JPWO2016024451A1 - Acrylic fiber treatment agent and its use - Google Patents

Acrylic fiber treatment agent and its use Download PDF

Info

Publication number
JPWO2016024451A1
JPWO2016024451A1 JP2015558275A JP2015558275A JPWO2016024451A1 JP WO2016024451 A1 JPWO2016024451 A1 JP WO2016024451A1 JP 2015558275 A JP2015558275 A JP 2015558275A JP 2015558275 A JP2015558275 A JP 2015558275A JP WO2016024451 A1 JPWO2016024451 A1 JP WO2016024451A1
Authority
JP
Japan
Prior art keywords
acrylic fiber
fiber
weight
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015558275A
Other languages
Japanese (ja)
Other versions
JP5914780B1 (en
Inventor
俊彦 菊田
俊彦 菊田
吉田 昌彦
昌彦 吉田
武圭 中山
武圭 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Application granted granted Critical
Publication of JP5914780B1 publication Critical patent/JP5914780B1/en
Publication of JPWO2016024451A1 publication Critical patent/JPWO2016024451A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/18Ethers, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/16Ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/70Esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M155/00Lubricating compositions characterised by the additive being a macromolecular compound containing atoms of elements not provided for in groups C10M143/00 - C10M153/00
    • C10M155/02Monomer containing silicon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • D06M13/17Polyoxyalkyleneglycol ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Abstract

本発明の目的は、炭素繊維製造における繊維束の集束性、繊維間の融着防止及び安定した操業性を両立させることができるアクリル繊維処理剤を提供することにある。本発明のアクリル繊維処理剤は、下記一般式(1)で示される化合物(A)及び重量平均分子量8000〜25000のポリエーテル化合物(B)を含有し、前記化合物(A)及び前記ポリエーテル化合物(B)の合計の重量割合が50〜99重量%である。【化1】(式(1)中、R1及びR2は、それぞれ独立して、水素原子又はアルキル基である。AOは炭素数2〜4のオキシアルキレン基である。m及びnは、それぞれ独立して、1以上の数である。)The objective of this invention is providing the acrylic fiber processing agent which can make the bundling property of the fiber bundle in carbon fiber manufacture, the fusion prevention between fibers, and the stable operativity compatible. The acrylic fiber treating agent of the present invention contains a compound (A) represented by the following general formula (1) and a polyether compound (B) having a weight average molecular weight of 8000 to 25000, and the compound (A) and the polyether compound. The total weight ratio of (B) is 50 to 99% by weight. In the formula (1), R1 and R2 are each independently a hydrogen atom or an alkyl group, AO is an oxyalkylene group having 2 to 4 carbon atoms, and m and n are each independently And a number of 1 or more.)

Description

本発明は、アクリル繊維処理剤及びその用途に関する。より詳しくは、アクリル繊維を製造する際に使用する処理剤と、該処理剤を用いた炭素繊維製造用アクリル繊維(以下、プレカーサーと称することがある)と、該処理剤を用いた炭素繊維の製造方法とに関する。   The present invention relates to an acrylic fiber treatment agent and use thereof. More specifically, the treatment agent used when producing the acrylic fiber, the acrylic fiber for producing carbon fiber using the treatment agent (hereinafter sometimes referred to as a precursor), and the carbon fiber using the treatment agent It relates to a manufacturing method.

炭素繊維はその優れた機械的特性を利用して、マトリックス樹脂と称されるプラスチックとの複合材料用の補強繊維として、航空宇宙用途、スポーツ用途、一般産業用途等に幅広く利用されている。
炭素繊維を製造する方法としては、プレカーサーを200〜300℃の酸化性雰囲気中で耐炎化繊維に転換し、続いて300〜2000℃の不活性雰囲気中で炭素化する方法が一般的である。これらの高熱による焼成時には、単繊維同士の融着が発生し、得られた炭素繊維の品質、品位を低下させるという問題がある。
Carbon fibers are widely used for aerospace applications, sports applications, general industrial applications and the like as reinforcing fibers for composite materials with plastics called matrix resins, utilizing their excellent mechanical properties.
As a method for producing carbon fiber, a method is generally used in which a precursor is converted to a flame-resistant fiber in an oxidizing atmosphere at 200 to 300 ° C., and subsequently carbonized in an inert atmosphere at 300 to 2000 ° C. At the time of firing by these high heats, there is a problem that fusion of single fibers occurs and the quality and quality of the obtained carbon fibers are deteriorated.

この融着を防止するため、シリコーン化合物を主成分とし、優れた耐熱性及び繊維−繊維間の平滑性による優れた剥離性を有するシリコーン系処理剤、特に架橋反応により耐熱性をさらに向上できるアミノ変性シリコーン系処理剤をプレカーサーに付与する技術が多数提案され(例えば、特許文献1等)、工業的に広く利用されている。   In order to prevent this fusion, a silicone-based treatment agent having a silicone compound as a main component and having excellent heat resistance and excellent releasability due to smoothness between fibers and fibers, particularly amino which can further improve heat resistance by a crosslinking reaction. Many techniques for applying a modified silicone-based treatment agent to a precursor have been proposed (for example, Patent Document 1) and are widely used industrially.

しかしながら一方で、付着処理したシリコーン系処理剤は、繊維から脱落して粘着物となり、それがプレカーサー製造工程における乾燥ローラーやガイド等に堆積し、繊維が捲き付いたり断糸したりする等の操業性低下を引き起こす原因になるという問題があった。また、耐炎化工程の酸化性雰囲気中でその一部が酸化ケイ素を生成し、炭素化工程の不活性雰囲気中で不活性ガスとして窒素が使用される場合は窒化ケイ素を生成し、これらスケールが堆積して、操業性や稼働性を低下させたり、焼成炉の損傷を招いたりするという問題を有していた。
さらに、シリコーン系処理剤の持つ繊維−繊維間平滑性による優れた剥離性は、単繊維間の融着防止には有効に働く一方で、非常に多数の繊維束が同時に平行に走行する焼成工程においては、各々の繊維束幅がシリコーン系処理剤の平滑性で拡がることにより、隣接する繊維束との間隔が狭くなり、場合によってはその干渉により毛羽が生じるという不都合がある。
However, on the other hand, the silicone treatment agent that has been subjected to adhesion treatment drops off from the fiber to become an adhesive, which accumulates on a drying roller, a guide, etc. in the precursor manufacturing process, and the fibers are seized or broken. There was a problem of causing a decrease in sex. In addition, some of the scales generate silicon oxide in the oxidizing atmosphere of the flameproofing process, and when nitrogen is used as an inert gas in the inert atmosphere of the carbonization process, silicon nitride is generated. It accumulates, and has had the problem of reducing operability and operability, and causing damage to the firing furnace.
Furthermore, the excellent releasability due to the fiber-to-fiber smoothness of the silicone treatment agent works effectively to prevent fusion between single fibers, while a large number of fiber bundles run simultaneously in parallel. In this case, the width of each fiber bundle expands due to the smoothness of the silicone treatment agent, so that the distance between adjacent fiber bundles is narrowed, and in some cases, there is a disadvantage that fluff is generated due to the interference.

これらの問題を回避するため、シリコーン系化合物の含有量を低減した処理剤や、シリコーン系化合物を使用しない処理剤等が提案されている。たとえば、ビスフェノールA系のアルキレンオキサイド付加物の脂肪酸エステルを主成分とし、アミノ変性シリコーンの含有量を低減した処理剤(例えば、特許文献2等)や、ビスフェノールAのアルキレンオキサイド付加物の脂肪酸エステルを主成分とし、シリコーン系化合物を使用しない処理剤(例えば、特許文献3等)がある。   In order to avoid these problems, treatment agents with a reduced content of silicone compounds, treatment agents that do not use silicone compounds, and the like have been proposed. For example, a treatment agent (for example, Patent Document 2) containing a fatty acid ester of a bisphenol A-based alkylene oxide adduct as a main component and a reduced amino-modified silicone content, or a fatty acid ester of a bisphenol A alkylene oxide adduct There is a treatment agent (for example, Patent Document 3) which has a main component and does not use a silicone compound.

日本国特開2002−371477号公報Japanese Unexamined Patent Publication No. 2002-371477 日本国特開2005−89884号公報Japanese Unexamined Patent Publication No. 2005-89884 日本国特開2004−143645号公報Japanese Unexamined Patent Publication No. 2004-143645

しかしながらこれらの処理剤は、シリコーン系化合物に起因する上記の操業性等の問題を抑制することには効果があるが、プレカーサー製糸工程での巻取り時及び解舒時の繊維束の集束性、並びに耐炎化工程での耐炎化炉の入口及び出口における繊維束の集束性が不足するという欠点があった。
かかる従来の技術背景に鑑み、本発明の目的は、炭素繊維製造における繊維束の集束性、繊維間の融着防止及び安定した操業性を両立させることができるアクリル繊維処理剤と、該処理剤を用いた炭素繊維製造用アクリル繊維と、該処理剤を用いた炭素繊維の製造方法とを提供することにある。
However, these treatment agents are effective in suppressing the problems such as the above-mentioned operability caused by the silicone compound, but the fiber bundles at the time of winding and unwinding in the precursor yarn-making process, In addition, there is a drawback in that the bundleability of the fiber bundles at the inlet and outlet of the flameproofing furnace in the flameproofing process is insufficient.
In view of such a conventional technical background, an object of the present invention is to provide an acrylic fiber treatment agent capable of achieving both the bundleability of fiber bundles, prevention of fusion between fibers and stable operability in carbon fiber production, and the treatment agent. An object of the present invention is to provide an acrylic fiber for producing carbon fiber using the above and a method for producing carbon fiber using the treating agent.

本発明者らは、上記課題を解決するために鋭意検討した結果、ビスフェノールAのアルキレンオキサイド付加物の脂肪酸エステルを含む従来の処理剤は、当該エステルを水系に乳化するために多量の非イオン性界面活性剤(乳化剤)が必要とされ、この多量の乳化剤の影響により、プレカーサー製糸工程や耐炎化工程での繊維束の集束性が悪化していることを突き止めた。そして、特定の成分を主成分として含む処理剤であれば、処理剤中の乳化剤として用いる非イオン性界面活性剤及びシリコーン系化合物の含有量を低減できること、炭素繊維製造における繊維束の集束性、繊維間の融着防止及び安定した操業性を両立させることができることを見出し、本発明に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a conventional treating agent containing a fatty acid ester of an alkylene oxide adduct of bisphenol A has a large amount of nonionic properties to emulsify the ester in an aqueous system. A surfactant (emulsifier) was required, and it was found out that the bundledness of the fiber bundle was deteriorated in the precursor yarn-making process and the flameproofing process due to the influence of this large amount of emulsifier. And if it is a processing agent containing a specific component as a main component, it is possible to reduce the content of a nonionic surfactant and a silicone compound used as an emulsifier in the processing agent, fiber bundle convergence in carbon fiber production, The inventors have found that it is possible to achieve both fusion prevention between fibers and stable operability, and the present invention has been achieved.

すなわち、本発明のアクリル繊維処理剤は、下記一般式(1)で示される化合物(A)及び重量平均分子量8000〜25000のポリエーテル化合物(B)を含有し、処理剤の不揮発分に占める、前記化合物(A)及び前記ポリエーテル化合物(B)の合計の重量割合が50〜99重量%である。   That is, the acrylic fiber treatment agent of the present invention contains a compound (A) represented by the following general formula (1) and a polyether compound (B) having a weight average molecular weight of 8000 to 25000, and occupies the nonvolatile content of the treatment agent. The total weight ratio of the compound (A) and the polyether compound (B) is 50 to 99% by weight.

Figure 2016024451
(式(1)中、R及びRは、それぞれ独立して、水素原子又はアルキル基である。AOは炭素数2〜4のオキシアルキレン基である。m及びnは、それぞれ独立して、1以上の数である。)
Figure 2016024451
(In Formula (1), R 1 and R 2 are each independently a hydrogen atom or an alkyl group. AO is an oxyalkylene group having 2 to 4 carbon atoms. M and n are each independently 1 or more.)

前記化合物(A)と前記ポリエーテル化合物(B)との重量比(A/B)は、90/10〜20/80であることが好ましい。   The weight ratio (A / B) between the compound (A) and the polyether compound (B) is preferably 90/10 to 20/80.

本発明のアクリル繊維処理剤は、下記一般式(2)で示される非イオン性界面活性剤(C)をさらに含有することが好ましい。   The acrylic fiber treatment agent of the present invention preferably further contains a nonionic surfactant (C) represented by the following general formula (2).

Figure 2016024451
(式(2)中、Rは炭素数8〜20の炭化水素基である。−X−は、−O−、−COO−又は−CONH−である。EOはオキシエチレン基、POはオキシプロピレン基である。a及びbは平均付加モル数を表わし、aは3〜20、bは0〜6である。なお、EO群とPO群の付加形態はブロックでもランダムでもよい。Rは水素原子又は炭素数1〜6の炭化水素基である。)
Figure 2016024451
(In the formula (2), R 3 is a hydrocarbon group having 8 to 20 carbon atoms. -X- is -O-, -COO- or -CONH-. EO is an oxyethylene group, and PO is an oxy group. A and b represent the average number of moles added, a is from 3 to 20, and b is from 0 to 6. The addition form of the EO group and the PO group may be block or random, R 4 is It is a hydrogen atom or a C1-C6 hydrocarbon group.)

処理剤の不揮発分に占める前記非イオン性界面活性剤(C)の重量割合は0.5〜15重量%であることが好ましい。   The weight ratio of the nonionic surfactant (C) in the non-volatile content of the treatment agent is preferably 0.5 to 15% by weight.

本発明のアクリル繊維処理剤は、窒素原子を含む変性基を持つ変性シリコーン(D)をさらに含有することが好ましい。
処理剤の不揮発分に占める前記変性シリコーン(D)の重量割合が5〜40重量%であることが好ましい。
The acrylic fiber treatment agent of the present invention preferably further contains a modified silicone (D) having a modifying group containing a nitrogen atom.
It is preferable that the weight ratio of the modified silicone (D) in the nonvolatile content of the treatment agent is 5 to 40% by weight.

本発明の炭素繊維製造用アクリル繊維は、炭素繊維製造用アクリル繊維の原料アクリル繊維に、上記のアクリル繊維処理剤を付着させて製糸したものである。   The acrylic fiber for producing carbon fiber of the present invention is produced by attaching the above-mentioned acrylic fiber treating agent to the raw acrylic fiber of the acrylic fiber for producing carbon fiber.

本発明の炭素繊維の製造方法は、炭素繊維製造用アクリル繊維の原料アクリル繊維に、上記のアクリル繊維処理剤を付着させて製糸する製糸工程と、200〜300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300〜2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含むものである。   The carbon fiber production method of the present invention includes a yarn production process in which the above acrylic fiber treatment agent is attached to the raw acrylic fiber of the acrylic fiber for carbon fiber production, and flameproofing in an oxidizing atmosphere at 200 to 300 ° C. It includes a flameproofing treatment step that converts to a fiber, and a carbonization treatment step of carbonizing the flameproofing fiber in an inert atmosphere at 300 to 2000 ° C.

本発明のアクリル繊維処理剤は、これを予めプレカーサーに付着させる処理を行うことによって、炭素繊維製造における繊維束の集束性、繊維間の融着防止及び安定した操業性を両立させることができる。
本発明の炭素繊維製造用アクリル繊維を用いれば、炭素繊維製造における繊維束の集束性、繊維間の融着防止および安定した操業性を両立させることができる。また、本発明の炭素繊維の製造方法によれば、炭素繊維製造における繊維束の集束性、繊維間の融着防止及び安定した操業性を両立させることができ、高品質の炭素繊維を製造できる。
The acrylic fiber treatment agent of the present invention can achieve both the bundledness of fiber bundles, prevention of fusion between fibers, and stable operability in the production of carbon fiber by performing a treatment of attaching the acrylic fiber treatment agent to a precursor in advance.
If the acrylic fiber for carbon fiber production of the present invention is used, it is possible to achieve both the bundleability of the fiber bundle, the prevention of fusion between fibers, and stable operability in the production of carbon fiber. In addition, according to the method for producing carbon fiber of the present invention, it is possible to achieve both the bundleability of the fiber bundle, the prevention of fusion between fibers, and stable operability in the production of carbon fiber, and it is possible to produce a high-quality carbon fiber. .

本発明のアクリル繊維処理剤は、炭素繊維製造に用いられるアクリル繊維(炭素繊維のプレカーサー)に付与することを目的とした処理剤であり、特定の化合物(A)及び特定のポリエーテル化合物(B)を主成分として特定量含有するものである。以下、詳細に説明する。   The acrylic fiber treatment agent of the present invention is a treatment agent for the purpose of imparting to acrylic fibers (carbon fiber precursors) used in carbon fiber production, and is a specific compound (A) and a specific polyether compound (B ) As a main component. Details will be described below.

(化合物(A))
本発明のアクリル繊維処理剤に用いられる化合物(A)は、上記一般式(1)で示されるものであって、ビスフェノール型骨格からなる中心部の両端にアルキレンオキサイドが付加した構造を有するものである。このように、化合物(A)を後述のポリエーテル化合物(B)と併用することにより、炭素繊維製造における繊維束の集束性、繊維間の融着防止および安定した操業性を両立させることができる。さらに、化合物(A)は水溶性を有するため、乳化剤としての非イオン性界面活性剤を用いずに水と混合させることができる。その結果、プレカーサー製糸工程での巻取り時及び解舒時の繊維束の集束性、並びに耐炎化工程での耐炎化炉の入口及び出口における繊維束の集束性が不足するという乳化剤多用による弊害を防ぐことができる。
(Compound (A))
The compound (A) used in the acrylic fiber treating agent of the present invention is represented by the above general formula (1), and has a structure in which alkylene oxide is added to both ends of a central portion composed of a bisphenol type skeleton. is there. As described above, by using the compound (A) together with the polyether compound (B) described later, it is possible to achieve both the bundledness of the fiber bundle, the prevention of fusion between fibers, and the stable operability in the production of carbon fiber. . Furthermore, since the compound (A) has water solubility, it can be mixed with water without using a nonionic surfactant as an emulsifier. As a result, there is a problem due to the heavy use of emulsifiers that the fiber bundles are not sufficiently converged at the time of winding and unwinding in the precursor yarn production process, and at the entrance and exit of the flameproofing furnace in the flame resistance process. Can be prevented.

上記一般式(1)中、R及びRは、それぞれ独立して、水素原子又はアルキル基である。アルキル基の炭素数は1〜2が好ましく、1がさらに好ましい。AOは、炭素数2〜4のオキシアルキレン基であり、炭素数2〜3のオキシアルキレン基(オキシエチレン基、オキシプロピレン基)が好ましく、炭素数2のオキシエチレン基がさらに好ましい。m及びnは、それぞれ独立して、1以上の数であり、4〜20が好ましく、4〜15がより好ましく、4〜10がさらに好ましい。さらに、本発明の効果をより発揮させる点から、m及びnは、m+n=8〜50を満たす数であることが好ましい。m+nは、8〜40が好ましく、8〜30がより好ましく、8〜20がさらに好ましく、10〜20が特に好ましい。In the general formula (1), R 1 and R 2 are each independently a hydrogen atom or an alkyl group. 1-2 are preferable and, as for carbon number of an alkyl group, 1 is more preferable. AO is an oxyalkylene group having 2 to 4 carbon atoms, preferably an oxyalkylene group having 2 to 3 carbon atoms (oxyethylene group, oxypropylene group), and more preferably an oxyethylene group having 2 carbon atoms. m and n are each independently a number of 1 or more, preferably 4 to 20, more preferably 4 to 15, and still more preferably 4 to 10. Furthermore, it is preferable that m and n are numbers satisfying m + n = 8 to 50 in order to further exhibit the effects of the present invention. m + n is preferably 8 to 40, more preferably 8 to 30, further preferably 8 to 20, and particularly preferably 10 to 20.

化合物(A)において、ビスフェノール型骨格からなる中心部の両端に付加しているアルキレンオキサイドの付加量は、中心部の左、右で一致している必要はないが、上記の化合物(A)が、一般的にビスフェノール化合物にアルキレンオキサイドを付加して得られるものであるために、ビスフェノール型骨格からなる中心部の両端に付加しているアルキレンオキサイドの付加量は、中心部の左、右での付加量があまり相違するものではなくなることが多い。   In the compound (A), the addition amount of alkylene oxide added to both ends of the central portion composed of the bisphenol type skeleton does not need to be the same on the left and right of the central portion, but the compound (A) In general, since the alkylene oxide is obtained by adding an alkylene oxide to a bisphenol compound, the amount of alkylene oxide added to both ends of the central portion composed of a bisphenol type skeleton is determined at the left and right of the central portion. In many cases, the added amount is not so different.

[ポリエーテル化合物(B)]
本発明のアクリル繊維処理剤に用いられる化合物(B)は、重量平均分子量8000〜25000のポリエーテル化合物である。このように、ポリエーテル化合物(B)を前記化合物(A)と併用することにより、炭素繊維製造における繊維束の集束性、繊維間の融着防止および安定した操業性を両立させることができる。さらに、ポリエーテル化合物(B)は水溶性を有するため、乳化剤としての非イオン性界面活性剤を用いずに水と混合させることができる。その結果、プレカーサー製糸工程での巻取り時及び解舒時の繊維束の集束性、並びに耐炎化工程での耐炎化炉の入口及び出口における繊維束の集束性が不足するという乳化剤多用による弊害を防ぐことができる。
[Polyether compound (B)]
The compound (B) used for the acrylic fiber treating agent of the present invention is a polyether compound having a weight average molecular weight of 8000 to 25000. As described above, by using the polyether compound (B) in combination with the compound (A), it is possible to achieve both fiber bundle convergence, prevention of fusion between fibers, and stable operability in the production of carbon fibers. Furthermore, since the polyether compound (B) has water solubility, it can be mixed with water without using a nonionic surfactant as an emulsifier. As a result, there is a problem due to the heavy use of emulsifiers that the fiber bundles are not sufficiently converged at the time of winding and unwinding in the precursor yarn production process, and at the entrance and exit of the flameproofing furnace in the flame resistance process. Can be prevented.

ポリエーテル化合物(B)は、エチレンオキサイド(EO)、プロピレンオキサイド(PO)、ブチレンオキサイド(BO)等のアルキレンオキサイド(AO)を付加重合させたポリアルキレングリコールであり、その中でもプロピレンオキサイド(PO)とエチレンオキサイド(EO)とを付加重合させたポリアルキレングルコール共重合体が好ましい。ポリエーテル化合物(B)は、1種または2種以上を併用してもよい。ポリアルキレングルコール共重合体は、PO、EOのランダム型又はブロック型の共重合であることが好ましい。ポリアルキレングルコール共重合体の片末端又は両末端は、1価以上のアルコール類や塩基酸類等により、エーテル結合やエステル結合を介して封鎖されていてもよい。かかるポリアルキレングルコール共重合体は、公知の方法によりPO、EO等を共重合することで得られる。   The polyether compound (B) is a polyalkylene glycol obtained by addition polymerization of alkylene oxide (AO) such as ethylene oxide (EO), propylene oxide (PO), butylene oxide (BO), and among them, propylene oxide (PO) A polyalkylene glycol copolymer obtained by addition polymerization of ethylene oxide (EO) is preferred. The polyether compound (B) may be used alone or in combination of two or more. The polyalkylene glycol copolymer is preferably a random or block copolymer of PO and EO. One end or both ends of the polyalkylene glycol copolymer may be blocked with an ether bond or an ester bond with a monovalent or higher alcohol or basic acid. Such a polyalkylene glycol copolymer can be obtained by copolymerizing PO, EO or the like by a known method.

ポリエーテル化合物(B)のPO/EOのモル比は、20/80〜50/50が好ましく、20/80〜40/60がより好ましい。ポリエーテル化合物(B)の重量平均分子量は、10000〜20000が好ましく、11000〜19000がより好ましく、12000〜18000がさらに好ましい。なお、本発明でいう重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)測定方法により、下記の測定条件で測定してポリスチレン換算した値をいう。   The PO / EO molar ratio of the polyether compound (B) is preferably 20/80 to 50/50, more preferably 20/80 to 40/60. The weight average molecular weight of the polyether compound (B) is preferably 10000 to 20000, more preferably 11000 to 19000, and still more preferably 12000 to 18000. In addition, the weight average molecular weight as used in the field of this invention means the value converted into polystyrene by measuring with the gel permeation chromatograph (GPC) measuring method on the following measurement conditions.

(GPC測定条件)
装置:装置名「HPLC LC−6A SYSTEM」(SHIMAZU社製)
カラム:「KF−800P(10mm×4.6mmφ)」、「KF−804(300mm×8mmφ)」、「KF−802.5(300mm×8mmφ)」、「KF−801(300mm×8mmφ)」(以上、SHODEX社製)
移動相:テトラヒドロフラン(THF)
流速:1.0ml/min
サンプル量:100μl(100倍希釈)
カラム温度:50℃
検量線作成標準物質:ポリスチレン(PSt)
(GPC measurement conditions)
Device: Device name “HPLC LC-6A SYSTEM” (manufactured by SHIMAZU)
Column: “KF-800P (10 mm × 4.6 mmφ)”, “KF-804 (300 mm × 8 mmφ)”, “KF-802.5 (300 mm × 8 mmφ)”, “KF-801 (300 mm × 8 mmφ)” ( (SHOEX manufactured by the above)
Mobile phase: Tetrahydrofuran (THF)
Flow rate: 1.0 ml / min
Sample volume: 100 μl (100-fold dilution)
Column temperature: 50 ° C
Calibration curve creation reference material: polystyrene (PSt)

[非イオン性界面活性剤(C)]
本発明のアクリル繊維処理剤は、炭素繊維製造における繊維束に対して、均一付着性を付与できる、上記一般式(2)で示される非イオン性界面活性剤(C)をさらに含有することが好ましい。
非イオン性界面活性剤(C)としては、一般式(2)を満たす、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレングリコール脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロックポリマー等が挙げられる。
式(2)中、Rは炭素数8〜20の炭化水素基である。炭化水素基としては、アルキル基、アルケニル基、アリール基、アラルキル基等を挙げることができ、アルキル基、アルケニル基が好ましい。炭化水素基の炭素数としては、10〜18が好ましく、12〜18がさらに好ましい。
「−X−」は、「−O−」、「−COO−」又は「−CONH−」であり、「−O−」又は「−COO−」が好ましく、「−O−」がさらに好ましい。
EOはオキシエチレン基、POはオキシプロピレン基である。a及びbは平均付加モル数を表わす。aは3〜20であり、5〜18が好ましく、7〜12がさらに好ましい。bは0〜6であり、り、0〜3が好ましく、0がさらに好ましい。なお、EO群とPO群の付加形態はブロックでもランダムでもよい。
は水素原子又は炭素数1〜6の炭化水素基である。炭化水素基としては、アルキル基、アルケニル基、を挙げることができる。Rはとしては、水素原子又は炭素数1〜3の炭化水素基が好ましく、水素原子がさらに好ましい。
[Nonionic surfactant (C)]
The acrylic fiber treatment agent of the present invention may further contain a nonionic surfactant (C) represented by the above general formula (2) that can impart uniform adhesion to a fiber bundle in carbon fiber production. preferable.
Examples of the nonionic surfactant (C) include polyoxyalkylene alkyl ethers, polyoxyalkylene alkyl phenyl ethers, polyoxyalkylene glycol fatty acid esters, polyoxyethylene polyoxypropylene block polymers, which satisfy the general formula (2). Can be mentioned.
In formula (2), R 3 is a hydrocarbon group having 8 to 20 carbon atoms. Examples of the hydrocarbon group include an alkyl group, an alkenyl group, an aryl group, and an aralkyl group, and an alkyl group and an alkenyl group are preferable. As carbon number of a hydrocarbon group, 10-18 are preferable and 12-18 are more preferable.
“—X—” is “—O—”, “—COO—” or “—CONH—”, preferably “—O—” or “—COO—”, more preferably “—O—”.
EO is an oxyethylene group and PO is an oxypropylene group. a and b represent the average number of moles added. a is 3-20, 5-18 are preferable and 7-12 are more preferable. b is 0 to 6, preferably 0 to 3, and more preferably 0. The addition form of the EO group and the PO group may be block or random.
R 4 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. Examples of the hydrocarbon group include an alkyl group and an alkenyl group. R 4 is preferably a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and more preferably a hydrogen atom.

[窒素原子を含む変性基を持つ変性シリコーン(D)]
本発明のアクリル繊維処理剤は、炭素繊維製造における繊維間の融着防止の点から、窒素原子を含む変性基を持つ変性シリコーン(D)をさらに含有することが好ましい。本発明のアクリル繊維処理剤は、前述の化合物(A)とポリエーテル化合物(B)の合計を主成分として含有することから、変性シリコーン(D)を主成分として用いずに、炭素繊維製造における繊維束の集束性、繊維間の融着防止及び安定した操業性を両立させることができる。
[Modified silicone (D) having a modifying group containing a nitrogen atom]
The acrylic fiber treatment agent of the present invention preferably further contains a modified silicone (D) having a modifying group containing a nitrogen atom from the viewpoint of preventing fusion between fibers in carbon fiber production. Since the acrylic fiber treating agent of the present invention contains the total of the above-mentioned compound (A) and polyether compound (B) as the main component, the modified silicone (D) is not used as the main component, and in carbon fiber production. It is possible to achieve both bundleability of the fiber bundle, prevention of fusion between fibers, and stable operability.

変性シリコーン(D)は窒素原子を含む変性基であれば変性基の種類は特に限定されない。窒素原子を含む変性基としては、アミノ結合やイミノ結合を含有する変性基(即ち、アミノ基)や、アミド結合を含有する変性基(即ち、アミド基)などが挙げられ、アミノ結合とアミド結合など異なる結合が複数存在する変性基でもよい。窒素原子を含む変性基は、主鎖であるシリコーンの側鎖と結合していてもよいし、末端と結合していてもよいし、また両方と結合していてもよい。また、分子中にポリオキシアルキレン基(例えば、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基等)を有していてもよい。   If the modified silicone (D) is a modified group containing a nitrogen atom, the type of the modified group is not particularly limited. Examples of the modifying group containing a nitrogen atom include a modifying group containing an amino bond or an imino bond (ie, an amino group), a modifying group containing an amide bond (ie, an amide group), and the like. A modified group having a plurality of different bonds may be used. The modifying group containing a nitrogen atom may be bonded to the side chain of silicone as the main chain, may be bonded to the terminal, or may be bonded to both. Moreover, you may have a polyoxyalkylene group (For example, a polyoxyethylene group, a polyoxypropylene group, a polyoxybutylene group etc.) in the molecule | numerator.

窒素原子を含む変性基を持つ変性シリコーン(D)としては、例えば、アミノ変性シリコーン、アミノポリエーテル変性シリコーン、アミド変性シリコーン、アミドポリエーテル変性シリコーンなどが挙げられ、一種類の変性シリコーンを用いてもよいし、複数の変性シリコーンを併用してもよい。   Examples of the modified silicone (D) having a modifying group containing a nitrogen atom include amino-modified silicone, amino polyether-modified silicone, amide-modified silicone, amide polyether-modified silicone, and the like. Alternatively, a plurality of modified silicones may be used in combination.

また、変性シリコーン(D)における窒素原子の含有量は、0.35〜3.2重量%が好ましく、0.37〜2.2重量%がより好ましく、0.40〜1.3重量%がさらに好ましい。窒素原子の含有量が0.35重量%より低い場合、水系乳化した際にエマルジョンの乳化安定性が悪くなることがある。一方、窒素原子の含有量が3.2重量%より高い場合、熱架橋により変性シリコーン(D)の粘着性が高くなり、ガムアップの原因となる。   Further, the content of nitrogen atom in the modified silicone (D) is preferably 0.35 to 3.2% by weight, more preferably 0.37 to 2.2% by weight, and 0.40 to 1.3% by weight. Further preferred. When the content of nitrogen atoms is lower than 0.35% by weight, the emulsion stability of the emulsion may deteriorate when aqueous emulsification is performed. On the other hand, when the content of nitrogen atoms is higher than 3.2% by weight, the adhesiveness of the modified silicone (D) increases due to thermal crosslinking, which causes gum up.

水系乳化した際のエマルジョンの乳化安定性に優れ、また化合物(A)との併用による効果が優れる点から、これら変性シリコーン(D)の中でも、アミノ変性シリコーンが好ましい。   Of these modified silicones (D), amino-modified silicones are preferred because they are excellent in emulsion stability when water-based emulsified and have excellent effects when used in combination with compound (A).

変性シリコーン(D)がアミノ変性シリコーンである場合、そのアミノ変性シリコーンの構造は特に限定されるものではない。即ち、変性基であるアミノ基は、主鎖であるシリコーンの側鎖と結合していてもよいし、末端と結合していてもよいし、また両方と結合していてもよい。また、そのアミノ基は、モノアミン型であってもポリアミン型であってもよく、1分子中に両者が併存していてもよい。   When the modified silicone (D) is an amino-modified silicone, the structure of the amino-modified silicone is not particularly limited. That is, the amino group that is a modifying group may be bonded to the side chain of silicone that is the main chain, may be bonded to the terminal, or may be bonded to both. The amino group may be a monoamine type or a polyamine type, and both may be present in one molecule.

アミノ変性シリコーンにおけるアミノ基(NH)の含有量(以下、「アミノ重量%」という)は、0.4〜3.7重量%が好ましく、0.42〜2.5重量%がより好ましく、0.46〜1.5重量%が更に好ましい。アミノ重量%が0.4重量%より低いと、水系乳化した際にエマルジョンの乳化安定性が悪くなることがある。一方、3.7重量%より高い場合、熱架橋によりアミノ変性シリコーンの粘着性が高くなり、ガムアップの原因となる。The amino group (NH 2 ) content in the amino-modified silicone (hereinafter referred to as “amino weight%”) is preferably 0.4 to 3.7% by weight, more preferably 0.42 to 2.5% by weight, 0.46 to 1.5% by weight is more preferable. When amino weight% is lower than 0.4 weight%, the emulsion stability of the emulsion may deteriorate when aqueous emulsification is performed. On the other hand, when the content is higher than 3.7% by weight, the tackiness of the amino-modified silicone becomes high due to thermal crosslinking, which causes gum-up.

アミノ変性シリコーンの25℃における粘度については、特に限定はないが、低粘度過ぎると、処理剤が飛散しやすくなり、また水系乳化した際にエマルジョンの乳化安定性が悪くなり、処理剤を繊維へ均一に付与することが出来なくなる。その結果、繊維の融着を防止できないことがある。また逆に高粘度すぎると、粘着性に起因するガムアップが問題となることがある。これらの問題を防止する観点から、アミノ変性シリコーンの25℃での粘度は、50〜15,000mm/sが好ましく、500〜10,000mm/sがより好ましく、1,000〜5,000mm/sがさらに好ましい。The viscosity of the amino-modified silicone at 25 ° C. is not particularly limited, but if the viscosity is too low, the treatment agent is likely to scatter, and the emulsion stability of the emulsion deteriorates when emulsified with water, and the treatment agent is converted into fibers. It becomes impossible to apply uniformly. As a result, fiber fusion may not be prevented. On the other hand, if the viscosity is too high, gum-up due to adhesiveness may be a problem. From the standpoint of preventing these problems, the viscosity at 25 ° C. of an amino-modified silicone is preferably 50~15,000mm 2 / s, more preferably 500~10,000mm 2 / s, 1,000~5,000mm 2 / s is more preferable.

[界面活性剤]
本発明のアクリル繊維処理剤は、本発明の効果を阻害しない範囲で、界面活性剤を含有してもよい。界面活性剤は、乳化剤、制電剤等として使用される。界面活性剤としては、特に限定されず、非イオン性界面活性剤(但し、上記非イオン性界面活性剤(C)を除く)、アニオン性界面活性剤、カチオン性界面活性剤及び両性界面活性剤から、公知のものを適宜選択して使用することができる。界面活性剤は、1種又は2種以上を併用してもよい。
[Surfactant]
The acrylic fiber treatment agent of the present invention may contain a surfactant as long as the effects of the present invention are not impaired. Surfactants are used as emulsifiers, antistatic agents and the like. The surfactant is not particularly limited, and is a nonionic surfactant (excluding the nonionic surfactant (C)), anionic surfactant, cationic surfactant, and amphoteric surfactant. Therefore, known ones can be appropriately selected and used. Surfactant may use together 1 type (s) or 2 or more types.

非イオン性界面活性剤としては、例えば、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル等のポリオキシアルキレン直鎖アルキルエーテル;ポリオキシエチレン2−エチルヘキシルエーテル、ポリオキシエチレンイソセチルエーテル、ポリオキシエチレンイソステアリルエーテル等のポリオキシアルキレン分岐第一級アルキルエーテル;ポリオキシエチレン1−ヘキシルヘキシルエーテル、ポリオキシエチレン1−オクチルヘキシルエーテル、ポリオキシエチレン1−ヘキシルオクチルエーテル、ポリオキシエチレン1−ペンチルへプチルエーテル、ポリオキシエチレン1−へプチルペンチルエーテル等のポリオキシアルキレン分岐第二級アルキルエーテル;ポリオキシエチレンオレイルエーテル等のポリオキシアルキレンアルケニルエーテル;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル等のポリオキシアルキレンアルキルフェニルエーテル;ポリオキシエチレントリスチリルフェニルエーテル、ポリオキシエチレンジスチリルフェニルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレントリベンジルフェニルエーテル、ポリオキシエチレンジベンジルフェニルエーテル、ポリオキシエチレンベンジルフェニルエーテル等のポリオキシアルキレンアルキルアリールフェニルエーテル;ポリオキシエチレンモノラウレート、ポリオキシエチレンモノオレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノミリスチレート、ポリオキシエチレンジラウレート、ポリオキシエチレンジオレート、ポリオキシエチレンジミリスチレート、ポリオキシエチレンジステアレート等のポリオキシアルキレン脂肪酸エステル;ソルビタンモノパルミテート、ソルビタンモノオレート等のソルビタンエステル;ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレート等のポリオキシアルキレンソルビタン脂肪酸エステル;グリセリンモノステアレート、グリセリンモノラウレート、グリセリンモノパルミテート等のグリセリン脂肪酸エステル;ポリオキシアルキレンソルビトール脂肪酸エステル;ショ糖脂肪酸エステル;ポリオキシエチレンひまし油エーテル等のポリオキシアルキレンひまし油エーテル;ポリオキシエチレン硬化ひまし油エーテル等のポリオキシアルキレン硬化ひまし油エーテル;ポリオキシエチレンラウリルアミノエーテル、ポリオキシエチレンステアリルアミノエーテル等のポリオキシアルキレンアルキルアミノエーテル;オキシエチレン−オキシプロピレンブロックまたはランダム共重合体;オキシエチレン−オキシプロピレンブロックまたはランダム共重合体の末端アルキルエーテル化物;オキシエチレン−オキシプロピレンブロックまたはランダム共重合体の末端ショ糖エーテル化物;ポリオキシエチレンラウリルアミド、ポリオキシエチレンステアリルアミド等のポリオキシアルキレンアルキルアミド;等を挙げることができる。なお、ここで例示する非イオン性界面活性剤は、上記一般式(2)で示される非イオン界面活性剤(C)を除くものをいう。また、非イオン性界面活性剤は、ポリエーテル化合物(B)を除くものである。非イオン性界面活性剤の重量平均分子量は、2000以下が好ましく、200〜1800がより好ましく、300〜1500がより好ましく、500〜1000がさらに好ましい。   Examples of the nonionic surfactant include polyoxyalkylene linear alkyl ethers such as polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene decyl ether, polyoxyethylene lauryl ether, and polyoxyethylene cetyl ether; Polyoxyalkylene branched primary alkyl ethers such as polyoxyethylene 2-ethylhexyl ether, polyoxyethylene isocetyl ether, polyoxyethylene isostearyl ether; polyoxyethylene 1-hexyl hexyl ether, polyoxyethylene 1-octyl hexyl ether Polyoxyethylene 1-hexyl octyl ether, polyoxyethylene 1-pentyl heptyl ether, polyoxyethylene 1-heptylpentyl ether Polyoxyalkylene branched secondary alkyl ethers such as ter; polyoxyalkylene alkenyl ethers such as polyoxyethylene oleyl ether; polyoxys such as polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene dodecyl phenyl ether Alkylene alkyl phenyl ether; polyoxyethylene tristyryl phenyl ether, polyoxyethylene distyryl phenyl ether, polyoxyethylene styryl phenyl ether, polyoxyethylene tribenzyl phenyl ether, polyoxyethylene dibenzyl phenyl ether, polyoxyethylene benzyl phenyl ether Such as polyoxyalkylene alkyl aryl phenyl ether; Laurate, polyoxyethylene monooleate, polyoxyethylene monostearate, polyoxyethylene monomyristate, polyoxyethylene dilaurate, polyoxyethylene dioleate, polyoxyethylene dimyristate, polyoxyethylene distearate, etc. Polyoxyalkylene fatty acid esters; sorbitan esters such as sorbitan monopalmitate and sorbitan monooleate; polyoxyalkylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monostearate and polyoxyethylene sorbitan monooleate; glycerin monostearate and glycerin monolaur Glycerin fatty acid ester such as rate and glycerin monopalmitate; Polyoxyalkylene sorbitol fatty acid ester; Sucrose fat Acid ester; polyoxyalkylene castor oil ether such as polyoxyethylene castor oil ether; polyoxyalkylene hardened castor oil ether such as polyoxyethylene hydrogenated castor oil ether; polyoxyalkylene alkyl such as polyoxyethylene lauryl amino ether and polyoxyethylene stearyl amino ether Amino ether; oxyethylene-oxypropylene block or random copolymer; oxyethylene-oxypropylene block or random copolymer terminal alkyl etherified product; oxyethylene-oxypropylene block or random copolymer terminal sucrose etherified product; Polyoxyalkylene alkylamides such as polyoxyethylene lauryl amide and polyoxyethylene stearyl amide; Can. In addition, the nonionic surfactant illustrated here means what remove | excluding the nonionic surfactant (C) shown by the said General formula (2). Moreover, a nonionic surfactant remove | excludes a polyether compound (B). The weight average molecular weight of the nonionic surfactant is preferably 2000 or less, more preferably 200 to 1800, more preferably 300 to 1500, and still more preferably 500 to 1000.

これら非イオン性界面活性剤の中でも、エステル及びシリコーン化合物の水系乳化力に特に優れるという理由で、ポリオキシアルキレン分岐第一級アルキルエーテル、ポリオキシアルキレン分岐第二級アルキルエーテル、ポリオキシアルキレンアルケニルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレン脂肪酸エステル、オキシエチレン−オキシプロピレンブロック共重合体、オキシエチレン−オキシプロピレンブロック共重合体の末端アルキルエーテル化合物、ポリオキシアルキレンアルキルアミドが好ましく、更に焼成工程で、繊維上でタール化して繊維に損傷を与え難いという理由で、オキシエチレン−オキシプロピレンブロックまたはランダム共重合体、オキシエチレン−オキシプロピレンブロック共重合体の末端アルキルエーテル化物、ポリオキシアルキレンアルキルアミドがより好ましい。   Among these nonionic surfactants, polyoxyalkylene branched primary alkyl ethers, polyoxyalkylene branched secondary alkyl ethers, polyoxyalkylene alkenyl ethers are preferred because they are particularly excellent in aqueous emulsifying power of esters and silicone compounds. , Polyoxyalkylene alkyl phenyl ether, polyoxyalkylene fatty acid ester, oxyethylene-oxypropylene block copolymer, terminal alkyl ether compound of oxyethylene-oxypropylene block copolymer, and polyoxyalkylene alkylamide are preferred, and further a firing step The oxyethylene-oxypropylene block or the random copolymer, the oxyethylene-oxypropylene block, because it is difficult to tar the fiber and damage the fiber. Terminal alkyl ethers of copolymers, polyoxyalkylene alkylamide is more preferable.

上記ポリオキシアルキレンアルキルアミドとは、カルボン酸とアミン化合物との縮合物である酸アミドにポリオキシアルキレンを付加させた化合物である。カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸等を挙げることができる。アミン化合物としては、例えば、モノメタノールアミン、ジメタノールアミン、モノエタノールアミン、ジエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、モノイソプロパノールアミン等のアルカノールアミン;ジエチレントリアミン、テトラエチレンペンタミン等のポリアミン等を挙げることができる。アルキレンオキサイドとしては、例えば、エチレンオキサイド(EO)、プロピレンオキサイド(PO)、ブチレンオキサイド(BO)等を挙げることができる。ポリオキシアルキレンアルキルアミドとしては、例えば、カルボン酸モノエタノールアミドのアルキレンオキサイド付加物、カルボン酸ジエタノールアミドのアルキレンオキサイド付加物等を挙げることができる。これらポリオキシアルキレンアルキルアミドは単独で又は二種以上組み合わせて使用することができる。これらポリオキシアルキレンアルキルアミドの中でも、エステル及びシリコーン化合物の水系乳化力に特に優れるという理由で、ポリオキシエチレンラウリルアミド、ポリオキシエチレンステアリルアミドが好ましい。   The polyoxyalkylene alkylamide is a compound obtained by adding polyoxyalkylene to an acid amide that is a condensate of a carboxylic acid and an amine compound. Examples of carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, and the like. Can be mentioned. Examples of amine compounds include alkanolamines such as monomethanolamine, dimethanolamine, monoethanolamine, diethanolamine, monopropanolamine, dipropanolamine, and monoisopropanolamine; polyamines such as diethylenetriamine and tetraethylenepentamine. Can do. Examples of the alkylene oxide include ethylene oxide (EO), propylene oxide (PO), butylene oxide (BO), and the like. Examples of the polyoxyalkylene alkylamide include an alkylene oxide adduct of carboxylic acid monoethanolamide, an alkylene oxide adduct of carboxylic acid diethanolamide, and the like. These polyoxyalkylene alkylamides can be used alone or in combination of two or more. Among these polyoxyalkylene alkyl amides, polyoxyethylene lauryl amide and polyoxyethylene stearyl amide are preferable because they are particularly excellent in aqueous emulsifying power of esters and silicone compounds.

アニオン性界面活性剤としては、例えば、オレイン酸、パルミチン酸、オレイン酸ナトリウム塩、パルミチン酸カリウム塩、オレイン酸トリエタノールアミン塩等の脂肪酸(塩);ヒドロキシ酢酸、ヒドロキシ酢酸カリウム塩、乳酸、乳酸カリウム塩等のヒドロキシル基含有カルボン酸(塩);ポリオキシエチレントリデシルエーテル酢酸(ナトリウム塩)等のポリオキシアルキレンアルキルエーテル酢酸(塩);トリメリット酸カリウム、ピロメリット酸カリウム等のカルボキシル基多置換芳香族化合物の塩;ドデシルベンゼンスルホン酸(ナトリウム塩)等のアルキルベンゼンスルホン酸(塩);ポリオキシエチレン2−エチルヘキシルエーテルスルホン酸(カリウム塩)等のポリオキシアルキレンアルキルエーテルスルホン酸(塩);ステアロイルメチルタウリン(ナトリウム)、ラウロイルメチルタウリン(ナトリウム)、ミリストイルメチルタウリン(ナトリウム)、パルミトイルメチルタウリン(ナトリウム)等の高級脂肪酸アミドスルホン酸(塩);ラウロイルサルコシン酸(ナトリウム)等のN−アシルサルコシン酸(塩);オクチルホスホネート(カリウム塩)等のアルキルホスホン酸(塩);フェニルホスホネート(カリウム塩)等の芳香族ホスホン酸(塩);2−エチルヘキシルホスホネートモノ2−エチルヘキシルエステル(カリウム塩)等のアルキルホスホン酸アルキルリン酸エステル(塩);アミノエチルホスホン酸(ジエタノールアミン塩)等の含窒素アルキルホスホン酸(塩);2−エチルヘキシルサルフェート(ナトリウム塩)等のアルキル硫酸エステル(塩);ポリオキシエチレン2−エチルヘキシルエーテルサルフェート(ナトリウム塩)等のポリオキシアルキレン硫酸エステル(塩);ジ−2−エチルヘキシルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム等の長鎖スルホコハク酸塩、N−ラウロイルグルタミン酸モノナトリウム、N−ステアロイル−L−グルタミン酸ジナトリウム等の長鎖N−アシルグルタミン酸塩;等を挙げる事ができる。   Examples of the anionic surfactant include fatty acids (salts) such as oleic acid, palmitic acid, sodium oleate, potassium palmitate, triethanolamine oleate; hydroxyacetic acid, potassium potassium hydroxyacetate, lactic acid, lactic acid Hydroxyl group-containing carboxylic acid (salt) such as potassium salt; polyoxyalkylene alkyl ether acetic acid (salt) such as polyoxyethylene tridecyl ether acetic acid (sodium salt); and many carboxyl groups such as potassium trimellitic acid and potassium pyromellitic acid Substituted aromatic compound salts; alkylbenzene sulfonic acid (salt) such as dodecylbenzene sulfonic acid (sodium salt); polyoxyalkylene alkyl ether sulfonic acid (salt) such as polyoxyethylene 2-ethylhexyl ether sulfonic acid (potassium salt); Higher fatty acid amide sulfonic acid (salt) such as theauroylmethyl taurine (sodium), lauroyl methyl taurine (sodium), myristoyl methyl taurine (sodium), palmitoyl methyl taurine (sodium); N-acyl such as lauroyl sarcosine acid (sodium) Sarcosine acid (salt); alkyl phosphonic acid (salt) such as octyl phosphonate (potassium salt); aromatic phosphonic acid (salt) such as phenyl phosphonate (potassium salt); 2-ethylhexyl phosphonate mono 2-ethylhexyl ester (potassium salt) Alkylphosphonic acid esters (salts) such as alkylphosphonic acid; nitrogen-containing alkylphosphonic acid (salt) such as aminoethylphosphonic acid (diethanolamine salt); alkylsulfuric acid such as 2-ethylhexyl sulfate (sodium salt) Esters (salts); polyoxyalkylene sulfate esters (salts) such as polyoxyethylene 2-ethylhexyl ether sulfate (sodium salt); long-chain sulfosuccinates such as sodium di-2-ethylhexyl sulfosuccinate and sodium dioctyl sulfosuccinate; N -Long-chain N-acyl glutamates such as monosodium lauroyl glutamate and disodium N-stearoyl-L-glutamate;

カチオン性界面活性剤としては、例えば、ラウリルトリメチルアンモニウムクロライド、ミリスチルトリメチルアンモニウムクロライド、パルミチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、オレイルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、ヤシ油アルキルトリメチルアンモニウムクロライド、牛脂アルキルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムブロマイド、ヤシ油アルキルトリメチルアンモニウムブロマイド、セチルトリメチルアンモニウムメトサルフェート、オレイルジメチルエチルアンモニウムエトサルフェート、ジオクチルジメチルアンモニウムクロライド、ジラウリルジメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、オクタデシルジエチルメチルアンモニウムサルフェート、等のアルキル第四級アンモニウム塩;(ポリオキシエチレン)ラウリルアミノエーテル乳酸塩、ステアリルアミノエーテル乳酸塩、ジ(ポリオキシエチレン)ラウリルメチルアミノエーテルジメチルホスフェート、ジ(ポリオキシエチレン)ラウリルエチルアンモニウムエトサルフェート、ジ(ポリオキシエチレン)硬化牛脂アルキルエチルアミンエトサルフェート、ジ(ポリオキシエチレン)ラウリルメチルアンモニウムジメチルホスフェート、ジ(ポリオキシエチレン)ステアリルアミン乳酸塩等の(ポリオキシアルキレン)アルキルアミノエーテル塩;N−(2−ヒドロキシエチル)−N,N-ジメチル−N−ステアロイルアミドプロピルアンモニウムナイトレート、ラノリン脂肪酸アミドプロピルエチルジメチルアンモニウムエトサルフェート、ラウロイルアミドエチルメチルジエチルアンモニウムメトサルフェート等のアシルアミドアルキル第四級アンモニウム塩;ジパルミチルポリエテノキシエチルアンモニウムクロライド、ジステアリルポリエテノキシメチルアンモニウムクロライド等のアルキルエテノキシ第四級アンモニウム塩;ラウリルイソキノリニウムクロライド等のアルキルイソキノリニウム塩;ラウリルジメチルベンジルアンモニウムクロライド、ステアリルジメチルベンジルアンモニウムクロライド等のベンザルコニウム塩;ベンジルジメチル{2−[2−(p−1,1,3,3−テトラメチルブチルフェノオキシ)エトオキシ]エチル}アンモニウムクロライド等のベンゼトニウム塩;セチルピリジニウムクロライド等のピリジニウム塩;オレイルヒドロキシエチルイミダゾリニウムエトサルフェート、ラウリルヒドロキシエチルイミダゾリニウムエトサルフェート等のイミダゾリニウム塩;N−ココイルアルギニンエチルエステルピロリドンカルボン酸塩、N−ラウロイルリジンエチルエチルエステルクロライド等のアシル塩基性アミノ酸アルキルエステル塩;ラウリルアミンクロライド、ステアリルアミンブロマイド、硬化牛脂アルキルアミンクロライド、ロジンアミン酢酸塩等の第一級アミン塩;セチルメチルアミンサルフェート、ラウリルメチルアミンクロライド、ジラウリルアミン酢酸塩、ステアリルエチルアミンブロマイド、ラウリルプロピルアミン酢酸塩、ジオクチルアミンクロライド、オクタデシルエチルアミンハイドロオキサイド等の第二級アミン塩;ジラウリルメチルアミンサルフェート、ラウリルジエチルアミンクロライド、ラウリルエチルメチルアミンブロマイド、ジエタノールステアリルアミドエチルアミントリヒドロキシエチルホスフェート塩、ステアリルアミドエチルエタノールアミン尿素重縮合物酢酸塩等の第三級アミン塩;脂肪酸アミドグアニジニウム塩;ラウリルトリエチレングリコールアンモニウムハイドロオキサイド等のアルキルトリアルキレングリコールアンモニウム塩等を挙げることができる。   Examples of the cationic surfactant include lauryl trimethyl ammonium chloride, myristyl trimethyl ammonium chloride, palmityl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, oleyl trimethyl ammonium chloride, cetyl trimethyl ammonium chloride, behenyl trimethyl ammonium chloride, coconut oil alkyl trimethyl. Ammonium chloride, tallow alkyltrimethylammonium chloride, stearyltrimethylammonium bromide, coconut oil alkyltrimethylammonium bromide, cetyltrimethylammonium methosulfate, oleyldimethylethylammonium ethosulphate, dioctyldimethylammonium chloride, dill Alkyl quaternary ammonium salts such as ril dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, octadecyl diethyl methyl ammonium sulfate; (polyoxyethylene) lauryl amino ether lactate, stearyl amino ether lactate, di (polyoxyethylene) lauryl Methylaminoether dimethyl phosphate, di (polyoxyethylene) laurylethylammonium ethosulphate, di (polyoxyethylene) -cured tallow alkylethylamine ethosulphate, di (polyoxyethylene) laurylmethylammonium dimethylphosphate, di (polyoxyethylene) stearyl (Polyoxyalkylene) alkylamino ether salts such as amine lactate; N- (2-hydroxyethyl)- , N-dimethyl-N-stearoylamidopropylammonium nitrate, lanolin fatty acid amidopropylethyldimethylammonium ethosulphate, acylamidoalkyl quaternary ammonium salts such as lauroylamidoethylmethyldiethylammonium methosulfate; Alkylethenoxy quaternary ammonium salts such as ammonium chloride and distearyl polyethenoxymethylammonium chloride; alkylisoquinolinium salts such as laurylisoquinolinium chloride; lauryldimethylbenzylammonium chloride, stearyldimethylbenzylammonium chloride and the like Benzalkonium salt; benzyldimethyl {2- [2- (p-1,1,3,3-tetramethylbutylphenol) Oxy) ethoxy] ethyl} ammonium chloride and other benzethonium salts; cetylpyridinium chloride and other pyridinium salts; oleyl hydroxyethyl imidazolinium etosulphate, imidazolinium salts such as lauryl hydroxyethyl imidazolinium etosulphate; N-cocoyl arginine ethyl Acyl basic amino acid alkyl ester salts such as ester pyrrolidone carboxylate and N-lauroyllysine ethyl ethyl ester chloride; Primary amine salts such as laurylamine chloride, stearylamine bromide, hardened beef tallow alkylamine chloride, rosinamine acetate; cetyl Methylamine sulfate, laurylmethylamine chloride, dilaurylamine acetate, stearylethylamine bromide, lauric Secondary amine salts such as rupropylamine acetate, dioctylamine chloride, octadecylethylamine hydroxide; dilaurylmethylamine sulfate, lauryldiethylamine chloride, laurylethylmethylamine bromide, diethanol stearylamide ethylamine trihydroxyethyl phosphate salt, stearylamide Examples include tertiary amine salts such as ethyl ethanolamine urea polycondensate acetate; fatty acid amidoguanidinium salts; alkyltrialkylene glycol ammonium salts such as lauryl triethylene glycol ammonium hydroxide.

両性界面活性剤としては、例えば、2−ウンデシル−N,N−(ヒドロキシエチルカルボキシメチル)−2−イミダゾリンナトリウム、2−ココイル−2−イミダゾリニウムヒドロキサイド−1−カルボキシエチロキシ2ナトリウム塩等のイミダゾリン系両性界面活性剤;2−ヘプタデシル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、アルキルベタイン、アミドベタイン、スルホベタイン等のベタイン系両性界面活性剤;N−ラウリルグリシン、N−ラウリルβ−アラニン、N−ステアリルβ−アラニン等のアミノ酸型両性界面活性剤等が挙げられる。   Examples of amphoteric surfactants include 2-undecyl-N, N- (hydroxyethylcarboxymethyl) -2-imidazoline sodium, 2-cocoyl-2-imidazolinium hydroxide-1-carboxyethyloxy disodium salt, and the like. Imidazoline-based amphoteric surfactants; 2-heptadecyl-N-carboxymethyl-N-hydroxyethylimidazolium betaine, lauryldimethylaminoacetic acid betaine, alkylbetaines, amide betaines, sulfobetaine, and other betaine-based amphoteric surfactants; N- Amino acid type amphoteric surfactants such as lauryl glycine, N-lauryl β-alanine, N-stearyl β-alanine and the like can be mentioned.

これらの界面活性剤のなかでも、経時安定性に優れ、乳化力にも優れるという理由から、非イオン性界面活性剤が好ましい。イオン性界面活性剤は、非イオン性界面活性剤と比較し、静電気発生による繊維束のバラケを抑制することができる制電性に優れるという利点があるため、非イオン界面活性剤と併用することが好ましい。イオン性界面活性剤としては、上記のアニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤を挙げることができるが、これの中でもカチオン性界面活性剤が好ましく、カチオン界面活性剤の中でも、アルキル第四級アンモニウム塩、(ポリオキシアルキレン)アルキルアミノエーテル塩、アシルアミノアルキル第四級アンモニウム塩、アルキルエテノキシ第四級アンモニウム塩、第一級アミン塩、第二級アミン塩、第三級アミン塩等がさらに好ましい。   Among these surfactants, nonionic surfactants are preferred because they are excellent in stability over time and in emulsifying power. Compared with nonionic surfactants, ionic surfactants have the advantage of excellent antistatic properties that can suppress fiber bundle fluctuations due to the generation of static electricity, so they should be used in combination with nonionic surfactants. Is preferred. Examples of the ionic surfactant include the above-mentioned anionic surfactants, cationic surfactants, and amphoteric surfactants. Among these, cationic surfactants are preferable, and among the cationic surfactants. Alkyl quaternary ammonium salts, (polyoxyalkylene) alkyl amino ether salts, acylaminoalkyl quaternary ammonium salts, alkylethenoxy quaternary ammonium salts, primary amine salts, secondary amine salts, tertiary More preferred are secondary amine salts and the like.

[その他成分]
本発明のアクリル繊維処理剤は、本発明の効果を阻害しない範囲で、上記した成分以外の他の成分を含有してもよい。他の成分としては、酸性リン酸エステル、フェノール系、アミン系、硫黄系、リン系、キノン系等の酸化防止剤;高級アルコール・高級アルコールエーテルの硫酸エステル塩、スルホン酸塩、高級アルコール・高級アルコールエーテルのリン酸エステル塩、第4級アンモニウム塩型カチオン系界面活性剤、アミン塩型カチオン系界面活性剤等の制電剤;高級アルコールのアルキルエステル、高級アルコールエーテル、ワックス類等の平滑剤;抗菌剤;防腐剤;防錆剤;および吸湿剤等が挙げられる。
[Other ingredients]
The acrylic fiber treatment agent of the present invention may contain other components other than the above-described components as long as the effects of the present invention are not impaired. Other components include acid phosphate esters, phenolic, amine-based, sulfur-based, phosphorus-based and quinone-based antioxidants; sulfates of higher alcohols and higher alcohol ethers, sulfonates, higher alcohols and higher alcohols Antistatic agents such as phosphate salts of alcohol ethers, quaternary ammonium salt type cationic surfactants, amine salt type cationic surfactants; smoothing agents such as alkyl esters of higher alcohols, higher alcohol ethers, waxes, etc. Antibacterial agents; antiseptics; rust preventives; and hygroscopic agents.

酸化防止剤は、耐炎化処理工程における加熱によってアクリル繊維処理剤の熱分解を効果的に抑制し、繊維−繊維間の融着防止効果を高める成分である。
酸化防止剤としては、特に限定はないが、焼成炉汚染防止の観点から、有機酸化防止剤、酸性リン酸エステルが好ましく、酸性リン酸エステルがさらに好ましい。有機酸化防止剤としては、たとえば、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール、トリオクタデシルフォスファイト、N,N’−ジフェニル−p−フェニレンジアミン、トリエチレングリコールビス[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]、ジオレイル−チオジプロピオネート等を挙げることができる。これらの有機酸化防止剤は1種または2種以上を併用してもよい。
酸性リン酸エステルとしては、例えば、国際公開WO2013/129115号の請求項に記載されている酸性リン酸エステルを挙げることができる。また、酸性リン酸エステルは、国際公開WO2013/129115号の0036段落に記載されているように、公知の方法で製造することができる。例えば、無水リン酸Pなどの無機リン酸を、アルコールやポリオキシアルキレン付加のアルキルエーテルなどのアルコール性水酸基を分子中にもつ化合物(以下、単に原料アルコールということがある)と、任意のモル比で反応させることで得られる。得られた酸性リン酸エスエルには、副生された酸性ピロリン酸エステル(塩を形成していない未中和のピロリン酸エステル)、酸性トリリン酸エステル等の酸性ポリリン酸エステル(塩を形成していない未中和のポリリン酸エステル)が含有されていてもよい。
The antioxidant is a component that effectively suppresses thermal decomposition of the acrylic fiber treatment agent by heating in the flameproofing treatment step and enhances the effect of preventing fusion between fibers.
Although there is no limitation in particular as antioxidant, From a viewpoint of baking furnace contamination prevention, an organic antioxidant and acidic phosphate ester are preferable, and acidic phosphate ester is further more preferable. Examples of organic antioxidants include 4,4′-butylidenebis (3-methyl-6-tert-butylphenol, trioctadecyl phosphite, N, N′-diphenyl-p-phenylenediamine, triethylene glycol bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate], dioleyl-thiodipropionate, etc. These organic antioxidants may be used alone or in combination of two or more. Good.
As acidic phosphate ester, the acidic phosphate ester described in the claim of international publication WO2013 / 129115 can be mentioned, for example. Moreover, acidic phosphate ester can be manufactured by a well-known method, as described in the 0036 paragraph of international publication WO2013 / 129115. For example, an inorganic phosphoric acid such as anhydrous phosphoric acid P 2 O 5 , a compound having an alcoholic hydroxyl group in the molecule such as an alcohol or a polyoxyalkylene-added alkyl ether (hereinafter sometimes simply referred to as a raw material alcohol), an arbitrary It is obtained by reacting at a molar ratio of The obtained acidic phosphoric acid ester contains acidic polyphosphate esters (forming salts) such as by-produced acidic pyrophosphate esters (unneutralized pyrophosphate esters not forming a salt) and acidic triphosphate esters. Non-neutralized polyphosphate ester) may be contained.

また、本発明のアクリル繊維処理剤は、本発明の効果を阻害しない範囲で、窒素原子を含む変性基を持つ変性シリコーン(D)以外のシリコーン成分を含んでいてもよい。具体的には、ジメチルシリコーン、エポキシ変性シリコーン、アルキレンオキサイド変性シリコーン(ポリエーテル変性シリコーン)、エポキシポリエーテル変性シリコーン(例えば、特許4616934号参照)、カルボキシ変性シリコーン、カルビノール変性シリコーン、アルキル変性シリコーン、フェノール変性シリコーン、メタクリレート変性シリコーン、アルコキシ変性シリコーン、フッ素変性シリコーン等が挙げられる。   Moreover, the acrylic fiber treating agent of the present invention may contain a silicone component other than the modified silicone (D) having a modifying group containing a nitrogen atom as long as the effects of the present invention are not impaired. Specifically, dimethyl silicone, epoxy-modified silicone, alkylene oxide-modified silicone (polyether-modified silicone), epoxy polyether-modified silicone (see, for example, Japanese Patent No. 4616934), carboxy-modified silicone, carbinol-modified silicone, alkyl-modified silicone, Examples include phenol-modified silicone, methacrylate-modified silicone, alkoxy-modified silicone, and fluorine-modified silicone.

また、本発明のアクリル繊維処理剤は、本発明の効果を阻害しない範囲で、エステル化合物を含有してもよい。エステル化合物としては、例えば、再公表WO2007/066517号公報に記載されている、分子内に3個以上のエステル基を有するエステル化合物や、国際出願PCT/JP2013/75081に記載されている含硫黄エステル化合物等を挙げることができる。   Moreover, the acrylic fiber treatment agent of this invention may contain an ester compound in the range which does not inhibit the effect of this invention. Examples of ester compounds include ester compounds having 3 or more ester groups in the molecule described in republished WO 2007/066517, and sulfur-containing esters described in international application PCT / JP2013 / 75081. A compound etc. can be mentioned.

[アクリル繊維処理剤]
本発明のアクリル繊維処理剤は、上記一般式(1)で示される化合物(A)及び重量平均分子量8000〜25000のポリエーテル化合物(B)を必須に含有するものである。処理剤の不揮発分に占める、化合物(A)とポリエーテル化合物(B)の合計の重量割合は、50〜99重量%であることが好ましく、55〜95重量%がより好ましく、60〜90重量%がさらに好ましく、65〜80重量%が特に好ましい。なお、本発明における不揮発分とは、処理剤を105℃で熱処理して溶媒等を除去し、恒量に達した時の絶乾成分をいう。
[Acrylic fiber treatment agent]
The acrylic fiber treating agent of the present invention essentially contains the compound (A) represented by the general formula (1) and the polyether compound (B) having a weight average molecular weight of 8000 to 25000. The total weight ratio of the compound (A) and the polyether compound (B) in the nonvolatile content of the treatment agent is preferably 50 to 99% by weight, more preferably 55 to 95% by weight, and 60 to 90% by weight. % Is more preferable, and 65 to 80% by weight is particularly preferable. The non-volatile content in the present invention refers to an absolutely dry component when the treatment agent is heat treated at 105 ° C. to remove the solvent and the like and reach a constant weight.

炭素繊維製造における繊維束の集束性、繊維間の融着防止および安定した操業性を両立させることができる点から、化合物(A)とポリエーテル化合物(B)との重量比(A/B)は、90/10〜20/80が好ましく、75/25〜35/65がより好ましく、65/35〜45/55がさらに好ましい。   Weight ratio (A / B) of the compound (A) and the polyether compound (B) from the viewpoint that both the bundleability of the fiber bundle in carbon fiber production, the prevention of fusion between fibers, and stable operability can be achieved. Is preferably 90/10 to 20/80, more preferably 75/25 to 35/65, and still more preferably 65/35 to 45/55.

本発明のアクリル繊維処理剤が非イオン性界面活性剤(C)を含有する場合、処理剤の不揮発分に占める非イオン性界面活性剤(C)の重量割合は、0.5〜15重量%であることが好ましく、1〜10重量%がより好ましく、1〜8重量%がさらに好ましく、3〜5重量%が特に好ましい。   When the acrylic fiber treatment agent of the present invention contains a nonionic surfactant (C), the weight ratio of the nonionic surfactant (C) in the nonvolatile content of the treatment agent is 0.5 to 15% by weight. 1 to 10% by weight is more preferable, 1 to 8% by weight is further preferable, and 3 to 5% by weight is particularly preferable.

本発明のアクリル繊維処理剤が変性シリコーン(D)を含有する場合、処理剤の不揮発分に占める変性シリコーン(D)の重量割合は、5〜40重量%がより好ましく、10〜30重量%がさらに好ましく、15〜25重量%が特に好ましい。   When the acrylic fiber treatment agent of the present invention contains the modified silicone (D), the weight percentage of the modified silicone (D) in the nonvolatile content of the treatment agent is more preferably 5 to 40% by weight, and 10 to 30% by weight. Further preferred is 15 to 25% by weight.

本発明のアクリル繊維処理剤は、乳化剤としての非イオン界面活性剤の使用量を低減することができる。その結果、非イオン界面活性剤の総量を低減することができる。具体的には、処理剤の不揮発分に占める非イオン性界面活性剤(総量)の重量割合を20重量%以下、好ましくは15重量%以下、さらに好ましくは10重量%以下にすることができる。該重量割合が20重量%を超えると、多量の非イオン界面活性剤の影響により、プレカーサー製糸工程や耐炎化工程での繊維束の集束性が悪化する場合がある。本発明のアクリル繊維処理剤が非イオン性界面活性剤(C)を含有する場合、処理剤の不揮発分に占める非イオン性界面活性剤(総量)の重量割合は、1〜20重量%が好ましく、2〜15重量%がより好ましく、3〜10重量%がさらに好ましい。   The acrylic fiber treatment agent of the present invention can reduce the amount of nonionic surfactant used as an emulsifier. As a result, the total amount of nonionic surfactant can be reduced. Specifically, the weight ratio of the nonionic surfactant (total amount) in the nonvolatile content of the treatment agent can be 20% by weight or less, preferably 15% by weight or less, and more preferably 10% by weight or less. When the weight ratio exceeds 20% by weight, fiber bundles may be deteriorated in the precursor yarn-making process and the flame-proofing process due to the influence of a large amount of nonionic surfactant. When the acrylic fiber treatment agent of the present invention contains a nonionic surfactant (C), the weight ratio of the nonionic surfactant (total amount) in the nonvolatile content of the treatment agent is preferably 1 to 20% by weight. 2 to 15% by weight is more preferable, and 3 to 10% by weight is more preferable.

本発明のアクリル繊維処理剤は、化合物(A)、ポリエーテル化合物(B)、必要に応じて非イオン性界面活性剤(C)、変性シリコーン(D)が水に溶解、可溶化、乳化又は分散された状態であることが好ましい。
アクリル繊維処理剤全体に占める水の重量割合、不揮発分の重量割合については、特に限定はない。例えば、本発明のアクリル繊維処理剤を輸送する際の輸送コストや、エマルジョン粘度に因るところの取扱い性等を考慮して適宜決定すればよい。アクリル繊維処理剤全体に占める水の重量割合は、0.1〜99.9重量%が好ましく、10〜99.5重量%がさらに好ましく、50〜99重量%が特に好ましい。アクリル繊維処理剤全体に占める不揮発分の重量割合(濃度)は、0.01〜99.9重量%が好ましく、0.5〜90重量%がさらに好ましく、1〜50重量%が特に好ましい。
The acrylic fiber treatment agent of the present invention comprises a compound (A), a polyether compound (B), a nonionic surfactant (C), and a modified silicone (D), if necessary, dissolved, solubilized, emulsified or emulsified in water. A dispersed state is preferable.
There is no particular limitation on the weight ratio of water and the weight ratio of non-volatile content in the entire acrylic fiber treatment agent. For example, what is necessary is just to determine suitably in consideration of the transport cost at the time of transporting the acrylic fiber processing agent of this invention, the handleability etc. resulting from emulsion viscosity, etc. The weight ratio of water in the entire acrylic fiber treating agent is preferably 0.1 to 99.9% by weight, more preferably 10 to 99.5% by weight, and particularly preferably 50 to 99% by weight. The weight ratio (concentration) of the nonvolatile component in the entire acrylic fiber treatment agent is preferably 0.01 to 99.9% by weight, more preferably 0.5 to 90% by weight, and particularly preferably 1 to 50% by weight.

耐炎化処理工程における耐熱性および繊維−繊維間の融着防止効果の点から、本発明のアクリル繊維処理剤における空気中250℃にて1時間加熱処理後の重量減少率については、40重量%未満が好ましく、30重量%未満がより好ましく、25%未満がさらに好ましい。重量減少率が40%以上の場合、耐炎化処理工程において繊維上に残存する処理剤皮膜が少なくなり、繊維−繊維間の融着防止効果が十分に得られないことがある。   From the viewpoint of heat resistance in the flameproofing treatment process and the effect of preventing fiber-fiber fusion, the weight reduction rate after heat treatment at 250 ° C. in the air for the acrylic fiber treatment agent of the present invention is 40% by weight. Is less than 30% by weight, more preferably less than 25%. When the weight reduction rate is 40% or more, the treatment agent film remaining on the fiber in the flameproofing treatment step decreases, and the effect of preventing the fusion between the fibers and the fibers may not be sufficiently obtained.

本発明のアクリル繊維処理剤は、上記で説明した成分を混合することによって製造することができる。上記で説明した成分を乳化・分散させる方法については特に限定されず、公知の手法が採用できる。このような方法としては、たとえば、アクリル繊維処理剤を構成する各成分を攪拌下の温水中に投入して乳化分散する方法や、アクリル繊維処理剤を構成する各成分を混合し、ホモジナイザー、ホモミキサー、ボールミル等を用いて機械せん断力を加えつつ、水を徐々に投入して転相乳化する方法等が挙げられる。   The acrylic fiber treatment agent of the present invention can be produced by mixing the components described above. The method for emulsifying and dispersing the components described above is not particularly limited, and a known method can be employed. As such a method, for example, each component constituting the acrylic fiber treatment agent is put into warm water under stirring and emulsified and dispersed, or each component constituting the acrylic fiber treatment agent is mixed, and then homogenizer, homogenizer is mixed. Examples include a method of phase inversion emulsification by gradually adding water while applying mechanical shearing force using a mixer, a ball mill, or the like.

本発明のアクリル繊維処理剤は、炭素繊維製造用アクリル繊維(プレカーサー)の処理剤(プレカーサー処理剤)として好適に使用できる。プレカーサー以外のアクリル繊維の紡糸油剤として使用してもよい。   The acrylic fiber treatment agent of the present invention can be suitably used as a treatment agent (precursor treatment agent) for acrylic fibers (precursor) for producing carbon fibers. You may use as spinning oil agent of acrylic fibers other than a precursor.

プレカーサー製糸工程や耐炎化工程における良好な繊維束の集束性を付与できる点から、本発明のアクリル繊維処理剤の不揮発分の50℃における粘度は、350〜25000mPa・sが好ましく、1000〜20000mPa・sがより好ましく、1500〜15000mPa・sがさらに好ましい。該粘度が350mPa・s未満になると、プレカーサー製糸工程や耐炎化工程における繊維束の集束性が悪化する場合がある。また、該粘度が25000mPa・sを超えると、プレカーサー製糸工程や耐炎化工程における良好な繊維束の集束性を付与できても、処理剤の粘度が高くなり過ぎ、処理剤の取扱い性が悪化する場合がある。なお、該粘度の測定方法は、実施例で記載している方法によるものである。   The viscosity at 50 ° C. of the nonvolatile content of the acrylic fiber treatment agent of the present invention is preferably 350 to 25000 mPa · s, and preferably 1000 to 20000 mPa · s, from the viewpoint of imparting good fiber bundle convergence in the precursor yarn-making process and flameproofing process. s is more preferable, and 1500 to 15000 mPa · s is more preferable. When the viscosity is less than 350 mPa · s, fiber bundles may be deteriorated in the precursor yarn-making process or the flame-proofing process. Further, if the viscosity exceeds 25000 mPa · s, the treatment agent viscosity becomes too high and the handling property of the treatment agent deteriorates even if good fiber bundle convergence in the precursor yarn forming process and the flameproofing process can be imparted. There is a case. In addition, the measuring method of this viscosity is based on the method described in the Example.

[炭素繊維製造用アクリル繊維、その製造方法及び炭素繊維の製造方法]
本発明の炭素繊維製造用アクリル繊維(プレカーサー)は、プレカーサーの原料アクリル繊維に上記のアクリル繊維処理剤を付着させて製糸したものである。本発明のプレカーサーの製造方法は、プレカーサーの原料アクリル繊維に上記のアクリル繊維処理剤を付着させて製糸する製糸工程を含むものである。
本発明の炭素繊維の製造方法は、プレカーサーの原料アクリル繊維に上記のアクリル繊維処理剤を付着させて、プレカーサーを製糸する製糸工程と、その製糸工程で製造されたプレカーサーを200〜300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300〜2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含むものである。
[Acrylic fiber for producing carbon fiber, method for producing the same, and method for producing carbon fiber]
The acrylic fiber for carbon fiber production (precursor) of the present invention is produced by attaching the above-mentioned acrylic fiber treatment agent to the precursor acrylic fiber of the precursor. The method for producing a precursor according to the present invention includes a yarn production step in which the acrylic fiber treatment agent is attached to the raw material acrylic fiber of the precursor to produce a yarn.
The carbon fiber production method of the present invention includes a spinning process in which the above acrylic fiber treatment agent is attached to the precursor acrylic fiber to produce the precursor, and the precursor produced in the spinning process is oxidized at 200 to 300 ° C. A flameproofing process for converting to a flameproofed fiber in a neutral atmosphere, and a carbonization process for carbonizing the flameproofed fiber in an inert atmosphere at 300 to 2000 ° C.

製糸工程は、プレカーサーの原料アクリル繊維にアクリル繊維処理剤を付着させてプレカーサーを製糸する工程であり、付着処理工程と延伸工程とを含む。
付着処理工程は、プレカーサーの原料アクリル繊維を紡糸した後、アクリル繊維処理剤を付着させる工程である。つまり、付着処理工程でプレカーサーの原料アクリル繊維にアクリル繊維処理剤を付着させる。またこのプレカーサーの原料アクリル繊維は紡糸直後から延伸されるが、付着処理工程後の高倍率延伸を特に「延伸工程」と呼ぶ。延伸工程は高温水蒸気をもちいた湿熱延伸法でもよいし、熱ローラーをもちいた乾熱延伸法でもよい。
The yarn making process is a process of making a precursor by making an acrylic fiber treatment agent adhere to the precursor acrylic fiber of the precursor, and includes an adhesion treatment process and a stretching process.
The adhesion treatment step is a step of adhering an acrylic fiber treatment agent after spinning precursor acrylic fiber. That is, the acrylic fiber treatment agent is adhered to the precursor raw acrylic fiber in the adhesion treatment step. The precursor raw acrylic fiber is stretched immediately after spinning, and the high-strength stretching after the adhesion treatment step is particularly called a “stretching step”. The stretching process may be a wet heat stretching method using high temperature steam or a dry heat stretching method using a hot roller.

プレカーサーは、少なくとも95モル%以上のアクリロニトリルと、5モル%以下の耐炎化促進成分とを共重合させて得られるポリアクリロニトリルを主成分とするアクリル繊維から構成される。耐炎化促進成分としては、アクリロニトリルに対して共重合性を有するビニル基含有化合物が好適に使用できる。プレカーサーの単繊維繊度については、特に限定はないが、性能と製造コストのバランスから、好ましくは0.1〜2.0dTexである。また、プレカーサーの繊維束を構成する単繊維の本数についても特に限定はないが、性能と製造コストのバランスから、好ましくは1,000〜96,000本である。   A precursor is comprised from the acrylic fiber which has as a main component the polyacrylonitrile obtained by copolymerizing at least 95 mol% or more of acrylonitrile and 5 mol% or less of a flame-resistant acceleration | stimulation component. As the flame resistance promoting component, a vinyl group-containing compound having copolymerizability with acrylonitrile can be suitably used. Although there is no limitation in particular about the single fiber fineness of a precursor, from the balance of a performance and manufacturing cost, Preferably it is 0.1-2.0 dTex. Further, the number of single fibers constituting the precursor fiber bundle is not particularly limited, but is preferably 1,000 to 96,000 from the balance between performance and production cost.

アクリル繊維処理剤は、製糸工程のどの段階でプレカーサーの原料アクリル繊維に付着させてもよいが、延伸工程前に一度付着させておくことが好ましい。延伸工程前の段階であればどの段階でも、例えば紡糸直後に付着させてもよい。さらに延伸工程後のどの段階で再度付着させてもよく、例えば、延伸工程直後に再度付着させてもよいし、巻取り段階で再度付着させてもよいし、耐炎化処理工程の直前に再度付着させてもよい。その付着方法に関しては、ローラー等を使用して付着してもよいし、浸漬法、スプレー法等で付着してもよい。   The acrylic fiber treatment agent may be attached to the precursor raw acrylic fiber at any stage of the yarn production process, but is preferably attached once before the drawing process. It may be attached at any stage before the stretching process, for example, immediately after spinning. Further, it may be reattached at any stage after the stretching process, for example, it may be reattached immediately after the stretching process, it may be reattached at the winding stage, or it may be reattached immediately before the flameproofing process. You may let them. As for the attachment method, it may be attached using a roller or the like, or may be attached by a dipping method, a spray method or the like.

付着処理工程において、アクリル繊維処理剤の付与率は、繊維−繊維間の膠着防止効果や融着防止効果を得ることと、炭素化処理工程において処理剤のタール化物によって炭素繊維の品質低下を防止することとのバランスからは、プレカーサーの重量に対して好ましくは0.1〜2重量%であり、さらに好ましくは0.3〜1.5重量%である。アクリル繊維処理剤の付与率が0.1重量%未満であると、単繊維間の膠着、融着を十分に防止できず、得られる炭素繊維の強度が低下することがある。一方、アクリル繊維処理剤の付与率が2重量%超であると、アクリル繊維処理剤が単繊維間を必要以上に覆うため、耐炎化処理工程において繊維への酸素の供給が妨げられ、得られる炭素繊維の強度が低下することがある。なお、ここでいうアクリル繊維処理剤の付与率とは、プレカーサー重量に対するアクリル繊維処理剤の付着した不揮発分重量の百分率で定義される。   In the adhesion treatment process, the application rate of the acrylic fiber treatment agent obtains the effect of preventing fiber-to-fiber sticking and the prevention of fusion, and prevents the deterioration of the quality of the carbon fiber due to the tar product of the treatment agent in the carbonization treatment process. From the balance with the content of the precursor, it is preferably 0.1 to 2% by weight, more preferably 0.3 to 1.5% by weight, based on the weight of the precursor. When the application rate of the acrylic fiber treatment agent is less than 0.1% by weight, sticking and fusion between single fibers cannot be sufficiently prevented, and the strength of the obtained carbon fibers may be lowered. On the other hand, when the application rate of the acrylic fiber treatment agent is more than 2% by weight, the acrylic fiber treatment agent covers more than necessary between the single fibers, so that the supply of oxygen to the fibers is hindered in the flameproofing treatment step, and thus obtained. The strength of the carbon fiber may decrease. In addition, the provision rate of an acrylic fiber processing agent here is defined with the percentage of the non volatile matter weight to which the acrylic fiber processing agent adhered with respect to the precursor weight.

耐炎化処理工程は、アクリル繊維処理剤が付着したプレカーサーを200〜300℃の酸化性雰囲気中で耐炎化繊維に転換する工程である。酸化性雰囲気とは、通常、空気雰囲気であればよい。酸化性雰囲気の温度は好ましくは230〜280℃である。耐炎化処理工程では、付着処理後のアクリル繊維に対して、延伸比0.90〜1.10(好ましくは0.95〜1.05)の張力をかけながら、20〜100分間(好ましくは30〜60分間)にわたって熱処理が行われる。この耐炎化処理では、分子内環化および環への酸素付加を経て、耐炎化構造を持つ耐炎化繊維が製造される。   The flameproofing treatment step is a step of converting the precursor with the acrylic fiber treating agent attached thereto into flameproofing fibers in an oxidizing atmosphere at 200 to 300 ° C. The oxidizing atmosphere is usually an air atmosphere. The temperature of the oxidizing atmosphere is preferably 230 to 280 ° C. In the flameproofing treatment step, the acrylic fiber after the adhesion treatment is applied for 20 to 100 minutes (preferably 30) while applying a tension ratio of 0.90 to 1.10 (preferably 0.95 to 1.05). Heat treatment is performed for ˜60 minutes. In this flameproofing treatment, a flameproof fiber having a flameproof structure is produced through intramolecular cyclization and oxygen addition to the ring.

炭素化処理工程は、耐炎化繊維をさらに300〜2000℃の不活性雰囲気中で炭化させる工程である。炭素化処理工程では、まず、窒素、アルゴン等の不活性雰囲気中、300℃から800℃まで温度勾配を有する焼成炉で、耐炎化繊維に対して、延伸比0.95〜1.15の張力をかけながら、数分間熱処理して、予備炭素化処理工程(第一炭素化処理工程)を行うのが好ましい。その後、より炭素化を進行させ、且つグラファイト化を進行させるために、窒素、アルゴン等の不活性雰囲気中で、第一炭素化処理工程に対して延伸比0.95〜1.05の張力をかけながら、数分間熱処理して、第二炭素化処理工程を行い、耐炎化繊維が炭素化される。第二炭素化処理工程における熱処理温度の制御については、温度勾配をかけながら、最高温度を1000℃以上(好ましくは1000〜2000℃)とすることがよい。この最高温度は、所望する炭素繊維の要求特性(引張強度、弾性率等)に応じて適宜選択して決定される。   The carbonization treatment step is a step of carbonizing the flameproof fiber in an inert atmosphere of 300 to 2000 ° C. In the carbonization treatment step, first, in a firing furnace having a temperature gradient from 300 ° C. to 800 ° C. in an inert atmosphere such as nitrogen or argon, a tension ratio of 0.95 to 1.15 is applied to the flameproof fiber. It is preferable to carry out a pre-carbonization treatment step (first carbonization treatment step) by applying heat treatment for several minutes while applying. Thereafter, in order to further promote carbonization and advance graphitization, a tension ratio of 0.95 to 1.05 is applied to the first carbonization treatment step in an inert atmosphere such as nitrogen or argon. While being applied, heat treatment is performed for several minutes to perform the second carbonization treatment step, and the flame resistant fiber is carbonized. About control of the heat processing temperature in a 2nd carbonization process process, it is good to make maximum temperature into 1000 degreeC or more (preferably 1000-2000 degreeC), applying a temperature gradient. This maximum temperature is appropriately selected and determined according to the required characteristics (tensile strength, elastic modulus, etc.) of the desired carbon fiber.

本発明の炭素繊維の製造方法では、弾性率がさらに高い炭素繊維が所望される場合は、炭素化処理工程に引き続いて、黒鉛化処理工程を行うこともできる。黒鉛化処理工程は、通常、窒素、アルゴン等の不活性雰囲気中、炭素化処理工程で得られた繊維に対して張力をかけながら、2000〜3000℃の温度で行われる。   In the carbon fiber manufacturing method of the present invention, when a carbon fiber having a higher elastic modulus is desired, the graphitization treatment step can be performed subsequent to the carbonization treatment step. The graphitization treatment step is usually performed at a temperature of 2000 to 3000 ° C. while applying tension to the fiber obtained in the carbonization treatment step in an inert atmosphere such as nitrogen or argon.

このようにして得られた炭素繊維には、目的に応じて、複合材料とした時のマトリックス樹脂との接着強度を高めるための表面処理を行うことができる。表面処理方法としては、気相または液相処理を採用でき、生産性の観点からは、酸、アルカリなどの電解液による液相処理が好ましい。さらに、炭素繊維の加工性、取り扱い性を向上させるために、マトリックス樹脂に対して相溶性の優れる各種サイジング剤を付与することもできる。   The carbon fiber thus obtained can be subjected to a surface treatment for increasing the adhesive strength with the matrix resin when made into a composite material, depending on the purpose. As the surface treatment method, gas phase or liquid phase treatment can be adopted, and from the viewpoint of productivity, liquid phase treatment with an electrolytic solution of acid, alkali or the like is preferable. Furthermore, various sizing agents having excellent compatibility with the matrix resin can be added to improve the processability and handleability of the carbon fiber.

以下、実施例により本発明を具体的に説明するが、ここに記載した実施例に限定されるものではない。なお、以下の実施例に示されるパーセント(%)、部は特に限定しない限り、「重量%」、「重量部」を示す。各特性値の測定は以下に示す方法に基づいて行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to the Example described here. In addition, the percentage (%) and part shown in the following examples indicate “% by weight” and “part by weight” unless otherwise specified. Each characteristic value was measured based on the following method.

<処理剤の付与率>
アクリル繊維処理剤の付与率は、ソックスレー抽出器によるエタノール抽出法により算出した。但し、変性シリコーン(D)を含む実施例、比較例については、以下の方法で付与率を算出した。
処理剤付与後のプレカーサーを水酸化カリウム/ナトリウムブチラートでアルカリ溶融した後、水に溶解して塩酸でpH1に調整した。これを亜硫酸ナトリウムとモリブデン酸アンモニウムを加えて発色させ、ケイモリブデンブルーの比色定量(波長815mμ)を行い、ケイ素の含有量を求めた。ここで求めたケイ素含有量と予め同法で求めた処理剤中のケイ素含有量の値を用いて、アクリル繊維処理剤の付与率(重量%)を算出した。
<Application rate of treatment agent>
The application rate of the acrylic fiber treating agent was calculated by an ethanol extraction method using a Soxhlet extractor. However, about the Example and modified example containing modified silicone (D), the provision rate was computed with the following method.
The precursor after application of the treatment agent was alkali-melted with potassium hydroxide / sodium butyrate, dissolved in water, and adjusted to pH 1 with hydrochloric acid. This was added with sodium sulfite and ammonium molybdate to develop a color, and colorimetric determination (wavelength 815 mμ) of silicomomolybdenum blue was performed to determine the silicon content. The application rate (% by weight) of the acrylic fiber treatment agent was calculated using the silicon content obtained here and the value of the silicon content in the treatment agent obtained in advance by the same method.

<粘度>
直径φ60mmのアルミカップ上に各処理剤を、その不揮発分の重量が1gになるように採取し、温風乾燥機にて105℃×3時間処理して水分を除去した。得られた試料(1g)をICIコーンプレート粘度計(RESEACH EQUIPMENT(LONDON)LTD.製)を用いて行った。
より具体的には、プレートの温度を50℃に設定し、次に、プレート上に設けられた試料投入口に試料を投入し、次に、コーンプレートを試料投入口に降ろした後、90秒後にモーターのスイッチを入れて、測定を開始した。数値が安定した際の値を測定値とした。
<Viscosity>
Each treatment agent was sampled on an aluminum cup having a diameter of 60 mm so that the weight of the nonvolatile component became 1 g, and treated with a hot air dryer at 105 ° C. for 3 hours to remove moisture. The obtained sample (1 g) was carried out using an ICI cone plate viscometer (manufactured by RESEACH EQUIIPMENT (LONDON) LTD.).
More specifically, the temperature of the plate is set to 50 ° C., then the sample is loaded into the sample loading port provided on the plate, and then the cone plate is lowered to the sample loading port, and then 90 seconds. Later, the motor was switched on and measurement started. The value when the numerical value was stabilized was taken as the measured value.

<製糸操業性(ローラー汚れ)>
プレカーサー50kgに処理剤を付与した後の乾燥ローラーの汚染度合い(ガムアップ)を下記の評価基準で判定した。
◎ :ガムアップによるローラー汚染が無く、製糸操業性問題無し
○ :ガムアップによるローラー汚染が少なく、製糸操業性問題無し
△ :ガムアップによるローラー汚染があり、やや製糸操業性に劣る
× :ガムアップによるローラー汚染が著しく、製糸時に単糸取られ、捲き付きあり
<Yarn operability (roller dirt)>
The degree of contamination (gum-up) of the drying roller after applying the treatment agent to 50 kg of the precursor was determined according to the following evaluation criteria.
◎: There is no roller contamination due to gum-up, and there is no problem with spinning operation ○: Little roller contamination due to gum-up and there is no problem with yarn-making operability △: Roller contamination due to gum-up is slightly inferior, x Roller contamination due to

<繊維束の集束性>
プレカーサー製糸工程での巻取り時、解舒時、および耐炎化工程での耐炎化炉の入口、出口において、繊維束の集束度合いを観察し、総合して下記の評価基準で目視判定した。
◎:均一な太さの繊維束で、単繊維のバラケも全く見られない。
○:均一な太さの繊維束で、単繊維のバラケもほぼ見られない。
△:均一な太さの繊維束であるが、バラケた単繊維がやや見られる。
×:バラケた単繊維も多く、単糸切れもみられる。
<Fiber bundle convergence>
The degree of convergence of the fiber bundles was observed at the entrance and exit of the flameproofing furnace at the time of winding, unwinding and at the flameproofing process in the precursor yarn making process, and comprehensively judged visually by the following evaluation criteria.
(Double-circle): It is a fiber bundle of uniform thickness, and the single fiber variation is not seen at all.
○: A fiber bundle having a uniform thickness, with almost no single fiber flaking.
(Triangle | delta): Although it is a fiber bundle of uniform thickness, the loose single fiber is seen a little.
X: Many single fibers were broken and single yarn breakage was observed.

<融着防止性>
炭素繊維から無作為に20カ所を選び、そこから長さ10mmの短繊維を切り出し、その融着状態を観察し、下記の評価基準で判定した。
◎:融着無し
○:ほぼ融着無し
△:融着少ない
×:融着多い
<Fused prevention>
Twenty locations were selected at random from carbon fibers, 10 mm-long short fibers were cut out therefrom, the fused state was observed, and the following evaluation criteria were used.
◎: No fusion ○: Almost no fusion △: Less fusion ×: Many fusion

<炭素繊維強度>
JIS-R-7601に規定されているエポキシ樹脂含浸ストランド法に準じ測定し、測定回数10回の平均値を炭素繊維強度(GPa)とした。
<Carbon fiber strength>
Measurement was performed according to the epoxy resin impregnated strand method defined in JIS-R-7601, and the average value of 10 measurements was defined as carbon fiber strength (GPa).

(変性シリコーン(D)乳化物の調製)
下記変性シリコーンD1〜D4をそれぞれ非イオン性界面活性剤(ポリオキシエチレン7mol付加アルキルエーテル(アルキル基の炭素数は12〜14)、ポリオキシエチレン12mol付加トリスチレン化フェニルエーテル及びエチレンオキサイド/プロピレンオキサイド(50/50)ブロック共重合体)により水系乳化して、不揮発分組成として、下記変性シリコーン/前記非イオン性界面活性剤=80/20の重量比率よりなる、不揮発分20重量%の変性シリコーンの乳化物を得た。
D1:アミノ変性シリコーン(25℃粘度:1300mm/s、アミノ当量:2000g/mol、変性タイプ:ジアミン)
D2:アミノ変性シリコーン(25℃粘度:90mm/s、アミノ当量:2200g/mol、変性タイプ:両末端)
D3:アミノ変性シリコーン(25℃粘度:250mm/s、アミノ当量:7600g/mol、変性タイプ:ジアミン)
D4:アミノ変性シリコーン(25℃粘度:90mm/s、アミノ当量:8800g/mol、変性タイプ:モノアミン)
(Preparation of modified silicone (D) emulsion)
The following modified silicones D1 to D4 are respectively nonionic surfactants (polyoxyethylene 7 mol addition alkyl ether (the alkyl group has 12 to 14 carbon atoms), polyoxyethylene 12 mol addition tristyrenated phenyl ether and ethylene oxide / propylene oxide. (50/50) block copolymer) is water-based emulsified, and has a non-volatile composition of the following modified silicone / non-ionic surfactant = 80/20 weight ratio modified silicone having a non-volatile content of 20% by weight. An emulsion was obtained.
D1: amino-modified silicone (viscosity at 25 ° C .: 1300 mm 2 / s, amino equivalent: 2000 g / mol, modified type: diamine)
D2: amino-modified silicone (25 ° C. viscosity: 90 mm 2 / s, amino equivalent: 2200 g / mol, modified type: both ends)
D3: amino-modified silicone (viscosity at 25 ° C .: 250 mm 2 / s, amino equivalent: 7600 g / mol, modified type: diamine)
D4: amino-modified silicone (viscosity at 25 ° C .: 90 mm 2 / s, amino equivalent: 8800 g / mol, modified type: monoamine)

(エステル系化合物(E)乳化物の調製)
下記エステル系化合物E1、E2をそれぞれ非イオン性界面活性剤(ポリオキシエチレン7mol付加アルキルエーテル(アルキル基の炭素数は12〜14)、ポリオキシエチレン12mol付加トリスチレン化フェニルエーテル及びエチレンオキサイド/プロピレンオキサイド(50/50)ブロック共重合体)により水系乳化して、不揮発分組成として、下記エステル系化合物/前記非イオン性界面活性剤=70/30の重量比率よりなる不揮発分20重量%のエステル系化合物の乳化物を得た。
E1:ビスフェノールAのエチレンオキシド2モル付加物のジラウリルエステル
E2:トリメリット酸トリイソデシル
(Preparation of ester compound (E) emulsion)
Each of the following ester compounds E1 and E2 is a nonionic surfactant (polyoxyethylene 7 mol addition alkyl ether (alkyl group having 12 to 14 carbon atoms), polyoxyethylene 12 mol addition tristyrenated phenyl ether and ethylene oxide / propylene. Oxide (50/50) block copolymer) and water-based emulsification, and the non-volatile composition is an ester having a non-volatile content of 20% by weight consisting of a weight ratio of the following ester compound / the nonionic surfactant = 70/30 An emulsion of the system compound was obtained.
E1: Dilauryl ester of ethylene oxide 2-mole adduct of bisphenol A E2: Triisodecyl trimellitic acid

〔実施例1〜28、比較例1〜13〕
下記の化合物A1〜A3、ポリエーテル化合物B1〜B3、非イオン性界面活性剤C1〜C3、上記で調製した変性シリコーンD1〜D4の水系乳化物、エステル系化合物E1〜E2の水系乳化物及び水を用いて、表1〜3に示す不揮発分組成になるよう混合撹拌し、処理剤に占める不揮発分の割合が20重量%であるアクリル繊維処理剤をそれぞれ調製した。なお、表の数値は、処理剤の不揮発分に占める各成分の重量割合を示す。例えば、表の化合物A1〜A3の数値は、処理剤の不揮発分に占める化合物A1〜A3の重量割合を示す。また、表1〜3の「非イオン性界面活性剤」の数値は、不揮発分に占める非イオン性界面活性剤(総量)の重量割合(重量%)を示す。
次いで、調製した処理剤をさらに水で希釈し、不揮発分濃度が3.0重量%である処理液をそれぞれ得た。
各処理液をプレカーサー(単繊維繊度0.8dtex,24,000フィラメント)に付与率1.0重量%となるように付着させ、100〜140℃で乾燥して水分を除去した。処理液付着後のプレカーサーを250℃の耐炎化炉にて60分間耐炎化処理し、次いで窒素雰囲気下300〜1400℃の温度勾配を有する炭素化炉で焼成して炭素繊維に転換した。各特性値の評価結果を表1〜3に示す。
[Examples 1 to 28, Comparative Examples 1 to 13]
The following compounds A1 to A3, polyether compounds B1 to B3, nonionic surfactants C1 to C3, aqueous emulsions of modified silicones D1 to D4 prepared above, aqueous emulsions of ester compounds E1 to E2, and water Were mixed and stirred so as to have the non-volatile composition shown in Tables 1 to 3, and acrylic fiber treatment agents having a non-volatile content in the treatment agent of 20% by weight were prepared. In addition, the numerical value of a table | surface shows the weight ratio of each component which occupies for the non volatile matter of a processing agent. For example, the numerical values of the compounds A1 to A3 in the table indicate the weight ratio of the compounds A1 to A3 in the nonvolatile content of the treatment agent. Moreover, the numerical value of "nonionic surfactant" of Tables 1-3 shows the weight ratio (weight%) of the nonionic surfactant (total amount) which occupies for a non volatile matter.
Next, the prepared treatment agent was further diluted with water to obtain treatment solutions having a nonvolatile content concentration of 3.0% by weight.
Each treatment solution was adhered to a precursor (single fiber fineness 0.8 dtex, 24,000 filaments) so as to give an application rate of 1.0% by weight, and dried at 100 to 140 ° C. to remove moisture. The precursor after the treatment liquid was attached was flameproofed for 60 minutes in a 250 ° C flameproofing furnace, and then baked in a carbonization furnace having a temperature gradient of 300 to 1400 ° C in a nitrogen atmosphere to be converted into carbon fibers. The evaluation result of each characteristic value is shown in Tables 1-3.

A1:POE(8)ビスフェノールAエーテル
A2:POE(10)ビスフェノールAエーテル
A3:POE(17.5)ビスフェノールAエーテル
なお、上記のPOE(X)ビスフェノールAエーテルは、一般式(1)において、R及びRが水素原子、m+n=X、AOが炭素数2であるオキシエチレン基であることを示す。
A1: POE (8) bisphenol A ether A2: POE (10) bisphenol A ether A3: POE (17.5) bisphenol A ether The above POE (X) bisphenol A ether is represented by R in the general formula (1) 1 and R 2 represent a hydrogen atom, m + n = X, and AO represents an oxyethylene group having 2 carbon atoms.

B1:PO/EO=25/75ポリエーテル(重量平均分子量13000):ジエチレングリコールに、PO/EO=25/75の重量比率でPO及びEOをランダム付加させたもので、重量平均分子量が12000であるポリエーテル化合物。
B2:PO/EO=25/75ポリエーテル(重量平均分子量15000):ジエチレングリコールに、PO/EO=25/75の重量比率でPO及びEOをランダム付加させたもので、重量平均分子量が15000であるポリエーテル化合物。
B3:PO/EO=25/75ポリエーテル(重量平均分子量18500):ジエチレングリコールに、PO/EO=25/75の重量比率でPO及びEOをランダム付加させたもので、重量平均分子量が18500であるポリエーテル化合物。
B1: PO / EO = 25/75 polyether (weight average molecular weight 13000): PO and EO randomly added to diethylene glycol at a weight ratio of PO / EO = 25/75, and the weight average molecular weight is 12,000. Polyether compounds.
B2: PO / EO = 25/75 polyether (weight average molecular weight 15000): PO and EO randomly added to diethylene glycol at a weight ratio of PO / EO = 25/75, and the weight average molecular weight is 15,000. Polyether compounds.
B3: PO / EO = 25/75 polyether (weight average molecular weight 18500): PO and EO randomly added to diethylene glycol at a weight ratio of PO / EO = 25/75, and the weight average molecular weight is 18500. Polyether compounds.

C1:炭素数12〜14の直鎖第1級アルコールに、EOを平均7モル付加した非イオン性界面活性剤
C2:炭素数12〜14の第2級アルコールに、EOを平均7モル付加した非イオン性界面活性剤
C3:炭素数12〜14の直鎖第1級アルコールに、EOを平均5モル、POを平均2モル、EOを平均3モルの順にブロック付加した非イオン性界面活性剤
C1: Nonionic surfactant obtained by adding an average of 7 mol of EO to a linear primary alcohol having 12 to 14 carbon atoms C2: 7 mol of EO was added to an average of 7 mol of secondary alcohol having 12 to 14 carbon atoms Nonionic surfactant C3: Nonionic surfactant obtained by adding a block to a linear primary alcohol having 12 to 14 carbon atoms in the order of an average of 5 mol of EO, an average of 2 mol of PO, and an average of 3 mol of EO

Figure 2016024451
Figure 2016024451

Figure 2016024451
Figure 2016024451

Figure 2016024451
Figure 2016024451

表1〜3にあるように、いずれの実施例においても炭素繊維製造における繊維束の集束性、繊維間の融着防止及び安定した操業性を両立できていることがわかる。
一方、比較例では、炭素繊維製造における繊維束の集束性、繊維間の融着防止及び安定した操業性を両立できていないことがわかる。比較例1〜3、8〜10のように製糸操業性は比較的良好であるが、繊維束の集束性が悪化し炭素繊維強度が劣る場合や、比較例4〜7、11〜13のように繊維間の融着防止は比較的良好であるが、製糸操業性が悪化することがわかる。
As shown in Tables 1 to 3, it can be seen that, in any of the examples, it is possible to achieve both the bundleability of the fiber bundle, the prevention of fusion between fibers, and the stable operability in the production of carbon fibers.
On the other hand, in the comparative example, it can be seen that the bundledness of the fiber bundle, the prevention of fusion between the fibers, and the stable operability in the carbon fiber production cannot be achieved at the same time. As in Comparative Examples 1 to 3 and 8 to 10, the yarn maneuverability is relatively good, but when the bundle of fibers is deteriorated and the carbon fiber strength is inferior, or Comparative Examples 4 to 7 and 11 to 13 In addition, it can be seen that the prevention of fusion between the fibers is relatively good, but the yarn operability is deteriorated.

本発明のアクリル繊維処理剤は、炭素繊維製造用アクリル繊維を製造する際に使用される処理剤であり、高品位の炭素繊維を製造するために有用である。本発明の炭素繊維製造用アクリル繊維は、本発明の処理剤が処理されており、高品位の炭素繊維を製造するために有用である。本発明の炭素繊維の製造方法によって、高品位の炭素繊維が得られる。   The acrylic fiber treatment agent of the present invention is a treatment agent used when producing an acrylic fiber for producing carbon fibers, and is useful for producing high-quality carbon fibers. The acrylic fiber for producing carbon fiber of the present invention is treated with the treatment agent of the present invention and is useful for producing high-quality carbon fiber. High quality carbon fibers can be obtained by the carbon fiber manufacturing method of the present invention.

Claims (8)

アクリル繊維処理剤であって、
下記一般式(1)で示される化合物(A)及び重量平均分子量8000〜25000のポリエーテル化合物(B)を含有し、
処理剤の不揮発分に占める、前記化合物(A)及び前記ポリエーテル化合物(B)の合計の重量割合が50〜99重量%である、アクリル繊維処理剤。
Figure 2016024451
(式(1)中、R及びRは、それぞれ独立して、水素原子又はアルキル基である。AOは炭素数2〜4のオキシアルキレン基である。m及びnは、それぞれ独立して、1以上の数である。)
An acrylic fiber treatment agent,
A compound (A) represented by the following general formula (1) and a polyether compound (B) having a weight average molecular weight of 8000 to 25000,
The acrylic fiber processing agent whose total weight ratio of the said compound (A) and the said polyether compound (B) to the non volatile matter of a processing agent is 50 to 99 weight%.
Figure 2016024451
(In Formula (1), R 1 and R 2 are each independently a hydrogen atom or an alkyl group. AO is an oxyalkylene group having 2 to 4 carbon atoms. M and n are each independently 1 or more.)
前記化合物(A)と前記ポリエーテル化合物(B)との重量比(A/B)が90/10〜20/80である、請求項1に記載のアクリル繊維処理剤。   The acrylic fiber processing agent of Claim 1 whose weight ratio (A / B) of the said compound (A) and the said polyether compound (B) is 90 / 10-20 / 80. 下記一般式(2)で示される非イオン性界面活性剤(C)をさらに含有する、請求項1又は2に記載のアクリル繊維処理剤。
Figure 2016024451
(式(2)中、Rは炭素数8〜20の炭化水素基である。−X−は、−O−、−COO−又は−CONH−である。EOはオキシエチレン基、POはオキシプロピレン基である。a及びbは平均付加モル数を表わし、aは3〜20、bは0〜6である。なお、EO群とPO群の付加形態はブロックでもランダムでもよい。Rは水素原子又は炭素数1〜6の炭化水素基である。)
The acrylic fiber processing agent of Claim 1 or 2 which further contains the nonionic surfactant (C) shown by following General formula (2).
Figure 2016024451
(In the formula (2), R 3 is a hydrocarbon group having 8 to 20 carbon atoms. -X- is -O-, -COO- or -CONH-. EO is an oxyethylene group, and PO is an oxy group. A and b represent the average number of moles added, a is from 3 to 20, and b is from 0 to 6. The addition form of the EO group and the PO group may be block or random, R 4 is It is a hydrogen atom or a C1-C6 hydrocarbon group.)
処理剤の不揮発分に占める前記非イオン性界面活性剤(C)の重量割合が0.5〜15重量%である、請求項3に記載のアクリル繊維処理剤。   The acrylic fiber processing agent of Claim 3 whose weight ratio of the said nonionic surfactant (C) to the non volatile matter of a processing agent is 0.5 to 15 weight%. 窒素原子を含む変性基を持つ変性シリコーン(D)をさらに含有する、請求項1〜4のいずれかに記載のアクリル繊維処理剤。   The acrylic fiber treating agent according to any one of claims 1 to 4, further comprising a modified silicone (D) having a modifying group containing a nitrogen atom. 処理剤の不揮発分に占める前記変性シリコーン(D)の重量割合が5〜40重量%である、請求項5に記載のアクリル繊維処理剤。   The acrylic fiber processing agent of Claim 5 whose weight ratio of the said modified silicone (D) to the non volatile matter of a processing agent is 5 to 40 weight%. 炭素繊維製造用アクリル繊維の原料アクリル繊維に、請求項1〜6のいずれかに記載のアクリル繊維処理剤を付着させて製糸した、炭素繊維製造用アクリル繊維。   The acrylic fiber for carbon fiber manufacture which made the acrylic fiber processing agent in any one of Claims 1-6 adhere to the raw material acrylic fiber of the acrylic fiber for carbon fiber manufacture, and produced the yarn. 炭素繊維製造用アクリル繊維の原料アクリル繊維に、請求項1〜6のいずれかに記載のアクリル繊維処理剤を付着させて製糸する製糸工程と、200〜300℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程と、前記耐炎化繊維をさらに300〜2000℃の不活性雰囲気中で炭化させる炭素化処理工程とを含む、炭素繊維の製造方法。   A yarn-making process in which the acrylic fiber treatment agent according to any one of claims 1 to 6 is attached to a raw acrylic fiber for acrylic fiber for carbon fiber production, and a flame-resistant fiber in an oxidizing atmosphere at 200 to 300 ° C. A method for producing carbon fiber, comprising: a flameproofing treatment step for converting to a carbon dioxide, and a carbonization treatment step for carbonizing the flameproofed fiber in an inert atmosphere at 300 to 2000 ° C.
JP2015558275A 2014-08-12 2015-07-14 Acrylic fiber treatment agent and its use Active JP5914780B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014164045 2014-08-12
JP2014164045 2014-08-12
PCT/JP2015/070131 WO2016024451A1 (en) 2014-08-12 2015-07-14 Acrylic fiber treatment agent and use thereof

Publications (2)

Publication Number Publication Date
JP5914780B1 JP5914780B1 (en) 2016-05-11
JPWO2016024451A1 true JPWO2016024451A1 (en) 2017-04-27

Family

ID=55304080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015558275A Active JP5914780B1 (en) 2014-08-12 2015-07-14 Acrylic fiber treatment agent and its use

Country Status (4)

Country Link
JP (1) JP5914780B1 (en)
KR (1) KR102381897B1 (en)
CN (1) CN106414841B (en)
WO (1) WO2016024451A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753038B2 (en) 2016-12-02 2020-08-25 Takemoto Yushi Kabushiki Kaisha Oil solution for carbon fiber precursors and carbon fiber precursor
CN111793986B (en) * 2019-04-09 2022-10-18 广东炬盛新材料科技有限公司 Nylon moisture-absorbing and sweat-releasing finishing agent and preparation method thereof
JP7355367B2 (en) * 2019-07-12 2023-10-03 竹本油脂株式会社 Treatment agent for carbon fiber precursor and carbon fiber precursor
JP7400394B2 (en) * 2019-11-25 2023-12-19 セイコーエプソン株式会社 Defibration method and fibrous body forming method
JP6984930B1 (en) * 2021-06-23 2021-12-22 竹本油脂株式会社 Treatment agents for carbon fiber precursors and carbon fiber precursors
WO2023026674A1 (en) * 2021-08-27 2023-03-02 松本油脂製薬株式会社 Sizing agent for reinforcing fibers and use of same
KR20240045319A (en) * 2021-08-27 2024-04-05 마쓰모토유시세이야쿠 가부시키가이샤 Sizing agent for reinforcing fiber and its uses

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047382B2 (en) * 1982-05-26 1985-10-21 東レ株式会社 Raw material oil for carbon fiber production
JP2812147B2 (en) * 1993-06-28 1998-10-22 東レ株式会社 Carbon fiber bundle and prepreg
JP3690933B2 (en) * 1999-02-12 2005-08-31 三菱レイヨン株式会社 Carbon fiber sizing agent, carbon fiber sizing method, sized carbon fiber, sheet-like material using the carbon fiber, and fiber-reinforced composite material
JP3898379B2 (en) * 1999-05-28 2007-03-28 三菱レイヨン株式会社 Carbon fiber sizing agent, carbon fiber sizing method, sized carbon fiber, sheet-like material using the carbon fiber, and fiber-reinforced composite material
JP2004211240A (en) 2002-12-27 2004-07-29 Mitsubishi Rayon Co Ltd Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
JP4400268B2 (en) * 2004-03-17 2010-01-20 東レ株式会社 Oil for carbon fiber precursor
JP2007113141A (en) * 2005-10-20 2007-05-10 Toray Ind Inc Method for producing carbon fiber precursor fiber bundle
WO2007066517A1 (en) * 2005-12-09 2007-06-14 Matsumoto Yushi-Seiyaku Co., Ltd. Oil solution for acrylic fiber for use in the manufacture of carbon fiber, and method for manufacture of carbon fiber using the same
MX2010005126A (en) * 2007-11-07 2010-05-27 Mitsubishi Rayon Co Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same.
JP5437649B2 (en) 2009-01-30 2014-03-12 松本油脂製薬株式会社 Acrylic fiber oil for producing carbon fiber and method for producing carbon fiber using the same
US8323743B2 (en) * 2009-06-04 2012-12-04 Matsumoto Yushi-Seiyaku Co., Ltd. Acrylic-fiber finish, acrylic fiber for carbon-fiber production, and carbon-fiber production method
JP5659597B2 (en) 2009-07-24 2015-01-28 三菱レイヨン株式会社 Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same
PT2682506T (en) * 2011-03-01 2016-07-08 Mitsubishi Rayon Co Carbon-fiber-precursor acrylic fiber bundle with oil composition adhering thereto, process for producing same, oil composition for carbon-fiber-precursor acrylic fiber, and oil composition dispersion for carbon-fiber-precursor acrylic fiber

Also Published As

Publication number Publication date
JP5914780B1 (en) 2016-05-11
CN106414841A (en) 2017-02-15
CN106414841B (en) 2018-08-28
KR102381897B1 (en) 2022-03-31
KR20170040120A (en) 2017-04-12
WO2016024451A1 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
JP5914780B1 (en) Acrylic fiber treatment agent and its use
KR101653160B1 (en) Oil agent for acrylic fibers for production of carbon fibers, acrylic fibers for production of carbon fibers, and method for producing carbon fibers
JP6397601B2 (en) Textile treatment agent and its use
CN110291245B (en) Treating agent for acrylic fiber and use thereof
JP5309280B1 (en) Acrylic fiber treatment agent for producing carbon fiber, acrylic fiber for producing carbon fiber, and method for producing carbon fiber
WO2017169632A1 (en) Acrylic fiber treatment agent and use thereof
JP5528649B1 (en) Acrylic fiber treatment agent for carbon fiber production and its use
JP6190673B2 (en) Acrylic fiber treatment agent for carbon fiber production and its use
JP2018021263A (en) Acrylic fiber treatment agent and application thereof
JP6488104B2 (en) Acrylic fiber treatment agent and its use
JP5277005B2 (en) Acrylic fiber oil for producing carbon fiber and method for producing carbon fiber using the same
JP5592676B2 (en) Acrylic fiber oil for carbon fiber production, acrylic fiber for carbon fiber production, and method for producing carbon fiber
JP6914745B2 (en) Acrylic fiber treatment agent and its uses
JP6204211B2 (en) Acrylic fiber treatment agent and its use
JP4217748B2 (en) Acrylic fiber oil for carbon fiber production and method for producing carbon fiber using the same
JP2013159868A (en) Treatment agent for acrylic fiber for producing carbon fiber, acrylic fiber for producing carbon fiber and method for producing carbon fiber

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160229

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5914780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250