JPWO2016027809A1 - Cross coupling method and method for producing organic compound using the cross coupling method - Google Patents

Cross coupling method and method for producing organic compound using the cross coupling method Download PDF

Info

Publication number
JPWO2016027809A1
JPWO2016027809A1 JP2016544219A JP2016544219A JPWO2016027809A1 JP WO2016027809 A1 JPWO2016027809 A1 JP WO2016027809A1 JP 2016544219 A JP2016544219 A JP 2016544219A JP 2016544219 A JP2016544219 A JP 2016544219A JP WO2016027809 A1 JPWO2016027809 A1 JP WO2016027809A1
Authority
JP
Japan
Prior art keywords
compound
group
nmr
mhz
cdcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016544219A
Other languages
Japanese (ja)
Inventor
健一郎 伊丹
健一郎 伊丹
潤一郎 山口
潤一郎 山口
慶 武藤
慶 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Publication of JPWO2016027809A1 publication Critical patent/JPWO2016027809A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/94Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of polycyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/38Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • C07D215/06Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/42Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Quinoline Compounds (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Furan Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

安価に種々の化合物を基質として使用することができるクロスカップリング反応、及び該クロスカップリング反応を用いた化合物の製造方法を提供することを目的とする。特定のエステル化合物(特にアリールエステル、ヘテロアリールエステル等)と、特定のボロン酸化合物とを、ニッケル化合物の存在下で反応させることで、前記目的を達成することができる。An object of the present invention is to provide a cross-coupling reaction in which various compounds can be used as a substrate at low cost, and a method for producing a compound using the cross-coupling reaction. The said objective can be achieved by making a specific ester compound (especially aryl ester, heteroaryl ester, etc.) react with a specific boronic acid compound in the presence of a nickel compound.

Description

本発明は、クロスカップリング方法(具体的にはエステル化合物とボロン酸化合物とのクロスカップリング反応)、及び該クロスカップリング方法を用いた有機化合物の製造方法に関する。   The present invention relates to a cross-coupling method (specifically, a cross-coupling reaction between an ester compound and a boronic acid compound) and a method for producing an organic compound using the cross-coupling method.

従来から、種々の化合物を合成するに際して、原料化合物である2種類の基質を、適当な触媒の存在下に反応させる方法(クロスカップリング反応)が広く採用されている。このクロスカップリング反応を採用すれば、種々様々な有機化合物を容易に合成することができる。   Conventionally, in synthesizing various compounds, a method (cross coupling reaction) in which two kinds of substrates as raw material compounds are reacted in the presence of an appropriate catalyst has been widely adopted. If this cross-coupling reaction is employed, a wide variety of organic compounds can be easily synthesized.

このようなクロスカップリング反応としては、例えば、
(1)ニッケル触媒の存在下に特定のアゾール類と特定のエステル化合物とを反応させる脱エステル型ビアリールクロスカップリング(例えば、非特許文献1等)、
(2)ニッケル触媒の存在下に特定のアゾール類と特定のエーテル化合物とを反応させるC−Hアルケニル化反応(例えば、非特許文献2等)、
(3)パラジウム触媒を用いた脱カルボニル型ビアリールクロスカップリング(例えば、非特許文献3等)
等が知られている。
As such a cross-coupling reaction, for example,
(1) Deesterification type biaryl cross coupling in which a specific azole and a specific ester compound are reacted in the presence of a nickel catalyst (for example, Non-patent Document 1),
(2) C—H alkenylation reaction in which a specific azole and a specific ether compound are reacted in the presence of a nickel catalyst (for example, Non-patent Document 2),
(3) Decarbonylated biaryl cross-coupling using palladium catalyst (for example, Non-Patent Document 3)
Etc. are known.

J. Am. Chem. Soc. 2012, 134, 13573-13576J. Am. Chem. Soc. 2012, 134, 13573-13576 Angew. Chem. Int. Ed. 2013, 52, 10048-10051Angew. Chem. Int. Ed. 2013, 52, 10048-10051 Science 2006, 313, 662-664Science 2006, 313, 662-664

しかしながら、(1)〜(2)の方法では、基質として特定のアゾール類を使用する必要があり、他の基質を用いたクロスカップリング反応には応用できない。また、(3)の方法では、高価なパラジウム触媒及び化学量論量の銀塩を必要とするため、実用化には適さない。このように、従来のクロスカップリング方法は、基質及びコストの面で制約がある。   However, in the methods (1) to (2), it is necessary to use a specific azole as a substrate, and it cannot be applied to a cross-coupling reaction using another substrate. The method (3) is not suitable for practical use because it requires an expensive palladium catalyst and a stoichiometric amount of silver salt. As described above, the conventional cross-coupling method is limited in terms of substrate and cost.

このため、本発明は、安価に種々の化合物を基質として使用することができるクロスカップリング反応、及び該クロスカップリング反応を用いた化合物の製造方法を提供することを目的とする。   For this reason, an object of this invention is to provide the manufacturing method of the compound using the cross-coupling reaction which can use a various compound as a substrate cheaply, and this cross-coupling reaction.

本発明者らは上記の課題を解決するために鋭意研究を行った結果、触媒として安価なニッケル化合物を用い、基質として特定のエステル化合物及び特定のボロン酸化合物を用いることで、種々の化合物を安価に提供することが可能なクロスカップリング反応が引き起こされることを見出した。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have used various compounds by using an inexpensive nickel compound as a catalyst and a specific ester compound and a specific boronic acid compound as a substrate. It has been found that a cross-coupling reaction that can be provided inexpensively is caused. Based on such knowledge, the present inventors have further studied and completed the present invention.

すなわち、本発明は以下の構成を包含する。   That is, the present invention includes the following configurations.

項1.一般式(1):   Item 1. General formula (1):

Figure 2016027809
Figure 2016027809

[式中、Rは置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又は置換されていてもよいアルキル基を示す。Rは置換されていてもよいアリール基、置換されていてもよいヘテロアリール基、又は置換されていてもよい不飽和炭化水素基を示す。R中の炭素原子とR中のsp2混成炭素原子とが結合している。]
で表される有機化合物の製造方法であって、
ニッケル化合物の存在下に、エステル化合物とボロン酸化合物とをクロスカップリング反応に供する工程を備え、
前記エステル化合物は、一般式(2):
[Wherein, R 1 represents an optionally substituted aryl group, an optionally substituted heteroaryl group, or an optionally substituted alkyl group. R 2 represents an optionally substituted aryl group, an optionally substituted heteroaryl group, or an optionally substituted unsaturated hydrocarbon group. The carbon atom in R 1 and the sp2 hybrid carbon atom in R 2 are bonded. ]
A method for producing an organic compound represented by
A step of subjecting an ester compound and a boronic acid compound to a cross-coupling reaction in the presence of a nickel compound;
The ester compound has the general formula (2):

Figure 2016027809
Figure 2016027809

[式中、Rは前記に同じである。Rは置換されていてもよいアリール基を示す。]
で表される化合物であり、
前記ボロン酸化合物は、一般式(3):
[Wherein, R 1 is the same as defined above. R 3 represents an aryl group which may be substituted. ]
A compound represented by
The boronic acid compound has the general formula (3):

Figure 2016027809
Figure 2016027809

[式中、Rは前記に同じである。また、ホウ素原子とR中のsp2混成炭素原子とが結合している。R及びRは同一又は異なって、水素原子、アルキル基を示す。R及びRは互いに結合して、隣接する−O−B−O−とともに環を形成してもよい。]
で表される化合物である、製造方法。
[Wherein R 2 is the same as defined above. Further, the boron atom and the sp2 hybrid carbon atom in R 2 are bonded. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. R 4 and R 5 may be bonded to each other to form a ring together with adjacent —O—B—O—. ]
The manufacturing method which is a compound represented by these.

項2.前記クロスカップリング反応において、さらに、配位子化合物を用いる、項1に記載の製造方法。   Item 2. Item 2. The production method according to Item 1, wherein a ligand compound is further used in the cross-coupling reaction.

項3.前記配位子化合物はホスフィン系配位子化合物である、項2に記載の製造方法。   Item 3. Item 3. The production method according to Item 2, wherein the ligand compound is a phosphine-based ligand compound.

項4.前記クロスカップリング反応において、さらに、塩基を用いる、項1〜3のいずれかに記載の製造方法。   Item 4. Item 4. The production method according to any one of Items 1 to 3, wherein a base is further used in the cross-coupling reaction.

項5.ニッケル化合物の存在下に、エステル化合物とボロン酸化合物とを反応させるクロスカップリング方法であって、
前記エステル化合物は、一般式(2):
Item 5. A cross-coupling method in which an ester compound and a boronic acid compound are reacted in the presence of a nickel compound,
The ester compound has the general formula (2):

Figure 2016027809
Figure 2016027809

[式中、Rは置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又は置換されていてもよいアルキル基を示す。Rは置換されていてもよいアリール基を示す。]
で表される化合物であり、
前記ボロン酸化合物は、一般式(3):
[Wherein, R 1 represents an optionally substituted aryl group, an optionally substituted heteroaryl group, or an optionally substituted alkyl group. R 3 represents an aryl group which may be substituted. ]
A compound represented by
The boronic acid compound has the general formula (3):

Figure 2016027809
Figure 2016027809

[式中、Rは置換されていてもよいアリール基、置換されていてもよいヘテロアリール基、又は置換されていてもよい不飽和炭化水素基を示す。ホウ素原子とR中のsp2混成炭素原子とが結合している。R及びRは同一又は異なって、水素原子、アルキル基を示す。R及びRは互いに結合して、隣接する−O−B−O−とともに環を形成してもよい。]
で表される化合物である、方法。
[Wherein, R 2 represents an optionally substituted aryl group, an optionally substituted heteroaryl group, or an optionally substituted unsaturated hydrocarbon group. The boron atom and the sp2 hybrid carbon atom in R 2 are bonded. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. R 4 and R 5 may be bonded to each other to form a ring together with adjacent —O—B—O—. ]
A method represented by the formula:

項6.さらに、配位子化合物を用いる、項5に記載の方法。   Item 6. Item 6. The method according to Item 5, wherein a ligand compound is used.

項7.前記配位子化合物はホスフィン系配位子化合物である、項6に記載の方法。   Item 7. Item 7. The method according to Item 6, wherein the ligand compound is a phosphine-based ligand compound.

項8.さらに、塩基を用いる、項5〜7のいずれかに記載の方法。   Item 8. Item 8. The method according to any one of Items 5 to 7, wherein a base is used.

項9.以下の一般式:   Item 9. The following general formula:

Figure 2016027809
Figure 2016027809

[式中、TBSはt−ブチルジメチルシリル基を示す。]
で表される化合物。
[Wherein TBS represents a t-butyldimethylsilyl group. ]
A compound represented by

本発明によれば、通常はクロスカップリング反応しないと認識されているエステル化合物と、ボロン酸化合物とを、ニッケル化合物の存在下で反応させることで、これら2つの分子をつなぐ、新しい型式のクロスカップリング反応が可能である(新反応)。   According to the present invention, a new type of cross-linkage that connects these two molecules by reacting an ester compound that is normally recognized not to undergo a cross-coupling reaction with a boronic acid compound in the presence of a nickel compound. Coupling reaction is possible (new reaction).

本発明は、「エステル化合物の炭素−炭素結合が切れてしまう」という全く予期していなかった「新しい反応性の発見」を伴った成果でもある。つまり、本発明のクロスカップリング反応は、エステル化合物をクロスカップリング反応に使用できるという新たなオプションを提供する新反応である。また、エステル化合物という新たなカップリングパートナーの開拓という意味合いだけでなく、合成化学的な意義も大きい。本発明のクロスカップリング反応は、エステル化合物をそのままクロスカップリング反応に用いて種々の化合物に導くことができるというこれまでにない特徴も備えている。   The present invention is also an achievement accompanied by “discovery of new reactivity” which was completely unexpected that “the carbon-carbon bond of the ester compound is broken”. That is, the cross-coupling reaction of the present invention is a new reaction that provides a new option that an ester compound can be used for the cross-coupling reaction. In addition to the meaning of developing a new coupling partner called an ester compound, it has great synthetic chemistry. The cross-coupling reaction of the present invention also has an unprecedented feature that an ester compound can be used as it is in a cross-coupling reaction to lead to various compounds.

また、希少且つ高価なパラジウム化合物ではなく、より安価且つ空気中で安定な(取り扱いの容易な)ニッケル化合物を試用できる点でも汎用性が高い。   Further, it is highly versatile in that it can be a trial of a cheaper and more stable (easy to handle) nickel compound in the air than a rare and expensive palladium compound.

さらに、カップリングパートナーとして、芳香族ハロゲン化合物等のハロゲン化合物を使用せず、安価なエステル化合物及びボロン酸化合物を使用できるため、より安価にクロスカップリング反応を行うことができるとともに、副生成物として環境汚染が懸念されるハロゲン廃棄物、金属廃棄物等を生成しない安全なクロスカップリング反応を行うことができる。   Furthermore, since a cheap ester compound and boronic acid compound can be used as a coupling partner without using a halogen compound such as an aromatic halogen compound, a cross-coupling reaction can be performed at a lower cost, and a by-product As a result, it is possible to perform a safe cross-coupling reaction that does not generate halogen waste, metal waste, or the like, which is a concern for environmental pollution.

また、基質、配位子、反応温度等を適切に選択することにより、非常に高収率にクロスカップリング反応を行うことも可能である。この場合、選択性も高いので、より省エネ法へとつながる可能性も高い。   It is also possible to carry out the cross coupling reaction in a very high yield by appropriately selecting the substrate, ligand, reaction temperature and the like. In this case, since the selectivity is high, there is a high possibility that it will lead to an energy conservation law.

1.アリールカルボニル化合物の製造方法及びカップリング方法
本発明においては、ニッケル化合物の存在下に、特定のエステル化合物と特定のボロン酸化合物とを効果的にカップリング反応させて、特定の有機化合物を得ることができる。
1. Method for producing arylcarbonyl compound and coupling method In the present invention, a specific organic compound is obtained by effectively coupling a specific ester compound and a specific boronic acid compound in the presence of a nickel compound. Can do.

本発明においては、種々のニッケル化合物(ニッケル錯体)を用いて、多様な基質を原料に用いて特定のエステル化合物と特定のボロン酸化合物とのカップリング反応を進行させて様々な有機化合物を得ることも可能である。   In the present invention, various organic compounds are obtained by using various nickel compounds (nickel complexes) and using various substrates as raw materials to proceed a coupling reaction between a specific ester compound and a specific boronic acid compound. It is also possible.

本カップリング反応においては、通常、特定のニッケル化合物(ニッケル錯体;触媒)の存在下、特定のエステル化合物と特定のボロン酸化合物とを反応させて特定の芳香族化合物を得ることができる。具体的には、溶媒中、特定のニッケル化合物(ニッケル錯体)及び塩基の存在下に、特定のエステル化合物と特定のボロン酸化合物とを反応させて特定の有機化合物を得ることができる。   In this coupling reaction, a specific aromatic compound can usually be obtained by reacting a specific ester compound with a specific boronic acid compound in the presence of a specific nickel compound (nickel complex; catalyst). Specifically, a specific organic compound can be obtained by reacting a specific ester compound and a specific boronic acid compound in a solvent in the presence of a specific nickel compound (nickel complex) and a base.

反応に供されるエステル化合物としては、特に制限されず、例えば、一般式(2):   The ester compound subjected to the reaction is not particularly limited, and for example, the general formula (2):

Figure 2016027809
Figure 2016027809

[式中、Rは置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又は置換されていてもよいアルキル基を示す。Rは置換されていてもよいアリール基を示す。]
で表されるエステル化合物を採用できる。
[Wherein, R 1 represents an optionally substituted aryl group, an optionally substituted heteroaryl group, or an optionally substituted alkyl group. R 3 represents an aryl group which may be substituted. ]
An ester compound represented by

一般式(2)において、Rで示されるアリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基、ビフェニル基等が挙げられる。In the general formula (2), examples of the aryl group represented by R 1 include a phenyl group, a naphthyl group, an anthracenyl group, and a biphenyl group.

また、Rで示されるアリール基が有していてもよい置換基としては、例えば、ハロゲン原子(フッ素原子等)、アルキル基(メチル基、エチル基等のC1−4アルキル基等)、ハロアルキル基(トリフルオロメチル基等のC1−4ハロアルキル基等)、アルコキシ基(メトキシ基等のC1−4アルコキシ基)、アミノ基(ジエチルアミノ基等のジアルキルアミノ基等)、シリル基(t−ブチルジメチルシリル基等のトリアルキルシリル基等)、−COOR(Rはメチル基、エチル基等のアルキル基)で示される基等が挙げられる。また、上記した置換基で置換されていてもよい上述のアリール基、上記した置換基で置換されていてもよい後述のヘテロアリール基等を置換基として有していてもよい。この置換基の数は、0〜6個が好ましく、0〜3個がより好ましい。Examples of the substituent that the aryl group represented by R 1 may have include, for example, a halogen atom (such as a fluorine atom), an alkyl group (such as a C1-4 alkyl group such as a methyl group or an ethyl group), or a haloalkyl. Group (C1-4 haloalkyl group such as trifluoromethyl group), alkoxy group (C1-4 alkoxy group such as methoxy group), amino group (dialkylamino group such as diethylamino group), silyl group (t-butyldimethyl) And a group represented by —COOR (where R is an alkyl group such as a methyl group or an ethyl group). Moreover, you may have the above-mentioned aryl group which may be substituted by the above-mentioned substituent, the below-mentioned heteroaryl group which may be substituted by the above-mentioned substituent, etc. as a substituent. The number of this substituent is preferably 0-6, more preferably 0-3.

一般式(2)において、Rで示されるヘテロアリール基としては、例えば、ピロリル基、ピリジル基、ピロリジル基、ピペリジル基、イミダゾリル基、ピラゾリル基、ピラジル基、ピリミジル基、ピリダジル基、ピペラジル基、トリアジニル基、オキサゾリル基、イソオキサゾリル基、モルホリル基、チアゾリル基、イソチアゾリル基、フラニル基、チオフェニル基、インドリル基、キノリル基、イソキノリル基、ベンゾイミダゾリル基、キナゾリル基、フタラジル基、プリニル基、プテリジル基、ベンゾフラニル基、クマリル基、クロモニル基、ベンゾチオフェニル基等が挙げられる。In the general formula (2), examples of the heteroaryl group represented by R 1 include pyrrolyl group, pyridyl group, pyrrolidyl group, piperidyl group, imidazolyl group, pyrazolyl group, pyrazyl group, pyrimidyl group, pyridazyl group, piperazyl group, Triazinyl group, oxazolyl group, isoxazolyl group, morpholyl group, thiazolyl group, isothiazolyl group, furanyl group, thiophenyl group, indolyl group, quinolyl group, isoquinolyl group, benzoimidazolyl group, quinazolyl group, phthalazyl group, purinyl group, pteridyl group, benzofuranyl group , Coumaryl group, chromonyl group, benzothiophenyl group and the like.

また、Rで示されるヘテロアリール基が有していてもよい置換基としては、例えば、ハロゲン原子(フッ素原子等)、アルキル基(メチル基、エチル基等のC1−4アルキル基等)、ハロアルキル基(トリフルオロメチル基等のC1−4ハロアルキル基等)、アルコキシ基(メトキシ基等のC1−4アルコキシ基)、アミノ基(ジエチルアミノ基等のジアルキルアミノ基等)、シリル基(t−ブチルジメチルシリル基等のトリアルキルシリル基等)、−COOR(Rはメチル基、エチル基等のアルキル基)で示される基等が挙げられる。また、上記した置換基で置換されていてもよい上記のアリール基、上記した置換基で置換されていてもよい上記のヘテロアリール基等を置換基として有していてもよい。この置換基の数は、0〜6個が好ましく、0〜3個がより好ましい。Examples of the substituent that the heteroaryl group represented by R 1 may have include, for example, a halogen atom (such as a fluorine atom), an alkyl group (such as a C1-4 alkyl group such as a methyl group or an ethyl group), Haloalkyl group (C1-4 haloalkyl group such as trifluoromethyl group), alkoxy group (C1-4 alkoxy group such as methoxy group), amino group (dialkylamino group such as diethylamino group), silyl group (t-butyl) A trialkylsilyl group such as a dimethylsilyl group), a group represented by -COOR (R is an alkyl group such as a methyl group or an ethyl group), and the like. Moreover, you may have said aryl group which may be substituted by the above-mentioned substituent, said heteroaryl group etc. which may be substituted by the above-mentioned substituent as a substituent. The number of this substituent is preferably 0-6, more preferably 0-3.

一般式(2)において、Rで示されるアルキル基としては、例えば、鎖状又は分岐状のC1−10アルキル基、好ましくはC1−8アルキル基が挙げられる。具体的には、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基等が挙げられる。In the general formula (2), examples of the alkyl group represented by R 1 include a chain or branched C 1-10 alkyl group, preferably a C 1-8 alkyl group. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group.

また、Rで示されるアルキル基が有していてもよい置換基としては、例えば、ハロゲン原子(フッ素原子等)、アルコキシ基(メトキシ基等のC1−4アルコキシ基)、アミノ基(ジエチルアミノ基等のジアルキルアミノ基等)、シリル基(t−ブチルジメチルシリル基等のトリアルキルシリル基等)、−COOR(Rはメチル基、エチル基等のアルキル基)で示される基等が挙げられる。また、上記した置換基で置換されていてもよい上記のアリール基、上記した置換基で置換されていてもよい上記のヘテロアリール基等(特にフェニル基、ナフチル基等)を置換基として有していてもよい。この置換基の数は、0〜6個が好ましく、0〜3個がより好ましい。Examples of the substituent that the alkyl group represented by R 1 may have include, for example, a halogen atom (fluorine atom and the like), an alkoxy group (C1-4 alkoxy group such as a methoxy group), and an amino group (diethylamino group). And a group represented by -silyl group (trialkylsilyl group such as t-butyldimethylsilyl group), -COOR (R is an alkyl group such as methyl group or ethyl group). In addition, the above-mentioned aryl group which may be substituted with the above-described substituent, the above-mentioned heteroaryl group which may be substituted with the above-described substituent, etc. (especially phenyl group, naphthyl group, etc.) It may be. The number of this substituent is preferably 0-6, more preferably 0-3.

としては、収率の観点から、上記置換基を有していてもよいナフチル基、上記置換基を有していてもよいピリジル基、上記置換基を有していてもよいチアゾリル基、上記置換基を有していてもよいキノリル基、上記置換基を有していてもよいクロモニル基、上記置換基を有していてもよいベンゾチオフェニル基、上記置換基を有していてもよいアルキル基等が好ましく、As R 1 , from the viewpoint of yield, a naphthyl group which may have the above substituent, a pyridyl group which may have the above substituent, a thiazolyl group which may have the above substituent, The quinolyl group which may have the above substituent, the chromonyl group which may have the above substituent, the benzothiophenyl group which may have the above substituent, or the above substituent A good alkyl group is preferred,

Figure 2016027809
Figure 2016027809

等がより好ましい。 Etc. are more preferable.

特に、本発明においては、Rとして、アルコキシ基、アルキルエステル基等の反応性を有する他の官能基を有していたとしても、アリールエステル基が選択的に脱離して、後述のボロン酸化合物が有するアリール基、ヘテロアリール基、不飽和炭化水素基等と結合し、所望の芳香族化合物を得ることができる。In particular, in the present invention, even if R 1 has another functional group having reactivity, such as an alkoxy group or an alkyl ester group, the aryl ester group is selectively removed, and the boronic acid described later A desired aromatic compound can be obtained by combining with an aryl group, heteroaryl group, unsaturated hydrocarbon group or the like of the compound.

一般式(2)において、Rで示されるアリール基としては、上記したものを採用できる。置換基の種類及び数についても同様である。なかでも、非置換のアリール基が好ましく、フェニル基が特に好ましい。なお、Rが水素原子、アルキル基等である化合物(カルボン酸化合物、アルキルエステル等)を基質として採用すると、本発明のカップリング反応は進行しにくい。In the general formula (2), as the aryl group represented by R 3 , those described above can be adopted. The same applies to the type and number of substituents. Of these, an unsubstituted aryl group is preferable, and a phenyl group is particularly preferable. In addition, when a compound (carboxylic acid compound, alkyl ester, etc.) in which R 3 is a hydrogen atom, an alkyl group or the like is employed as a substrate, the coupling reaction of the present invention hardly proceeds.

このような条件を満たす基質としてのエステル化合物としては、例えば、   As an ester compound as a substrate satisfying such conditions, for example,

Figure 2016027809
Figure 2016027809

Figure 2016027809
Figure 2016027809

[上記式中、Pivはピバロイル基を示す。以下同様である。]
等を使用することができ、
[In the above formula, Piv represents a pivaloyl group. The same applies hereinafter. ]
Etc. can be used

Figure 2016027809
Figure 2016027809

等が好ましい。 Etc. are preferred.

反応に供されるボロン酸化合物としては、特に制限されず、例えば、一般式(3):   The boronic acid compound to be subjected to the reaction is not particularly limited, and for example, the general formula (3):

Figure 2016027809
Figure 2016027809

[式中、Rは前記に同じである。また、ホウ素原子とR中のsp2混成炭素原子とが結合している。R及びRは同一又は異なって、水素原子、アルキル基を示す。R及びRは互いに結合して、隣接する−O−B−O−とともに環を形成してもよい。]
で表されるボロン酸化合物を採用できる。
[Wherein R 2 is the same as defined above. Further, the boron atom and the sp2 hybrid carbon atom in R 2 are bonded. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. R 4 and R 5 may be bonded to each other to form a ring together with adjacent —O—B—O—. ]
A boronic acid compound represented by

一般式(3)において、Rで示されるアリール基及びヘテロアリール基としては、上記したものを採用できる。置換基の種類及び数についても同様である。In the general formula (3), as the aryl group and heteroaryl group represented by R 2 , those described above can be adopted. The same applies to the type and number of substituents.

一般式(3)において、Rで示される不飽和炭化水素基は、ホウ素原子と該sp2混成炭素原子とが結合できる基であり、1−アルケニル基が好ましく、具体的には、In the general formula (3), the unsaturated hydrocarbon group represented by R 2 is a group capable of bonding a boron atom and the sp2 hybrid carbon atom, and is preferably a 1-alkenyl group, specifically,

Figure 2016027809
Figure 2016027809

等が挙げられる。 Etc.

としては、収率の観点から、上記置換基を有していてもよいフェニル基、上記置換基を有していてもよいナフチル基が好ましく、From the viewpoint of yield, R 2 is preferably a phenyl group which may have the above substituent, or a naphthyl group which may have the above substituent,

Figure 2016027809
Figure 2016027809

等がより好ましい。 Etc. are more preferable.

一般式(3)において、R及びRで示されるアルキル基としては、上記したものを採用できる。置換基の種類及び数についても同様である。In the general formula (3), the alkyl groups represented by R 4 and R 5 may be those described above. The same applies to the type and number of substituents.

また、一般式(3)において、R及びRがともにアルキル基である場合、互いに結合して、隣接する−O−B−O−とともに環を形成してもよい。この場合、上記ボロン酸化合物は、例えば、In the general formula (3), when R 4 and R 5 are both alkyl groups, they may be bonded to each other to form a ring with adjacent —O—B—O—. In this case, the boronic acid compound is, for example,

Figure 2016027809
Figure 2016027809

[式中、Rは前記に同じである。]
等が挙げられる。
[Wherein R 2 is the same as defined above. ]
Etc.

これらのなかでも、収率の観点から、R及びRとしては、ともに水素原子であることが好ましい。Among these, from the viewpoint of yield, R 4 and R 5 are preferably both hydrogen atoms.

このような条件を満たす基質としてのボロン酸化合物としては、例えば、   As a boronic acid compound as a substrate satisfying such conditions, for example,

Figure 2016027809
Figure 2016027809

等を使用することができ、 Etc. can be used

Figure 2016027809
Figure 2016027809

等が好ましい。 Etc. are preferred.

また、ボロン酸化合物としては、上記の化合物のみに限定されることはなく、例えば、   Moreover, as a boronic acid compound, it is not limited only to said compound, For example,

Figure 2016027809
Figure 2016027809

等のボロキシン化合物を使用することもできる。 A boroxine compound such as can also be used.

ボロン酸化合物の使用量は、特に制限されず、収率の観点から、例えば、エステル化合物1モルに対し、通常、0.1〜10モル程度が好ましく、0.5〜5モル程度がより好ましく、1〜3モル程度がさらに好ましい。   The amount of the boronic acid compound used is not particularly limited, and from the viewpoint of yield, for example, usually about 0.1 to 10 mol is preferable and about 0.5 to 5 mol is more preferable with respect to 1 mol of the ester compound. 1 to 3 mol is more preferable.

ニッケル化合物としては、特に制限されず、0価のNiの塩又は2価のNiの塩が好ましい。これらは、1種単独で又は2種以上を組み合わせて用いることができる。これらの錯体は、試薬として投入するもの及び反応中で生成するものの両方を意味する。本発明においては、触媒としてニッケル化合物を使用することができるため、カップリング反応のコストを低減できるとともに、取り扱いが容易である。   The nickel compound is not particularly limited, and a zero-valent Ni salt or a divalent Ni salt is preferable. These can be used individually by 1 type or in combination of 2 or more types. These complexes mean both those charged as reagents and those produced in the reaction. In the present invention, since a nickel compound can be used as a catalyst, the cost of the coupling reaction can be reduced and the handling is easy.

上記0価のNiの塩としては、特に制限されず、ビス(1,5−シクロオクタジエン)ニッケル(0)、ビス(トリフェニルホスフィン)ニッケルジカルボニル、ニッケルカルボニル等が挙げられる。   The zero-valent Ni salt is not particularly limited, and examples thereof include bis (1,5-cyclooctadiene) nickel (0), bis (triphenylphosphine) nickel dicarbonyl, nickel carbonyl and the like.

また、上記2価のNiの塩としては、酢酸ニッケル(II)、トリフルオロ酢酸ニッケル(II)、硝酸ニッケル(II)、塩化ニッケル(II)、臭化ニッケル(II)、ニッケル(II)アセチルアセトナート、過塩素酸ニッケル(II)、クエン酸ニッケル(II)、シュウ酸ニッケル(II)、シクロヘキサン酪酸ニッケル(II)、安息香酸ニッケル(II)、ステアリン酸ニッケル(II)、ステアリン酸ニッケル(II)、スルファミンニッケル(II)、炭酸ニッケル(II)、チオシアン酸ニッケル(II)、トリフルオロメタンスルホン酸ニッケル(II)、ビス(1,5−シクロオクタジエン)ニッケル(II)、ビス(4−ジエチルアミノジチオベンジル)ニッケル(II)、シアン化ニッケル(II)、フッ化ニッケル(II)、ホウ化ニッケル(II)、ホウ酸ニッケル(II)、次亜リン酸ニッケル(II)、硫酸アンモニウムニッケル(II)、水酸化ニッケル(II)、シクロペンタジエニルニッケル(II)、及びこれらの水和物、並びにこれらの混合物等が挙げられる。   Examples of the divalent Ni salt include nickel acetate (II), nickel trifluoroacetate (II), nickel nitrate (II), nickel chloride (II), nickel bromide (II), nickel (II) acetyl. Acetonate, nickel (II) perchlorate, nickel (II) citrate, nickel (II) oxalate, nickel (II) cyclohexanebutyrate, nickel (II) benzoate, nickel (II) stearate, nickel stearate ( II), sulfamine nickel (II), nickel carbonate (II), nickel thiocyanate (II), nickel trifluoromethanesulfonate (II), bis (1,5-cyclooctadiene) nickel (II), bis (4- Diethylaminodithiobenzyl) nickel (II), nickel (II) cyanide, difluoride Kell (II), nickel boride (II), nickel borate (II), nickel hypophosphite (II), ammonium nickel sulfate (II), nickel hydroxide (II), cyclopentadienyl nickel (II), And hydrates thereof, and mixtures thereof.

0価のNiの塩及び2価のNiの塩としては、配位子を配位させた化合物を使用してもよい。例えば、単座又は二座のジアルキルホスフィン又はジシクロアルキルホスフィン骨格を有するニッケル化合物(さらには二座のジアルキルホスフィン又はジシクロアルキルホスフィン骨格を有するニッケル化合物、特には二座のジシクロアルキルホスフィン骨格を有するニッケル化合物)を好ましく使用することができる。   As the zero-valent Ni salt and the divalent Ni salt, a compound in which a ligand is coordinated may be used. For example, a nickel compound having a monodentate or bidentate dialkylphosphine or dicycloalkylphosphine skeleton (further a nickel compound having a bidentate dialkylphosphine or dicycloalkylphosphine skeleton, particularly a bidentate dicycloalkylphosphine skeleton Nickel compounds) can be preferably used.

このような配位子を配位させたニッケル化合物としては、カップリング反応を効率的に進行させるためには、ホスフィン配位子を配位させたニッケル化合物が好ましく、一般式(4):   The nickel compound coordinated with such a ligand is preferably a nickel compound coordinated with a phosphine ligand in order to efficiently proceed with the coupling reaction.

Figure 2016027809
Figure 2016027809

[式中、Z’は、環を形成していても形成していなくてもよく、環を形成している場合には芳香族炭化水素環、又は5員環若しくは6員環のヘテロ環を示す。R〜Rは同一又は異なって、置換されていてもよいアルキル基又は置換されていてもよいシクロアルキル基を示す。X〜Xは同一又は異なって、配位子を示す。n1及びn2は同一又は異なって、0〜2の整数を示す。ニッケル原子と2個のリン原子、ニッケル原子とX及びXを結ぶ実線は、配位結合である。]
で表されるニッケル化合物が好ましい。
[In the formula, Z ′ may or may not form a ring, and in the case of forming a ring, an aromatic hydrocarbon ring or a 5-membered or 6-membered heterocycle is Show. R 6 to R 9 are the same or different and each represents an optionally substituted alkyl group or an optionally substituted cycloalkyl group. X < 1 > -X < 2 > is the same or different and shows a ligand. n1 and n2 are the same or different and represent an integer of 0 to 2. A solid line connecting the nickel atom and the two phosphorus atoms and the nickel atom with X 1 and X 2 is a coordination bond. ]
The nickel compound represented by these is preferable.

なお、ニッケル原子と2個のリン原子とは、一般に配位結合を形成していると考えられるが、一般式(4)においては、便宜上実線で記載している。   In addition, although it is thought that a nickel atom and two phosphorus atoms generally form a coordination bond, in the general formula (4), it is indicated by a solid line for convenience.

一般式(4)において、Z’は環を形成していても形成していなくてもよい。   In the general formula (4), Z ′ may or may not form a ring.

一般式(4)において、Z’が環を形成している場合における芳香族炭化水素環としては、特に制限されず、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。   In the general formula (4), the aromatic hydrocarbon ring in the case where Z ′ forms a ring is not particularly limited, and examples thereof include a benzene ring, a naphthalene ring, and an anthracene ring.

一般式(4)において、Z’が環を形成している場合におけるヘテロ環としては、5員環又は6員環のヘテロ環であれば特に制限されることはなく、保存安定性の観点から、5員環又は6員環のヘテロ芳香環が好ましく、具体的には、チオフェン環、ピロール環、フラン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環等が挙げられ、チオフェン環が特に好ましい。   In the general formula (4), when Z ′ forms a ring, the heterocycle is not particularly limited as long as it is a 5-membered or 6-membered heterocycle, from the viewpoint of storage stability. A 5-membered or 6-membered heteroaromatic ring is preferable, and specific examples include a thiophene ring, a pyrrole ring, a furan ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, a pyridine ring, and a pyrazine ring. A thiophene ring is particularly preferred.

一般式(4)において、Z’が環を形成していない場合は、Z’の箇所には何も存在せず、一般式(4A):   In the general formula (4), when Z ′ does not form a ring, nothing is present at the position of Z ′, and the general formula (4A):

Figure 2016027809
Figure 2016027809

[式中、R〜R、X〜X、及びn1〜n2は前記に同じである。ニッケル原子と2個のリン原子、ニッケル原子とX及びXを結ぶ実線は、配位結合である。]
で表される化合物を意味する。
[Wherein, R 6 to R 9 , X 1 to X 2 , and n 1 to n 2 are the same as described above. A solid line connecting the nickel atom and the two phosphorus atoms and the nickel atom with X 1 and X 2 is a coordination bond. ]
The compound represented by these is meant.

一般式(4)及び一般式(4A)において、R〜Rで示されるアルキル基としては、上記したものを採用できる。置換基の種類及び数についても同様である。In the general formula (4) and the general formula (4A), the alkyl groups represented by R 6 to R 9 may be those described above. The same applies to the type and number of substituents.

一般式(4)及び一般式(4A)において、R〜Rで示されるシクロアルキル基としては、特に制限されないが、C3−8シクロアルキル基が好ましく、C4−6シクロアルキル基より好ましい。具体的には、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられ、カップリング反応の収率の観点から、シクロブチル基、シクロペンチル基、シクロヘキシル基等が好ましく、シクロヘキシル基がより好ましい。In General Formula (4) and General Formula (4A), the cycloalkyl group represented by R 6 to R 9 is not particularly limited, but is preferably a C 3-8 cycloalkyl group, and more preferably a C 4-6 cycloalkyl group. Specific examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like. From the viewpoint of the yield of the coupling reaction, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like. Etc. are preferable, and a cyclohexyl group is more preferable.

また、R〜Rで示されるシクロアルキル基が有していてもよい置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、アルコキシ基(メトキシ基等のC1−4アルコキシ基)、アミノ基(ジエチルアミノ基等のジアルキルアミノ基等)、シリル基(t−ブチルジメチルシリル基等のトリアルキルシリル基等)、−COOR(Rはメチル基、エチル基等のアルキル基)で示される基等が挙げられる。また、上記した置換基で置換されていてもよい上記のアリール基、上記した置換基で置換されていてもよい上記のヘテロアリール基等を置換基として有していてもよい。この置換基の数は、0〜6個が好ましく、0〜3個がより好ましい。Examples of the substituent that the cycloalkyl group represented by R 6 to R 9 may have include a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), an alkoxy group (C1- 4 alkoxy group), amino group (dialkylamino group such as diethylamino group), silyl group (trialkylsilyl group such as t-butyldimethylsilyl group), -COOR (R is an alkyl group such as methyl group or ethyl group) ) And the like. Moreover, you may have said aryl group which may be substituted by the above-mentioned substituent, said heteroaryl group etc. which may be substituted by the above-mentioned substituent as a substituent. The number of this substituent is preferably 0-6, more preferably 0-3.

一般式(4)及び一般式(4A)において、R〜Rとしては、同一又は異なって、置換基を有していてもよいアルキル基でも置換基を有していてもよいシクロアルキル基でもよく、カップリング反応の収率の観点から、置換基を有していてもよいシクロアルキル基が好ましく、(非置換)シクロアルキル基がより好ましい。R〜Rとしては、特に、シクロブチル基、シクロペンチル基、シクロヘキシル基等が好ましく、シクロヘキシル基が最も好ましい。In General Formula (4) and General Formula (4A), R 6 to R 9 are the same or different and may be an alkyl group which may have a substituent or a cycloalkyl group which may have a substituent. However, from the viewpoint of the yield of the coupling reaction, an optionally substituted cycloalkyl group is preferred, and an (unsubstituted) cycloalkyl group is more preferred. R 6 to R 9 are particularly preferably a cyclobutyl group, a cyclopentyl group, a cyclohexyl group or the like, and most preferably a cyclohexyl group.

一般式(4)及び一般式(4A)において、X〜Xで示される配位子としては、ニッケル原子に配位し得る配位子であれば特に制限されず、例えば、水素原子(ヒドリド;H);ハロゲン原子;低級アルコキシ基;一酸化炭素(CO);ホウ素系配位子;リン系配位子;アンチモン系配位子;ヒ素系配位子;スルホン酸系配位子;スルフェート;パークロレート;ナイトレート;ビス(トリフリル)イミド;トリス(トリフリル)メタン;ビス(トリフリル)メタン;カルボキシレート類等が挙げられる。In the general formula (4) and the general formula (4A), the ligand represented by X 1 to X 2 is not particularly limited as long as it is a ligand that can coordinate to a nickel atom. hydride; H -); halogen atom; a lower alkoxy group; the carbon monoxide (CO); boron ligand; phosphorus-based ligand; antimony ligand; arsenic ligand; sulfonic acid ligand Sulfate, perchlorate, nitrate, bis (trifuryl) imide, tris (trifuryl) methane, bis (trifuryl) methane, carboxylates, and the like.

一般式(4)及び一般式(4A)において、X〜Xで示される配位子としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。In General Formula (4) and General Formula (4A), examples of the halogen atom as the ligand represented by X 1 to X 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

一般式(4)及び一般式(4A)において、X〜Xで示される配位子としての低級アルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基等のC1−3アルコキシ基等が挙げられる。In the general formula (4) and the general formula (4A), examples of the lower alkoxy group as the ligand represented by X 1 to X 2 include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group. A C1-3 alkoxy group etc. are mentioned.

一般式(4)及び一般式(4A)において、X〜Xで示される配位子としてのホウ素系配位子としては、例えば、テトラフェニルボレート、テトラキス(ビス(トリフルオロメチル)フェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラフルオロボレート、アルキルトリフルオロボレート、アリールトリフルオロボレート等が挙げられる。In the general formula (4) and general formula (4A), examples of the boron-based ligand as the ligand represented by X 1 to X 2 include tetraphenylborate and tetrakis (bis (trifluoromethyl) phenyl). Examples include borate, tetrakis (pentafluorophenyl) borate, tetrafluoroborate, alkyl trifluoroborate, and aryl trifluoroborate.

一般式(4)及び一般式(4A)において、X〜Xで示される配位子としてのリン系配位子としては、例えば、ヘキサフルオロフォスフェート等が挙げられる。In the general formula (4) and the general formula (4A), examples of the phosphorus ligand as the ligand represented by X 1 to X 2 include hexafluorophosphate.

一般式(4)及び一般式(4A)において、X〜Xで示される配位子としてのアンチモン系配位子としては、例えば、ヘキサフルオロアンチモネート等が挙げられる。In the general formula (4) and the general formula (4A), examples of the antimony-based ligand as the ligand represented by X 1 to X 2 include hexafluoroantimonate.

一般式(4)及び一般式(4A)において、X〜Xで示される配位子としてのヒ素系配位子としては、例えば、ヘキサフルオロアルセネート等が挙げられる。In the general formula (4) and general formula (4A), examples of the arsenic ligand as the ligand represented by X 1 to X 2 include hexafluoroarsenate.

一般式(4)及び一般式(4A)において、X〜Xで示される配位子としてのスルホン酸系配位子としては、例えば、トシラート、メシラート、トリフラート等が挙げられる。In the general formula (4) and the general formula (4A), examples of the sulfonic acid-based ligand as the ligand represented by X 1 to X 2 include tosylate, mesylate, and triflate.

一般式(4)及び一般式(4A)において、X〜Xで示される配位子としてのカルボキシレート類としては、例えば、アセテート等が挙げられる。In the general formula (4) and the general formula (4A), examples of the carboxylates as the ligand represented by X 1 to X 2 include acetate.

一般式(4)及び一般式(4A)において、において、n1及びn2は、0〜2の整数であり、収率の観点から、0又は1が好ましい。   In General Formula (4) and General Formula (4A), n1 and n2 are integers of 0 to 2, and 0 or 1 is preferable from the viewpoint of yield.

このような条件を満たす一般式(4)で示されるニッケル化合物としては、   As the nickel compound represented by the general formula (4) satisfying such conditions,

Figure 2016027809
Figure 2016027809

[ニッケル原子と2個のリン原子、ニッケル原子と2個のCOを結ぶ実線は、配位結合である。]
等を使用することができる。
[Solid lines connecting nickel atoms and two phosphorus atoms and nickel atoms and two COs are coordinate bonds. ]
Etc. can be used.

これらの配位子を配位させたニッケル化合物は、公知又は市販のニッケル化合物を用いることができる。また、上記の配位子を配位させたニッケル錯体(触媒)を合成する場合、事前に合成してもよいし、系中で合成してもよい。つまり、本発明のカップリング反応を起こす際に、配位子を配位させたニッケル化合物を投入してもよいし、配位子化合物とニッケル化合物とを投入してもよい。   As the nickel compound coordinated with these ligands, known or commercially available nickel compounds can be used. Moreover, when synthesize | combining the nickel complex (catalyst) which coordinated said ligand, you may synthesize | combine beforehand and may synthesize | combine in a system. That is, when the coupling reaction of the present invention is caused, a nickel compound coordinated with a ligand may be added, or a ligand compound and a nickel compound may be added.

上記のニッケル化合物は単独で用いてもよいし、2種以上を組合せて用いてもよい。なかでも、本発明のカップリング反応は、配位子を配位させたニッケル化合物を用いずとも本発明のカップリング反応を進行させることができ、また、安価であることから、配位子を配位させていないニッケル化合物が好ましく、ビス(1,5−シクロオクタジエン)ニッケル(0)、酢酸ニッケル(II)、ニッケル(II)アセチルアセトナート、シクロペンタジエニルニッケル(II)、及びこれらの水和物、並びにこれらの混合物等がより好ましい。なかでも、反応収率が高く、空気に対して安定であるという観点からは、酢酸ニッケル(II)が好ましい。また、反応収率が高いという観点からは、ビス(1,5−シクロオクタジエン)ニッケル(0)、酢酸ニッケル(II)、ニッケル(II)アセチルアセトナート、及びこれらの水和物、並びにこれらの混合物等が好ましく、ビス(1,5−シクロオクタジエン)ニッケル(0)、酢酸ニッケル(II)等がより好ましい。   Said nickel compound may be used independently and may be used in combination of 2 or more type. Among them, the coupling reaction of the present invention can proceed with the coupling reaction of the present invention without using a nickel compound coordinated with the ligand, and since it is inexpensive, Non-coordinated nickel compounds are preferred, bis (1,5-cyclooctadiene) nickel (0), nickel (II) acetate, nickel (II) acetylacetonate, cyclopentadienyl nickel (II), and these More preferred are hydrates of these and mixtures thereof. Of these, nickel (II) acetate is preferred from the viewpoint of high reaction yield and stability to air. From the viewpoint of high reaction yield, bis (1,5-cyclooctadiene) nickel (0), nickel (II) acetate, nickel (II) acetylacetonate, and hydrates thereof, and these And the like, and bis (1,5-cyclooctadiene) nickel (0), nickel acetate (II), and the like are more preferable.

ニッケル化合物の使用量は、基質の種類(反応部位の数等)により適宜選択することが可能であり、例えば、基質であるエステル化合物1モルに対し、通常、0.01〜1モル程度が好ましく、0.02〜0.5モル程度がより好ましく、0.03〜0.3モル程度がさらに好ましい。なお、ニッケル化合物を系中で合成する場合には、系中に存在するニッケル化合物の量が上記範囲内となるように調整することが好ましい。   The amount of the nickel compound used can be appropriately selected depending on the type of substrate (the number of reaction sites, etc.). For example, usually about 0.01 to 1 mol is preferable with respect to 1 mol of the ester compound as the substrate. , About 0.02 to 0.5 mol is more preferable, and about 0.03 to 0.3 mol is more preferable. When the nickel compound is synthesized in the system, it is preferable to adjust so that the amount of the nickel compound present in the system is within the above range.

本発明においては、上記ニッケル化合物とともに、ニッケル原子に配位し得る配位子化合物を用いる(添加する)こともできる。この配位子化合物としては、例えば、カルボン酸系、アミド系、ホスフィン系、オキシム系、スルホン酸系、1,3−ジケトン系配位子化合物、シッフ塩基系配位子化合物、オキサゾリン系配位子化合物、ジアミン系配位子化合物、一酸化炭素、カルベン系配位子化合物等が挙げられる。上記配位子化合物における配位原子は窒素原子、リン原子、酸素原子、硫黄原子等である。また、一酸化炭素、カルベン系配位子化合物は、炭素原子を配位原子とする配位子化合物である。これらの配位子化合物のなかでも、カップリング反応を効率的に進行させるためには、リン原子を配位原子とする配位子化合物が好ましく、ホスフィン系配位子化合物がより好ましい。つまり、上記ニッケル化合物が、リン原子を配位原子とする配位子(特にホスフィン系配位子)を配位させた化合物ではない場合には、配位子化合物として、リン原子を配位原子とする配位子化合物を別途使用することが好ましい。これらの配位子化合物は、1種単独で又は2種以上を組合せて用いることができる。これらの配位子化合物には配位原子を1箇所のみ有する単座配位子化合物と2箇所以上を有する多座配位子化合物(二座配位子化合物等)がある。   In the present invention, together with the nickel compound, a ligand compound capable of coordinating to a nickel atom can be used (added). Examples of the ligand compound include carboxylic acid-based, amide-based, phosphine-based, oxime-based, sulfonic acid-based, 1,3-diketone-based ligand compounds, Schiff base-based ligand compounds, and oxazoline-based coordination. Child compounds, diamine-based ligand compounds, carbon monoxide, carbene-based ligand compounds, and the like. The coordination atom in the ligand compound is a nitrogen atom, a phosphorus atom, an oxygen atom, a sulfur atom or the like. Carbon monoxide and carbene-based ligand compounds are ligand compounds having a carbon atom as a coordination atom. Among these ligand compounds, a ligand compound having a phosphorus atom as a coordination atom is preferable, and a phosphine-based ligand compound is more preferable in order to allow the coupling reaction to proceed efficiently. That is, when the nickel compound is not a compound in which a ligand having a phosphorus atom as a coordination atom (particularly a phosphine-based ligand) is coordinated, a phosphorus atom is coordinated as a ligand compound. It is preferable to separately use the ligand compound. These ligand compounds can be used alone or in combination of two or more. These ligand compounds include a monodentate ligand compound having only one coordinate atom and a multidentate ligand compound (such as a bidentate ligand compound) having two or more sites.

上記単座配位子化合物としては、トリフェニルホスフィン、トリメトキシホスフィン、トリエチルホスフィン、トリ(i−プロピル)ホスフィン、トリ(t−ブチル)ホスフィン、トリ(n−ブチル)ホスフィン、トリ(i−プロポキシ)ホスフィン、トリ(シクロペンチル)ホスフィン、トリ(シクロヘキシル)ホスフィン、トリ(o−トリル)ホスフィン、トリ(p−トリル)ホスフィン、トリメシチルホスフィン、トリフェノキシホスフィン、トリ(2−フリル)ホスフィン、トリ(p−アニシル)ホスフィン、ビス(p−スルホナートフェニル)フェニルホスフィンカリウム、ジ(t−ブチル)メチルホスフィン、メチルジフェニルホスフィン、ジメチルフェニルホスフィン、n−プロピルジフェニルホスフィン、ジ(n−プロピル)フェニルホスフィン、ジシクロヘキシルフェニルホスフィン、(2−ビフェニル)ジ−t−ブチルホスフィン(JOHNPHOS)、トリエチルアミン、ピリジン、N,N−ジベンジルジナフト[2,1−d:2’−f][1,3,2]ジオキサホスフェピン−4−アミン等が挙げられる。   Examples of the monodentate ligand compound include triphenylphosphine, trimethoxyphosphine, triethylphosphine, tri (i-propyl) phosphine, tri (t-butyl) phosphine, tri (n-butyl) phosphine, and tri (i-propoxy). Phosphine, tri (cyclopentyl) phosphine, tri (cyclohexyl) phosphine, tri (o-tolyl) phosphine, tri (p-tolyl) phosphine, trimesitylphosphine, triphenoxyphosphine, tri (2-furyl) phosphine, tri (p- Anisyl) phosphine, potassium bis (p-sulfonatephenyl) phenylphosphine, di (t-butyl) methylphosphine, methyldiphenylphosphine, dimethylphenylphosphine, n-propyldiphenylphosphine, di (n-propyl) Phenylphosphine, dicyclohexylphenylphosphine, (2-biphenyl) di-t-butylphosphine (JOHNPHOS), triethylamine, pyridine, N, N-dibenzyldinaphtho [2,1-d: 2′-f] [1,3 , 2] dioxaphosphepin-4-amine and the like.

上記二座配位子化合物としては、2,2’−ビピリジン、4,4’−(t−ブチル)ビピリジン、フェナントロリン、2,2’−ビピリミジル、1,4−ジアザビシクロ[2,2,2]オクタン、2−(ジメチルアミノ)エタノール、テトラメチルエチレンジアミン、N,N−ジメチルエチレンジアミン、N,N’−ジメチルエチレンジアミン、2−アミノメチルピリジン、又は(NE)−N−(ピリジン−2−イルメチリデン)アニリン、1,1’−ビス(ジフェニルホスフィノ)フェロセン、1,1’−ビス(t−ブチル)フェロセン、ジフェニルホスフィノメタン、1,2−ビス(ジフェニルホスフィノ)エタン、1,3−ビス(ジフェニルホスフィノ)プロパン、1,5−ビス(ジフェニルホスフィノ)ペンタン、1,2−ビス(ジペンタフルオロフェニルホスフィノ)エタン、1,2−ビス(ジシクロヘキシルホスフィノ)エタン、1,3−(ジシクロヘキシルホスフィノ)プロパン、1,2−ビス(ジ−t−ブチルホスフィノ)エタン、1,3−ビス(ジ−t−ブチルホスフィノ)プロパン、1,2−ビス(ジフェニルホスフィノ)ベンゼン、1,5−シクロオクタジエン、BINAP、BIPHEMP、1,2−ビス(ジフェニルホスフィノ)プロパン(PROPHOS)、2,3−O−イソプロピリデン−2,3−ジヒドロキシ−1,4−ビス(ジフェニルホスフィノ)ブタン(DIOP)、3,4−ビス(ジフェニルホスフィノ)−1−ベンジルピロリジン(DEGUPHOS)、1,2−ビス[(2−メトキシフェニル)(フェニル)ホスフィノ]エタン(DIPAMP)、1,2−ビス(置換ホスホラノ)ベンゼン(DuPHOS)、2,3−ビス(ジフェニルホスフィノ)−5−ノルボルネン(NORPHOS)、N,N’−ビス−(ジフェニルホスフィノ)−N,N’−ビス(1−フェニルエチル)エチレンジアミン(PNNP)、2,4−ビス−(ジフェニルホスフィノ)ペンタン(SKEWPHOS)、1−[1’,2−ビス(ジフェニルホスフィノ)フェロセニル]エチルアミン(BPPFA)、[(5,6),(5’,6’)−ビス(メチレンジオキシ)ビフェニル−2,2’−ジイル]ビスジフェニルホスフィン(SEGPHOS)、2,3−ビス(ジフェニルホスフィノ)ブタン(CHIRAPHOS)、[2−(ジフェニルホスフィノ)フェロセニル]エチルジシクロヘキシルホスフィン(JOSIPHOS)、これらの混合物等が挙げられる。   Examples of the bidentate ligand compound include 2,2′-bipyridine, 4,4 ′-(t-butyl) bipyridine, phenanthroline, 2,2′-bipyrimidyl, 1,4-diazabicyclo [2,2,2]. Octane, 2- (dimethylamino) ethanol, tetramethylethylenediamine, N, N-dimethylethylenediamine, N, N′-dimethylethylenediamine, 2-aminomethylpyridine, or (NE) -N- (pyridin-2-ylmethylidene) aniline 1,1′-bis (diphenylphosphino) ferrocene, 1,1′-bis (t-butyl) ferrocene, diphenylphosphinomethane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis ( Diphenylphosphino) propane, 1,5-bis (diphenylphosphino) pentane, 1,2-bis (di N-fluorophenylphosphino) ethane, 1,2-bis (dicyclohexylphosphino) ethane, 1,3- (dicyclohexylphosphino) propane, 1,2-bis (di-t-butylphosphino) ethane, 1,3 -Bis (di-t-butylphosphino) propane, 1,2-bis (diphenylphosphino) benzene, 1,5-cyclooctadiene, BINAP, BIPHEMP, 1,2-bis (diphenylphosphino) propane (PROPHOS) ), 2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis (diphenylphosphino) butane (DIOP), 3,4-bis (diphenylphosphino) -1-benzylpyrrolidine (DEGUPHOS) 1,2-bis [(2-methoxyphenyl) (phenyl) phosphino] ethane (D PAMP), 1,2-bis (substituted phosphorano) benzene (DuPHOS), 2,3-bis (diphenylphosphino) -5-norbornene (NORPHOS), N, N′-bis- (diphenylphosphino) -N, N′-bis (1-phenylethyl) ethylenediamine (PNNP), 2,4-bis- (diphenylphosphino) pentane (SKEWPHOS), 1- [1 ′, 2-bis (diphenylphosphino) ferrocenyl] ethylamine (BPPFA) ), [(5,6), (5 ′, 6 ′)-bis (methylenedioxy) biphenyl-2,2′-diyl] bisdiphenylphosphine (SEGPHOS), 2,3-bis (diphenylphosphino) butane (CHIRAPHOS), [2- (diphenylphosphino) ferrocenyl] ethyldicyclohexylphos Fin (JOSIPHOS), and mixtures thereof.

また、上記BINAPとしては、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル(BINAP)の誘導体も含まれ、具体例としては、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル、2,2’−ビス(ジ−p−トリルホスフィノ)−1,1’−ビナフチル、2,2’−ビス(ジ−p−第3級ブチルフェニルホスフィノ)−1,1’−ビナフチル、2,2’−ビス(ジ−m−トリルホスフィノ)−1,1’−ビナフチル、2,2’−ビス(ジ−3,5−ジメチルフェニルホスフィノ)−1,1’−ビナフチル、2,2’−ビス(ジ−p−メトキシフェニルホスフィノ)−1,1’−ビナフチル、2,2’−ビス(ジシクロペンチルホスフィノ)−1,1’−ビナフチル、2,2’−ビス(ジシクロヘキシルホスフィノ)−1,1’−ビナフチル、2−ジ(β−ナフチル)ホスフィノ−2’−ジフェニルホスフィノ−1,1’−ビナフチル、2−ジフェニルホスフィノ−2’−ジ(p−トリフルオロメチルフェニル)ホスフィノ−1,1’−ビナフチル等が挙げられる。   The BINAP also includes derivatives of 2,2′-bis (diphenylphosphino) -1,1′-binaphthyl (BINAP), and specific examples include 2,2′-bis (diphenylphosphino). -1,1'-binaphthyl, 2,2'-bis (di-p-tolylphosphino) -1,1'-binaphthyl, 2,2'-bis (di-p-tertiarybutylphenylphosphino) -1 , 1′-binaphthyl, 2,2′-bis (di-m-tolylphosphino) -1,1′-binaphthyl, 2,2′-bis (di-3,5-dimethylphenylphosphino) -1,1 ′ -Binaphthyl, 2,2'-bis (di-p-methoxyphenylphosphino) -1,1'-binaphthyl, 2,2'-bis (dicyclopentylphosphino) -1,1'-binaphthyl, 2,2 '-Bis (dicyclohexyl Phosphino) -1,1′-binaphthyl, 2-di (β-naphthyl) phosphino-2′-diphenylphosphino-1,1′-binaphthyl, 2-diphenylphosphino-2′-di (p-trifluoromethyl) Phenyl) phosphino-1,1′-binaphthyl and the like.

また、上記BIPHEMPとしては、2,2’−ジメチル−6,6’−ビス(ジフェニルホスフィノ)−1,1’−ビフェニル(BIPHEMP)の誘導体も含まれ、具体例としては、2,2’−ジメチル−6,6’−ビス(ジフェニルホスフィノ)−1,1’−ビフェニル、2,2’−ジメチル−6,6’−ビス(ジシクロヘキシルホスフィノ)−1,1’−ビフェニル、2,2’−ジメチル−4,4’−ビス(ジメチルアミノ)−6,6’−ビス(ジフェニルホスフィノ)−1,1’−ビフェニル、2,2’,4,4’−テトラメチル−6,6‘−ビス(ジフェニルホスフィノ)−1,1’−ビフェニル、2,2’−ジメトキシ−6,6’−ビス(ジフェニルホスフィノ)−1,1’−ビフェニル、2,2’,3,3’−テトラメトキシ−6,6’−ビス(ジフェニルホスフィノ)−1,1’−ビフェニル、2,2’,4,4’−テトラメチル−3,3’ジメトキシ−6,6’−ビス(ジフェニルホスフィノ)−1,1’−ビフェニル、2,2’−ジメチル−6,6’−ビス(ジ−p−トリルホスフィノ)−1,1’−ビフェニル、2,2’−ジメチル−6,6’−ビス(ジ−p−第3級ブチルフェニルホスフィノ)−1,1’−ビフェニル、2,2’,4,4’−テトラメチル−3,3’−ジメトキシ−6,6’−ビス(ジ−p−メトキシフェニルホスフィノ)−1,1’−ビフェニル等が挙げられる。   The BIPHEMMP also includes derivatives of 2,2′-dimethyl-6,6′-bis (diphenylphosphino) -1,1′-biphenyl (BIPHEMP), and specific examples include 2,2 ′. -Dimethyl-6,6'-bis (diphenylphosphino) -1,1'-biphenyl, 2,2'-dimethyl-6,6'-bis (dicyclohexylphosphino) -1,1'-biphenyl, 2, 2'-dimethyl-4,4'-bis (dimethylamino) -6,6'-bis (diphenylphosphino) -1,1'-biphenyl, 2,2 ', 4,4'-tetramethyl-6 6'-bis (diphenylphosphino) -1,1'-biphenyl, 2,2'-dimethoxy-6,6'-bis (diphenylphosphino) -1,1'-biphenyl, 2,2 ', 3 3'-tetramethoxy 6,6′-bis (diphenylphosphino) -1,1′-biphenyl, 2,2 ′, 4,4′-tetramethyl-3,3′dimethoxy-6,6′-bis (diphenylphosphino)- 1,1′-biphenyl, 2,2′-dimethyl-6,6′-bis (di-p-tolylphosphino) -1,1′-biphenyl, 2,2′-dimethyl-6,6′-bis (di -P-tertiarybutylphenylphosphino) -1,1'-biphenyl, 2,2 ', 4,4'-tetramethyl-3,3'-dimethoxy-6,6'-bis (di-p- Methoxyphenylphosphino) -1,1′-biphenyl and the like.

配位子化合物としては、収率、コスト、電子供与性等の観点から、単座配位子化合物が好ましく、トリフェニルホスフィン、トリ(n−ブチル)ホスフィン、トリ(シクロヘキシル)ホスフィン、トリ(p−トリル)ホスフィン、トリ(p−アニシル)ホスフィン、メチルジフェニルホスフィン、n−プロピルジフェニルホスフィン、ジシクロヘキシルフェニルホスフィン、(2−ビフェニル)ジ−t−ブチルホスフィン(JOHNPHOS)、N,N−ジベンジルジナフト[2,1−d:2’−f][1,3,2]ジオキサホスフェピン−4−アミン等がより好ましく、トリフェニルホスフィン、トリ(n−ブチル)ホスフィン、トリ(シクロヘキシル)ホスフィン、トリ(p−トリル)ホスフィン、トリ(p−アニシル)ホスフィン、メチルジフェニルホスフィン、n−プロピルジフェニルホスフィン、ジシクロヘキシルフェニルホスフィン等がさらに好ましく、トリ(n−ブチル)ホスフィン、トリ(シクロヘキシル)ホスフィン、トリ(p−アニシル)ホスフィン、メチルジフェニルホスフィン、n−プロピルジフェニルホスフィン、ジシクロヘキシルフェニルホスフィン等が特に好ましい。   The ligand compound is preferably a monodentate ligand compound from the viewpoints of yield, cost, electron donating property, and the like, and is triphenylphosphine, tri (n-butyl) phosphine, tri (cyclohexyl) phosphine, tri (p- Tolyl) phosphine, tri (p-anisyl) phosphine, methyldiphenylphosphine, n-propyldiphenylphosphine, dicyclohexylphenylphosphine, (2-biphenyl) di-t-butylphosphine (JOHNPHOS), N, N-dibenzyldinaphtho [ 2,1-d: 2′-f] [1,3,2] dioxaphosphin-4-amine and the like are more preferable, and triphenylphosphine, tri (n-butyl) phosphine, tri (cyclohexyl) phosphine, Tri (p-tolyl) phosphine, tri (p-anisyl) phosphine, More preferred are rudiphenylphosphine, n-propyldiphenylphosphine, dicyclohexylphenylphosphine and the like, and tri (n-butyl) phosphine, tri (cyclohexyl) phosphine, tri (p-anisyl) phosphine, methyldiphenylphosphine, n-propyldiphenylphosphine, Particularly preferred is dicyclohexylphenylphosphine.

上記配位子化合物を使用する(添加する)場合、その使用量は、ニッケル化合物1モルに対して、0.01〜50モルが好ましく、0.1〜20モルがより好ましく、0.5〜10モルがさらに好ましく、1〜5モルが特に好ましい。   When the above ligand compound is used (added), the amount used is preferably 0.01 to 50 mol, more preferably 0.1 to 20 mol, relative to 1 mol of the nickel compound, and 0.5 to 10 mol is more preferable, and 1 to 5 mol is particularly preferable.

本発明のカップリング反応においては、ボロン酸と反応して反応を促進するため、もしくは生成したフェノールを補足するために、塩基を使用することが好ましい。   In the coupling reaction of the present invention, it is preferable to use a base in order to promote the reaction by reacting with boronic acid or to supplement the produced phenol.

本発明においては、塩基としては、弱塩基を用いてもカップリング反応をより促進することが可能である。このため、取り扱い性を考慮し、弱塩基を用いることが好ましい。   In the present invention, the coupling reaction can be further promoted by using a weak base as the base. For this reason, it is preferable to use a weak base in consideration of handleability.

本発明において使用し得る塩基としては、例えば、リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩;炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸ルビジウム等のアルカリ金属炭酸塩;トリメチルアミン、トリエチルアミン等のアミン;リチウムジイソプロピルアミド(LDA)、リチウムビストリメチルシリルアミド、ナトリウムビストリメチルシリルアミド、カリウムビストリメチルシリルアミド等の金属アミド(特に、アルカリ金属アミド);グリニャール反応剤等が挙げられる。このうち、収率の観点から、アルカリ金属リン酸塩、アルカリ金属炭酸塩及びアミンが好ましく、リン酸カリウム、リン酸ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸ルビジウム、トリエチルアミン等がより好ましく、炭酸ナトリウム、トリエチルアミン等がさらに好ましい。   Examples of the base that can be used in the present invention include alkali metal phosphates such as potassium phosphate and sodium phosphate; alkali metal carbonates such as sodium carbonate, potassium carbonate, cesium carbonate and rubidium carbonate; trimethylamine, triethylamine and the like. Examples include amines; metal diamides such as lithium diisopropylamide (LDA), lithium bistrimethylsilylamide, sodium bistrimethylsilylamide, and potassium bistrimethylsilylamide (particularly alkali metal amides); Grignard reagents and the like. Among these, from the viewpoint of yield, alkali metal phosphates, alkali metal carbonates and amines are preferable, potassium phosphate, sodium phosphate, sodium carbonate, potassium carbonate, cesium carbonate, rubidium carbonate, triethylamine and the like are more preferable. Sodium carbonate, triethylamine and the like are more preferable.

塩基の使用量は、基質であるエステル化合物1モルに対して、通常、0.2〜20モルが好ましく、0.5〜10モルがより好ましく、1〜5モルがさらに好ましい。   The amount of the base used is usually preferably 0.2 to 20 mol, more preferably 0.5 to 10 mol, and even more preferably 1 to 5 mol with respect to 1 mol of the ester compound as the substrate.

溶媒としては、例えば、ジエチルエーテル、ジメトキシエタン、ジイソプロピルエーテル、tert−ブチルメチルエーテル等の鎖状エーテル;ジオキサン等の環状エーテル;トルエン、ベンゼン、メシチレン等の芳香族炭化水素;ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素類等が挙げられる。これらは、1種のみを用いてよいし、2種以上を組み合わせて用いてもよい。これらのうち、本発明では、環状エーテル、芳香族炭化水素等が好ましく、ジオキサン、トルエン、ベンゼンがより好ましく、ジオキサン、トルエンが特に好ましい。   Examples of the solvent include chain ethers such as diethyl ether, dimethoxyethane, diisopropyl ether, and tert-butyl methyl ether; cyclic ethers such as dioxane; aromatic hydrocarbons such as toluene, benzene, and mesitylene; pentane, hexane, heptane, Examples include aliphatic hydrocarbons such as cyclohexane. These may be used alone or in combination of two or more. Among these, in the present invention, cyclic ethers, aromatic hydrocarbons and the like are preferable, dioxane, toluene and benzene are more preferable, and dioxane and toluene are particularly preferable.

本発明のカップリング反応においては、上記成分以外にも、本発明の効果を損なわない範囲で、適宜添加剤を使用してもよい。例えば、NaCl等の添加剤を使用することにより、基質によっては収率が向上し得る。   In the coupling reaction of the present invention, additives other than the above components may be appropriately used within the range not impairing the effects of the present invention. For example, the yield can be improved depending on the substrate by using an additive such as NaCl.

本発明のカップリング反応は、無水条件下且つ不活性ガス雰囲気(窒素ガス、アルゴンガス等)下で行うことが好ましく、反応温度は、通常、0〜200℃程度、好ましくは50〜180℃程度、より好ましくは100〜160℃程度である。反応時間は、通常、10分〜72時間程度、好ましくは1〜48時間程度である。   The coupling reaction of the present invention is preferably carried out under anhydrous conditions and under an inert gas atmosphere (nitrogen gas, argon gas, etc.), and the reaction temperature is usually about 0 to 200 ° C., preferably about 50 to 180 ° C. More preferably, it is about 100-160 degreeC. The reaction time is usually about 10 minutes to 72 hours, preferably about 1 to 48 hours.

本発明のカップリング反応は、エステル化合物の炭素−炭素結合(特にエステル化合物が有するアリール基又はヘテロアリール基に存在する炭素原子と、それと直接結合するエステル結合中の炭素原子との結合)と、ボロン酸化合物の炭素−ホウ素結合(特にボロン酸化合物が有するアリール基、ヘテロアリール基又は炭化水素基中のsp2混成炭素原子とそれと直接結合するホウ素原子との結合)とを切断しながら2つの分子をつなぐ、新しい形式のカップリング反応である。本発明においては、基質であるエステル化合物及びボロン酸化合物中に、他の官能基(アルカリエステル基、アルコキシ基)等を有していたとしても、上記結合を選択的に切断し、カップリング反応が進行する。このため、他の官能基の保護をせずともカップリング反応を効率的に進行させることができるため、より工程数を低減することができる。   The coupling reaction of the present invention comprises a carbon-carbon bond of an ester compound (particularly, a bond between a carbon atom present in an aryl group or heteroaryl group of the ester compound and a carbon atom in the ester bond directly bonded thereto) Two molecules while breaking the carbon-boron bond of boronic acid compound (particularly, the bond between sp2 hybrid carbon atom in boronic acid compound's aryl group, heteroaryl group or hydrocarbon group and boron atom directly bonded to it) Is a new type of coupling reaction. In the present invention, even if the ester compound and boronic acid compound which are substrates have other functional groups (alkali ester group, alkoxy group) or the like, the above bond is selectively cleaved to perform a coupling reaction. Progresses. For this reason, since the coupling reaction can proceed efficiently without protecting other functional groups, the number of steps can be further reduced.

反応終了後は、通常の単離及び精製工程を経て、目的化合物を得ることができる。本発明のカップリング反応を用いれば、種々の有用な有機化合物を得ることができる。   After completion of the reaction, the target compound can be obtained through normal isolation and purification steps. Various useful organic compounds can be obtained by using the coupling reaction of the present invention.

このようにして得られる化合物のうち、   Of the compounds thus obtained,

Figure 2016027809
Figure 2016027809

[式中、TBSはt−ブチルジメチルシリル基;以下同様である。]
等はいずれも文献未記載の新規化合物である。
[Wherein TBS is a t-butyldimethylsilyl group; the same shall apply hereinafter. ]
Etc. are novel compounds not described in any literature.

以下、本発明について、実施例を挙げて具体的に説明するが、本発明は、これらの実施例に何ら制約されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not restrict | limited at all by these Examples.

特に制約しない限り、乾燥溶媒を含む全ての材料は、市販品をそのまま使用した。また、酢酸ニッケル(II)・4水和物(Ni(OAc)2・4H2O)及びトリ(n−ブチル)ホスフィン(P(n-Bu)3)は関東化学(株)から購入し、Na2CO3は和光純薬工業(株)から購入した。トルエンは、有機溶媒精製装置としてGlass Contourを用いて精製した。フェニルニコチネート、フェニルイソニコチネート、フェニル2−フェニルキノリン−4−カルボキシレート、フェニルチオフェン−2−カルボキシレート、フェニルチオフェン−3−カルボキシレート、フェニル2−フェニルチアゾール−4−カルボキシレート、フェニル2−ナフトエート、フェニルフラン−2−カルボキシレート、フェニルフラン−3−カルボキシレート、4−オキソ−4H−クロメン−2−カルボン酸、5−(メトキシカルボニル)ニコチン酸、及び4−メチルピペラジン−1−カルボチオアミドは、公知文献(J. Am. Chem. Soc. 2012, 134, 13753、WO1998US24627、WO2006103038、J. Med. Chem. 2005, 48, 7520等)に記載の方法にしたがって合成した。フェニル3−メチルベンゾエート、フェニル4−フルオロベンゾエート、フェニル4−メチルベンゾエート、メチルフェニルテレフタレート、フェニル2−メトキシベンゾエート、フェニルキノリン−3−カルボキシレート、及びフェニル1−ナフトエートは、対応するカルボン酸、フェノール、EDC・HCl / DMAPを使用して公知文献(Synth. Commun. 2006, 36, 275、Synlett. 2007, 6, 974、J. Org. Lett. 2008, 10, 1537、Org. Lett. 2012, 14, 3100等)に記載の手順によって合成したところ、それらのスペクトルのHClは、文献に報告されたものと一致した。特に断りのない限り、すべての反応は、標準的な真空ライン技法を用いて、乾燥ガラス容器中で、窒素(N2)ガス雰囲気下に乾燥溶媒を用いて行った。すべてのカップリング反応は、J. Young(登録商標)Oリングタップを搭載した20 mLのガラス容器管を用いて、特に断りのない限り8ウェル反応ブロック(ヒーター及び磁気撹拌子含有)中で加熱しながら行った。すべての後処理及び精製手順は、空気中で試薬グレードの溶媒を用いて行った。Unless otherwise specified, all the materials including the dry solvent were used as they were on the market. Nickel (II) acetate tetrahydrate (Ni (OAc) 2 .4H 2 O) and tri (n-butyl) phosphine (P (n-Bu) 3 ) were purchased from Kanto Chemical Co., Inc. Na 2 CO 3 was purchased from Wako Pure Chemical Industries. Toluene was purified using Glass Contour as an organic solvent purifier. Phenylnicotinate, phenylisonicotinate, phenyl 2-phenylquinoline-4-carboxylate, phenylthiophene-2-carboxylate, phenylthiophene-3-carboxylate, phenyl 2-phenylthiazole-4-carboxylate, phenyl 2- Naphthoate, phenylfuran-2-carboxylate, phenylfuran-3-carboxylate, 4-oxo-4H-chromene-2-carboxylic acid, 5- (methoxycarbonyl) nicotinic acid, and 4-methylpiperazine-1-carbothioamide Was synthesized according to the method described in known literature (J. Am. Chem. Soc. 2012, 134, 13753, WO1998US24627, WO2006103038, J. Med. Chem. 2005, 48, 7520, etc.). Phenyl 3-methylbenzoate, phenyl 4-fluorobenzoate, phenyl 4-methylbenzoate, methylphenyl terephthalate, phenyl 2-methoxybenzoate, phenylquinoline-3-carboxylate, and phenyl 1-naphthoate are the corresponding carboxylic acids, phenols, Known documents using EDC / HCl / DMAP (Synth. Commun. 2006, 36, 275, Synlett. 2007, 6, 974, J. Org. Lett. 2008, 10, 1537, Org. Lett. 2012, 14, 3100 etc.), the HCl in their spectra was consistent with that reported in the literature. Unless otherwise noted, all reactions were performed in a dry glass vessel using a dry solvent under a nitrogen (N 2 ) gas atmosphere using standard vacuum line techniques. All coupling reactions were heated in an 8-well reaction block (containing heater and magnetic stir bar) unless otherwise noted using a 20 mL glass container tube equipped with a J. Young® O-ring tap. I went there. All work-up and purification procedures were performed in air with reagent grade solvents.

分析用薄層クロマトグラフィー(TLC)は、E. Merckシリカゲル60 F254プレコートプレート(0.25 mm)を用いて行った。開発したクロマトグラムは、UVランプ(254 nm)で分析した。フラッシュカラムクロマトグラフィーは、E. Merckシリカゲル60(230-400メッシュ)を用いて行った。分取薄層クロマトグラフィー(PTLC)はあらかじめ準備したワコーゲルB5-Fのシリカ被覆プレート(0.75 mm)を用いて行った。ガスクロマトグラフィー(GC)は、内部標準としてドデカンを用い、HP-5カラム(30 m×0.25 mm、ヒューレット−パッカード社)を備えた島津GC-2010計器で行った。GCMS分析は、HP-5カラム(30 m×0.25 mm、ヒューレット−パッカード社)を備えた島津GCMS-QP2010で行った。高分解能質量スペクトル(HRMS)は、JMS-T100TD器具(DART)により得た。核磁気共鳴(NMR)スペクトルは、JEOL JNM-ECA-400分光計(1H 400 MHz、13C 100MHz)で記録した。1H NMRの化学シフトはテトラメチルシラン(δ0.00 ppm)の相対的な百万分率(ppm)で表した。13C NMRの化学シフトはCDCl3(δ77.0 ppm)の相対的な百万分率(ppm)で表した。データは、化学シフト、多重度(s =シングレット、d =ダブレット、dd =ダブレットのダブレット、t =トリプレット、q =カルテット、m=マルチプレット、br =ブロードシグナル)、結合定数(Hz)、及び統合の順に報告する。Analytical thin layer chromatography (TLC) was performed using E. Merck silica gel 60 F 254 precoated plates (0.25 mm). The developed chromatogram was analyzed with a UV lamp (254 nm). Flash column chromatography was performed using E. Merck silica gel 60 (230-400 mesh). Preparative thin layer chromatography (PTLC) was performed using a pre-prepared Wakogel B5-F silica-coated plate (0.75 mm). Gas chromatography (GC) was performed with a Shimadzu GC-2010 instrument equipped with an HP-5 column (30 m × 0.25 mm, Hewlett-Packard) using dodecane as an internal standard. GCMS analysis was performed on a Shimadzu GCMS-QP2010 equipped with an HP-5 column (30 m × 0.25 mm, Hewlett-Packard). High resolution mass spectra (HRMS) were obtained with a JMS-T100TD instrument (DART). Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECA-400 spectrometer ( 1 H 400 MHz, 13 C 100 MHz). 1 H NMR chemical shifts were expressed in relative parts per million (ppm) of tetramethylsilane (δ0.00 ppm). 13 C NMR chemical shifts were expressed in relative parts per million (ppm) of CDCl 3 (δ 77.0 ppm). Data include chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet doublet, t = triplet, q = quartet, m = multiplet, br = broad signal), binding constant (Hz), and integration Report in order.

合成例1:エステル化合物
[合成例1−1]
Synthesis Example 1: Ester Compound [Synthesis Example 1-1]

Figure 2016027809
Figure 2016027809

[式中、Phはフェニル基である。Etはエチル基である。DMAPは4,4-ジメチルアミノピリジンである。以下同様である。]
塩化チオニル(9mL)をカルボン酸(1.0当量)に添加し、混合物を1時間還流しながら撹拌した。溶液を真空下で濃縮した。残渣のCH2Cl2(1.0M)溶液にトリエチルアミン(1.2当量)を加えた。0℃に冷却した後、溶液にフェノール(1.0当量)及び4,4-ジメチルアミノピリジン(DMAP)少量を添加し、次いで反応混合物を室温まで昇温させた。混合物を1時間攪拌した後、酢酸エチル(EtOAc)を用いて短いシリカゲルパッドに通した。濾液を減圧下で濃縮し、残留物を再結晶又はフラッシュカラムクロマトグラフィーにより精製し、対応するエステル化合物を得た。
[Wherein Ph is a phenyl group. Et is an ethyl group. DMAP is 4,4-dimethylaminopyridine. The same applies hereinafter. ]
Thionyl chloride (9 mL) was added to the carboxylic acid (1.0 eq) and the mixture was stirred at reflux for 1 hour. The solution was concentrated under vacuum. Triethylamine (1.2 eq) was added to a solution of the residue in CH 2 Cl 2 (1.0 M). After cooling to 0 ° C., a small amount of phenol (1.0 eq) and 4,4-dimethylaminopyridine (DMAP) were added to the solution, and then the reaction mixture was allowed to warm to room temperature. The mixture was stirred for 1 hour and then passed through a short silica gel pad with ethyl acetate (EtOAc). The filtrate was concentrated under reduced pressure and the residue was purified by recrystallization or flash column chromatography to give the corresponding ester compound.

Figure 2016027809
Figure 2016027809

Figure 2016027809
Figure 2016027809

各化合物のスペクトルデータは以下のとおりであった。
化合物1b(フェニル6−(トリフルオロメチル)ニコチネート):
1H NMR (CDCl3, 400 MHz) δ 9.48 (s, 1H), 8.64 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.33 (t, J = 8.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ 162.6, 151.7 (q, J = 35 Hz), 151.4, 150.2, 139.3, 129.7, 128.1, 126.5, 121.4, 121.0 (q, J = 279 Hz), 120.3 (q, J = 3 Hz); HRMS (DART) m/z calcd for C13H9F3NO2[M+H]+: 268.0585, found: 268.0585。
化合物1s(フェニル5−フルオロニコチネート):
1H NMR (CDCl3, 400 MHz) δ 9.22 (s, 1H), 8.72 (d, J = 2.8 Hz, 1H), 8.16-8.11 (m, 1H), 7.45 (t, J = 8.0 Hz, 2H), 7.30 (t, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ 161.5 (d, J = 238 Hz), 150.3, 147.0 (d, J = 4 Hz), 142.6, (d, J = 24 Hz), 129.6 (d, J = 3 Hz), 126.4, 124.0 (d, J = 20 Hz), 121.3; HRMS (DART) m/z calcd for C12H9FNO2 [M+H]+: 218.0617, found: 218.0620。
The spectral data of each compound was as follows.
Compound 1b (phenyl 6- (trifluoromethyl) nicotinate):
1 H NMR (CDCl 3 , 400 MHz) δ 9.48 (s, 1H), 8.64 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz , 2H), 7.33 (t, J = 8.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl 3 , 100 MHz) δ 162.6, 151.7 (q, J = 35 Hz) , 151.4, 150.2, 139.3, 129.7, 128.1, 126.5, 121.4, 121.0 (q, J = 279 Hz), 120.3 (q, J = 3 Hz); HRMS (DART) m / z calcd for C 13 H 9 F 3 NO 2 [M + H] + : 268.0585, found: 268.0585.
Compound 1s (phenyl 5-fluoronicotinate):
1 H NMR (CDCl 3 , 400 MHz) δ 9.22 (s, 1H), 8.72 (d, J = 2.8 Hz, 1H), 8.16-8.11 (m, 1H), 7.45 (t, J = 8.0 Hz, 2H) , 7.30 (t, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl 3 , 100 MHz) δ 161.5 (d, J = 238 Hz), 150.3, 147.0 ( d, J = 4 Hz), 142.6, (d, J = 24 Hz), 129.6 (d, J = 3 Hz), 126.4, 124.0 (d, J = 20 Hz), 121.3; HRMS (DART) m / z calcd for C 12 H 9 FNO 2 [M + H] + : 218.0617, found: 218.0620.

[合成例1−2]   [Synthesis Example 1-2]

Figure 2016027809
Figure 2016027809

[式中、EDC・HClは1-(3-ジメチルアミノプロピル)-3 -エチルカルボジイミド塩酸塩である。以下同様である。]
丸底フラスコに、カルボン酸(2.22g, 15mmol)、フェノール(1当量)、1-(3-ジメチルアミノプロピル)-3 -エチルカルボジイミド塩酸塩(EDC・HCl: 1.1当量)、N, N-ジメチルアミノピリジン(DMAP: 0.25当量)及びCH2Cl2(0.5M)を投入した。TLC上で反応を監視しつつ、数時間撹拌した後、反応混合物を飽和NaHCO3aqでクエンチし、CH2Cl2で3回抽出した。合わせた有機層をNa2SO4で乾燥させ、濾過し、減圧下で濃縮した。残留物を再結晶又はフラッシュカラムクロマトグラフィーにより精製し、エステル化合物を得た。
[In the formula, EDC · HCl is 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride. The same applies hereinafter. ]
In a round bottom flask, carboxylic acid (2.22 g, 15 mmol), phenol (1 eq), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC · HCl: 1.1 eq), N, N-dimethyl Aminopyridine (DMAP: 0.25 equivalent) and CH 2 Cl 2 (0.5M) were added. After stirring for several hours while monitoring the reaction on TLC, the reaction mixture was quenched with saturated NaHCO 3 aq and extracted three times with CH 2 Cl 2 . The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated under reduced pressure. The residue was purified by recrystallization or flash column chromatography to obtain an ester compound.

Figure 2016027809
Figure 2016027809

Figure 2016027809
Figure 2016027809

各化合物のスペクトルデータは以下のとおりであった。
化合物1i(フェニルベンゾ[b]チオフェン−2−カルボキシレート):
1H NMR (CDCl3, 400 MHz) δ 8.25 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.50 (dd, J = 8.4, 7.2 Hz, 1H), 7.47-7.40 (m, 3H), 7.31-7.23 (m, 3H); 13C NMR (CDCl3, 100 MHz) δ 161.2, 150.6, 142.6, 138.6, 132.7, 131.9, 129.5, 127.3, 126.1, 125.7, 125.1, 122.8, 121.6; HRMS (DART) m/z calcd for C15H11O2S [M+H]+: 255.0480, found: 255.0477。
化合物1k(3−メチル5−フェニルピリジン−3,5−ジカルボキシレート):
1H NMR (CDCl3, 400 MHz) δ 9.53 (d, J = 0.8 Hz, 1H), 9.44 (d, J = 2.0 Hz, 1H), 9.03 (dd, J = 2.0, 0.8 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 7.32 (t, J = 8.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 4.02 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 164.8, 163.0, 154.7, 154.6, 150.3, 138.5, 129.6, 126.4, 126.1, 126.0, 121.4, 52.8; HRMS (DART) m/z calcd for C14H12NO4 [M+H]+: 258.0766, found: 258.0770。
化合物1l(フェニル2−メトキシニコチネート):
1H NMR (CDCl3, 400 MHz) δ 8.38 (d, J = 5.2 Hz, 1H), 8.35 (d, J= 7.6 Hz, 1H), 7.42 (t, J = 8.0 Hz, 2H), 7.27 (t, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.01 (dd, J = 7.6, 5.2 Hz, 1H), 4.08 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 163.4, 163.0, 151.6, 150.8, 141.8, 129.5, 126.0, 121.8, 116.5, 113.4, 54.3; HRMS (DART) m/z calcd for C13H12NO3 [M+H]+: 230.0817, found: 230.0819。
化合物1q(フェニル4−オキソ−4H−クロメン−2−カルボキシレート):
1H NMR (CDCl3, 400 MHz) δ 8.23 (d, J = 8.4 Hz, 1H), 7.78 (t, J= 8.8 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.51-7.43 (m, 3H), 7.33 (t, J = 7.6 Hz, 1H), 7.31 (s, 1H), 7.25 (d, J= 7.6 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ 178.2, 159.1, 156.0, 151.6, 150.0, 134.9, 129.7, 126.7, 126.1, 125.8, 124.4, 121.1, 118.8, 115.7; HRMS (DART) m/z calcd for C16H11O4 [M+H]+: 267.0657, found: 267,0654。
化合物1t(フェニルオキサゾール−4−カルボキシレート):
1H NMR (CDCl3, 400 MHz) δ 8.45 (s, 1H), 8.02 (s, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 159.2, 151.6, 150.1, 145.1, 132.7, 129.5, 126.2, 121.5; HRMS (DART) m/z calcd for C10H8NO3 [M+H]+: 190.0504, found: 190.0505。
化合物1ag(フェニル6−クロロニコチネート):
1H NMR (CDCl3, 400 MHz) δ 9.17 (d, J = 2.8 Hz, 1H), 8.39 (dd, J = 8.4, 2.8 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.46 (dd, J = 8.0, 7.6 Hz, 2H), 7.31 (t, J = 8.0 Hz, 1H), 7.22 (d, J = 7.6 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ 163.0, 156.3, 151.6, 150.3, 140.0, 129.6, 126.4, 124.6, 124.4, 121.4; HRMS (DART) m/z calcd for C12H9ClNO2 [M+H]+: 234.0322, found: 234.0318。
The spectral data of each compound was as follows.
Compound 1i (phenylbenzo [b] thiophene-2-carboxylate):
1 H NMR (CDCl 3 , 400 MHz) δ 8.25 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.50 (dd, J = 8.4, 7.2 Hz, 1H), 7.47-7.40 (m, 3H), 7.31-7.23 (m, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 161.2, 150.6, 142.6, 138.6, 132.7, 131.9, 129.5, 127.3 , 126.1, 125.7, 125.1, 122.8, 121.6; HRMS (DART) m / z calcd for C 15 H 11 O 2 S [M + H] + : 255.0480, found: 255.0477.
Compound 1k (3-methyl 5-phenylpyridine-3,5-dicarboxylate):
1 H NMR (CDCl 3 , 400 MHz) δ 9.53 (d, J = 0.8 Hz, 1H), 9.44 (d, J = 2.0 Hz, 1H), 9.03 (dd, J = 2.0, 0.8 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 7.32 (t, J = 8.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 4.02 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 164.8, 163.0, 154.7, 154.6, 150.3, 138.5, 129.6, 126.4, 126.1, 126.0, 121.4, 52.8; HRMS (DART) m / z calcd for C 14 H 12 NO 4 [M + H] + : 258.0766 , found: 258.0770.
Compound 11 (phenyl 2-methoxynicotinate):
1 H NMR (CDCl 3 , 400 MHz) δ 8.38 (d, J = 5.2 Hz, 1H), 8.35 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 8.0 Hz, 2H), 7.27 (t , J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.01 (dd, J = 7.6, 5.2 Hz, 1H), 4.08 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 163.4, 163.0, 151.6, 150.8, 141.8, 129.5, 126.0, 121.8, 116.5, 113.4, 54.3; HRMS (DART) m / z calcd for C 13 H 12 NO 3 [M + H] + : 230.0817, found : 230.0819.
Compound 1q (phenyl 4-oxo-4H-chromene-2-carboxylate):
1 H NMR (CDCl 3 , 400 MHz) δ 8.23 (d, J = 8.4 Hz, 1H), 7.78 (t, J = 8.8 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.51-7.43 (m, 3H), 7.33 (t, J = 7.6 Hz, 1H), 7.31 (s, 1H), 7.25 (d, J = 7.6 Hz, 2H); 13 C NMR (CDCl 3 , 100 MHz) δ 178.2, 159.1, 156.0, 151.6, 150.0, 134.9, 129.7, 126.7, 126.1, 125.8, 124.4, 121.1, 118.8, 115.7; HRMS (DART) m / z calcd for C 16 H 11 O 4 [M + H] + : 267.0657, found: 267,0654.
Compound 1t (phenyloxazole-4-carboxylate):
1 H NMR (CDCl 3 , 400 MHz) δ 8.45 (s, 1H), 8.02 (s, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H); 13 C NMR (CDCl 3 , 100 MHz) δ 159.2, 151.6, 150.1, 145.1, 132.7, 129.5, 126.2, 121.5; HRMS (DART) m / z calcd for C 10 H 8 NO 3 [M + H] + : 190.0504, found: 190.0505.
Compound 1ag (phenyl 6-chloronicotinate):
1 H NMR (CDCl 3 , 400 MHz) δ 9.17 (d, J = 2.8 Hz, 1H), 8.39 (dd, J = 8.4, 2.8 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.46 (dd, J = 8.0, 7.6 Hz, 2H), 7.31 (t, J = 8.0 Hz, 1H), 7.22 (d, J = 7.6 Hz, 2H); 13 C NMR (CDCl 3 , 100 MHz) δ 163.0, 156.3, 151.6, 150.3, 140.0, 129.6, 126.4, 124.6, 124.4, 121.4; HRMS (DART) m / z calcd for C 12 H 9 ClNO 2 [M + H] + : 234.0322, found: 234.0318.

[合成例1−3]   [Synthesis Example 1-3]

Figure 2016027809
Figure 2016027809

[式中、DMFはN,N-ジメチルホルムアミドである。以下同様である。]
2-クロロ-5-フェノキシピリジン(467mg, 2mmol)のDMF(4mL)溶液に、ジエチルアミン(160.9g, 2.2mmol, 1.1当量)及びN, N-ジイソプロピルエチルアミン(ヒューニッヒ塩基: 510μL g, 3mmol, 1.5当量)を加えた。混合物を室温で3日間撹拌した。反応をNH4Claqでクエンチし、酢酸エチル(EtOAc)で4回抽出した。合わせた有機層を塩水で洗浄し、次いでNa2SO4で乾燥させた。合わせた有機層を濾過した後、混合物を減圧下で濃縮した。フラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=15: 1〜10: 1)で精製し、目的物を白色固体として得た(198mg, 37%)。
1H NMR (CDCl3, 400 MHz) δ 8.96 (d, J = 2.0 Hz, 1H), 8.08 (dd, J = 9.2, 2.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.24 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 6.48 (d, J = 9.2 Hz, 1H), 3.59 (q, J = 7.2 Hz, 4H), 1.22 (t, J = 7.2 Hz, 6H); 13C NMR (CDCl3, 100 MHz) δ 164.8, 159.5, 152.3, 151.0, 138.4, 129.3, 125.5, 121.8, 112.2, 104.4, 42.9, 12.8; HRMS (DART) m/z calcd for C16H19N2O2 [M+H]+: 271.1447, found: 271.1451。
[Wherein DMF is N, N-dimethylformamide. The same applies hereinafter. ]
To a solution of 2-chloro-5-phenoxypyridine (467 mg, 2 mmol) in DMF (4 mL), diethylamine (160.9 g, 2.2 mmol, 1.1 eq) and N, N-diisopropylethylamine (Hunig base: 510 μL g, 3 mmol, 1.5 eq) ) Was added. The mixture was stirred at room temperature for 3 days. The reaction was quenched with NH 4 Claq and extracted four times with ethyl acetate (EtOAc). The combined organic layers were washed with brine and then dried over Na 2 SO 4 . After filtering the combined organic layers, the mixture was concentrated under reduced pressure. Purification by flash column chromatography (hexane / ethyl acetate = 15: 1 to 10: 1) gave the desired product as a white solid (198 mg, 37%).
1 H NMR (CDCl 3 , 400 MHz) δ 8.96 (d, J = 2.0 Hz, 1H), 8.08 (dd, J = 9.2, 2.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 2H), 7.24 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 6.48 (d, J = 9.2 Hz, 1H), 3.59 (q, J = 7.2 Hz, 4H), 1.22 (t , J = 7.2 Hz, 6H); 13 C NMR (CDCl 3 , 100 MHz) δ 164.8, 159.5, 152.3, 151.0, 138.4, 129.3, 125.5, 121.8, 112.2, 104.4, 42.9, 12.8; HRMS (DART) m / z calcd for C 16 H 19 N 2 O 2 [M + H] + : 271.1447, found: 271.1451.

[合成例1−4]   [Synthesis Example 1-4]

Figure 2016027809
Figure 2016027809

3-メチル-2-チオフェンカルボン酸(1当量)のCH2Cl2(0.5M)溶液に塩化オキサリル(1.5当量)及びDMF少量を添加した。1.5時間攪拌した後、混合物にフェノール(1.5当量)及びDMAP少量を添加した。その後、0℃で、混合物にトリエチルアミン(Et3N)(2当量)をゆっくりと添加した。溶液を一晩撹拌した後、反応混合物を飽和NaHCO3aqでクエンチし、CH2Cl2で3回抽出した。合わせた有機層をNa2SO4で乾燥させ、濾過し、そして減圧下で濃縮した。フラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=20: 1)により精製し、目的物(フェニル3−メチルチオフェン−2−カルボキシレート)を茶色油として得た(990mg, 91%)。
1H NMR (CDCl3, 400 MHz) δ 7.49 (d, J = 5.2 Hz, 1H), 7.42 (t, J = 8.0 Hz, 2H), 7.26 (t, J = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 5.2 Hz, 1H), 2.61 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 161.1, 150.5, 148.0, 131.9, 131.1, 129.4, 125.9, 125.6, 121.8, 16.1; HRMS (DART) m/z calcd for C12H11O2S [M+H]+: 219.0480, found: 219.0483。
To a solution of 3-methyl-2-thiophenecarboxylic acid (1 eq) in CH 2 Cl 2 (0.5 M) was added oxalyl chloride (1.5 eq) and a small amount of DMF. After stirring for 1.5 hours, phenol (1.5 equivalents) and a small amount of DMAP were added to the mixture. Then, at 0 ° C., triethylamine (Et 3 N) (2 eq) was slowly added to the mixture. After stirring the solution overnight, the reaction mixture was quenched with saturated NaHCO 3 aq and extracted 3 times with CH 2 Cl 2 . The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated under reduced pressure. Purification by flash column chromatography (hexane / ethyl acetate = 20: 1) gave the desired product (phenyl 3-methylthiophene-2-carboxylate) as a brown oil (990 mg, 91%).
1 H NMR (CDCl 3 , 400 MHz) δ 7.49 (d, J = 5.2 Hz, 1H), 7.42 (t, J = 8.0 Hz, 2H), 7.26 (t, J = 8.0 Hz, 1H), 7.21 (d , J = 8.0 Hz, 2H), 6.99 (d, J = 5.2 Hz, 1H), 2.61 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 161.1, 150.5, 148.0, 131.9, 131.1, 129.4 , 125.9, 125.6, 121.8, 16.1; HRMS (DART) m / z calcd for C 12 H 11 O 2 S [M + H] + : 219.0480, found: 219.0483.

[合成例1−5]   [Synthesis Example 1-5]

Figure 2016027809
Figure 2016027809

4-メチルピペラジン-1-カルボチオアミド(1.1g, 6.7mmol)を、エタノール(EtOH)(10mL)中で、エチル3-ブロモ-2-オキソプロパン酸(935μL, 7.4mmol, 1.1当量)と、一晩50℃で攪拌した。混合物を室温に冷却後、減圧下に濃縮した。得られた固体にNaHCO3aqを添加し、次いでジエチルエーテル(Et2O)で抽出した。合わせた有機層をMgSO4で乾燥させ、濾過し、減圧下に濃縮し、エチル2-(4-メチルピペラジン-1-イル)チアゾール-4-カルボキシレート(1.57g, 91%)を橙色油として得た。4-Methylpiperazine-1-carbothioamide (1.1 g, 6.7 mmol) was combined with ethyl 3-bromo-2-oxopropanoic acid (935 μL, 7.4 mmol, 1.1 eq) in ethanol (EtOH) (10 mL). Stir at 50 ° C. overnight. The mixture was cooled to room temperature and then concentrated under reduced pressure. NaHCO 3 aq was added to the resulting solid and then extracted with diethyl ether (Et 2 O). The combined organic layers were dried over MgSO 4 , filtered and concentrated under reduced pressure to give ethyl 2- (4-methylpiperazin-1-yl) thiazole-4-carboxylate (1.57 g, 91%) as an orange oil. Obtained.

得られた油(1.57g, 6.1mmol)を室温で、NaOH(270mg, 6.7mmol, 1.1当量)のEtOH/H2O(10mL/5mL)溶液で処理した。混合物を一晩撹拌後に濃縮し、ナトリウム2-(4-メチルピペラジン-1-イル)チアゾール-4-カルボキシレートを黄色固体として得た(1.53g, quant)。The resulting oil (1.57 g, 6.1 mmol) was treated with a solution of NaOH (270 mg, 6.7 mmol, 1.1 eq) in EtOH / H 2 O (10 mL / 5 mL) at room temperature. The mixture was stirred overnight and then concentrated to give sodium 2- (4-methylpiperazin-1-yl) thiazole-4-carboxylate as a yellow solid (1.53 g, quant).

ナトリウムカルボキシレート(1.53g, 6.14mmol)のCH2Cl2(20mL)溶液に、塩化オキサリル(791μL, 9.2mmol, 1.5当量)及びDMF少量を添加した。1.5時間攪拌した後、混合物にフェノール(866mg, 9.2mmol, 1.5当量)及びDMAP少量を添加した。その後、0℃で、混合物にトリエチルアミン(Et3N)(1.72mL, 12mmol, 2当量)をゆっくりと添加した。溶液を一晩撹拌した後、反応混合物を飽和NaHCO3aqでクエンチし、CH2Cl2で3回抽出した。合わせた有機層をNa2SO4で乾燥させ、濾過し、減圧下に濃縮した。その後、フラッシュカラムクロマトグラフィー(CHCl3 / MeOH=20: 1)及び分取HPLC(H2O / MeCN)で精製し、フェニル2-(4-メチルピペラジン-1-イル)チアゾール-4-カルボキシレートを茶色固体として得た(1.38g, 74%)。
1H NMR (CDCl3, 400 MHz) δ 7.67 (s, 1H), 7.40 (dd, J = 8.0, 7.6 Hz, 2H), 7.24 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 7.6 Hz, 2H), 3.59 (t, J = 4.8 Hz, 4H), 2.53 (t, J = 4.8 Hz, 4H), 2.34 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 170.9, 159.9, 150.7, 143.0, 129.4, 125.8, 121.7, 118.2, 54.1, 48.3, 46.1; HRMS (DART) m/z calcd for C15H18N3O2S [M+H]+: 304.1120, found: 304.1125。
To a solution of sodium carboxylate (1.53 g, 6.14 mmol) in CH 2 Cl 2 (20 mL) was added oxalyl chloride (791 μL, 9.2 mmol, 1.5 eq) and a small amount of DMF. After stirring for 1.5 hours, phenol (866 mg, 9.2 mmol, 1.5 eq) and a small amount of DMAP were added to the mixture. Then, at 0 ° C., triethylamine (Et 3 N) (1.72 mL, 12 mmol, 2 eq) was slowly added to the mixture. After stirring the solution overnight, the reaction mixture was quenched with saturated NaHCO 3 aq and extracted 3 times with CH 2 Cl 2 . The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated under reduced pressure. Then purified by flash column chromatography (CHCl 3 / MeOH = 20: 1) and preparative HPLC (H 2 O / MeCN), phenyl 2- (4-methylpiperazin-1-yl) thiazole-4-carboxylate Was obtained as a brown solid (1.38 g, 74%).
1 H NMR (CDCl 3 , 400 MHz) δ 7.67 (s, 1H), 7.40 (dd, J = 8.0, 7.6 Hz, 2H), 7.24 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 7.6 Hz, 2H), 3.59 (t, J = 4.8 Hz, 4H), 2.53 (t, J = 4.8 Hz, 4H), 2.34 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 170.9, 159.9, 150.7, 143.0, 129.4, 125.8, 121.7, 118.2, 54.1, 48.3, 46.1; HRMS (DART) m / z calcd for C 15 H 18 N 3 O 2 S [M + H] + : 304.1120, found: 304.1125 .

[合成例1−6]   [Synthesis Example 1-6]

Figure 2016027809
Figure 2016027809

フェノール(470mg, 5mmol, 1当量)、DMAP(6mg, 50μmol, 1mol%)、及びEt3N(607mg, 6mmol, 1.2当量)のCH2Cl2(5mL)溶液に、0℃で3,5-ジメチルベンゾイルクロリド(740μL, 5mmol, 1当量)を添加した。反応混合物を3時間撹拌後、飽和NaHCO3aqでクエンチし、CH2Cl2で3回抽出した。合わせた有機層をNa2SO4で乾燥させ、濾過し、減圧下に濃縮した。シリカゲル上のフラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=50: 1)により精製し、フェニル3,5-ジメチルベンゾエートを無色液体として得た(1.13g, quant)。
1H NMR (CDCl3, 400 MHz) δ 7.83 (s, 2H), 7.43 (t, J = 8.4 Hz, 2H), 7.30-7.24 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H), 2.41 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 165.5, 152.9, 151.0, 138.3, 135.2, 129.5, 127.9, 125.8, 121.7, 21.2; HRMS (DART) m/z calcd for C15H15O2 [M+H]+: 227.1072, found: 227.1075。
To a solution of phenol (470 mg, 5 mmol, 1 eq), DMAP (6 mg, 50 μmol, 1 mol%), and Et 3 N (607 mg, 6 mmol, 1.2 eq) in CH 2 Cl 2 (5 mL) at 0 ° C., 3,5- Dimethylbenzoyl chloride (740 μL, 5 mmol, 1 eq) was added. The reaction mixture was stirred for 3 h before being quenched with saturated NaHCO 3 aq and extracted 3 times with CH 2 Cl 2 . The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (hexane / ethyl acetate = 50: 1) gave phenyl 3,5-dimethylbenzoate as a colorless liquid (1.13 g, quant).
1 H NMR (CDCl 3 , 400 MHz) δ 7.83 (s, 2H), 7.43 (t, J = 8.4 Hz, 2H), 7.30-7.24 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H) , 2.41 (s, 6H); 13 C NMR (CDCl 3 , 100 MHz) δ 165.5, 152.9, 151.0, 138.3, 135.2, 129.5, 127.9, 125.8, 121.7, 21.2; HRMS (DART) m / z calcd for C 15 H 15 O 2 [M + H] + : 227.1072, found: 227.1075.

[合成例1−7]   [Synthesis Example 1-7]

Figure 2016027809
Figure 2016027809

[式中、Pivはピバロイル基である。以下同様である。]
ピリジン中の3-ヒドロキシ安息香酸(1.38g, 10mmol)及びN, N-ジメチルアミノピリジン(DMAP: 12mg, 0.1mmol, 0.1mol%)のピリジン(12mL)溶液に、0℃で塩化ピバロイル(3.62g, 30mmol, 3当量)を加えた。この溶液を室温まで温め、1時間撹拌した。混合物に注意深く水30mLを添加し、室温で一晩撹拌した。この溶液を、CH2Cl2で3回抽出した。合わせた有機層を2MのH2SO4(20mL)で3回洗浄した。有機層をNa2SO4で乾燥し、濾過した。溶液を濃縮し、3-(ピバロイルオキシ)安息香酸を白色固体としてを得た(2.15g, 97%)。
[Wherein Piv represents a pivaloyl group. The same applies hereinafter. ]
To a solution of 3-hydroxybenzoic acid (1.38g, 10mmol) and N, N-dimethylaminopyridine (DMAP: 12mg, 0.1mmol, 0.1mol%) in pyridine in pyridine (12mL) at 0 ° C, pivaloyl chloride (3.62g) , 30 mmol, 3 eq). The solution was warmed to room temperature and stirred for 1 hour. Carefully 30 mL of water was added to the mixture and stirred at room temperature overnight. This solution was extracted 3 times with CH 2 Cl 2 . The combined organic layers were washed 3 times with 2M H 2 SO 4 (20 mL). The organic layer was dried over Na 2 SO 4 and filtered. The solution was concentrated to give 3- (pivaloyloxy) benzoic acid as a white solid (2.15 g, 97%).

丸底フラスコに得られた固体(2.15g, 9.7mmol, 1.0当量)を入れ、さらに、フェノール(1.0g, 10.7mmol, 1当量)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl: 2.0g, 10.7mmol, 1.1当量)、DMAP(237mg, 1.9mmol, 0.20当量)及びCH2Cl2(20mL)を添加した。室温で3時間撹拌した後、反応混合物を飽和NaHCO3aqでクエンチし、CH2Cl2で3回抽出した。合わせた有機層をNa2SO4で乾燥させ、濾過し、そして減圧下に濃縮した。残渣をフラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=20: 1)により精製し、フェニル3-(ピバロイルオキシ)ベンゾエートを白色固体として得た(2.56g, 88%)。
1H NMR (CDCl3, 400 MHz) δ 8.07 (d, J = 8.0 Hz, 1H), 7.88 (s, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 1.36 (s, 9H); 13C NMR (CDCl3, 100 MHz) δ 176.9, 164.3, 151.2, 150.8, 131.0, 129.54, 129.50, 127.4, 127.0, 126.0, 123.3, 121.6, 39.1, 27.1; HRMS (DART) m/z calcd for C18H19O4 [M+H]+: 299.1283, found: 299.1285。
Put the obtained solid (2.15 g, 9.7 mmol, 1.0 equivalent) in a round bottom flask, and then add phenol (1.0 g, 10.7 mmol, 1 equivalent), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride Salt (EDC · HCl: 2.0 g, 10.7 mmol, 1.1 eq), DMAP (237 mg, 1.9 mmol, 0.20 eq) and CH 2 Cl 2 (20 mL) were added. After stirring at room temperature for 3 hours, the reaction mixture was quenched with saturated NaHCO 3 aq and extracted 3 times with CH 2 Cl 2 . The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane / ethyl acetate = 20: 1) to give phenyl 3- (pivaloyloxy) benzoate as a white solid (2.56 g, 88%).
1 H NMR (CDCl 3 , 400 MHz) δ 8.07 (d, J = 8.0 Hz, 1H), 7.88 (s, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz , 2H), 7.34 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 1.36 (s, 9H); 13 C NMR (CDCl 3 , 100 MHz) δ 176.9, 164.3, 151.2, 150.8, 131.0, 129.54, 129.50, 127.4, 127.0, 126.0, 123.3, 121.6, 39.1, 27.1; HRMS (DART) m / z calcd for C 18 H 19 O 4 [M + H] + : 299.1283, found: 299.1285.

実施例1Example 1

Figure 2016027809
Figure 2016027809

[式中、Acはアセチル基である。n-Buはn−ブチル基である。以下同様である。]
J. Young(登録商標)Oリングタップを備えた20 mLのガラス容器に磁気攪拌子を入れ、Ni(OAc)2・4H2O(5.0 mg, 0.020 mmol, 5 mol%)を投入し、減圧下にヒートガンで乾燥した。その後、ガラス容器内を室温まで冷却した後に窒素(N2)ガスを充填した。この容器に、エステル化合物(1a)(0.40 mmol, 1.0当量)、ボロン酸誘導体(2a)(0.60 mmol, 1.5当量)、及びNa2CO3(84.8 mg, 0.8 mmol, 2.0当量)を入れた。この容器を真空にし、続いて窒素(N2)ガスを充填する操作を3回繰り返した。その後、この容器にP(n-Bu)3(19.0μL, 0.08mmol, 20mol%)及び無水トルエン(1.6 mL)を投入した。ガラス容器をOリングタップで密封した後、8ウェル反応ブロック中で、攪拌しながら150℃で24時間加熱した。反応混合物を室温に冷却した後、混合物を、酢酸エチル(EtOAc)を用いて短いシリカゲルパッドに通した。濾液を濃縮し、残渣をフラッシュカラムクロマトグラフィー(ヘキサン/ジエチルエーテル(Et2O)=2:1)に供し、目的物である3−(4−メトキシフェニル)ピリジン(化合物3Aa)を白色固体として得た(69.7 mg, 95%)。なお、本実施例は、後述の表1のentry 1に相当する。
1H NMR (CDCl3, 400 MHz) δ 8.82 (dd, J = 2.4, 0.8 Hz, 1H), 8.55 (dd, J = 4.8, 1.6 Hz, 1H), 7.83 (dd, J = 8.0 Hz, 1H), 7.53 (d, J = 9.2 Hz, 2H), 7.34 (dd, J = 8.0, 4.8 Hz, 1H), 7.02 (d, J = 9.2 Hz, 2H), 3.87 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 159.8, 148.1, 148.0, 136.3, 133.9, 130.3, 128.3, 123.6, 114.6, 55.5; HRMS (ESI) m/z calcd for C12H12NO [M+H]+: 186.0913, found: 186.0912。
[In the formula, Ac is an acetyl group. n-Bu is an n-butyl group. The same applies hereinafter. ]
Put a magnetic stir bar in a 20 mL glass container equipped with a J. Young (registered trademark) O-ring tap, charge Ni (OAc) 2 / 4H 2 O (5.0 mg, 0.020 mmol, 5 mol%), and reduce the pressure. It dried with the heat gun below. Thereafter, the inside of the glass container was cooled to room temperature and then filled with nitrogen (N 2 ) gas. The ester compound (1a) (0.40 mmol, 1.0 equivalent), boronic acid derivative (2a) (0.60 mmol, 1.5 equivalent), and Na 2 CO 3 (84.8 mg, 0.8 mmol, 2.0 equivalent) were placed in this container. The operation of evacuating the container and subsequently filling it with nitrogen (N 2 ) gas was repeated three times. Thereafter, P (n-Bu) 3 (19.0 μL, 0.08 mmol, 20 mol%) and anhydrous toluene (1.6 mL) were put into this container. The glass container was sealed with an O-ring tap and then heated at 150 ° C. for 24 hours with stirring in an 8-well reaction block. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad with ethyl acetate (EtOAc). The filtrate was concentrated, and the residue was subjected to flash column chromatography (hexane / diethyl ether (Et 2 O) = 2: 1) to give the desired product 3- (4-methoxyphenyl) pyridine (compound 3Aa) as a white solid. Obtained (69.7 mg, 95%). This example corresponds to entry 1 in Table 1 described later.
1 H NMR (CDCl 3 , 400 MHz) δ 8.82 (dd, J = 2.4, 0.8 Hz, 1H), 8.55 (dd, J = 4.8, 1.6 Hz, 1H), 7.83 (dd, J = 8.0 Hz, 1H) , 7.53 (d, J = 9.2 Hz, 2H), 7.34 (dd, J = 8.0, 4.8 Hz, 1H), 7.02 (d, J = 9.2 Hz, 2H), 3.87 (s, 3H); 13 C NMR ( CDCl 3 , 100 MHz) δ 159.8, 148.1, 148.0, 136.3, 133.9, 130.3, 128.3, 123.6, 114.6, 55.5; HRMS (ESI) m / z calcd for C 12 H 12 NO [M + H] + : 186.0913, found: 186.0912.

実施例2
実施例1において、触媒(Ni(OAc)2・4H2O)の量を3 mol%とし、反応時間を48時間とすること以外は同様に、カップリング反応を行った。その結果、収量73.4 mg、収率100%であった。
Example 2
In Example 1, the coupling reaction was performed in the same manner except that the amount of the catalyst (Ni (OAc) 2 .4H 2 O) was 3 mol% and the reaction time was 48 hours. As a result, the yield was 73.4 mg, and the yield was 100%.

実施例3
原料として、エステル化合物(1a)及びボロン酸化合物(2a)の代わりに種々の原料を使用して実施例1と同様の手法により(必要に応じて精製方法を適宜変更して)、以下の表1及び2に示す化合物を得た。なお、entry 15、45及び46では、Na2CO3の量を1.2当量とした。また、entry 17及び20では、塩基として、1当量のNaClを用いた。
Example 3
As raw materials, various raw materials were used instead of the ester compound (1a) and boronic acid compound (2a) by the same method as in Example 1 (the purification method was appropriately changed if necessary), and the following table: The compounds shown in 1 and 2 were obtained. In entries 15, 45 and 46, the amount of Na 2 CO 3 was 1.2 equivalents. In entries 17 and 20, 1 equivalent of NaCl was used as the base.

Figure 2016027809
Figure 2016027809

Figure 2016027809
Figure 2016027809

Figure 2016027809
Figure 2016027809

Figure 2016027809
Figure 2016027809

Figure 2016027809
Figure 2016027809

Figure 2016027809
Figure 2016027809

各化合物のスペクトルデータは以下のとおりであった。
化合物3Ba(3−(4−メチル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.84 (d, J = 2.0 Hz, 1H), 8.56 (dd, J = 4.8, 1.6 Hz, 1H), 7.85 (dd, J = 8.0, 2.0 Hz, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.34 (dd, J = 8.0, 4.8 Hz, 1H), 7.28 (d, J = 8.4 Hz, 2H), 2.41 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 148.1, 138.0, 136.5, 134.9, 134.1, 129.7, 126.9, 123.5, 21.1; HRMS (ESI) m/z calcd for C12H12N [M+H]+: 170.0964, found: 170.0961。
化合物3Ca(メチル−4−(ピリジン−3−イル)ベンゾエート):
1H NMR (CDCl3, 400 MHz) δ 8.89 (d, J = 1.6 Hz, 1H), 8.65 (dd, J = 4.8, 1.6 Hz, 1H), 8.15 (d, J = 8.8 Hz, 2H), 7.92 (dd, J = 8.0, 2.4 Hz, 1H), 7.66 (d, J = 8.8 Hz, 2H), 7.40 (dd, J = 8.0, 4.8 Hz, 1H), 3.96 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 166.6, 149.2, 148.3, 142.1, 135.4, 134.4, 130.3, 129.6, 127.0, 123.6, 52.1; HRMS (ESI) m/z calcd for C13H11NO2 [M+H]+: 214.0863, found: 214.0863。
The spectral data of each compound was as follows.
Compound 3Ba (3- (4-methyl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.84 (d, J = 2.0 Hz, 1H), 8.56 (dd, J = 4.8, 1.6 Hz, 1H), 7.85 (dd, J = 8.0, 2.0 Hz, 1H) , 7.47 (d, J = 8.4 Hz, 2H), 7.34 (dd, J = 8.0, 4.8 Hz, 1H), 7.28 (d, J = 8.4 Hz, 2H), 2.41 (s, 3H); 13 C NMR ( CDCl 3 , 100 MHz) δ 148.1, 138.0, 136.5, 134.9, 134.1, 129.7, 126.9, 123.5, 21.1; HRMS (ESI) m / z calcd for C 12 H 12 N [M + H] + : 170.0964, found: 170.0961.
Compound 3Ca (methyl-4- (pyridin-3-yl) benzoate):
1 H NMR (CDCl 3 , 400 MHz) δ 8.89 (d, J = 1.6 Hz, 1H), 8.65 (dd, J = 4.8, 1.6 Hz, 1H), 8.15 (d, J = 8.8 Hz, 2H), 7.92 (dd, J = 8.0, 2.4 Hz, 1H), 7.66 (d, J = 8.8 Hz, 2H), 7.40 (dd, J = 8.0, 4.8 Hz, 1H), 3.96 (s, 3H); 13 C NMR ( CDCl 3 , 100 MHz) δ 166.6, 149.2, 148.3, 142.1, 135.4, 134.4, 130.3, 129.6, 127.0, 123.6, 52.1; HRMS (ESI) m / z calcd for C 13 H 11 NO 2 [M + H] + : 214.0863, found: 214.0863.

化合物3Da(3−(4−ブチルフェニル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.84 (s, 1H), 8.56 (d, J = 4.8 Hz, 1H), 7.87 (dd, J = 8.0, 4.8 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.35 (dd, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 2.67 (t, J = 8.0 Hz, 2H), 1.64 (m, 2H), 1.38 (m, 2H), 0.95 (t, J = 7.8 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ 148.24, 148.19, 143.0, 136.6, 135.1, 134.1, 129.2, 127.0, 123.5, 35.3, 33.6, 22.4, 13.9; HRMS (ESI) m/z calcd for C15H18N [M+H]+: 212.1434, found: 212.1433。
化合物3Ea(3−(3,4−ジメトキシフェニル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.82 (d, J = 2.4 Hz, 1H), 8.56 (dd, J = 4.8, 2.0 Hz, 1H), 7.84 (dd, J = 8.0, 2.0 Hz, 1H), 7.34 (dd, J = 8.0, 4.8 Hz, 1H), 7.14 (dd, J = 8.4, 2.0 Hz, 1H), 7.08 (d, J = 2.0 Hz, 1H), 6.97 (d, J = 2.0 Hz, 1H), 3.97 (s, 3H), 3.93 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 149.3, 149.1, 148.0, 147.9, 136.4, 133.9, 130.6, 123.4, 119.5, 111.6, 110.1, 55.9; HRMS (ESI) m/z calcd for C13H14NO2 [M+H]+: 216.1019, found: 216.1020。
化合物3Fa(3−メシチルピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.59 (dd, J = 4.8, 1.6 Hz, 1H), 8.43 (d, J = 2.4 Hz, 1H), 7.50 (dd, J = 8.0, 1.6 Hz, 1H), 7.36 (dd, J = 8.0, 4.8 Hz, 1H), 6.97 (s, 2H), 2.34 (s, 3H), 2.00 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 150.3, 148.0, 137.5, 136.9, 136.6, 136.2, 135.0, 128.3, 123.3, 21.0, 20.8; HRMS (ESI) m/z calcd for C14H16N [M+H]+: 198.1277, found: 198.1273。
化合物3Ga(3−フェニルピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.86 (d, J = 2.4 Hz, 1H), 8.59 (dd, J = 5.2 Hz, 1H), 7.87 (dd, J = 8.0, 2.4 Hz, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.48 (dd, J = 8.0, 2.4 Hz, 2H), 7.41 (dd, J = 8.0, 5.2 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 148.4, 148.3, 137.8, 136.6, 134.3, 129.0, 128.1, 127.1, 123.5; HRMS (ESI) m/z calcd for C11H10N [M+H]+: 156.0808, found: 156.0805。
化合物3Ha(3−(4−((tert−ブチルジメチルシリル)オキシ)フェニル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.81 (d, J = 2.4 Hz, 1H), 8.54 (d, J = 4.8 Hz, 1H), 7.82 (dd, J = 8.0, 2.4 Hz, 1H), 7.46 (d, J = 6.8 Hz, 2H), 7.32 (dd, J = 8.0, 4.8 Hz, 1H), 6.94 (d, J = 6.8 Hz, 2H), 1.01 (s, 9H), 0.24 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 156.0, 148.0, 147.8, 136.3, 133.8, 130.8, 128.1, 123.4, 120.7, 25.6, 18.2, -4.4; HRMS (DART) m/z calcd for C17H24NOSi [M+H]+: 286.1627, found: 286.1621。
Compound 3Da (3- (4-butylphenyl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.84 (s, 1H), 8.56 (d, J = 4.8 Hz, 1H), 7.87 (dd, J = 8.0, 4.8 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.35 (dd, J = 8.0 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 2.67 (t, J = 8.0 Hz, 2H), 1.64 (m, 2H), 1.38 (m, 2H), 0.95 (t, J = 7.8 Hz, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 148.24, 148.19, 143.0, 136.6, 135.1, 134.1, 129.2, 127.0, 123.5, 35.3, 33.6 , 22.4, 13.9; HRMS (ESI) m / z calcd for C 15 H 18 N [M + H] + : 212.1434, found: 212.1433.
Compound 3Ea (3- (3,4-dimethoxyphenyl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.82 (d, J = 2.4 Hz, 1H), 8.56 (dd, J = 4.8, 2.0 Hz, 1H), 7.84 (dd, J = 8.0, 2.0 Hz, 1H) , 7.34 (dd, J = 8.0, 4.8 Hz, 1H), 7.14 (dd, J = 8.4, 2.0 Hz, 1H), 7.08 (d, J = 2.0 Hz, 1H), 6.97 (d, J = 2.0 Hz, 1H), 3.97 (s, 3H), 3.93 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 149.3, 149.1, 148.0, 147.9, 136.4, 133.9, 130.6, 123.4, 119.5, 111.6, 110.1, 55.9; HRMS (ESI) m / z calcd for C 13 H 14 NO 2 [M + H] + : 216.1019, found: 216.1020.
Compound 3Fa (3-mesitylpyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.59 (dd, J = 4.8, 1.6 Hz, 1H), 8.43 (d, J = 2.4 Hz, 1H), 7.50 (dd, J = 8.0, 1.6 Hz, 1H) , 7.36 (dd, J = 8.0, 4.8 Hz, 1H), 6.97 (s, 2H), 2.34 (s, 3H), 2.00 (s, 6H); 13 C NMR (CDCl 3 , 100 MHz) δ 150.3, 148.0 , 137.5, 136.9, 136.6, 136.2, 135.0, 128.3, 123.3, 21.0, 20.8; HRMS (ESI) m / z calcd for C 14 H 16 N [M + H] + : 198.1277, found: 198.1273.
Compound 3Ga (3-phenylpyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.86 (d, J = 2.4 Hz, 1H), 8.59 (dd, J = 5.2 Hz, 1H), 7.87 (dd, J = 8.0, 2.4 Hz, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.48 (dd, J = 8.0, 2.4 Hz, 2H), 7.41 (dd, J = 8.0, 5.2 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H) ; 13 C NMR (CDCl 3 , 100 MHz) δ 148.4, 148.3, 137.8, 136.6, 134.3, 129.0, 128.1, 127.1, 123.5; HRMS (ESI) m / z calcd for C 11 H 10 N [M + H] + : 156.0808, found: 156.0805.
Compound 3Ha (3- (4-((tert-butyldimethylsilyl) oxy) phenyl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.81 (d, J = 2.4 Hz, 1H), 8.54 (d, J = 4.8 Hz, 1H), 7.82 (dd, J = 8.0, 2.4 Hz, 1H), 7.46 (d, J = 6.8 Hz, 2H), 7.32 (dd, J = 8.0, 4.8 Hz, 1H), 6.94 (d, J = 6.8 Hz, 2H), 1.01 (s, 9H), 0.24 (s, 6H) ; 13 C NMR (CDCl 3 , 100 MHz) δ 156.0, 148.0, 147.8, 136.3, 133.8, 130.8, 128.1, 123.4, 120.7, 25.6, 18.2, -4.4; HRMS (DART) m / z calcd for C 17 H 24 NOSi [M + H] + : 286.1627, found: 286.1621.

化合物3Ia(N,N−ジメチル−3−(ピリジン−3−イル)アニリン):
1H NMR (CDCl3, 400 MHz) δ 8.85 (d, J = 2.4 Hz, 1H), 8.57 (dd, J =4.8, 1.6 Hz, 1H), 7.87 (dd, J = 8.0, 1.6 Hz, 1H), 7.36-7.31 (m, 2H), 6.91 (d, J =7.6 Hz, 1H), 6.88 (d, J = 2.8 Hz, 1H), 6.77 (dd, J = 8.4, 2.8 Hz, 1H), 3.00 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 150.9, 148.4, 148.2, 138.7, 137.5, 134.4, 129.7, 123.3, 115.4, 112.1, 111.1, 40.5; HRMS (ESI) m/z calcd for C13H15N2 [M+H]+: 199.1230, found: 199.1227。
化合物3Ja(3−(3−メトキシフェニル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.85 (s, 1H), 8.59 (d, J = 4.8 Hz, 1H), 7.86 (dd, J = 8.0, 2.4 Hz, 1H), 7.42-7.32 (m, 2H), 7.16 (d, J = 8.0, 2.4 Hz, 1H), 7.10 (s, 1H), 6.94 (d, J = 8.0, 2.4 Hz, 1H), 3.86 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 160.0, 148.6, 148.3, 139.2, 136.4, 134.3, 130.1, 123.4, 119.5, 113.3, 112.9, 55.3; HRMS (ESI) m/z calcd for C12H12ON [M+H]+: 186.0913, found: 186.0910。
化合物3Ka(3−(4−フルオロフェニル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.81 (s, 1H), 8.59 (d, J = 4.8 Hz, 1H), 7.82 (dd, J = 8.0, 2.0 Hz, 1H), 7.59-7.50 (m, 2H), 7.36 (dd, J = 8.0, 4.8 Hz, 1H), 7.20-7.11 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ 162.8 (d, J = 249 Hz), 148.4, 148.1, 135.6, 134.1, 133.8 (d, J = 3 Hz), 128.7 (d, J = 8 Hz), 123.9, 116.0 (d, J = 21 Hz); HRMS (ESI) m/z calcd for C11H9FN [M+H]+: 174.0714, found: 174.0711。
化合物3La(3−(ナフタレン−2−イル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.99 (d, J = 2.4 Hz, 1H), 8.63 (d, J = 4.8 Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 8.00 (dd, J = 8.0, 2.4 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.94-7.87 (m, 2H), 7.72 (dd, J = 8.8, 2.0 Hz, 1H), 7.58-7.49 (m, 2H), 7.40 (dd, J = 8.0, 4.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 148.6, 148.5, 136.6, 135.2, 134.6, 133.6, 132.9, 128.9, 128.2, 127.7, 126.6, 126.4, 126.2, 125.0, 123.6; HRMS (ESI) m/z calcd for C15H12N [M+H]+: 206.0964, found: 206.0964。
化合物3Ma(N,N−ジメチル−4−(ピリジン−3−イル)アニリン):
1H NMR (CDCl3, 400 MHz) δ 8.82 (s, 1H), 8.48 (d, J = 4.8 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.49 (d. J = 8.8 Hz, 2H), 7.30 (dd, J = 8.0, 4.8 Hz, 1H), 6.82 (d, J = 8.8 Hz, 2H), 3.01 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 150.4, 147.7, 147.1, 136.6, 133.2, 127.7, 125.4, 123.4, 112.8, 40.4; HRMS (ESI) m/z calcd for C13H15N2 [M+H]+: 199.1230, found: 199.1228。
Compound 3Ia (N, N-dimethyl-3- (pyridin-3-yl) aniline):
1 H NMR (CDCl 3 , 400 MHz) δ 8.85 (d, J = 2.4 Hz, 1H), 8.57 (dd, J = 4.8, 1.6 Hz, 1H), 7.87 (dd, J = 8.0, 1.6 Hz, 1H) , 7.36-7.31 (m, 2H), 6.91 (d, J = 7.6 Hz, 1H), 6.88 (d, J = 2.8 Hz, 1H), 6.77 (dd, J = 8.4, 2.8 Hz, 1H), 3.00 ( s, 6H); 13 C NMR (CDCl 3 , 100 MHz) δ 150.9, 148.4, 148.2, 138.7, 137.5, 134.4, 129.7, 123.3, 115.4, 112.1, 111.1, 40.5; HRMS (ESI) m / z calcd for C 13 H 15 N 2 [M + H] + : 199.1230, found: 199.1227.
Compound 3Ja (3- (3-methoxyphenyl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.85 (s, 1H), 8.59 (d, J = 4.8 Hz, 1H), 7.86 (dd, J = 8.0, 2.4 Hz, 1H), 7.42-7.32 (m, 2H), 7.16 (d, J = 8.0, 2.4 Hz, 1H), 7.10 (s, 1H), 6.94 (d, J = 8.0, 2.4 Hz, 1H), 3.86 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 160.0, 148.6, 148.3, 139.2, 136.4, 134.3, 130.1, 123.4, 119.5, 113.3, 112.9, 55.3; HRMS (ESI) m / z calcd for C 12 H 12 ON [M + H] + : 186.0913, found: 186.0910.
Compound 3Ka (3- (4-fluorophenyl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.81 (s, 1H), 8.59 (d, J = 4.8 Hz, 1H), 7.82 (dd, J = 8.0, 2.0 Hz, 1H), 7.59-7.50 (m, 2H), 7.36 (dd, J = 8.0, 4.8 Hz, 1H), 7.20-7.11 (m, 2H); 13 C NMR (CDCl 3 , 100 MHz) δ 162.8 (d, J = 249 Hz), 148.4, 148.1 , 135.6, 134.1, 133.8 (d, J = 3 Hz), 128.7 (d, J = 8 Hz), 123.9, 116.0 (d, J = 21 Hz); HRMS (ESI) m / z calcd for C 11 H 9 FN [M + H] + : 174.0714, found: 174.0711.
Compound 3La (3- (naphthalen-2-yl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.99 (d, J = 2.4 Hz, 1H), 8.63 (d, J = 4.8 Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 8.00 (dd , J = 8.0, 2.4 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.94-7.87 (m, 2H), 7.72 (dd, J = 8.8, 2.0 Hz, 1H), 7.58-7.49 ( m, 2H), 7.40 (dd, J = 8.0, 4.8 Hz, 1H); 13 C NMR (CDCl 3 , 100 MHz) δ 148.6, 148.5, 136.6, 135.2, 134.6, 133.6, 132.9, 128.9, 128.2, 127.7, 126.6, 126.4, 126.2, 125.0, 123.6; HRMS (ESI) m / z calcd for C 15 H 12 N [M + H] + : 206.0964, found: 206.0964.
Compound 3Ma (N, N-dimethyl-4- (pyridin-3-yl) aniline):
1 H NMR (CDCl 3 , 400 MHz) δ 8.82 (s, 1H), 8.48 (d, J = 4.8 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.49 (d.J = 8.8 Hz , 2H), 7.30 (dd, J = 8.0, 4.8 Hz, 1H), 6.82 (d, J = 8.8 Hz, 2H), 3.01 (s, 6H); 13 C NMR (CDCl 3 , 100 MHz) δ 150.4, 147.7, 147.1, 136.6, 133.2, 127.7, 125.4, 123.4, 112.8, 40.4; HRMS (ESI) m / z calcd for C 13 H 15 N 2 [M + H] + : 199.1230, found: 199.1228.

化合物3Na(3−(4−(トリフルオロメチル)フェニル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.87 (s, 1H), 8.66 (d, J = 4.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.8 Hz, 2H), 7.68 (d, J = 8.8 Hz, 2H), 7.41 (dd, J = 8.0, 4.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 149.3, 148.3, 141.3, 135.2, 134.4, 130.2 (q, J = 32 Hz), 127.4, 126.0 (q, J = 4 Hz), 124.0 (q, J = 277 Hz), 123.6; HRMS (ESI) m/z calcd for C12H9F3N [M+H]+: 224.0682, found: 224.0684。
化合物3Oa(3−(チオフェン−3−イル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.88 (s, 1H), 8.53 (d, J = 4.4 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.52 (dd, J = 2.8, 1.2 Hz, 1H), 7.44 (dd, J = 5.2, 2.8 Hz, 1H), 7.39 (dd, J = 5.2, 1.2 Hz, 1H), 7.31 (dd, J = 8.0, 4.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 148.2, 147.6, 138.7, 133.4, 131.4, 126.9, 125.8, 123.6, 121.3; HRMS (ESI) m/z calcd for C9H8NS [M+H]+: 162.0372, found: 162.0369。
化合物3Pa(3−(ピレン−1−イル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.88 (s, 1H), 8.72 (d, J = 4.8 Hz, 1H), 8.24-8.10 (m, 3H), 8.10-7.95 (m, 5H), 7.92 (m, 2H), 7.46 (dd, J = 8.8, 4.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 151.0, 148.4, 137.6, 136.7, 133.4, 131.3, 131.0, 130.7, 128.5, 128.0, 127.8, 127.4, 127.2, 126.1, 125.4, 125.0, 124.8, 124.69, 124.66, 124.2, 123.2; HRMS (DART) m/z calcd for C21H14N [M+H]+: 280.1126, found: 280.1122。
Compound 3Na (3- (4- (trifluoromethyl) phenyl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.87 (s, 1H), 8.66 (d, J = 4.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.8 Hz , 2H), 7.68 (d, J = 8.8 Hz, 2H), 7.41 (dd, J = 8.0, 4.0 Hz, 1H); 13 C NMR (CDCl 3 , 100 MHz) δ 149.3, 148.3, 141.3, 135.2, 134.4 , 130.2 (q, J = 32 Hz), 127.4, 126.0 (q, J = 4 Hz), 124.0 (q, J = 277 Hz), 123.6; HRMS (ESI) m / z calcd for C 12 H 9 F 3 N [M + H] + : 224.0682, found: 224.0684.
Compound 3Oa (3- (thiophen-3-yl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.88 (s, 1H), 8.53 (d, J = 4.4 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.52 (dd, J = 2.8, 1.2 Hz, 1H), 7.44 (dd, J = 5.2, 2.8 Hz, 1H), 7.39 (dd, J = 5.2, 1.2 Hz, 1H), 7.31 (dd, J = 8.0, 4.4 Hz, 1H); 13 C NMR (CDCl 3 , 100 MHz) δ 148.2, 147.6, 138.7, 133.4, 131.4, 126.9, 125.8, 123.6, 121.3; HRMS (ESI) m / z calcd for C 9 H 8 NS [M + H] + : 162.0372, found: 162.0369.
Compound 3Pa (3- (pyren-1-yl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.88 (s, 1H), 8.72 (d, J = 4.8 Hz, 1H), 8.24-8.10 (m, 3H), 8.10-7.95 (m, 5H), 7.92 ( m, 2H), 7.46 (dd, J = 8.8, 4.8 Hz, 1H); 13 C NMR (CDCl 3 , 100 MHz) δ 151.0, 148.4, 137.6, 136.7, 133.4, 131.3, 131.0, 130.7, 128.5, 128.0, 127.8, 127.4, 127.2, 126.1, 125.4, 125.0, 124.8, 124.69, 124.66, 124.2, 123.2; HRMS (DART) m / z calcd for C 21 H 14 N [M + H] + : 280.1126, found: 280.1122.

化合物3Qa((E)−3−(オクト−1−エン−1−イル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.56 (s, 1H), 8.42 (d, J = 4.4 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.21 (dd, J = 8.0, 4.4 Hz, 1H), 6.40-6.25 (m, 2H), 2.23 (q, J = 8.0 Hz, 2H), 1.52-1.43 (m, 2H), 1.40-1.32 (m, 6H), 0.88 (q, J = 6.8 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ 147.94, 147.86, 133.7, 133.5, 132.3, 126.2, 123.3, 33.1, 31.7, 29.1, 28.9, 22.6, 14.1; HRMS (ESI) m/z calcd for C13H20N [M+H]+: 190.1590, found: 190.1586。
化合物3Ab(5−(4−メトキシフェニル)−2−(トリフルオロメチル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.90 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.54 (d, J = 9.0, 2H), 7.03 (d, J = 9.0 Hz, 2H), 3.87 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 160.4, 148.0, 146.0 (J = 35 Hz), 139.0, 134.7, 128.6, 128.4, 121.7 (J = 275 Hz), 120.3, 114.8, 55.3; HRMS (DART) m/z calcd for C13H11F3NO [M+H]+: 254.0793, found: 254.0790。
化合物3Ac(3−(4−メトキシフェニル)キノリン):
1H NMR (CDCl3, 400 MHz) δ 9.16 (d, J = 2.4 Hz, 1H), 8.21 (d, J = 2.4 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.68 (dd, J = 8.4, 7.8 Hz, 1H), 7.63 (d, J = 9.2 Hz, 2H), 7.54 (dd, J = 8.4, 7.8 Hz, 1H), 7.03 (d, J = 9.2 Hz, 2H), 3.85 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 159.7, 149.8, 146.9, 133.3, 132.3, 130.2, 129.1, 129.0, 128.4, 128.0, 127.8, 126.8, 114.6, 55.3; HRMS (ESI) m/z calcd for C16H14NO [M+H]+: 236.1070, found: 236.1073。
化合物3Qc((E)−3−(オクト−1−エン−1−イル)キノリン):
1H NMR (CDCl3, 400 MHz) δ 8.97 (s, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.96 (s, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.63 (t, J = 8.8 Hz, 1H), 7.49 (t, J = 8.8 Hz, 1H), 6.54-6.40 (m, 2H), 2.27 (q, J = 8.0 Hz, 2H), 1.56-1.46 (m, 2H), 1.42-1.27 (m, 6H), 0.89 (q, J = 6.8 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ 149.3, 147.1, 134.0, 131.4, 130.7, 129.1, 128.7, 128.1, 127.6, 126.7, 126.5, 33.3, 31.7, 29.1, 28.9, 22.6, 14.1; HRMS (ESI) m/z calcd for C17H22N [M+H]+: 240.1747, found: 240.1752。
化合物3Ad(4−(4−メトキシフェニル)−2−フェニルキノリン):
1H NMR (CDCl3, 600 MHz) δ 8.23 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 7.2 Hz, 2H), 7.94 (d, J = 8.4 Hz, 1H), 7.79 (s, 1H), 7.71 (td, J = 8.4, 1.2 Hz, 1H), 7.54-7.42 (m, 6H), 7.07 (d, J = 8.4 Hz, 2H), 3.90 (s, 3H); 13C NMR (CDCl3, 150 MHz) δ 159.8, 156.9, 148.9, 148.8, 139.7, 130.8, 130.6, 130.1, 129.4, 129.2, 128.8, 127.5, 126.2, 125.9, 125.6, 119.3, 114.0, 55.4; HRMS (DART) m/z calcd for C22H18NO [M+H]+: 312.1388, found: 312.1389。
化合物3Ae(4−(4−メトキシフェニル)ピリジン):
1H NMR (CDCl3, 600 MHz) δ 8.62 (d, J = 6.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 6.4 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 3.85 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 160.5, 150.1, 147.7, 130.3, 128.1, 121.0, 114.5, 55.3; HRMS (ESI) m/z calcd for C12H12NO [M+H]+: 186.0913, found: 186.0910。
化合物3Af(2−(4−メトキシフェニル)フラン):
1H NMR (CDCl3, 400 MHz) δ 7.60 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 1.6 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.50 (d, J = 3.2 Hz, 1H), 6.43 (dd, J = 3.2, 1.6 Hz, 1H), 3.81 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 159.0, 154.0, 141.3, 125.2, 124.0, 114.0, 111.5, 103.3, 55.3; HRMS (ESI) m/z calcd for C11H11O2 [M+H]+: 175.0754, found: 175.0752。
化合物3Ag(3−(4−メトキシフェニル)チオフェン):
1H NMR (CDCl3, 400 MHz) δ 7.52 (d, J = 7.6 Hz, 2H), 7.38-7.30 (m, 3H), 6.92 (d, J = 7.6 Hz, 2H), 3.84 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 158.8, 142.0, 128.7, 127.5, 126.2, 126.0, 118.9, 114.1, 55.3; HRMS (DART) m/z calcd for C11H10OS [M+H]+: 252.1025, found: 252.1023。
Compound 3Qa ((E) -3- (Oct-1-en-1-yl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.56 (s, 1H), 8.42 (d, J = 4.4 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.21 (dd, J = 8.0, 4.4 Hz, 1H), 6.40-6.25 (m, 2H), 2.23 (q, J = 8.0 Hz, 2H), 1.52-1.43 (m, 2H), 1.40-1.32 (m, 6H), 0.88 (q, J = 6.8 Hz, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 147.94, 147.86, 133.7, 133.5, 132.3, 126.2, 123.3, 33.1, 31.7, 29.1, 28.9, 22.6, 14.1; HRMS (ESI) m / z calcd for C 13 H 20 N [M + H] + : 190.1590, found: 190.1586.
Compound 3Ab (5- (4-methoxyphenyl) -2- (trifluoromethyl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.90 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.54 (d, J = 9.0, 2H), 7.03 (d, J = 9.0 Hz, 2H), 3.87 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 160.4, 148.0, 146.0 (J = 35 Hz), 139.0, 134.7, 128.6 , 128.4, 121.7 (J = 275 Hz), 120.3, 114.8, 55.3; HRMS (DART) m / z calcd for C 13 H 11 F 3 NO [M + H] + : 254.0793, found: 254.0790.
Compound 3Ac (3- (4-methoxyphenyl) quinoline):
1 H NMR (CDCl 3 , 400 MHz) δ 9.16 (d, J = 2.4 Hz, 1H), 8.21 (d, J = 2.4 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.83 (d , J = 8.4 Hz, 1H), 7.68 (dd, J = 8.4, 7.8 Hz, 1H), 7.63 (d, J = 9.2 Hz, 2H), 7.54 (dd, J = 8.4, 7.8 Hz, 1H), 7.03 (d, J = 9.2 Hz, 2H), 3.85 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 159.7, 149.8, 146.9, 133.3, 132.3, 130.2, 129.1, 129.0, 128.4, 128.0, 127.8 , 126.8, 114.6, 55.3; HRMS (ESI) m / z calcd for C 16 H 14 NO [M + H] + : 236.1070, found: 236.1073.
Compound 3Qc ((E) -3- (Oct-1-en-1-yl) quinoline):
1 H NMR (CDCl 3 , 400 MHz) δ 8.97 (s, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.96 (s, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.63 (t, J = 8.8 Hz, 1H), 7.49 (t, J = 8.8 Hz, 1H), 6.54-6.40 (m, 2H), 2.27 (q, J = 8.0 Hz, 2H), 1.56-1.46 (m, 2H), 1.42-1.27 (m, 6H), 0.89 (q, J = 6.8 Hz, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 149.3, 147.1, 134.0, 131.4, 130.7, 129.1, 128.7, 128.1 , 127.6, 126.7, 126.5, 33.3, 31.7, 29.1, 28.9, 22.6, 14.1; HRMS (ESI) m / z calcd for C 17 H 22 N [M + H] + : 240.1747, found: 240.1752.
Compound 3Ad (4- (4-methoxyphenyl) -2-phenylquinoline):
1 H NMR (CDCl 3 , 600 MHz) δ 8.23 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 7.2 Hz, 2H), 7.94 (d, J = 8.4 Hz, 1H), 7.79 (s , 1H), 7.71 (td, J = 8.4, 1.2 Hz, 1H), 7.54-7.42 (m, 6H), 7.07 (d, J = 8.4 Hz, 2H), 3.90 (s, 3H); 13 C NMR ( (CDCl 3 , 150 MHz) δ 159.8, 156.9, 148.9, 148.8, 139.7, 130.8, 130.6, 130.1, 129.4, 129.2, 128.8, 127.5, 126.2, 125.9, 125.6, 119.3, 114.0, 55.4; HRMS (DART) m / z calcd for C 22 H 18 NO [M + H] + : 312.1388, found: 312.1389.
Compound 3Ae (4- (4-methoxyphenyl) pyridine):
1 H NMR (CDCl 3 , 600 MHz) δ 8.62 (d, J = 6.4 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 6.4 Hz, 2H), 7.00 (d , J = 8.4 Hz, 2H), 3.85 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 160.5, 150.1, 147.7, 130.3, 128.1, 121.0, 114.5, 55.3; HRMS (ESI) m / z calcd for C 12 H 12 NO [M + H] + : 186.0913, found: 186.0910.
Compound 3Af (2- (4-methoxyphenyl) furan):
1 H NMR (CDCl 3 , 400 MHz) δ 7.60 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 1.6 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.50 (d , J = 3.2 Hz, 1H), 6.43 (dd, J = 3.2, 1.6 Hz, 1H), 3.81 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 159.0, 154.0, 141.3, 125.2, 124.0 , 114.0, 111.5, 103.3, 55.3; HRMS (ESI) m / z calcd for C 11 H 11 O 2 [M + H] + : 175.0754, found: 175.0752.
Compound 3Ag (3- (4-methoxyphenyl) thiophene):
1 H NMR (CDCl 3 , 400 MHz) δ 7.52 (d, J = 7.6 Hz, 2H), 7.38-7.30 (m, 3H), 6.92 (d, J = 7.6 Hz, 2H), 3.84 (s, 3H) ; 13 C NMR (CDCl 3 , 100 MHz) δ 158.8, 142.0, 128.7, 127.5, 126.2, 126.0, 118.9, 114.1, 55.3; HRMS (DART) m / z calcd for C 11 H 10 OS [M + H] + : 252.1025, found: 252.1023.

化合物3Ah(2−(4−メトキシフェニル)チオフェン):
1H NMR (CDCl3, 400 MHz) δ 7.53 (d, J = 8.4 Hz, 2H), 7.21-7.16 (m, 2H), 7.03 (d, J = 4.4 Hz, 1H), 6.89 (d, J = 8.1 Hz, 2H), 3.81 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 159.1, 144.3, 127.9, 127.23, 127.16, 123.8, 122.0, 114.2, 55.3; HRMS (ESI) m/z calcd for C11H11OS [M+H]+: 191.0525, found: 191.0522。
化合物3Ai(2−(4−メトキシフェニル)ベンゾ[b]チオフェン):
1H NMR (CDCl3, 400 MHz) δ 7.80 (d, J = 8.0 Hz, 1H), 7.74 (dd, J = 7.2 Hz, 1H), 7.64 (d, J = 8.8 Hz, 2H), 7.42 (s, 1H), 7.36-7.25 (m, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 159.8, 144.1, 140.9, 139.1, 127.7, 124.4, 123.9, 123.2, 122.2, 118.2, 114.3, 55.4; HRMS (ESI) m/z calcd for C15H13OS [M+H]+: 241.0682, found: 241.0678。
化合物3Aj(4−(4−メトキシフェニル)−2−フェニルチアゾール):
1H NMR (CDCl3, 400 MHz) δ 8.03 (dd, J = 8.4, 2.0 Hz, 2H), 7.92 (d, J = 8.4 Hz, 2H), 7.47-7.38 (m, 3H), 7.31 (s, 1H), 6.96 (d, J = 7.2 Hz, 2H), 3.84 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 167.6, 159.6, 156.0, 133.8, 129.9, 128.9, 127.7, 127.5, 126.5, 114.0, 110.9, 55.3; HRMS (DART) m/z calcd for C16H14NOS [M+H]+: 268.0796, found: 268.0795。
化合物3Ak(メチル5−(4−メトキシフェニル)ニコチネート):
1H NMR (CDCl3, 400 MHz) δ 9.14 (s, 1H), 8.96 (d, J = 2.0 Hz, 1H), 8.43(d, J = 2.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H, 2H), 7.02 (d, J = 8.0 Hz, 2H), 3.98 (s, 3H), 3.86 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 165.8, 160.0, 151.3, 148.6, 135.9, 134.5, 128.8, 128.2, 125.8, 114.6, 55.3, 52.4; HRMS (DART) m/z calcd for C14H14NO3 [M+H]+: 244.0794, found: 244.0791。
化合物3Al(2−メトキシ−3−(4−メトキシフェニル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.12 (dd, J = 4.8, 1.2 Hz, 1H), 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 6.99-6.92 (m, 3H), 3.97 (s, 3H), 3.83 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 160.8, 159.0, 145.1, 138.1, 130.2, 129.0, 124.3, 117.1, 113.6, 55.2, 53.5; HRMS (ESI) m/z calcd for C13H14NO2 [M+H]+: 216.1019, found: 216.1020。
化合物3Am(N,N−ジエチル−5−(4−メトキシフェニル)ピリジン−2−アミン):
1H NMR (CDCl3, 400 MHz) δ 8.37 (d, J = 2.4 Hz, 1H), 7.60 (dd, J = 9.2, 2.8 Hz, 1H), 7.41 (d, J = 9.2 Hz, 2H), 6.95 (d, J = 9.2 Hz, 2H), 6.51 (d, J = 9.2 Hz, 1H), 3.82 (s, 3H), 3.52 (q, J = 7.2 Hz, 4H), 1.20 (t, J =7.2 Hz, 6H); 13C NMR (CDCl3, 100 MHz) δ 158.4, 156.4, 145.9, 135.5, 131.4, 126.9, 123.6, 114.2, 105.3, 55.3, 42.5, 13.0; HRMS (DART) m/z calcd for C16H21N2O [M+H]+: 257.1654, found: 257.1658。
化合物3An(4’−メトキシ−3−メチル−1,1’−ビフェニル):
1H NMR (CDCl3, 400 MHz) δ 7.51 (d, J = 9.2 Hz, 2H), 7.38-7.25 (m, 3H), 7.10 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 9.2 Hz, 2H), 3.80 (s, 3H), 2.39 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 159.0, 140.7, 138.2, 133.8, 128.6, 128.1, 127.5, 127.4, 123.8, 114.1, 55.2, 21.5; HRMS (DART) m/z calcd for C14H15O [M+H]+: 199.1123, found: 199.1120。
Compound 3Ah (2- (4-methoxyphenyl) thiophene):
1 H NMR (CDCl 3 , 400 MHz) δ 7.53 (d, J = 8.4 Hz, 2H), 7.21-7.16 (m, 2H), 7.03 (d, J = 4.4 Hz, 1H), 6.89 (d, J = 8.1 Hz, 2H), 3.81 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 159.1, 144.3, 127.9, 127.23, 127.16, 123.8, 122.0, 114.2, 55.3; HRMS (ESI) m / z calcd for C 11 H 11 OS [M + H] + : 191.0525, found: 191.0522.
Compound 3Ai (2- (4-methoxyphenyl) benzo [b] thiophene):
1 H NMR (CDCl 3 , 400 MHz) δ 7.80 (d, J = 8.0 Hz, 1H), 7.74 (dd, J = 7.2 Hz, 1H), 7.64 (d, J = 8.8 Hz, 2H), 7.42 (s , 1H), 7.36-7.25 (m, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 159.8, 144.1, 140.9, 139.1 , 127.7, 124.4, 123.9, 123.2, 122.2, 118.2, 114.3, 55.4; HRMS (ESI) m / z calcd for C 15 H 13 OS [M + H] + : 241.0682, found: 241.0678.
Compound 3Aj (4- (4-methoxyphenyl) -2-phenylthiazole):
1 H NMR (CDCl 3 , 400 MHz) δ 8.03 (dd, J = 8.4, 2.0 Hz, 2H), 7.92 (d, J = 8.4 Hz, 2H), 7.47-7.38 (m, 3H), 7.31 (s, 1H), 6.96 (d, J = 7.2 Hz, 2H), 3.84 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 167.6, 159.6, 156.0, 133.8, 129.9, 128.9, 127.7, 127.5, 126.5 , 114.0, 110.9, 55.3; HRMS (DART) m / z calcd for C 16 H 14 NOS [M + H] + : 268.0796, found: 268.0795.
Compound 3Ak (methyl 5- (4-methoxyphenyl) nicotinate):
1 H NMR (CDCl 3 , 400 MHz) δ 9.14 (s, 1H), 8.96 (d, J = 2.0 Hz, 1H), 8.43 (d, J = 2.0 Hz, 1H), 7.56 (d, J = 8.0 Hz , 1H, 2H), 7.02 (d, J = 8.0 Hz, 2H), 3.98 (s, 3H), 3.86 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 165.8, 160.0, 151.3, 148.6 , 135.9, 134.5, 128.8, 128.2, 125.8, 114.6, 55.3, 52.4; HRMS (DART) m / z calcd for C 14 H 14 NO 3 [M + H] + : 244.0794, found: 244.0791.
Compound 3Al (2-methoxy-3- (4-methoxyphenyl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.12 (dd, J = 4.8, 1.2 Hz, 1H), 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H) , 6.99-6.92 (m, 3H), 3.97 (s, 3H), 3.83 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 160.8, 159.0, 145.1, 138.1, 130.2, 129.0, 124.3, 117.1 113.6, 55.2, 53.5; HRMS (ESI) m / z calcd for C 13 H 14 NO 2 [M + H] + : 216.1019, found: 216.1020.
Compound 3Am (N, N-diethyl-5- (4-methoxyphenyl) pyridin-2-amine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.37 (d, J = 2.4 Hz, 1H), 7.60 (dd, J = 9.2, 2.8 Hz, 1H), 7.41 (d, J = 9.2 Hz, 2H), 6.95 (d, J = 9.2 Hz, 2H), 6.51 (d, J = 9.2 Hz, 1H), 3.82 (s, 3H), 3.52 (q, J = 7.2 Hz, 4H), 1.20 (t, J = 7.2 Hz , 6H); 13 C NMR (CDCl 3 , 100 MHz) δ 158.4, 156.4, 145.9, 135.5, 131.4, 126.9, 123.6, 114.2, 105.3, 55.3, 42.5, 13.0; HRMS (DART) m / z calcd for C 16 H 21 N 2 O [M + H] + : 257.1654, found: 257.1658.
Compound 3An (4′-methoxy-3-methyl-1,1′-biphenyl):
1 H NMR (CDCl 3 , 400 MHz) δ 7.51 (d, J = 9.2 Hz, 2H), 7.38-7.25 (m, 3H), 7.10 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 9.2 Hz, 2H), 3.80 (s, 3H), 2.39 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 159.0, 140.7, 138.2, 133.8, 128.6, 128.1, 127.5, 127.4, 123.8, 114.1 , 55.2, 21.5; HRMS (DART) m / z calcd for C 14 H 15 O [M + H] + : 199.1123, found: 199.1120.

化合物3Ao(1−(4−メトキシフェニル)ナフタレン):
1H NMR (CDCl3, 400 MHz) δ 7.92 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.85-7.35 (m, 6H), 6.99 (d, J =8.8 Hz, 2H), 3.83 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 158.9, 139.9, 133.8, 133.1, 131.8, 131.1, 128.2, 127.3, 126.9, 126.0, 125.9, 125.7, 125.4, 113.7, 55.3; HRMS (DART) m/z calcd for C17H15O [M+H]+: 235.1123, found: 235.1122。
化合物3Ap(2−(4−メトキシフェニル)−3−メチルチオフェン):
1H NMR (CDCl3, 400 MHz) δ 7.37 (d, J = 7.6 Hz, 2H), 7.13 (d, J = 5.6 Hz, 1H), 6.93 (d, J = 7.6 Hz, 2H), 6.88 (d, J = 5.6 Hz, 1H), 3.81 (s, 3H), 2.28 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 158.8, 137.6, 132.5, 130.9, 130.2, 127.1, 122.6, 113.9, 55.2, 14.8; HRMS (ESI) m/z calcd for C12H13OS [M+H]+: 205.0682, found: 205.0680。
化合物3Aq(2−(4−メトキシフェニル)−4H−クロメン−4−オン):
1H NMR (CDCl3, 400 MHz) δ 8.20 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 9.2 Hz, 2H), 7.65 (dd, J = 8.8, 7.2 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.38 (dd, J = 8.0, 7.2 Hz, 1H), 6.99 (d, J = 9.2 Hz, 2H), 6.71 (s, 1H), 3.86 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 178.2, 163.2, 162.3, 156.0, 133.4, 127.8, 125.5, 124.9, 123.8, 117.8, 114.3, 105.9, 55.4, 13.5; HRMS (DART) m/z calcd for C16H14O3 [M+H]+: 253.0865, found: 253.0861。
化合物3Gq(2−フェニル−4H−クロメン−4−オン):
1H NMR (CDCl3, 400 MHz) δ 8.22 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 7.6 Hz, 2H), 7.68 (dd, J = 8.0, 7.6 Hz, 1H), 7.60-7.46 (m, 4H), 7.40 (dd, J = 8.0, 7.6 Hz, 1H), 6.81 (s, 1H); 13C NMR (CDCl3, 100 MHz) δ 178.3, 163.2, 156.1, 133.7, 131.6, 131.5, 128.9, 126.2, 125.6, 125.1, 123.8, 118.0, 107.5; HRMS (ESI) m/z calcd for C15H11O [M+H]+: 223.0754, found: 223.0756。
Compound 3Ao (1- (4-methoxyphenyl) naphthalene):
1 H NMR (CDCl 3 , 400 MHz) δ 7.92 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.85-7.35 (m, 6H), 6.99 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 158.9, 139.9, 133.8, 133.1, 131.8, 131.1, 128.2, 127.3, 126.9, 126.0, 125.9, 125.7, 125.4, 113.7, 55.3; HRMS (DART) m / z calcd for C 17 H 15 O [M + H] + : 235.1123, found: 235.1122.
Compound 3Ap (2- (4-methoxyphenyl) -3-methylthiophene):
1 H NMR (CDCl 3 , 400 MHz) δ 7.37 (d, J = 7.6 Hz, 2H), 7.13 (d, J = 5.6 Hz, 1H), 6.93 (d, J = 7.6 Hz, 2H), 6.88 (d , J = 5.6 Hz, 1H), 3.81 (s, 3H), 2.28 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 158.8, 137.6, 132.5, 130.9, 130.2, 127.1, 122.6, 113.9, 55.2, 14.8; HRMS (ESI) m / z calcd for C 12 H 13 OS [M + H] + : 205.0682, found: 205.0680.
Compound 3Aq (2- (4-methoxyphenyl) -4H-chromen-4-one):
1 H NMR (CDCl 3 , 400 MHz) δ 8.20 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 9.2 Hz, 2H), 7.65 (dd, J = 8.8, 7.2 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.38 (dd, J = 8.0, 7.2 Hz, 1H), 6.99 (d, J = 9.2 Hz, 2H), 6.71 (s, 1H), 3.86 (s, 3H) ; 13 C NMR (CDCl 3 , 100 MHz) δ 178.2, 163.2, 162.3, 156.0, 133.4, 127.8, 125.5, 124.9, 123.8, 117.8, 114.3, 105.9, 55.4, 13.5; HRMS (DART) m / z calcd for C 16 H 14 O 3 [M + H] + : 253.0865, found: 253.0861.
Compound 3Gq (2-phenyl-4H-chromen-4-one):
1 H NMR (CDCl 3 , 400 MHz) δ 8.22 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 7.6 Hz, 2H), 7.68 (dd, J = 8.0, 7.6 Hz, 1H), 7.60 -7.46 (m, 4H), 7.40 (dd, J = 8.0, 7.6 Hz, 1H), 6.81 (s, 1H); 13 C NMR (CDCl 3 , 100 MHz) δ 178.3, 163.2, 156.1, 133.7, 131.6, 131.5, 128.9, 126.2, 125.6, 125.1, 123.8, 118.0, 107.5; HRMS (ESI) m / z calcd for C 15 H 11 O [M + H] + : 223.0754, found: 223.0756.

化合物3Ar(4’−メトキシ−3,5−ジメチル−1,1’−ビフェニル):
1H NMR (CDCl3, 400 MHz) δ 7.49 (d. J = 9.2 Hz, 2H), 7.16 (s, 2H), 6.97-6.91 (m, 3H), 3.81 (s, 3H), 2.35 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ 159.0, 140.8, 138.1, 133.9, 128.3, 128.1, 124.6, 114.0, 55.2, 21.4; HRMS (DART) m/z calcd for C15H17O [M+H]+: 213.1279, found: 213.1277。
化合物3As(3−フルオロ−5−(4−メトキシフェニル)ピリジン):
1H NMR (CDCl3, 400 MHz) δ 8.62(s, 1H), 8.39 (s, 1H), 7.54-7.47 (m, 3H), 6.99 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 160.0, 159.6 (d, J = 260 Hz), 143.6 (d, J = 4 Hz), 137.7 (d, J = 4 Hz), 135.7 (d, J = 24 Hz), 128.5, 128.2, 120.2 (d, J = 19 Hz), 114.5, 55.2; HRMS (ESI) m/z calcd for C12H11FNO [M+H]+: 204.0819, found: 204.0820。
化合物3At(4−(4−メトキシフェニル)オキサゾール):
1H NMR (CDCl3, 400 MHz) δ 7.91 (s, 1H), 7.86 (s, 1H), 7.68 (d, J = 8.4 Hz, 2H), 6.95 (d. J = 8.4 Hz, 2H), 3.85 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 159.6, 151.2, 140.2, 132.6, 126.9, 123.4, 114.2, 55.3; HRMS (ESI) m/z calcd for C10H10NO2 [M+H]+: 176.0706, found: 176.0704。
化合物3Au(3−(4−メトキシフェニル)フラン):
1H NMR (CDCl3, 400 MHz) δ 7.65 (d, J = 1.6 Hz, 1H), 7.44 (t, J = 1.6 Hz, 1H), 7.40 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.64 (d, J = 1.6 Hz, 1H), 3.81 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 158.7, 143.5, 137.6, 127.0, 126.0, 125.0, 114.2, 108.8, 55.3; HRMS (ESI) m/z calcd for C11H11O2 [M+H]+: 175.0754, found: 175.0752。
化合物3Av(4−(4−メトキシフェニル)−2−(4−メチルピペラジン−1−イル)チアゾール):
1H NMR (CDCl3, 400 MHz) δ 7.76 (d, J = 8.4 Hz, 2H), 6.90 (s, 1H), 3.82 (s, 3H), 3.56 (t, J = 5.2 Hz, 4H), 2.54 (t, J = 5.2 Hz, 4H), 2.35 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 170.9, 159.2, 151.6, 128.1, 127.3, 113.8, 99.6, 55.2, 54.5, 48.2, 46.2; HRMS (DART) m/z calcd for C15H20N3OS [M+H]+: 290.1327, found: 290.1329。
化合物3Cv(メチル4−(2−(4−メチルピペラジン−1−イル)チアゾール−4−イル)ベンゾエート):
1H NMR (CDCl3, 400 MHz) δ 8.03 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 6.91 (s, 1H), 3.92 (s, 3H), 3.59 (t, J = 5.2 Hz, 4H), 2.55 (t, J = 5.2 Hz, 4H), 2.36 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 171.0, 167.0, 150.8, 139.1, 129.9, 128.8, 125.8, 103.7, 54.2, 52.0, 48.3, 46.2; HRMS (DART) m/z calcd for C16H20N3O2S [M+H]+: 318.1276, found: 318.1275。
化合物3Aw(2−(4−メトキシフェニル)ナフタレン):
1H NMR (CDCl3, 400 MHz) δ 7.98 (s, 1H), 7.91-7.82 (m, 3H), 7.71 (dd, J = 8.4, 1.6 Hz, 1H), 7.65 (d, J = 8.8 Hz, 2H), 7.52-7.42 (m, 2H), 7.01 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 159.2, 138.1, 133.7, 133.6, 132.3, 128.4, 128.3, 128.0, 127.6, 126.2, 125.6, 125.4, 125.0, 114.3, 55.4; HRMS (DART) m/z calcd for C17H15O [M+H]+: 235.1123, found: 235.1120。
化合物3Ax(2,4’−ジメトキシ−1,1’−ビフェニル):
1H NMR (CDCl3, 400 MHz) δ 7.46 (d, J = 8.8 Hz, 2H), 7.32-7.25 (m, 2H), 7.00 (dd, J = 8.0, 7.2 Hz, 1H), 6.97-6.91 (m, 3H), 3.82 (s, 3H), 3.79 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 158.6, 156.4, 130.8, 130.63, 130.55, 130.2, 128.1, 120.8, 113.4, 111.1, 55.5, 55.2; HRMS (DART) m/z calcd for C14H15O2 [M+H]+: 215.1072, found: 215.1076。
化合物3Aab(4−メトキシ−4’−メチル−1,1’−ビフェニル):
1H NMR (CDCl3, 400 MHz) δ 7.50 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 2.38 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 158.9, 137.9, 136.3, 133.7, 129.4, 127.9, 126.6, 114.1, 55.3, 21.0; HRMS (DART) m/z calcd for C14H15O [M+H]+: 199.1123, found: 119.1121。
化合物3Aac(4−フルオロ−4’−メトキシ−1,1’−ビフェニル):
1H NMR (CDCl3, 400 MHz) δ 7.51-7.43 (m, 4H), 7.12-7.06 (m, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 162.1 (d, J = 249 Hz), 159.1, 136.9 (d, J = 4 Hz), 132.8, 128.2 (d, J = 8 Hz), 128.0, 115.5 (d, J = 21 Hz), 114.2, 55.3; HRMS (DART) m/z calcd for C13H12FO [M+H]+: 203.0872, found: 203.0870。
化合物3Aad(メチル4’−メトキシ−[1,1’−ビフェニル]−4−カルボキシレート):
1H NMR (CDCl3, 400 MHz) δ 8.07 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 3.92 (s, 3H), 3.85 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 167.0, 159.8, 145.1, 132.3, 130.0, 128.3, 128.2, 126.4, 114.3, 55.3, 52.0; HRMS (DART) m/z calcd for C15H15O3 [M+H]+: 243.1021, found: 243.1019。
化合物3Aae(4−メトキシ−4’−(トリフルオロメチル)−1,1’−ビフェニル):
1H NMR (CDCl3, 400 MHz) δ 7.67-7.62 (m, 4H), 7.53 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 159.8, 144.3, 132.1, 128.7 (q, J = 33 Hz), 128.3, 126.8, 125.7 (q, J = 4 Hz), 124.4 (q, J = 276 Hz), 114.4, 55.3; HRMS (DART) m/z calcd for C14H12F3O [M+H]+: 253.0840, found: 253.0838。
化合物3Aaf(1−ベンジル−4−メトキシベンゼン):
1H NMR (CDCl3, 400 MHz) δ 7.27 (dd, J = 7.6, 7.2 Hz, 2H), 7.21-7.15 (m, 3H), 7.10 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 3.92 (s, 2H), 3.78 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 157.9, 141.6, 133.2, 129.8, 128.8, 128.4, 126.0, 113.9, 55.2, 41.0; HRMS (DART) m/z calcd for C14H15O [M+H]+: 199.1123, found: 199.1122。
Compound 3Ar (4′-methoxy-3,5-dimethyl-1,1′-biphenyl):
1 H NMR (CDCl 3 , 400 MHz) δ 7.49 (d.J = 9.2 Hz, 2H), 7.16 (s, 2H), 6.97-6.91 (m, 3H), 3.81 (s, 3H), 2.35 (s, 6H); 13 C NMR (CDCl 3 , 100 MHz) δ 159.0, 140.8, 138.1, 133.9, 128.3, 128.1, 124.6, 114.0, 55.2, 21.4; HRMS (DART) m / z calcd for C 15 H 17 O (M + H] + : 213.1279, found: 213.1277.
Compound 3As (3-fluoro-5- (4-methoxyphenyl) pyridine):
1 H NMR (CDCl 3 , 400 MHz) δ 8.62 (s, 1H), 8.39 (s, 1H), 7.54-7.47 (m, 3H), 6.99 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 160.0, 159.6 (d, J = 260 Hz), 143.6 (d, J = 4 Hz), 137.7 (d, J = 4 Hz), 135.7 (d, J = 24 Hz), 128.5, 128.2, 120.2 (d, J = 19 Hz), 114.5, 55.2; HRMS (ESI) m / z calcd for C 12 H 11 FNO [M + H] + : 204.0819, found: 204.0820 .
Compound 3At (4- (4-methoxyphenyl) oxazole):
1 H NMR (CDCl 3 , 400 MHz) δ 7.91 (s, 1H), 7.86 (s, 1H), 7.68 (d, J = 8.4 Hz, 2H), 6.95 (d. J = 8.4 Hz, 2H), 3.85 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 159.6, 151.2, 140.2, 132.6, 126.9, 123.4, 114.2, 55.3; HRMS (ESI) m / z calcd for C 10 H 10 NO 2 [M + H] + : 176.0706, found: 176.0704.
Compound 3Au (3- (4-methoxyphenyl) furan):
1 H NMR (CDCl 3 , 400 MHz) δ 7.65 (d, J = 1.6 Hz, 1H), 7.44 (t, J = 1.6 Hz, 1H), 7.40 (d, J = 8.8 Hz, 2H), 6.91 (d , J = 8.8 Hz, 2H), 6.64 (d, J = 1.6 Hz, 1H), 3.81 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 158.7, 143.5, 137.6, 127.0, 126.0, 125.0 , 114.2, 108.8, 55.3; HRMS (ESI) m / z calcd for C 11 H 11 O 2 [M + H] + : 175.0754, found: 175.0752.
Compound 3Av (4- (4-methoxyphenyl) -2- (4-methylpiperazin-1-yl) thiazole):
1 H NMR (CDCl 3 , 400 MHz) δ 7.76 (d, J = 8.4 Hz, 2H), 6.90 (s, 1H), 3.82 (s, 3H), 3.56 (t, J = 5.2 Hz, 4H), 2.54 (t, J = 5.2 Hz, 4H), 2.35 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 170.9, 159.2, 151.6, 128.1, 127.3, 113.8, 99.6, 55.2, 54.5, 48.2, 46.2 HRMS (DART) m / z calcd for C 15 H 20 N 3 OS [M + H] + : 290.1327, found: 290.1329.
Compound 3Cv (methyl 4- (2- (4-methylpiperazin-1-yl) thiazol-4-yl) benzoate):
1 H NMR (CDCl 3 , 400 MHz) δ 8.03 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 6.91 (s, 1H), 3.92 (s, 3H), 3.59 (t, J = 5.2 Hz, 4H), 2.55 (t, J = 5.2 Hz, 4H), 2.36 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 171.0, 167.0, 150.8, 139.1, 129.9 , 128.8, 125.8, 103.7, 54.2, 52.0, 48.3, 46.2; HRMS (DART) m / z calcd for C 16 H 20 N 3 O 2 S [M + H] + : 318.1276, found: 318.1275.
Compound 3Aw (2- (4-methoxyphenyl) naphthalene):
1 H NMR (CDCl 3 , 400 MHz) δ 7.98 (s, 1H), 7.91-7.82 (m, 3H), 7.71 (dd, J = 8.4, 1.6 Hz, 1H), 7.65 (d, J = 8.8 Hz, 2H), 7.52-7.42 (m, 2H), 7.01 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 159.2, 138.1, 133.7, 133.6, 132.3, 128.4, 128.3, 128.0, 127.6, 126.2, 125.6, 125.4, 125.0, 114.3, 55.4; HRMS (DART) m / z calcd for C 17 H 15 O [M + H] + : 235.1123, found: 235.1120.
Compound 3Ax (2,4′-dimethoxy-1,1′-biphenyl):
1 H NMR (CDCl 3 , 400 MHz) δ 7.46 (d, J = 8.8 Hz, 2H), 7.32-7.25 (m, 2H), 7.00 (dd, J = 8.0, 7.2 Hz, 1H), 6.97-6.91 ( m, 3H), 3.82 (s, 3H), 3.79 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 158.6, 156.4, 130.8, 130.63, 130.55, 130.2, 128.1, 120.8, 113.4, 111.1, 55.5, 55.2; HRMS (DART) m / z calcd for C 14 H 15 O 2 [M + H] + : 215.1072, found: 215.1076.
Compound 3Aab (4-methoxy-4′-methyl-1,1′-biphenyl):
1 H NMR (CDCl 3 , 400 MHz) δ 7.50 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.95 (d , J = 8.8 Hz, 2H), 3.84 (s, 3H), 2.38 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 158.9, 137.9, 136.3, 133.7, 129.4, 127.9, 126.6, 114.1, 55.3, 21.0; HRMS (DART) m / z calcd for C 14 H 15 O [M + H] + : 199.1123, found: 119.1121.
Compound 3Aac (4-fluoro-4′-methoxy-1,1′-biphenyl):
1 H NMR (CDCl 3 , 400 MHz) δ 7.51-7.43 (m, 4H), 7.12-7.06 (m, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 162.1 (d, J = 249 Hz), 159.1, 136.9 (d, J = 4 Hz), 132.8, 128.2 (d, J = 8 Hz), 128.0, 115.5 (d, J = 21 Hz), 114.2, 55.3; HRMS (DART) m / z calcd for C 13 H 12 FO [M + H] + : 203.0872, found: 203.0870.
Compound 3Aad (methyl 4′-methoxy- [1,1′-biphenyl] -4-carboxylate):
1 H NMR (CDCl 3 , 400 MHz) δ 8.07 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 6.98 (d , J = 8.4 Hz, 2H), 3.92 (s, 3H), 3.85 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 167.0, 159.8, 145.1, 132.3, 130.0, 128.3, 128.2, 126.4, 114.3, 55.3, 52.0; HRMS (DART) m / z calcd for C 15 H 15 O 3 [M + H] + : 243.1021, found: 243.1019.
Compound 3Aae (4-methoxy-4 ′-(trifluoromethyl) -1,1′-biphenyl):
1 H NMR (CDCl 3 , 400 MHz) δ 7.67-7.62 (m, 4H), 7.53 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H) ; 13 C NMR (CDCl 3 , 100 MHz) δ 159.8, 144.3, 132.1, 128.7 (q, J = 33 Hz), 128.3, 126.8, 125.7 (q, J = 4 Hz), 124.4 (q, J = 276 Hz ), 114.4, 55.3; HRMS (DART) m / z calcd for C 14 H 12 F 3 O [M + H] + : 253.0840, found: 253.0838.
Compound 3Aaf (1-benzyl-4-methoxybenzene):
1 H NMR (CDCl 3 , 400 MHz) δ 7.27 (dd, J = 7.6, 7.2 Hz, 2H), 7.21-7.15 (m, 3H), 7.10 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 3.92 (s, 2H), 3.78 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 157.9, 141.6, 133.2, 129.8, 128.8, 128.4, 126.0, 113.9, 55.2 , 41.0; HRMS (DART) m / z calcd for C 14 H 15 O [M + H] + : 199.1123, found: 199.1122.

なお、上記entry 40を160℃で行うと、収率は47%であり、上記entry 41を160℃で行うと、収率は51%であった。   When the entry 40 was performed at 160 ° C., the yield was 47%, and when the entry 41 was performed at 160 ° C., the yield was 51%.

比較例1
基質として、エステル化合物ではなく、カルボン酸である
Comparative Example 1
The substrate is not an ester compound but a carboxylic acid

Figure 2016027809
Figure 2016027809

を用いて実施例1と同様に実験を行ったところ、カップリング反応は進行しなかった。 When the experiment was conducted in the same manner as in Example 1, the coupling reaction did not proceed.

実施例4
比較例1のように、カルボン酸を使用する場合には、エステル化した後に、実施例3のentry 25等にしたがってカップリング反応を進行させることができることが分かった。具体的には、以下のとおりである。
Example 4
When using carboxylic acid as in Comparative Example 1, it was found that the coupling reaction can proceed according to entry 25 of Example 3 after esterification. Specifically, it is as follows.

Figure 2016027809
Figure 2016027809

[式中、Tfはトリフルオロメチルスルホニル基である。Meはメチル基である。以下同様である。]
磁気撹拌棒を入れたJ.Young(登録商標)O-リングタップ付きの20mLのガラス容器を減圧下にヒートガンで乾燥し、室温まで冷却した後、N2ガスを充填した。ここに、チオフェン-2-カルボン酸(51.3mg, 0.40mmol)、ジフェニルヨードニウムトリフレート(172.0mg, 0.40mmol, 1当量)、K2CO3(55.2mg, 0.40mmol, 1当量)、及び次いでトルエン(2.0mL)を添加した。容器をO-リングタップで密閉し、攪拌しながら8ウェル反応ブロック内で、130℃で2時間加熱した。反応混合物を室温まで冷却した後、この混合物を減圧下に濃縮してトルエンを除去し、ヨードベンゼンを得た。
[Wherein Tf is a trifluoromethylsulfonyl group. Me is a methyl group. The same applies hereinafter. ]
A 20 mL glass container with a J. Young® O-ring tap with a magnetic stir bar was dried with a heat gun under reduced pressure, cooled to room temperature, and charged with N 2 gas. Here, thiophene-2-carboxylic acid (51.3 mg, 0.40 mmol), diphenyliodonium triflate (172.0 mg, 0.40 mmol, 1 equivalent), K 2 CO 3 (55.2 mg, 0.40 mmol, 1 equivalent), and then toluene (2.0 mL) was added. The vessel was sealed with an O-ring tap and heated at 130 ° C. for 2 hours in an 8-well reaction block with stirring. After the reaction mixture was cooled to room temperature, the mixture was concentrated under reduced pressure to remove toluene and obtain iodobenzene.

得られた粗生成物を含有する同じ管に、Ni(OAc)2(3.5mg, 0.02mmol, 5mol%)、p-メトキシフェニルボロン酸(0.60mmol, 91.9g, 1.5当量)、及びNa2CO3(84.8mg, 0.8mmol, 2.0当量)を添加した。容器は、真空にしてN2ガスを再充填することを3回行った。ここに、P(n-Bu)3(19.0μL, 0.08mmol, 20mol%)及び無水トルエン(1.6mL)を加えた。容器をO-リングタップで密閉し、8ウェル反応ブロック内で攪拌しながら150℃で24時間加熱した。反応混合物を室温まで冷却した後、酢酸エチル(EtOAc)を用いて短いシリカゲルパッドに通した。濾液を濃縮し、残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=100: 1)で精製し、2-(4-メトキシフェニル)チオフェンを白色固体として得た(46.2mg, 2工程で61%)。To the same tube containing the resulting crude product, Ni (OAc) 2 (3.5 mg, 0.02 mmol, 5 mol%), p-methoxyphenylboronic acid (0.60 mmol, 91.9 g, 1.5 eq), and Na 2 CO 3 (84.8 mg, 0.8 mmol, 2.0 eq) was added. The container was evacuated and refilled with N 2 gas three times. To this, P (n-Bu) 3 (19.0 μL, 0.08 mmol, 20 mol%) and anhydrous toluene (1.6 mL) were added. The vessel was sealed with an O-ring tap and heated at 150 ° C. for 24 hours with stirring in an 8-well reaction block. The reaction mixture was cooled to room temperature and then passed through a short silica gel pad with ethyl acetate (EtOAc). The filtrate was concentrated and the residue was purified by column chromatography (hexane / ethyl acetate = 100: 1) to give 2- (4-methoxyphenyl) thiophene as a white solid (46.2 mg, 61% over 2 steps).

実施例5
本発明のカップリング反応を行った後に、他のカップリング反応(例えば非特許文献1の方法)と組合せることで、複雑な化合物を合成することも可能であった。具体的には、以下のとおりである。
Example 5
After performing the coupling reaction of the present invention, it was possible to synthesize complex compounds by combining with other coupling reactions (for example, the method of Non-Patent Document 1). Specifically, it is as follows.

Figure 2016027809
Figure 2016027809

磁気撹拌棒を入れたJ. Young(登録商標)O-リングタップ付きの20mLのガラス容器にNi(OAc)2・4H2O(5.0mg, 0.020mmol, 5mol%)を添加し、減圧下にヒートガンで乾燥し、室温まで冷却した後N2ガスで充填した。この容器にフェニルアレーンカルボキシレート(フェニル3-(ピバロイルオキシ)ベンゾエート)(0.40mmol, 1.0当量)、アリールボロン酸(p-メトキシフェニルボロン酸)(0.60mmol, 1.5当量)、及びNa2CO3(84.8mg, 0.8mmol, 2.0当量)を加えた。容器は、真空にしてからN2ガスを再充填することを3回行った。ここに、P(n-Bu)3(20μL, 0.08mmol, 20mol%)及び無水トルエン(1.6mL)を加えた。容器をO-リングタップで密閉し、8ウェル反応ブロック内で攪拌しながら150℃で24時間加熱した。反応混合物を室温まで冷却した後、混合物を酢酸エチル(EtOAc)を用いて短いシリカゲルパッドに通した。濾液を濃縮し、残渣をフラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=100: 1)及びGPCに供し、ビアリール生成物を無色油として得た(84.2mg, 74%)。
1H NMR (CDCl3, 400 MHz) δ 7.51 (d, J = 8.8 Hz, 2H), 7.41-7,37 (m, 2H), 7.22 (s, 1H), 7.01-6.98 (m, 1H), 6.96 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 1.39 (s, 9H); 13C NMR (CDCl3, 100 MHz) δ 177.2, 159.5, 151.6, 142.5, 132.9, 129.7, 128.3, 124.0, 119.9, 119.7, 114.3, 55.4, 39.2, 27.3; HRMS (DART) m/z calcd for C18H21O3 [M+H]+: 285.1491, found: 285.1494。
Add Ni (OAc) 2 · 4H 2 O (5.0 mg, 0.020 mmol, 5 mol%) to a 20 mL glass container with a J. Young® O-ring tap with a magnetic stir bar and under vacuum After drying with a heat gun, cooling to room temperature, it was filled with N 2 gas. To this vessel was added phenylarene carboxylate (phenyl 3- (pivaloyloxy) benzoate) (0.40 mmol, 1.0 eq), arylboronic acid (p-methoxyphenylboronic acid) (0.60 mmol, 1.5 eq), and Na 2 CO 3 (84.8 mg, 0.8 mmol, 2.0 eq.) was added. The container was evacuated and then refilled with N 2 gas three times. To this, P (n-Bu) 3 (20 μL, 0.08 mmol, 20 mol%) and anhydrous toluene (1.6 mL) were added. The vessel was sealed with an O-ring tap and heated at 150 ° C. for 24 hours with stirring in an 8-well reaction block. After the reaction mixture was cooled to room temperature, the mixture was passed through a short silica gel pad with ethyl acetate (EtOAc). The filtrate was concentrated and the residue was subjected to flash column chromatography (hexane / ethyl acetate = 100: 1) and GPC to give the biaryl product as a colorless oil (84.2 mg, 74%).
1 H NMR (CDCl 3 , 400 MHz) δ 7.51 (d, J = 8.8 Hz, 2H), 7.41-7,37 (m, 2H), 7.22 (s, 1H), 7.01-6.98 (m, 1H), 6.96 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 1.39 (s, 9H); 13 C NMR (CDCl 3 , 100 MHz) δ 177.2, 159.5, 151.6, 142.5, 132.9, 129.7, 128.3 , 124.0, 119.9, 119.7, 114.3, 55.4, 39.2, 27.3; HRMS (DART) m / z calcd for C 18 H 21 O 3 [M + H] + : 285.1491, found: 285.1494.

Figure 2016027809
Figure 2016027809

[式中、codは1,5-シクロオクタジエンである。dcyptは [Wherein cod is 1,5-cyclooctadiene. dcypt

Figure 2016027809
Figure 2016027809

である。以下同様である。]
磁気撹拌棒J. Young(登録商標)O-リングタップを備えた20mLのガラス容器にCs2CO3(146.6mg, 0.45mmol, 1.5当量)を入れ、ヒートガンで減圧下に乾燥し、室温に冷却した後、N2ガスを充填した。この容器に、フェニルアレーンカルボキシレート(前記ビアリール生成物)(85.3mg, 0.30mmol, 1.0当量)及び2,3-ビス(ジシクロヘキシルホスフィン)チオフェン(dcypt: 28.3mg, 0.06mmol, 20mol%)を添加し、アルゴン雰囲気のグローブボックスに入れた。この反応容器に、ビス(1,5−シクロオクタジエン)ニッケル(0)(Ni(cod)2: 8.3mg, 0.03mmol, 10mol%)を加え、グローブボックスから反応容器を取り出した。ここに、ベンゾオキサゾール(47.6mg, 0.40mmol, 1.3当量)及び乾燥1,4-ジオキサン(1.5mL)をN2を吹き込みながら加えた。容器をO-リングタップで密閉し、8ウェル反応ブロック内で攪拌しながら130℃で12時間加熱した。反応混合物を室温まで冷却した後、酢酸エチル(EtOAc)を用いて短いシリカゲルパッドに通した。濾液を濃縮し、残渣をフラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=100: 1)で精製し、C-H/C-Oカップリング生成物を白色固体として得た(76.8g, 85%)。
1H NMR (CDCl3, 400 MHz) δ 8.46 (s, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.83-7.77 (m, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.65-7.53 (m, 4H), 7.40-7.33 (m, 2H), 7.01 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H); 13C NMR (CDCl3, 100 MHz) δ 163.0, 159.5, 150.7, 142.1, 141.5, 132.5, 129.7, 129.3, 128.2, 127.5, 125.7, 125.1, 124.6, 120.0, 114.3, 110.6, 55.3; HRMS (DART) m/z calcd for C20H16NO2 [M+H]+: 302.1181, found: 302.1178。
It is. The same applies hereinafter. ]
Cs 2 CO 3 (146.6 mg, 0.45 mmol, 1.5 eq) is placed in a 20 mL glass container equipped with a magnetic stir bar J. Young® O-ring tap, dried with a heat gun under reduced pressure, and cooled to room temperature And then filled with N 2 gas. To this vessel was added phenylarene carboxylate (the biaryl product) (85.3 mg, 0.30 mmol, 1.0 equivalent) and 2,3-bis (dicyclohexylphosphine) thiophene (dcypt: 28.3 mg, 0.06 mmol, 20 mol%). And put in a glove box in an argon atmosphere. Bis (1,5-cyclooctadiene) nickel (0) (Ni (cod) 2 : 8.3 mg, 0.03 mmol, 10 mol%) was added to the reaction vessel, and the reaction vessel was taken out from the glove box. Here, benzoxazole (47.6 mg, 0.40 mmol, 1.3 eq) and dry 1,4-dioxane (1.5 mL) was added while blowing N 2. The vessel was sealed with an O-ring tap and heated at 130 ° C. for 12 hours with stirring in an 8-well reaction block. The reaction mixture was cooled to room temperature and then passed through a short silica gel pad with ethyl acetate (EtOAc). The filtrate was concentrated and the residue was purified by flash column chromatography (hexane / ethyl acetate = 100: 1) to give the CH / CO coupling product as a white solid (76.8 g, 85%).
1 H NMR (CDCl 3 , 400 MHz) δ 8.46 (s, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.83-7.77 (m, 1H), 7.72 (d, J = 8.0 Hz, 1H) , 7.65-7.53 (m, 4H), 7.40-7.33 (m, 2H), 7.01 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 163.0 , 159.5, 150.7, 142.1, 141.5, 132.5, 129.7, 129.3, 128.2, 127.5, 125.7, 125.1, 124.6, 120.0, 114.3, 110.6, 55.3; HRMS (DART) m / z calcd for C 20 H 16 NO 2 [M + H] + : 302.1181, found: 302.1178.

実施例6Example 6

Figure 2016027809
Figure 2016027809

磁気撹拌棒を入れたスクリューキャップ付き試験管に、テルミサルタン(772mg, 1.5mmol)、フェノール(155mg, 1.65mmol, 1.1当量)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl: 316mg, 1.65mmol, 1.1当量)、N, N-ジメチルアミノピリジン(DMAP: 18.3mg, 0.15mmol, 0.1当量)及びCH2Cl2(3mL)を添加した。反応混合物を6時間撹拌後、飽和NaHCO3aqでクエンチし、CH2Cl2で3回抽出した。合わせた有機層をNa2SO4で乾燥させ、濾過し、減圧下に濃縮した。残渣をフラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=2: 1〜1: 0の勾配)で精製し、フェニルカルボキシレートを白色固体として得た(850mg, 96%)。
1H NMR (CDCl3, 400 MHz) δ 8.03 (dd, J = 8.0, 1.6 Hz, 1H), 7.83-7.80 (m, 1H), 7.60 (td, J = 8.0, 1.6 Hz, 1H), 7.52-7.44 (m, 3H), 7.40-7.35 (m, 3H), 7.34 (m, 3H), 7.21 (t, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 7.04 (t, J = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 5.45 (s, 2H), 3.71 (s, 3H), 2.91 (t, J = 8.0 Hz, 2H), 2.79 (s, 3H), 1.91-1.81 (m, 2H), 1.03 (t, J = 8.0 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ 166.6, 156.4, 154.7, 150.6, 143.2, 142.9, 142.3, 141.1, 136.7, 135.0, 131.9, 130.9, 130.4, 129.9, 129.5, 129.25, 129.20, 127.6, 125.9, 125.7, 124.0, 123.9, 122.4, 122.3, 121.1, 119.6, 109.5, 108.8, 46.9, 31.7, 29.8, 21.8, 16.9, 14.1; HRMS (DART) m/z calcd for C39H35N4O2 [M+H]+: 591.2760, found: 591.2770。
In a test tube with a screw cap containing a magnetic stir bar, telmisartan (772 mg, 1.5 mmol), phenol (155 mg, 1.65 mmol, 1.1 eq), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC · HCl: 316mg, 1.65mmol, 1.1 eq), N, N-dimethylaminopyridine (DMAP: 18.3mg, 0.15mmol, was added 0.1 eq) and CH 2 Cl 2 (3mL). The reaction mixture was stirred for 6 h before being quenched with saturated NaHCO 3 aq and extracted 3 times with CH 2 Cl 2 . The combined organic layers were dried over Na 2 SO 4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane / ethyl acetate = 2: 1 to 1: 0 gradient) to give phenylcarboxylate as a white solid (850 mg, 96%).
1 H NMR (CDCl 3 , 400 MHz) δ 8.03 (dd, J = 8.0, 1.6 Hz, 1H), 7.83-7.80 (m, 1H), 7.60 (td, J = 8.0, 1.6 Hz, 1H), 7.52- 7.44 (m, 3H), 7.40-7.35 (m, 3H), 7.34 (m, 3H), 7.21 (t, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 7.04 (t , J = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 5.45 (s, 2H), 3.71 (s, 3H), 2.91 (t, J = 8.0 Hz, 2H), 2.79 (s , 3H), 1.91-1.81 (m, 2H), 1.03 (t, J = 8.0 Hz, 3H); 13 C NMR (CDCl 3 , 100 MHz) δ 166.6, 156.4, 154.7, 150.6, 143.2, 142.9, 142.3, 141.1, 136.7, 135.0, 131.9, 130.9, 130.4, 129.9, 129.5, 129.25, 129.20, 127.6, 125.9, 125.7, 124.0, 123.9, 122.4, 122.3, 121.1, 119.6, 109.5, 108.8, 46.9, 31.7, 29.8, 21.8, 16.9, 14.1; HRMS (DART) m / z calcd for C 39 H 35 N 4 O 2 [M + H] + : 591.2760, found: 591.2770.

Figure 2016027809
Figure 2016027809

磁気撹拌棒を入れたJ. Young(登録商標)O-リングタップ付きの20mLのガラス容器にNi(OAc)2・4H2O(3.5mg, 0.0125mmol, 5mol%)を減圧下にヒートガンで乾燥し、室温まで冷却した後にN2ガスで充填した。この容器に、フェニルアレーンカルボキシレート(前記工程で得たフェニルカルボキシレート)(145mg, 0.25mmol, 1.0当量)、p-メトキシフェニルボロン酸(58.0mg, 0.375mmol, 1.5当量)、及びNa2CO3(53mg, 0.50mmol, 2.0当量)を添加した。容器は、真空にしてからN2ガス再充填することを3回行った。ここに、P(n-Bu)3(12.5μL, 0.05mmol, 20mol%)及び無水トルエン(1.0mL)を加えた。容器をO-リングタップで密閉し、8ウェル反応ブロック内で攪拌しながら150℃で24時間加熱した。反応混合物を室温まで冷却した後、酢酸エチル(EtOAc)を用いてセライト(登録商標)に通した。濾液を濃縮し、残渣をフラッシュカラムクロマトグラフィー(ヘキサン/酢酸エチル=1: 2〜EtOAcの勾配)及び逆相HPLC(isolera; H2O / MeCN)で精製し、カップリング生成物を白色固体として得た(111mg, 78%)。
1H NMR (CDCl3, 400 MHz) δ 7.84-7.81 (m, 1H), 7.51 (s, 1H), 7.44 (s, 1H), 7.40-7.28 (m, 7H), 7.10 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 5.36 (s, 2H), 3.80 (s, 3H), 3.72 (s, 3H), 2.87 (t, J = 7.6 Hz, 2H), 2.78 (s, 3H), 1.85-1.76 (m, 2H), 1.03 (t, J = 7.6 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ 158.3, 156.4, 154.7, 143.1, 142.9, 141.5, 140.1, 139.5, 136.7, 135.2, 133.9, 133.6, 130.8, 130.6, 130.4, 127.6, 125.8, 123.9, 123.7, 122.4, 122.3, 119.5, 113.3, 109.5, 108.7, 55.1, 47.0, 31.8, 29.8, 21.7, 16.8, 14.0; HRMS (DART) m/z calcd for C39H37N4O [M+H]+: 577.2967, found: 577.2969。
Ni (OAc) 2 · 4H 2 O (3.5 mg, 0.0125 mmol, 5 mol%) is dried with a heat gun under reduced pressure in a 20 mL glass container with a J. Young (registered trademark) O-ring tap with a magnetic stir bar After cooling to room temperature, it was filled with N 2 gas. To this vessel, phenylarene carboxylate (phenylcarboxylate obtained in the previous step) (145 mg, 0.25 mmol, 1.0 equivalent), p-methoxyphenylboronic acid (58.0 mg, 0.375 mmol, 1.5 equivalent), and Na 2 CO 3 (53 mg, 0.50 mmol, 2.0 eq) was added. The container was evacuated and refilled with N 2 gas three times. To this, P (n-Bu) 3 (12.5 μL, 0.05 mmol, 20 mol%) and anhydrous toluene (1.0 mL) were added. The vessel was sealed with an O-ring tap and heated at 150 ° C. for 24 hours with stirring in an 8-well reaction block. The reaction mixture was cooled to room temperature and then passed through Celite (registered trademark) with ethyl acetate (EtOAc). The filtrate is concentrated and the residue is purified by flash column chromatography (hexane / ethyl acetate = 1: 2-EtOAc gradient) and reverse phase HPLC (isolera; H 2 O / MeCN) to give the coupled product as a white solid Obtained (111 mg, 78%).
1 H NMR (CDCl 3 , 400 MHz) δ 7.84-7.81 (m, 1H), 7.51 (s, 1H), 7.44 (s, 1H), 7.40-7.28 (m, 7H), 7.10 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 5.36 (s, 2H), 3.80 ( s, 3H), 3.72 (s, 3H), 2.87 (t, J = 7.6 Hz, 2H), 2.78 (s, 3H), 1.85-1.76 (m, 2H), 1.03 (t, J = 7.6 Hz, 3H ); 13 C NMR (CDCl 3 , 100 MHz) δ 158.3, 156.4, 154.7, 143.1, 142.9, 141.5, 140.1, 139.5, 136.7, 135.2, 133.9, 133.6, 130.8, 130.6, 130.4, 127.6, 125.8, 123.9, 123.7 , 122.4, 122.3, 119.5, 113.3, 109.5, 108.7, 55.1, 47.0, 31.8, 29.8, 21.7, 16.8, 14.0; HRMS (DART) m / z calcd for C 39 H 37 N 4 O [M + H] + : 577.2967, found: 577.2969.

実施例7Example 7

Figure 2016027809
Figure 2016027809

Ni(OAc)2・4H2O(5 mol%)の代わりに表5に示すニッケル化合物を表5に示す量用い、P(n-Bu)3を20 mol%ではなく40 mol%用い、Na2CO3の代わりにEt3Nを用い、反応時間を24時間ではなく表5に示す時間としたこと以外は実施例1と同様の手法により(必要に応じて精製方法を適宜変更して)、化合物3Aaを得た。なお、entry 2では、さらに、1,5-シクロオクタジエン(cod)を20 mol%添加した。また、表5において、Ni(acac)2はニッケル(II)アセチルアセトナート、Cp2Niはビス(シクロペンタジエニル)ニッケルである。Instead of Ni (OAc) 2 · 4H 2 O (5 mol%), the nickel compound shown in Table 5 was used in the amount shown in Table 5, and P (n-Bu) 3 was used in 40 mol% instead of 20 mol%. 2 Using Et 3 N instead of CO 3 , and using the same procedure as in Example 1 except that the reaction time was set to the time shown in Table 5 instead of 24 hours (the purification method was changed as necessary). Compound 3Aa was obtained. In entry 2, 20 mol% of 1,5-cyclooctadiene (cod) was further added. In Table 5, Ni (acac) 2 is nickel (II) acetylacetonate, and Cp 2 Ni is bis (cyclopentadienyl) nickel.

Figure 2016027809
Figure 2016027809

実施例8Example 8

Figure 2016027809
Figure 2016027809

Ni(OAc)2・4H2O(5 mol%)の代わりにNi(cod)2(10 mol%)を用い、P(n-Bu)3(20 mol%)の代わりに表5に示す配位子(40 mol%)を用い、トルエンの代わりに1,4-ジオキサンを用い、反応時間を24時間ではなく12時間としたこと以外は実施例1と同様の手法により(必要に応じて精製方法を適宜変更して)、化合物3Aaを得た。なお、entry 2では、塩基(Na2CO3)を使用しなかった。entry 3では、ホウ素化合物として以下に示すボロキシン誘導体:Instead of Ni (OAc) 2 · 4H 2 O (5 mol%), Ni (cod) 2 (10 mol%) is used, and the composition shown in Table 5 is used instead of P (n-Bu) 3 (20 mol%). Using the same procedure as in Example 1 except that a ligand (40 mol%) was used, 1,4-dioxane was used instead of toluene, and the reaction time was 12 hours instead of 24 hours (purified as necessary) The method was changed as appropriate to give compound 3Aa. In entry 2, no base (Na 2 CO 3 ) was used. In entry 3, boroxin derivatives shown below as boron compounds:

Figure 2016027809
Figure 2016027809

を使用した。また、表6において、PCy3はシクロヘキシル基、n-Prはn-プロピル基である。It was used. In Table 6, PCy 3 is a cyclohexyl group and n-Pr is an n-propyl group.

Figure 2016027809
Figure 2016027809

Figure 2016027809
Figure 2016027809

Claims (9)

一般式(1):
Figure 2016027809
[式中、Rは置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又は置換されていてもよいアルキル基を示す。Rは置換されていてもよいアリール基、置換されていてもよいヘテロアリール基、又は置換されていてもよい不飽和炭化水素基を示す。R中の炭素原子とR中のsp2混成炭素原子とが結合している。]
で表される有機化合物の製造方法であって、
ニッケル化合物の存在下に、エステル化合物とボロン酸化合物とをクロスカップリング反応に供する工程を備え、
前記エステル化合物は、一般式(2):
Figure 2016027809
[式中、Rは前記に同じである。Rは置換されていてもよいアリール基を示す。]
で表わされる化合物であり、
前記ボロン酸化合物は、一般式(3):
Figure 2016027809
[式中、Rは前記に同じである。また、ホウ素原子とR中のsp2混成炭素原子とが結合している。R及びRは同一又は異なって、水素原子、アルキル基を示す。R及びRは互いに結合して、隣接する−O−B−O−とともに環を形成してもよい。]
で表される化合物である、製造方法。
General formula (1):
Figure 2016027809
[Wherein, R 1 represents an optionally substituted aryl group, an optionally substituted heteroaryl group, or an optionally substituted alkyl group. R 2 represents an optionally substituted aryl group, an optionally substituted heteroaryl group, or an optionally substituted unsaturated hydrocarbon group. The carbon atom in R 1 and the sp2 hybrid carbon atom in R 2 are bonded. ]
A method for producing an organic compound represented by
A step of subjecting an ester compound and a boronic acid compound to a cross-coupling reaction in the presence of a nickel compound;
The ester compound has the general formula (2):
Figure 2016027809
[Wherein, R 1 is the same as defined above. R 3 represents an aryl group which may be substituted. ]
A compound represented by
The boronic acid compound has the general formula (3):
Figure 2016027809
[Wherein R 2 is the same as defined above. Further, the boron atom and the sp2 hybrid carbon atom in R 2 are bonded. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. R 4 and R 5 may be bonded to each other to form a ring together with adjacent —O—B—O—. ]
The manufacturing method which is a compound represented by these.
前記クロスカップリング反応において、さらに、配位子化合物を用いる、請求項1に記載の製造方法。 The production method according to claim 1, wherein a ligand compound is further used in the cross coupling reaction. 前記配位子化合物は、ホスフィン系配位子化合物である、請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the ligand compound is a phosphine-based ligand compound. 前記クロスカップリング反応において、さらに、塩基を用いる、請求項1〜3のいずれかに記載の製造方法。 The production method according to claim 1, wherein a base is further used in the cross-coupling reaction. ニッケル化合物の存在下に、エステル化合物とボロン酸化合物とを反応させるクロスカップリング方法であって、
前記エステル化合物は、一般式(2):
Figure 2016027809
[式中、Rは置換されていてもよいアリール基、置換されていてもよいヘテロアリール基又は置換されていてもよいアルキル基を示す。Rは置換されていてもよいアリール基を示す。]
で表される化合物であり、
前記ボロン酸化合物は、一般式(3):
Figure 2016027809
[式中、Rは置換されていてもよいアリール基、置換されていてもよいヘテロアリール基、又は置換されていてもよい不飽和炭化水素基を示す。ホウ素原子とR中のsp2混成炭素原子とが結合している。R及びRは同一又は異なって、水素原子、アルキル基を示す。R及びRは互いに結合して、隣接する−O−B−O−とともに環を形成してもよい。]
で表される化合物である、方法。
A cross-coupling method in which an ester compound and a boronic acid compound are reacted in the presence of a nickel compound,
The ester compound has the general formula (2):
Figure 2016027809
[Wherein, R 1 represents an optionally substituted aryl group, an optionally substituted heteroaryl group, or an optionally substituted alkyl group. R 3 represents an aryl group which may be substituted. ]
A compound represented by
The boronic acid compound has the general formula (3):
Figure 2016027809
[Wherein, R 2 represents an optionally substituted aryl group, an optionally substituted heteroaryl group, or an optionally substituted unsaturated hydrocarbon group. The boron atom and the sp2 hybrid carbon atom in R 2 are bonded. R 4 and R 5 are the same or different and each represents a hydrogen atom or an alkyl group. R 4 and R 5 may be bonded to each other to form a ring together with adjacent —O—B—O—. ]
A method represented by the formula:
さらに、配位子化合物を用いる、請求項5に記載の方法。 Furthermore, the method of Claim 5 using a ligand compound. 前記配位子化合物はホスフィン系配位子化合物である、請求項6に記載の方法。 The method according to claim 6, wherein the ligand compound is a phosphine-based ligand compound. さらに、塩基を用いる、請求項5〜7のいずれかに記載の方法。 Furthermore, the method in any one of Claims 5-7 using a base. 以下の一般式:
Figure 2016027809
[式中、TBSはt−ブチルジメチルシリル基を示す。]
で表される化合物。

The following general formula:
Figure 2016027809
[Wherein TBS represents a t-butyldimethylsilyl group. ]
A compound represented by

JP2016544219A 2014-08-22 2015-08-18 Cross coupling method and method for producing organic compound using the cross coupling method Pending JPWO2016027809A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014169729 2014-08-22
JP2014169729 2014-08-22
PCT/JP2015/073144 WO2016027809A1 (en) 2014-08-22 2015-08-18 Cross-coupling method and method for producing organic compound using said cross-coupling method

Publications (1)

Publication Number Publication Date
JPWO2016027809A1 true JPWO2016027809A1 (en) 2017-07-06

Family

ID=55350753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016544219A Pending JPWO2016027809A1 (en) 2014-08-22 2015-08-18 Cross coupling method and method for producing organic compound using the cross coupling method

Country Status (2)

Country Link
JP (1) JPWO2016027809A1 (en)
WO (1) WO2016027809A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111499566A (en) * 2020-04-30 2020-08-07 南京工业大学 Pyridine derivative compound and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020130A (en) * 2013-07-22 2015-02-02 国立大学法人大阪大学 Catalyst composition

Also Published As

Publication number Publication date
WO2016027809A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
Zhang et al. Palladium-catalyzed decarboxylative coupling of alkynyl carboxylic acids with benzyl halides or aryl halides
Oi et al. Nitrogen-directed ortho-arylation and-heteroarylation of aromatic rings catalyzed by ruthenium complexes
Inada et al. Synthesis of biaryls via cross-coupling reaction of arylboronic acids with aryl chlorides catalyzed by NiCl2/triphenylphosphine complexes
Loska et al. Iron‐Catalyzed Mizoroki–Heck Cross‐Coupling Reaction with Styrenes
JP2013018777A (en) Method for bonding carboxylic acid and carbon electrophile by carbon-carbon bonding while decarboxylating (decarboxylation)
CN106146454B (en) The method that Negishi couplings prepare polyfluoro biaryl hydrocarbon compound
Si et al. Palladium-catalyzed room-temperature acylative Suzuki coupling of high-order aryl borons with carboxylic acids
Genin et al. Rh-catalyzed addition of boronic acids to alkynes for the synthesis of trisubstituted alkenes in a biphasic system-Mechanistic study and recycling of the Rh/m-TPPTC catalyst
JP5508738B2 (en) Novel process for the preparation of ketones from alpha-oxocarboxylates and aryl bromides
Li et al. Palladium-catalyzed direct C–H arylation of pyridine N-oxides with potassium aryl-and heteroaryltrifluoroborates
Sun et al. Rhodium (III)-Catalyzed Oxidative Allylic C–H Indolylation via Nucleophilic Cyclization
He et al. Palladium dichloride adduct of N, N-bis-(diphenylphosphanylmethyl)-2-aminopyridine: synthesis, structure and catalytic performance in the decarboxylative cross-coupling of 4-picolinic acid with aryl bromide
Gabbey et al. Metal-catalysed C–C bond formation at cyclopropanes
WO2009136646A1 (en) Method for producing unsaturated organic compound
Berthiol et al. Reaction of aryl di-, tri-, or tetrabromides with arylboronic acids or alkenes in the presence of a palladium-tetraphosphine catalyst
Du et al. Ligand-Regulated Palladium-Catalyzed Regiodivergent Hydroarylation of the Distal Double Bond of Allenamides with Aryl Boronic Acid
CN106187656B (en) The method that magnesium assists nickel catalysis polyfluoro aromatic hydrocarbons list arylation
JPWO2016027809A1 (en) Cross coupling method and method for producing organic compound using the cross coupling method
JP4864342B2 (en) Method for producing biaryl compound
Iranpoor et al. 1, 3, 2, 4-Diazadiphosphetidines as ligand and base for palladium-catalyzed Suzuki–Miyaura, Sonogashira–Hagihara, and homocoupling reactions of aryl halides under heterogeneous conditions in water
JP2017160139A (en) Production method for bi(hetero)aryl(thio)ether compound
Chelucci et al. Synthesis of internal alkynes via one-pot palladium-catalyzed and dehydrobromination reactions of 1, 1-dibromo-1-alkenes
Chen et al. Palladacycle‐Catalyzed Carbonylation of Aryl Iodides or Bromides with Aryl Formates
JP2017519755A (en) Method for producing borated arylene
JP6399540B2 (en) Ligand, nickel complex containing the ligand, and reaction using the nickel complex