: The coated surface of the steel sheet was measured according to a cross cut test defined in JIS K 5600-5-6.

Figure 2016072167
Figure 2016072167

なお、応用例で用いた各原料は以下の通りである。
※1希釈シンナー:キシレン/n−ブタノール/ブチルセロソルブ=75/15/10(質量比)
アクリディックA−405:アクリル樹脂 不揮発分50% DIC株式会社製
M−6201−40−IM:変性ポリエステル樹脂 不揮発分40% DIC株式会社製
CR−95:酸価チタン
In addition, each raw material used by the application example is as follows.
* 1 Diluting thinner: xylene / n-butanol / butyl cellosolve = 75/15/10 (mass ratio)
ACRICID A-405: Acrylic resin Nonvolatile content 50% DIC Corporation M-6201-40-IM: Modified polyester resin Nonvolatile content 40% DIC Corporation CR-95: Acid value titanium

Claims (10)

(1)アミノ系化合物とアルデヒド類とを溶剤中で重縮合反応させて、アミノ樹脂を含む反応混合物を得る工程、
(2)前記工程の反応混合物を80〜150℃に加温し、有機相を還流又は脱溶剤させる工程、を有することを特徴とする低遊離ホルムアルデヒドアミノ樹脂の製造方法。
(1) A step of polycondensation reaction of an amino compound and aldehyde in a solvent to obtain a reaction mixture containing an amino resin,
(2) A method for producing a low-free formaldehyde amino resin, comprising the step of heating the reaction mixture of the above step to 80 to 150 ° C. to reflux or desolvate the organic phase.
前記工程(1)で用いる溶剤がアルコールを含むものである請求項1記載の低遊離ホルムアルデヒドアミノ樹脂の製造方法。   The method for producing a low free formaldehyde amino resin according to claim 1, wherein the solvent used in the step (1) contains an alcohol. 前記アルコールが炭素原子数1〜8のアルコールである請求項3記載の低遊離ホルムアルデヒドアミノ樹脂の製造方法。   The method for producing a low-free formaldehyde amino resin according to claim 3, wherein the alcohol is an alcohol having 1 to 8 carbon atoms. 前記工程(1)の後、工程(1)で用いた溶剤を除去してから、工程(2)の反応混合物として供するものである、請求項1〜3の何れか1項記載の低遊離ホルムアルデヒドアミノ樹脂の製造方法。   The low free formaldehyde according to any one of claims 1 to 3, which is used as a reaction mixture in the step (2) after removing the solvent used in the step (1) after the step (1). A method for producing an amino resin. 工程(2)において、沸点が80℃以上の溶剤を混合してから加温する請求項1〜4の何れか1項記載の低遊離ホルムアルデヒドアミノ樹脂の製造方法。   The method for producing a low free formaldehyde amino resin according to any one of claims 1 to 4, wherein in the step (2), the solvent is heated after being mixed with a solvent having a boiling point of 80 ° C or higher. 前記沸点が80℃以上の溶剤が、キシレンである請求項5記載の低遊離ホルムアルデヒドアミノ樹脂の製造方法。   The method for producing a low free formaldehyde amino resin according to claim 5, wherein the solvent having a boiling point of 80 ° C or higher is xylene. 前記アミノ系化合物が、メラミン、尿素、又はベンゾグアナミンである請求項1〜6の何れか1項記載の低遊離ホルムアルデヒドアミノ樹脂の製造方法。   The method for producing a low-free formaldehyde amino resin according to any one of claims 1 to 6, wherein the amino compound is melamine, urea, or benzoguanamine. 前記アルデヒド類が、ホルムアルデヒドである請求項1〜7の何れか1項記載の低遊離ホルムアルデヒドアミノ樹脂の製造方法。   The method for producing a low free formaldehyde amino resin according to any one of claims 1 to 7, wherein the aldehyde is formaldehyde. 請求項1〜8の何れか1項記載の製造方法で得られることを特徴とする低遊離ホルムアルデヒドアミノ樹脂。   A low-free formaldehyde amino resin obtained by the production method according to claim 1. 樹脂中に含まれる遊離ホルムアルデヒドの含有率が1質量%未満である請求項9記載の低遊離ホルムアルデヒドアミノ樹脂。   The low free formaldehyde amino resin according to claim 9, wherein the content of free formaldehyde contained in the resin is less than 1% by mass.
JP2016504814A 2014-11-06 2015-09-24 Low free formaldehyde amino resin and process for producing the same Active JP5928671B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014226058 2014-11-06
JP2014226058 2014-11-06
PCT/JP2015/076888 WO2016072167A1 (en) 2014-11-06 2015-09-24 Low free formaldehyde amino resin and method for producing same

Publications (2)

Publication Number Publication Date
JP5928671B1 JP5928671B1 (en) 2016-06-01
JPWO2016072167A1 true JPWO2016072167A1 (en) 2017-04-27

Family

ID=55908896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016504814A Active JP5928671B1 (en) 2014-11-06 2015-09-24 Low free formaldehyde amino resin and process for producing the same

Country Status (5)

Country Link
JP (1) JP5928671B1 (en)
KR (2) KR20170062543A (en)
CN (1) CN107075059A (en)
MY (1) MY163830A (en)
WO (1) WO2016072167A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018115060A1 (en) 2016-12-21 2018-06-28 Basf Se Process for preparing liquid compositions of etherified melamine formaldehyde resins

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270667A (en) * 1986-05-19 1987-11-25 Dainippon Ink & Chem Inc Production of aqueous dispersion of aminoplast
DE3810114A1 (en) * 1988-03-25 1989-10-12 Sueddeutsche Kalkstickstoff METHOD FOR PRODUCING CONDENSATION PRODUCTS CONTAINING SULPHONIC ACID GROUPS WITH A LOW FREE FORMALDEHYDE CONTENT
JP3580039B2 (en) * 1996-08-26 2004-10-20 東洋インキ製造株式会社 Thermosetting resin and its use
JPH11106464A (en) * 1997-09-30 1999-04-20 Hitachi Chem Co Ltd Amino resin, its production and molding material
JP2002234925A (en) * 2001-02-13 2002-08-23 Mitsubishi Rayon Co Ltd Method for preparation of urea-formaldehyde resin
JP2002338647A (en) * 2001-03-14 2002-11-27 Nippon Paint Co Ltd Method for producing aminoformaldehyde resin
CN101475676B (en) * 2009-01-20 2011-06-29 江苏工业学院 Preparation of urea-formaldehyde resin for environment-friendly artificial board
CN101565492B (en) * 2009-04-29 2011-07-20 永港伟方(北京)科技股份有限公司 Low toxic and environment-friendly urea-formaldehyde resin and preparation method thereof
CN102803323B (en) * 2010-02-16 2014-12-03 巴斯夫欧洲公司 Silylated amino resins

Also Published As

Publication number Publication date
WO2016072167A1 (en) 2016-05-12
CN107075059A (en) 2017-08-18
JP5928671B1 (en) 2016-06-01
MY163830A (en) 2017-10-31
KR20170142216A (en) 2017-12-27
KR20170062543A (en) 2017-06-07

Similar Documents

Publication Publication Date Title
US9796805B2 (en) Aminoplast crosslinker resin compositions, process for their preparation, and method of use
CN106164171B (en) Polyester coating compositions comprising polymers derived from cyclic carbonates
JP5553239B2 (en) Method for producing a crosslinking agent composition
JP5928671B1 (en) Low free formaldehyde amino resin and process for producing the same
WO2012044544A1 (en) Mixtures of crosslinking agents
JP6257385B2 (en) Paint composition
US20190092962A1 (en) Non-etherified reaction product of a cyclic urea and a multifunctional aldehyde
Magami Melamino migrants as breakdown products of applied amino resin cross-linked can coatings.
US20170066866A1 (en) Modified amino resins
JPWO2017047197A1 (en) Copolyester and metal primer coating using the same
JPH0335336B2 (en)
EP2621976B1 (en) Reaction product of a cyclic urea and a multifunctional aldehyde
CA2811224C (en) Process for the preparation of a reaction product of a cyclic urea and a multifunctional aldehyde
JP2008007627A (en) Polyester resin-based aqueous coating composition for outer surface of can
JP2020084099A (en) Aqueous resin composition, coating film, and coated article
JP2015193782A (en) coating composition
JPH08176249A (en) Novel alkyl-etherified amino resin and its production
EP3397667A1 (en) Formaldehyde free crosslinking compositions
JP6434258B2 (en) Resin composition, cured film, method for producing cured film, and alkylated aniline resin
EP4162003A1 (en) Coating compositions including a polyester, articles, and methods of coating
JP5003930B2 (en) Polyester resin for overcoat clear paint and overcoat clear paint resin composition using the same
CN111117447A (en) Acid-curable coating compositions with low free formaldehyde emissions and methods of making the same
JP2003082046A (en) Phenolic resin for polyester resin coating material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R151 Written notification of patent or utility model registration

Ref document number: 5928671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250