JPWO2016006498A1 - Solid electrolyte, multilayer electronic component, and method of manufacturing multilayer electronic component - Google Patents

Solid electrolyte, multilayer electronic component, and method of manufacturing multilayer electronic component Download PDF

Info

Publication number
JPWO2016006498A1
JPWO2016006498A1 JP2016532889A JP2016532889A JPWO2016006498A1 JP WO2016006498 A1 JPWO2016006498 A1 JP WO2016006498A1 JP 2016532889 A JP2016532889 A JP 2016532889A JP 2016532889 A JP2016532889 A JP 2016532889A JP WO2016006498 A1 JPWO2016006498 A1 JP WO2016006498A1
Authority
JP
Japan
Prior art keywords
solid electrolyte
compound
base metal
metal material
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016532889A
Other languages
Japanese (ja)
Other versions
JP6218202B2 (en
Inventor
聡史 横溝
聡史 横溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Energy Storage Materials LLC
Original Assignee
Murata Manufacturing Co Ltd
Energy Storage Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, Energy Storage Materials LLC filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2016006498A1 publication Critical patent/JPWO2016006498A1/en
Application granted granted Critical
Publication of JP6218202B2 publication Critical patent/JP6218202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof

Abstract

固体電解質は、一般式{100(La2/3-xLi3x)mTiO3+aMn}(ただし、0.01≦x≦0.167、0.99≦m≦1.10、0.1≦a≦5)で表される。積層型電子部品は、固体電解質層3と内部電極層4とが交互に積層され、内部電極層3が、Ni等の卑金属材料を主成分とする導電性材料で形成されると共に、固体電解質層4が、上記固体電解質で形成されている。内部電極層3となる内部電極材料及び固体電解質層4となる固体電解質材料は、Ni等の卑金属材料が酸化しないような還元性雰囲気で焼成する。これにより所望の大きな静電容量を確保でき、かつ良好な絶縁性を有する固体電解質、及びこの固体電解質を使用した積層型電子部品、並びにこの積層型電子部品の製造方法を実現する。The solid electrolyte is represented by the general formula {100 (La2 / 3-xLi3x) mTiO3 + aMn} (where 0.01 ≦ x ≦ 0.167, 0.99 ≦ m ≦ 1.10, 0.1 ≦ a ≦ 5). Is done. In the multilayer electronic component, the solid electrolyte layer 3 and the internal electrode layer 4 are alternately laminated, and the internal electrode layer 3 is formed of a conductive material whose main component is a base metal material such as Ni. 4 is formed of the solid electrolyte. The internal electrode material to be the internal electrode layer 3 and the solid electrolyte material to be the solid electrolyte layer 4 are fired in a reducing atmosphere so that the base metal material such as Ni is not oxidized. As a result, a solid electrolyte having a desired large capacitance and having good insulation, a multilayer electronic component using the solid electrolyte, and a method for manufacturing the multilayer electronic component are realized.

Description

本発明は固体電解質、及び積層型電子部品、並びに積層型電子部品の製造方法に関し、より詳しくはLi、La及びTiを含有したペロブスカイト型結晶構造の複合酸化物を主成分とする固体電解質、及びこの固体電解質を使用した積層型固体イオンキャパシタ等の積層型電子部品、並びにこの積層型電子部品の製造方法に関する。   The present invention relates to a solid electrolyte, a multilayer electronic component, and a method for manufacturing the multilayer electronic component, and more specifically, a solid electrolyte mainly composed of a composite oxide having a perovskite crystal structure containing Li, La, and Ti, and The present invention relates to a multilayer electronic component such as a multilayer solid ion capacitor using the solid electrolyte, and a method for manufacturing the multilayer electronic component.

近年、固体状態でイオンが移動する固体電解質を使用し、蓄電するようにした固体イオンキャパシタの研究・開発が行われている。   In recent years, research and development have been conducted on solid ion capacitors that use a solid electrolyte in which ions move in a solid state to store electricity.

例えば、特許文献1には、厚みが200μm以下に形成された固体電解質を備えた固体イオンキャパシタが提案されている。   For example, Patent Document 1 proposes a solid ion capacitor including a solid electrolyte having a thickness of 200 μm or less.

この特許文献1では、固体電解質の厚みを200μm以下とすることにより、固体電解質全体に電界が印加されるようになり、一方の電極近傍の電荷が他方の電極近傍まで移動できるため、極めて大きな分極を生じさせることができ、各電極に蓄積される電荷を増加させることができ、これにより静電容量を大幅に増大させようとしている。   In Patent Document 1, by setting the thickness of the solid electrolyte to 200 μm or less, an electric field is applied to the entire solid electrolyte, and the charge in the vicinity of one electrode can move to the vicinity of the other electrode. And the charge accumulated in each electrode can be increased, thereby increasing the capacitance significantly.

また、特許文献1には、積層構造の固体イオンキャパシタも開示されており、小型で大きな静電容量を有する固体イオンキャパシタの実現が可能と考えられる。すなわち、固体電解質を薄層化することにより、上述したように大きな静電容量が得られることから、積層セラミックコンデンサに類似した積層構造とすることにより、従来の誘電体材料を使用した積層セラミックコンデンサに比べ、格段に大きな静電容量を有する固体イオンキャパシタの実現が可能と考えられる。   Patent Document 1 also discloses a solid-state ion capacitor having a laminated structure, and it is considered possible to realize a solid-state ion capacitor having a small size and a large capacitance. That is, since a large capacitance can be obtained as described above by thinning the solid electrolyte, a multilayer ceramic capacitor using a conventional dielectric material is obtained by forming a multilayer structure similar to the multilayer ceramic capacitor. Compared to the above, it is considered possible to realize a solid ion capacitor having a much larger capacitance.

国際公開2013/111804(請求項1、段落番号〔0032〕、〔0072〕〜〔0074〕、図4等)International Publication 2013/111804 (Claim 1, Paragraph Numbers [0032], [0072] to [0074], FIG. 4, etc.)

ところで、積層構造の固体イオンキャパシタを構築しようとした場合、内部電極材料には、通常、Ni等の卑金属材料が使用される。したがって、卑金属材料が酸化しないような還元性雰囲気で固体電解質材料と内部電極材料とを同時焼成する必要がある。   By the way, when it is going to construct | assemble the solid-state capacitor of a laminated structure, base metal materials, such as Ni, are normally used for internal electrode material. Therefore, it is necessary to fire the solid electrolyte material and the internal electrode material simultaneously in a reducing atmosphere in which the base metal material is not oxidized.

しかしながら、本発明者の研究結果により、従来の既知の固体電解質材料を使用した場合、Ni等の卑金属材料が酸化しないような還元性雰囲気で焼成すると、固体電解質材料が電子伝導性を発現し、絶縁性の低下を招くことが分かった。すなわち、従来の固体電解質材料を使用して還元性雰囲気で内部電極材料と同時焼成しても絶縁性の低下を招くことから、所望の電気特性を有する積層構造の固体イオンキャパシタを得るのは困難な状況にある。   However, according to the inventor's research results, when a conventional known solid electrolyte material is used, firing in a reducing atmosphere in which a base metal material such as Ni does not oxidize, the solid electrolyte material expresses electronic conductivity, It was found that the insulation was degraded. In other words, it is difficult to obtain a solid-state solid-state capacitor having desired electrical characteristics because it causes a decrease in insulation even when co-firing with an internal electrode material in a reducing atmosphere using a conventional solid electrolyte material. It is in the situation.

本発明はこのような事情に鑑みなされたものであって、所望の大きな静電容量を確保でき、かつ良好な絶縁性を有する固体電解質、及びこの固体電解質を使用した積層型電子部品、並びにこの積層型電子部品の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, a solid electrolyte capable of securing a desired large capacitance and having good insulation, a multilayer electronic component using the solid electrolyte, and the It is an object of the present invention to provide a method for manufacturing a multilayer electronic component.

(La,Li)TiO系複合酸化物は、ペロブスカイト結晶構造(一般式ABO)を有する酸化物系固体電解質として広く知られている。(La, Li) TiO 3 composite oxide is widely known as an oxide-based solid electrolyte having a perovskite crystal structure (general formula A m BO 3 ).

本発明者は、斯かる(La,Li)TiO系複合酸化物を使用し、鋭意研究を行ったところ、Aサイトを構成する(La,Li)とBサイトを構成するTiとのモル比m及びAサイト中のLiとLaとの配合比率を調整した上で、所定量のMnを含有させることにより、還元雰囲気で焼成しても電子伝導性の発現を抑制することができ、これにより大きな静電容量を維持しつつ良好な絶縁性を有する固体電解質を得ることができるという知見を得た。The present inventor has conducted extensive research using such (La, Li) TiO 3 composite oxide, and found that the molar ratio of (La, Li) constituting the A site to Ti constituting the B site. After adjusting the compounding ratio of Li and La in the m and A sites, the inclusion of a predetermined amount of Mn can suppress the expression of electron conductivity even when fired in a reducing atmosphere. It was found that a solid electrolyte having a good insulating property while maintaining a large capacitance can be obtained.

本発明はこのような知見に基づきなされたものであって、本発明に係る固体電解質は、主成分が、一般式(La2/3-xLi3xTiO(ただし、0.99≦m≦1.10、0.01≦x≦0.167)で表される複合酸化物を含有すると共に、The present invention has been made based on such knowledge, and the solid electrolyte according to the present invention has a main component of the general formula (La 2 / 3-x Li 3x ) m TiO 3 (provided that 0.99 ≦ m ≦ 1.10, 0.01 ≦ x ≦ 0.167) and a composite oxide represented by

Mnが、前記Ti100モル部に対し0.1〜5モル部の範囲で含有されていることを特徴としている。   Mn is contained in the range of 0.1 to 5 mole parts with respect to 100 mole parts of Ti.

さらに、本発明の固体電解質は、前記Mnが、前記Ti100モル部に対し0.1〜1モル部の範囲で含有されているのが好ましい。   Furthermore, in the solid electrolyte of the present invention, the Mn is preferably contained in a range of 0.1 to 1 mol part with respect to 100 mol parts of Ti.

これにより、良好な絶縁性を確保しつつ、従来の誘電体材料を使用した積層セラミックコンデンサと比べても格段に大きな静電容量を得ることが可能となる。   As a result, it is possible to obtain a much larger capacitance than a multilayer ceramic capacitor using a conventional dielectric material while ensuring good insulation.

また、本発明の固体電解質は、還元性雰囲気で焼成されてなるのが好ましい。   The solid electrolyte of the present invention is preferably fired in a reducing atmosphere.

すなわち、還元性雰囲気下で焼成することによりMnがTiと置換し、酸素空孔が形成されると考えられる。この酸素空孔は結晶格子中の酸素の脱離を抑制する作用があることから、たとえ卑金属材料と同時焼成しても卑金属材料の酸化が抑制されて電子伝導性の発生を効果的に抑制することができる。そしてその結果、大気雰囲気で焼成した場合に比べても、比抵抗を増大させることができ、より一層良好な絶縁性を得ることが可能となる。   That is, it is considered that Mn replaces Ti by firing in a reducing atmosphere, and oxygen vacancies are formed. Since these oxygen vacancies suppress the release of oxygen in the crystal lattice, even if co-firing with the base metal material, the oxidation of the base metal material is suppressed and the generation of electron conductivity is effectively suppressed. be able to. As a result, the specific resistance can be increased and even better insulating properties can be obtained as compared with the case of firing in an air atmosphere.

また、本発明に係る積層型電子部品は、固体電解質層と内部電極層とが交互に積層され、前記内部電極層が、卑金属材料を主成分とする導電性材料で形成されると共に、前記固体電解質層が、上記いずれかに記載の固体電解質で形成され、かつ、前記内部電極層と前記固体電解質層は、前記卑金属材料が酸化しないような還元雰囲気で焼成されてなることを特徴としている。   In the multilayer electronic component according to the present invention, a solid electrolyte layer and an internal electrode layer are alternately stacked, and the internal electrode layer is formed of a conductive material whose main component is a base metal material, The electrolyte layer is formed of any one of the solid electrolytes described above, and the internal electrode layer and the solid electrolyte layer are fired in a reducing atmosphere in which the base metal material is not oxidized.

また、本発明の積層型電子部品は、前記卑金属材料が、Niを主成分とするのが好ましい。   In the multilayer electronic component of the present invention, the base metal material preferably contains Ni as a main component.

これにより静電容量が大きく、かつ絶縁性が良好で所望の電気特性を有する積層型セラミック電子部品を得ることができる。   As a result, it is possible to obtain a multilayer ceramic electronic component having a large capacitance, good insulation, and desired electrical characteristics.

また、本発明に係る積層型電子部品の製造方法は、少なくともLi化合物、La化合物、Ti化合物及びMn化合物を含む素原料を出発原料として固体電解質材料を合成する合成工程と、前記固体電解質材料をシート状に成形し、グリーンシートを作製するグリーンシート作製工程と、卑金属材料を主成分とする導電膜を前記グリーンシートの表面に形成する導電膜形成工程と、前記導電膜が形成されたグリーンシートを積層し、積層体を形成する積層体形成工程と、前記積層体を焼成し、主成分が一般式(La2/3-xLi3xTiOで表される複合酸化物を含有した固体電解質層と前記卑金属材料を主成分とする内部電極層とが交互に積層された積層焼結体を作製する焼成工程とを含み、前記合成工程は、前記固体電解質層が、前記一般式中のmが0.99〜1.10であり、xが0.01〜0.167であり、かつ、Mnが、Ti100モル部に対し0.1〜5モル部となるように、前記Li化合物、前記La化合物、前記Ti化合物及び前記Mn化合物をそれぞれ秤量する工程を含むと共に、前記焼成工程は、前記卑金属材料が酸化しないような還元性雰囲気下で焼成することを特徴としている。The method for manufacturing a multilayer electronic component according to the present invention includes a synthesis step of synthesizing a solid electrolyte material using a raw material containing at least a Li compound, a La compound, a Ti compound, and a Mn compound as a starting material, and the solid electrolyte material comprising: A green sheet manufacturing step for forming a green sheet by forming into a sheet shape, a conductive film forming step for forming a conductive film mainly composed of a base metal material on the surface of the green sheet, and a green sheet on which the conductive film is formed And a laminated body forming step for forming a laminated body, and the laminated body is fired to contain a composite oxide whose main component is represented by the general formula (La 2 / 3-x Li 3x ) m TiO 3 A firing step of producing a laminated sintered body in which a solid electrolyte layer and an internal electrode layer mainly composed of the base metal material are alternately laminated, and the synthesis step includes the solid electrolyte layer, In the general formula, m is 0.99 to 1.10, x is 0.01 to 0.167, and Mn is 0.1 to 5 parts by mole with respect to 100 parts by mole of Ti. The method includes a step of weighing each of the Li compound, the La compound, the Ti compound, and the Mn compound, and the firing step is characterized by firing in a reducing atmosphere in which the base metal material is not oxidized.

また、本発明の積層型セラミック電子部品の製造方法は、前記卑金属材料が、Niを主成分とするのが好ましい。   In the method for manufacturing a multilayer ceramic electronic component of the present invention, it is preferable that the base metal material contains Ni as a main component.

また、本発明の積層型セラミック電子部品の製造方法は、前記合成工程が、Li化合物、La化合物、及びTi化合物を秤量して仮焼し、主成分粉末を作製する主成分粉末作製工程と、前記Mn化合物を秤量して該Mn化合物を前記主成分粉末に添加し、スラリー化するスラリー作製工程とを含むのも好ましい。   Further, in the method for producing a multilayer ceramic electronic component of the present invention, the synthesis step includes a main component powder preparation step in which the Li compound, La compound, and Ti compound are weighed and calcined to prepare a main component powder. It is also preferable to include a slurry preparation step of weighing the Mn compound, adding the Mn compound to the main component powder, and forming a slurry.

本発明の固体電解質によれば、主成分が、一般式(La2/3-xLi3xTiO(ただし、0.99≦m≦1.10、0.01≦x≦0.167)で表される複合酸化物を含有すると共に、Mnが、前記Ti100モル部に対し0.1〜5モル部の範囲で含有されているので、還元性雰囲気で焼成しても、絶縁性の低下を抑制することができ、これにより所望の静電容量を有し、かつ良好な絶縁性を有する固体電解質を得ることができる。According to the solid electrolyte of the present invention, the main component is represented by the general formula (La 2 / 3-x Li 3x ) m TiO 3 (provided that 0.99 ≦ m ≦ 1.10, 0.01 ≦ x ≦ 0.167). ), And Mn is contained in a range of 0.1 to 5 parts by mole with respect to 100 parts by mole of Ti. The decrease can be suppressed, whereby a solid electrolyte having a desired capacitance and good insulating properties can be obtained.

また、本発明の積層型電子部品によれば、固体電解質層と内部電極層とが交互に積層され、前記内部電極層が、卑金属材料を主成分とした導電性材料で形成されると共に、前記固体電解質層が、上記いずれかに記載の固体電解質で形成され、かつ、前記内部電極層と前記固体電解質層は、前記卑金属材料が酸化しないような還元性雰囲気で焼成されてなるので、卑金属材料が酸化されたり、固体電解質が電子伝導性を発現するのを抑制することができ、これにより所望の大きな静電容量を有し、かつ良好な比抵抗を有する積層型電子部品を得ることができる。   According to the multilayer electronic component of the present invention, the solid electrolyte layer and the internal electrode layer are alternately stacked, and the internal electrode layer is formed of a conductive material mainly composed of a base metal material, Since the solid electrolyte layer is formed of any of the solid electrolytes described above, and the internal electrode layer and the solid electrolyte layer are baked in a reducing atmosphere so that the base metal material is not oxidized, the base metal material Can be prevented from being oxidized, and the solid electrolyte can be prevented from exhibiting electronic conductivity, whereby a multilayer electronic component having a desired large capacitance and a good specific resistance can be obtained. .

また、本発明の積層型電子部品の製造方法によれば、上述した合成工程、グリーンシート作製工程、導電膜形成工程、積層体形成工程、及び焼成工程を含み、前記合成工程は、前記固体電解質層が、一般式(La2/3-xLi3xTiO中のmが0.99〜1.10であり、xが0.01〜0.167であり、かつ、Mnが、Ti100モル部に対し0.1〜5モル部となるように、前記Li化合物、前記La化合物、前記Ti化合物及び前記Mn化合物をそれぞれ秤量する工程を含むと共に、前記焼成工程は、前記卑金属材料が酸化しないような還元性雰囲気下で焼成するので、グリーンシートと導電膜とを同時焼成しても、比抵抗が増大するのを抑制でき、所望の大きな静電容量を有し、かつ良好な絶縁性を有する積層セラミックコンデンサと類似した積層構造の積層型電子部品を容易に得ることができる。In addition, according to the method for manufacturing a multilayer electronic component of the present invention, the synthesis step includes the synthesis step, the green sheet manufacturing step, the conductive film formation step, the laminate formation step, and the firing step, and the synthesis step includes the solid electrolyte. In the general formula (La 2 / 3-x Li 3x ) m TiO 3 , m is 0.99 to 1.10, x is 0.01 to 0.167, and Mn is Ti100. The step of weighing each of the Li compound, the La compound, the Ti compound and the Mn compound so as to be 0.1 to 5 mol parts relative to the mol parts, and the firing step includes oxidizing the base metal material Since it is fired in a reducing atmosphere that does not, even if the green sheet and the conductive film are fired simultaneously, the increase in specific resistance can be suppressed, the desired large capacitance, and good insulation Laminated ceramic core Multilayer electronic component of similar stacked structure capacitor can be easily obtained.

本発明に係る固体電解質を使用して形成された積層型電子部品としての積層型固体イオンキャパシタの一実施の形態を示す斜視図である。1 is a perspective view showing an embodiment of a multilayer solid ion capacitor as a multilayer electronic component formed using a solid electrolyte according to the present invention. 図1の断面図である。It is sectional drawing of FIG.

次に、本発明の実施の形態を詳説する。   Next, an embodiment of the present invention will be described in detail.

本発明の一実施の形態としての固体電解質は、主成分が、一般式(La2/3-xLi3xTiOで表されるペロブスカイト型結晶構造(一般式ABO)の複合酸化物を含有している。The solid electrolyte as one embodiment of the present invention is a composite having a perovskite crystal structure (general formula A m BO 3 ) whose main component is represented by the general formula (La 2 / 3-x Li 3x ) m TiO 3. Contains oxides.

ここで、Aサイトを構成する(La,Li)とBサイトを構成するTiとのモル比m、及びLaの含有モル量を(2/3−x)とし、Liの含有モル量を3xとしたときのx(以下、「Liの置換モル量x」という。)は、下記数式(1)、(2)を満足している。   Here, the molar ratio m of (La, Li) constituting the A site and Ti constituting the B site, and the molar content of La are (2 / 3-x), and the molar content of Li is 3x. X (hereinafter referred to as “substitution molar amount x of Li”) satisfies the following mathematical formulas (1) and (2).

0.99≦m≦1.10 ...(1)
0.01≦x≦0.167 ...(2)
そして、本固体電解質は、Mnが、Ti100モル部に対し0.1〜5モル部の範囲で含有されている。
0.99 ≦ m ≦ 1.10 (1)
0.01 ≦ x ≦ 0.167 (2)
And this solid electrolyte contains Mn in 0.1-5 mol part with respect to 100 mol part of Ti.

したがって、本固体電解質は、下記一般式(A)で表すことができる。   Therefore, this solid electrolyte can be represented by the following general formula (A).

100(La2/3-xLi3xTiO+aMn ...(A)
ここで、モル比m、Liの置換モル量x、Mnの含有モル量aは数式(1)〜(3)を満足している。
100 (La 2 / 3-x Li 3x ) m TiO 3 + aMn (A)
Here, the molar ratio m, the substituted molar amount x of Li, and the contained molar amount a of Mn satisfy Expressions (1) to (3).

0.99≦m≦1.10 ...(1)
0.01≦x≦0.167 ...(2)
0.1≦a≦5 ...(3)
すなわち、主成分である(La2/3-xLi3xTiO(以下、「LLT」という。)は、従来より、Liを伝導性イオンとしたペロブスカイト型結晶構造を有する酸化物系固体電解質として、広く知られている。
0.99 ≦ m ≦ 1.10 (1)
0.01 ≦ x ≦ 0.167 (2)
0.1 ≦ a ≦ 5 (3)
That is, the main component (La 2 / 3-x Li 3x ) m TiO 3 (hereinafter referred to as “LLT”) is an oxide-based solid having a perovskite-type crystal structure in which Li is a conductive ion. Widely known as an electrolyte.

そして、〔背景技術〕の項でも述べたように、固体電解質の厚みを薄層化することにより、固体電解質全体に電界が印加され、一方の電極近傍の電荷が他方の電極近傍まで移動できることから、極めて大きな分極を生じさせることができ、各電極に蓄積される電荷を増加させることが可能となり、BaTiO等の従来の誘電体材料に比べても大きな静電容量を取得することが可能となる。And as described in the section of “Background Art”, by reducing the thickness of the solid electrolyte, an electric field is applied to the entire solid electrolyte, and the charge in the vicinity of one electrode can move to the vicinity of the other electrode. It is possible to generate extremely large polarization, increase the charge accumulated in each electrode, and obtain a larger capacitance than conventional dielectric materials such as BaTiO 3. Become.

一方、固体電解質を使用して積層型固体イオンキャパシタを構築しようとした場合、内部電極材料と固体電解質材料とは、生産性等を考慮し、通常、同時焼成される。また、内部電極材料としては、安価なNi等の卑金属材料を使用するのが望まれる。   On the other hand, when an attempt is made to construct a stacked solid ion capacitor using a solid electrolyte, the internal electrode material and the solid electrolyte material are usually fired simultaneously in consideration of productivity and the like. Moreover, it is desirable to use an inexpensive base metal material such as Ni as the internal electrode material.

したがって、固体電解質材料と卑金属材料とを同時焼成するために、卑金属材料が酸化されないような還元性雰囲気で焼成する必要がある。   Therefore, in order to fire the solid electrolyte material and the base metal material simultaneously, it is necessary to fire in a reducing atmosphere in which the base metal material is not oxidized.

しかしながら、固体電解質をLLTのみで形成した場合、卑金属材料が酸化しないような還元性雰囲気で焼成を行なうと、LLTが電子伝導性を発現し、比抵抗が低下して絶縁性の低下を招く。   However, when the solid electrolyte is formed only by LLT, if firing is performed in a reducing atmosphere in which the base metal material is not oxidized, the LLT exhibits electron conductivity, and the specific resistance is lowered, leading to a decrease in insulation.

そこで、本発明では、LLTに所定量のMn成分を添加して固体電解質中にMnを含有させている。すなわち、Mn添加されたLLTは、還元性雰囲気中で卑金属材料と同時焼成すると、MnはTiの一部と置換されるが、Mnは還元されて価数が小さくなり、その際酸素空孔が形成される。そして、この酸素空孔は結晶格子中の酸素の脱離を抑制する作用があることから、Tiの還元が抑制されて電子伝導性の発現を抑制することが可能になると考えられる。   Therefore, in the present invention, a predetermined amount of Mn component is added to the LLT to contain Mn in the solid electrolyte. That is, when MLT-added LLT is co-fired with a base metal material in a reducing atmosphere, Mn is replaced with a part of Ti, but Mn is reduced and its valence is reduced, and oxygen vacancies are formed at that time. It is formed. And since this oxygen vacancy has the effect | action which suppresses the detachment | desorption of oxygen in a crystal lattice, it is thought that reduction | restoration of Ti is suppressed and it becomes possible to suppress expression of electronic conductivity.

このようにLLTにMnを添加することにより、固体電解質中での電子伝導性の発現を抑制できることから、比抵抗が低下するのを抑制でき、所望の大きな静電容量を維持しつつ絶縁性の良好な固体電解質を得ることが可能となる。   By adding Mn to the LLT in this way, it is possible to suppress the expression of electron conductivity in the solid electrolyte, and thus it is possible to suppress a decrease in specific resistance, while maintaining a desired large capacitance while maintaining an insulating property. A good solid electrolyte can be obtained.

また、本固体電解質は、上述したようにLLTに所定量のMnを含有させて還元性雰囲気で焼成することにより、大気雰囲気で焼成した場合に比べても、より一層大きな比抵抗を得ることができる。   In addition, as described above, this solid electrolyte can obtain a larger specific resistance than the case where it is fired in an air atmosphere by containing a predetermined amount of Mn in LLT and firing it in a reducing atmosphere. it can.

すなわち、Mn添加されたLLTを大気雰囲気下で焼成すると、Mnは酸化されて価数が大きくなるため、MnがTiの一部と置換しても、結晶格子中に酸素空孔が形成されず、このためTiの還元を抑制できず、還元雰囲気で焼成した場合に比べ比抵抗も小さくなる。   In other words, when MLT-added LLT is fired in an air atmosphere, Mn is oxidized and its valence increases, so even if Mn is replaced with a part of Ti, oxygen vacancies are not formed in the crystal lattice. For this reason, the reduction of Ti cannot be suppressed, and the specific resistance is reduced as compared with the case of firing in a reducing atmosphere.

したがって、Mn添加されたLLTは、還元雰囲気で焼成することにより大気雰囲気で焼成した場合に比べても比抵抗を大きくすることができることから、本固体電解質は、積層型固体イオンキャパシタ以外の絶縁性が要求される各種電子部品にも適用可能である。   Accordingly, the MLT-added LLT can increase the specific resistance as compared with the case of firing in an air atmosphere by firing in a reducing atmosphere. Therefore, the present solid electrolyte has an insulating property other than the multilayer solid ion capacitor. The present invention can also be applied to various electronic components that are required.

次に、モル比m、Liの置換モル量x、主成分100モル部に対するMnのモル部aを数式(1)〜(3)の範囲に限定した理由を述べる。   Next, the reason why the molar ratio m, the substitution molar amount x of Li, and the molar part a of Mn with respect to 100 molar parts of the main component are limited to the ranges of the mathematical formulas (1) to (3) will be described.

(1)モル比m
モル比mは、化学量論組成では1.000であるが、必要に応じてAサイト過剰又はBサイト過剰とするのも好ましい。
(1) Molar ratio m
The molar ratio m is 1.000 in the stoichiometric composition, but it is also preferable to make the A site excessive or the B site excessive as necessary.

しかしながら、モル比mが0.99未満になると、Tiの含有モル量が過剰となる。このため電荷バランスを補償するためにTiの価数は4価から3価になり、その結果、電子伝導性が生じ易くなって絶縁性の低下を招くおそれがあると考えられる。   However, when the molar ratio m is less than 0.99, the molar content of Ti becomes excessive. For this reason, in order to compensate the charge balance, the valence of Ti is changed from tetravalent to trivalent. As a result, it is considered that the electronic conductivity is likely to occur and the insulating property may be lowered.

一方、モル比mが1.10を超えると、Tiの含有モル量が少なくなる。このためAサイト欠陥が増加し、この場合も電子伝導性が生じ易くなって絶縁性の低下を招くおそれがあると考えられる。   On the other hand, when the molar ratio m exceeds 1.10, the Ti content molar amount decreases. For this reason, A site defects increase, and in this case as well, electron conductivity is likely to occur, which may lead to a decrease in insulation.

そこで、本実施の形態では、モル比mが0.99〜1.10となるように配合している。   Therefore, in the present embodiment, they are blended so that the molar ratio m is 0.99 to 1.10.

(2)Liの置換モル量x
Laの一部をLiで置換することにより、Liイオンが固体電解質中を移動し、大きな静電容量を得ることが可能である。
(2) Li substitution molar amount x
By substituting a part of La with Li, Li ions move in the solid electrolyte, and a large capacitance can be obtained.

しかしながら、Liの置換モル量xが0.01未満になると、Liの置換モル量xが少なくなり、このため十分な絶縁性を得ることができない。   However, if the substitution molar amount x of Li is less than 0.01, the substitution molar amount x of Li decreases, and therefore sufficient insulation cannot be obtained.

一方、Liの置換モル量xが0.167を超えると、Liの含有モル量が過剰となり、還元性雰囲気で焼成しても電子伝導性が発現し、絶縁性の低下を招くおそれがある。   On the other hand, if the substitution molar amount x of Li exceeds 0.167, the content molar amount of Li becomes excessive, and even when baked in a reducing atmosphere, electron conductivity is exhibited, and there is a possibility that the insulation is lowered.

そこで、本実施の形態では、Liの置換モル量xを0.01〜0.167となるように配合している。   Therefore, in the present embodiment, the substitution molar amount x of Li is blended so as to be 0.01 to 0.167.

(3)Mnの含有モル量a
固体電解質中にMnを含有させることにより、還元性雰囲気で焼成しても電子伝導性の発現が抑制されて絶縁性の低下を抑制することが可能となる。そしてそのためにはMnの含有モル量aは、Ti100モル部に対し少なくとも0.1モル部は必要である。
(3) Mn content molar amount a
By including Mn in the solid electrolyte, even if firing in a reducing atmosphere, the expression of electron conductivity is suppressed, and it is possible to suppress a decrease in insulation. For that purpose, the molar amount a of Mn is required to be at least 0.1 mol part per 100 mol parts of Ti.

しかしながら、Mnの含有モル量aが、Ti100モル部に対し5モル部を超えると、Mnの含有モル量が過剰となって、静電容量の大幅な低下を招く上、還元性雰囲気で焼成しても絶縁性の低下を招き、好ましくない。   However, if the molar amount a of Mn exceeds 5 parts by mole with respect to 100 parts by mole of Ti, the molar amount of Mn becomes excessive, causing a significant decrease in capacitance and firing in a reducing atmosphere. However, it is not preferable because it causes a decrease in insulation.

そこで、本実施の形態では、Mnの含有モル量aをTi100モル部に対し0.1〜5モル部となるように配合している。   Therefore, in the present embodiment, the molar amount a of Mn is blended so as to be 0.1 to 5 parts by mole with respect to 100 parts by mole of Ti.

特に、Mnの含有モル量aをTi100モル部に対し0.1〜1モル部とした場合は、絶縁性が良好な上に、BaTiO等の従来の誘電体材料に比べ格段に大きな誘電率を有する固体電解質を得ることができる。In particular, when the molar amount a of Mn is 0.1 to 1 part by mole with respect to 100 parts by mole of Ti, the insulation is good and the dielectric constant is much larger than conventional dielectric materials such as BaTiO 3. Can be obtained.

このように本実施の形態は、一般式(A)が数式(1)〜(3)を満足しているので、Ni等の卑金属材料が酸化しないような還元性雰囲気で焼成しても、比抵抗の低下を抑制することができ、これにより良好な絶縁性を有し、かつ少なくとも従来の誘電体材料と同等以上の大きな静電容量を有する固体電解質を得ることができる。   Thus, in this embodiment, since the general formula (A) satisfies the mathematical formulas (1) to (3), even if firing in a reducing atmosphere in which a base metal material such as Ni is not oxidized, the ratio A decrease in resistance can be suppressed, and thereby a solid electrolyte having good insulation and at least a large capacitance equal to or higher than that of a conventional dielectric material can be obtained.

尚、固体電解質中でのMnの存在形態は、特に限定されるものではない。すなわち、Mnは、相当程度はLLTに固溶するのが好ましいと考えられるが、結晶粒界や結晶三重点に偏析するMnが存在していてもよい。   In addition, the presence form of Mn in a solid electrolyte is not specifically limited. That is, it is considered that Mn is preferably dissolved in the LLT to some extent, but Mn that segregates at the crystal grain boundary or the crystal triple point may exist.

次に、上記固体電解質の製造方法を詳述する。   Next, the manufacturing method of the said solid electrolyte is explained in full detail.

まず、素原料として、LiCO等のLi化合物、La(OH)等のLa化合物、TiO等のTi化合物を用意する。そして、一般式(A)が数式(1)、(2)を満足するように、これら素原料を秤量し、純水を投入して湿式粉砕し、均一に分散させた後乾燥させ、この乾燥粉末を仮焼し、主成分粉末を作製する。First, a Li compound such as Li 2 CO 3 , a La compound such as La (OH) 3 , and a Ti compound such as TiO 2 are prepared as raw materials. These raw materials are weighed so that the general formula (A) satisfies the formulas (1) and (2), pure water is added, wet pulverized, uniformly dispersed and then dried. The powder is calcined to produce a main component powder.

次に、他の素原料としてMnCO等のMn化合物を用意する。そして、一般式(A)が数式(3)を満足するようにMn化合物を秤量して主成分粉末に添加し、さらにバインダ、界面活性剤や可塑剤等の添加物を溶剤と共に混合させ、分散させて固体電解質材料をスラリー化する。Next, a Mn compound such as MnCO 3 is prepared as another raw material. Then, the Mn compound is weighed and added to the main component powder so that the general formula (A) satisfies the formula (3), and further, additives such as a binder, a surfactant and a plasticizer are mixed with the solvent, and dispersed. The solid electrolyte material is slurried.

ここで、バインダ、溶剤、可塑剤等は、特に限定されるものではなく、例えば、バインダとしてはポリビニルブチラール樹脂等の高分子系有機バインダ、溶剤としてはエタノールや酢酸n−ブチル等の有機溶剤、可塑剤としてはフタル酸ジブチル等を使用することができる。   Here, the binder, the solvent, the plasticizer and the like are not particularly limited. For example, the binder is a high molecular organic binder such as polyvinyl butyral resin, the solvent is an organic solvent such as ethanol or n-butyl acetate, As the plasticizer, dibutyl phthalate or the like can be used.

そして、このスラリー化した固体電解質材料をドクターブレード法等の成形加工法を使用して成形加工を施し、グリーンシートを作製する。   Then, the slurry solid electrolyte material is subjected to a forming process using a forming process method such as a doctor blade method to produce a green sheet.

次いで、このグリーンシートに打抜加工を施し、所定厚みの成形体を得る。   Next, the green sheet is punched to obtain a molded body having a predetermined thickness.

次いで、この成形体を卑金属材料が酸化しないような還元性雰囲気下、例えば、酸素分圧が1.0×10-14MPaのH−N−HOガスからなる還元雰囲気下、1050〜1200℃の温度で焼成処理を行ない、これにより固体電解質が作製される。Next, the compact is subjected to a reducing atmosphere in which the base metal material does not oxidize, for example, in a reducing atmosphere made of H 2 —N 2 —H 2 O gas having an oxygen partial pressure of 1.0 × 10 −14 MPa. A baking treatment is performed at a temperature of ˜1200 ° C., thereby producing a solid electrolyte.

このように本実施の形態では、一般式(A)が数式(1)、(2)を満足するように、Li化合物、La化合物、Ti化合物を秤量して仮焼して主成分粉末を作製し、次いで一般式(A)が数式(3)を満足するように、主成分粉末に所定量のMn化合物を添加してスラリー化し、所定の還元性雰囲気下、焼成を行なっているので、大気雰囲気下で焼成した場合よりも絶縁性が良好であり、しかも誘電体材料と同等以上の静電容量を有する固体電解質を得ることができる。   As described above, in the present embodiment, the Li compound, the La compound, and the Ti compound are weighed and calcined so that the general formula (A) satisfies the mathematical formulas (1) and (2) to produce the main component powder. Then, a predetermined amount of Mn compound is added to the main component powder to form a slurry so that the general formula (A) satisfies the formula (3), and firing is performed in a predetermined reducing atmosphere. It is possible to obtain a solid electrolyte that has better insulation than the case of firing in an atmosphere and that has a capacitance equal to or higher than that of the dielectric material.

図1は、本発明に係る固体電解質を使用した積層型電子部品としての積層型固体イオンキャパシタの一実施の形態を示す斜視図であり、図2は図1の断面図である。   FIG. 1 is a perspective view showing an embodiment of a multilayer solid ion capacitor as a multilayer electronic component using a solid electrolyte according to the present invention, and FIG. 2 is a cross-sectional view of FIG.

この積層型固体イオンキャパシタは、部品素体1の両端部に外部電極2a、2bが形成されている。   In this multilayer solid ion capacitor, external electrodes 2 a and 2 b are formed at both ends of a component body 1.

部品素体1は、固体電解質からなる固体電解質層3と卑金属材料を主成分とする内部電極層4とが交互に積層されている。内部電極層4のうち、一方の内部電極層4aは一方の外部電極2aと電気的に接続され、他方の内部電極層4bは他方の外部電極2bと電気的に接続されている。   In the component body 1, solid electrolyte layers 3 made of a solid electrolyte and internal electrode layers 4 mainly composed of a base metal material are alternately laminated. Of the internal electrode layers 4, one internal electrode layer 4a is electrically connected to one external electrode 2a, and the other internal electrode layer 4b is electrically connected to the other external electrode 2b.

そして、本積層型固体イオンキャパシタは、固体電解質層3と内部電極層4とが、卑金属材料が酸化しないような還元性雰囲気で焼成されて形成されている。   The multilayer solid ion capacitor is formed by firing the solid electrolyte layer 3 and the internal electrode layer 4 in a reducing atmosphere in which the base metal material is not oxidized.

ここで、内部電極層4の主成分を形成する卑金属材料は、特に限定されるものではないが、通常は安価で良導電性を有するNiを好んで使用することができる。   Here, the base metal material forming the main component of the internal electrode layer 4 is not particularly limited, but it is usually preferable to use Ni which is inexpensive and has good conductivity.

また、固体電解質層3は、薄層化すればするほど、大きな静電容量が得られることから、可能な限り薄層化するのが望ましく、厚みは0.8〜3.0μmが好ましい。   The solid electrolyte layer 3 has a larger capacitance as the layer is thinner. Therefore, it is desirable to make the layer as thin as possible, and the thickness is preferably 0.8 to 3.0 μm.

このように形成された積層型固体イオンキャパシタでは、外部電極2a、2bに電界が印加されると、電界は薄層化された固体電解質層3全体に印加され、これにより固体電解質層3を挟んで各電極4a、4b間で静電容量が形成される。しかも、固体電解質層3内を移動するLiイオンにより、極めて大きな分極が生じることから、各内部電極層4a、4bに蓄積される電荷が増加し、これにより格段に大きな静電容量を有する積層型固体イオンキャパシタを得ることができる。   In the multilayer solid ion capacitor formed in this way, when an electric field is applied to the external electrodes 2a and 2b, the electric field is applied to the entire thin solid electrolyte layer 3, thereby sandwiching the solid electrolyte layer 3 therebetween. Thus, a capacitance is formed between the electrodes 4a and 4b. In addition, since extremely large polarization occurs due to Li ions moving in the solid electrolyte layer 3, the charge accumulated in each internal electrode layer 4a, 4b increases, and thereby a stacked type having a remarkably large capacitance. A solid ion capacitor can be obtained.

そして、本積層型固体イオンキャパシタは、内部電極層4が卑金属材料を主成分とする導電性材料で形成されると共に、固体電解質層3が上述した固体電解質で形成され、内部電極層4と固体電解質層3は、卑金属材料が酸化しないような還元性雰囲気で焼成されてなるので、電子伝導性の発現を抑制でき、これにより静電容量が大きく、かつ良好な絶縁性を有する積層型固体イオンキャパシタを得ることができる。   In this multilayer solid ion capacitor, the internal electrode layer 4 is formed of a conductive material whose main component is a base metal material, and the solid electrolyte layer 3 is formed of the solid electrolyte described above. Since the electrolyte layer 3 is baked in a reducing atmosphere in which the base metal material does not oxidize, it is possible to suppress the expression of electron conductivity, and thereby, the stacked solid ion having a large capacitance and good insulating properties. A capacitor can be obtained.

次に、この積層型固体イオンキャパシタの製造方法を説明する。   Next, a method for manufacturing this multilayer solid ion capacitor will be described.

まず、上記固体電解質の製造手順と同様の方法でグリーンシートを作製する。   First, a green sheet is produced by the same method as the manufacturing procedure of the solid electrolyte.

次いで、Ni等の卑金属材料を主成分とした導電性ペーストを用意する。そして、グリーンシート上に導電性ペーストを塗布し、所定パターンの導電膜を形成する。そして、導電膜が形成されたグリーンシートを所定方向に適宜積層し、導電膜の形成されていないグリーンシートを最上層に配して加熱・加圧し、積層体を作製する。   Next, a conductive paste mainly containing a base metal material such as Ni is prepared. Then, a conductive paste is applied on the green sheet to form a conductive film having a predetermined pattern. And the green sheet in which the electrically conductive film was formed is laminated | stacked suitably in a predetermined direction, the green sheet in which the electrically conductive film is not formed is distribute | arranged to the uppermost layer, it heats and pressurizes, and a laminated body is produced.

次いで、この積層体を所定寸法に切断した後、匣(さや)に入れ、上記したように卑金属材料が酸化しないような還元性雰囲気下、例えば、酸素分圧が1.0×10-14MPaのH−N−HOガスからなる還元性雰囲気下、1050〜1200℃の温度で焼成処理を行ない、これにより固体電解質層3と卑金属材料を主成分とする内部電極層4とが交互に積層された部品素体1を得る。Next, the laminate is cut to a predetermined size, and then placed in a cocoon (sheath). In a reducing atmosphere where the base metal material is not oxidized as described above, for example, the oxygen partial pressure is 1.0 × 10 −14 MPa. In a reducing atmosphere composed of H 2 —N 2 —H 2 O gas, firing treatment is performed at a temperature of 1050 to 1200 ° C., whereby the solid electrolyte layer 3 and the internal electrode layer 4 mainly composed of a base metal material are formed. The component bodies 1 that are alternately stacked are obtained.

そして、外部電極用導電性ペーストを用意し、部品素体1の両端部に外部電極用導電性ペーストを塗布し、焼き付けることによって外部電極2a、2bを形成し、これにより積層型固体イオンキャパシタが作製される。   Then, an external electrode conductive paste is prepared, and the external electrode conductive paste is applied to both ends of the component body 1 and baked to form the external electrodes 2a and 2b. Produced.

このように本製造方法によれば、グリーンシートと導電膜とを共焼成しても、比抵抗が増大することもなく、良好な静電容量を有し、かつ良好な絶縁性を有す積層セラミックコンデンサに類似した積層構造を有する積層型固体イオンキャパシタを得ることができる。   As described above, according to the present manufacturing method, even if the green sheet and the conductive film are co-fired, the specific resistance does not increase, the laminate has a good capacitance and a good insulating property. A multilayer solid ion capacitor having a multilayer structure similar to a ceramic capacitor can be obtained.

尚、本発明は、上記実施の形態に限定されるものではない。本固体電解質は、少なくとも主成分を形成する一般式(A)が、数式(1)〜(3)を満足するように調製されていればよく、絶縁性や静電容量に影響を与えない範囲で、必要に応じAlやSiO等の適量の添加物を添加してもよい。The present invention is not limited to the above embodiment. The present solid electrolyte only needs to be prepared so that at least the general formula (A) forming the main component satisfies the formulas (1) to (3), and does not affect the insulation and the capacitance. Therefore, an appropriate amount of additives such as Al 2 O 3 and SiO 2 may be added as necessary.

また、上記実施の形態では、LLTからなる主成分粉末にMn化合物を添加しているが、当初の素原料の秤量段階でMn化合物をLi化合物、La化合物、及びTi化合物と同時に秤量してもよい。   In the above embodiment, the Mn compound is added to the main component powder made of LLT. However, even if the Mn compound is weighed simultaneously with the Li compound, La compound, and Ti compound in the initial raw material weighing stage. Good.

次に、本発明の実施例を具体的に説明する。   Next, examples of the present invention will be specifically described.

まず、素原料として純度が99.9%以上のLiCO、La(OH)、TiOを用意した。そして、(La2/3-xLi3xTiOにおいて、モル比m、Liの置換モル量xが焼成後に表1に示す値となるようにこれら素原料を秤量した。次いで、この秤量物に純水を投入し、湿式粉砕して均一に分散させ、乾燥処理を行い、その後、1050℃の温度で2時間仮焼し、主成分粉末を作製した。First, Li 2 CO 3 , La (OH) 3 , and TiO 2 having a purity of 99.9% or more were prepared as raw materials. Then, in (La 2 / 3-x Li 3x ) m TiO 3 , these raw materials were weighed so that the molar ratio m and the substituted molar amount x of Li became the values shown in Table 1 after firing. Subsequently, pure water was added to the weighed product, wet-pulverized and uniformly dispersed, dried, and then calcined at a temperature of 1050 ° C. for 2 hours to prepare a main component powder.

次に、MnCO、Al、SiOを用意した。そして、Ti100モル部に対し、焼成後のMnの含有モル量aが表1に示す値となるように、主成分粉末にMnCOを添加し、さらに主成分100モル部に対し、Al、SiOの含有量がAl、Siに換算してそれぞれ3.0モル部となるように、これらAl及びSiOを主成分粉末に添加した。次いで、高分子系有機バインダ、界面活性剤や可塑剤などの添加物、エタノールなどの有機溶剤と共に固体電解質材料を分散させ、スラリー化した。Next, MnCO 3 , Al 2 O 3 and SiO 2 were prepared. Then, with respect Ti100 molar parts, so that the molar content a of Mn after firing becomes a value shown in Table 1, was added MnCO 3 as a main component powder, to further 100 moles of the main component parts, Al 2 O 3 and Al 2 O 3 and SiO 2 were added to the main component powder so that the content of SiO 2 was 3.0 mol parts in terms of Al and Si, respectively. Next, the solid electrolyte material was dispersed and slurried together with a polymer organic binder, additives such as a surfactant and a plasticizer, and an organic solvent such as ethanol.

この後、ドクターブレード法を使用してこのスラリー化した固体電解質材料に成形加工を施し、厚みが1.2μmのグリーンシートを得た。   Thereafter, the slurry solid electrolyte material was subjected to molding using a doctor blade method to obtain a green sheet having a thickness of 1.2 μm.

次に、焼成後の厚みが約0.5mmとなるようにグリーンシートを積層し、直径10mmの円板形状に打ち抜き、試料番号1〜21の単板体を作製した。   Next, green sheets were laminated so that the thickness after firing was about 0.5 mm, and punched out into a disk shape with a diameter of 10 mm, and single plate bodies of sample numbers 1 to 21 were produced.

一方、卑金属材料にNiを使用した導電性ペーストを用意した。そして、前記グリーンシート上に導電性ペーストを塗布して所定パターンの導電膜を形成した。次いで、導電膜の形成されたグリーンシートを10層積層し、導電膜の形成されていないグリーンシートを最上層に配し、加熱・加圧し、試料番号1〜21の積層体を作製した。   On the other hand, a conductive paste using Ni as a base metal material was prepared. And the electrically conductive paste was apply | coated on the said green sheet, and the electrically conductive film of the predetermined pattern was formed. Next, 10 layers of green sheets on which conductive films were formed were stacked, a green sheet on which conductive films were not formed was placed on the top layer, and heated and pressurized to prepare a stack of sample numbers 1 to 21.

次に、試料番号1〜21の単板体及び積層体をそれぞれ酸素分圧が1.0×10-14MPaのH−N−HOガスからなる還元性雰囲気下、1150℃の温度で2時間焼成し、それぞれ単板焼結体、及び固体電解質層と内部電極層とが交互に積層された積層焼結体を作製した。Next, the single plate body and the laminated body of Sample Nos. 1 to 21 were each at 1150 ° C. in a reducing atmosphere composed of H 2 —N 2 —H 2 O gas having an oxygen partial pressure of 1.0 × 10 −14 MPa. Firing was carried out at a temperature for 2 hours to prepare single-plate sintered bodies and laminated sintered bodies in which solid electrolyte layers and internal electrode layers were alternately laminated.

さらに、別途、単板体については、大気雰囲気下、1150℃の温度で2時間焼成した単板焼結体も作製した。   Further, separately, a single plate sintered body that was fired at 1150 ° C. for 2 hours in an air atmosphere was also produced.

次いで、これら単板焼結体及び積層焼結体について、XRD法(X線回折法)を使用して構造解析を行ったところ、主成分がLLTからなることを確認した。   Subsequently, structural analysis was performed on the single plate sintered body and the laminated sintered body using the XRD method (X-ray diffraction method), and it was confirmed that the main component was made of LLT.

次いで、単板焼結体及び積層焼結体のそれぞれについて、外部電極を形成した。   Next, external electrodes were formed for each of the single plate sintered body and the laminated sintered body.

すなわち、上記還元性雰囲気及び大気雰囲気で焼成した単板焼結体各10個について、両主面にIn−Ga合金ペーストを塗布して、外部電極を形成し、これにより試料番号1〜21の比抵抗測定用試料を作製した。この比抵抗測定用試料の外形寸法は、いずれも直径10mm、厚み0.5mmであった。   That is, for each of the 10 single-plate sintered bodies fired in the reducing atmosphere and the air atmosphere, an In-Ga alloy paste was applied to both main surfaces to form external electrodes. A specific resistance measurement sample was prepared. The external dimensions of the specific resistance measurement samples were 10 mm in diameter and 0.5 mm in thickness.

また、上記還元性雰囲気で焼成した積層焼結体各10個について、該積層焼結体の両端部にNiペーストを塗布し、焼き付けて外部電極を形成し、誘電率測定用試料を作製した。この誘電率測定用試料の外形寸法は、いずれも長さ3.2mm、幅1.6mm、厚み1.6mmであった。   Further, for each of the 10 laminated sintered bodies fired in the reducing atmosphere, Ni paste was applied to both ends of the laminated sintered body and baked to form external electrodes, thereby preparing a dielectric constant measurement sample. The outer dimensions of the dielectric constant measurement samples were 3.2 mm in length, 1.6 mm in width, and 1.6 mm in thickness.

〔試料の評価〕
試料番号1〜21の比抵抗測定用試料各10個について、室温(25±2℃)下、1.0Vの直流電圧を外部電極間に100秒間印加し、直流抵抗を測定した。そして、その測定値と試料寸法から比抵抗を算出し、試料10個の平均値を求めた。
(Sample evaluation)
For each of the ten specific resistance measurement samples of sample numbers 1 to 21, a DC voltage of 1.0 V was applied between the external electrodes at room temperature (25 ± 2 ° C.) for 100 seconds, and the DC resistance was measured. And the specific resistance was computed from the measured value and sample size, and the average value of 10 samples was calculated | required.

また、試料番号1〜21の誘電率測定用試料各10個について、室温(25±2℃)下、1kHz、0.5Vrmsの測定条件で静電容量を測定し、この測定値と試料寸法とから誘電率を算出し、試料10個の平均値を求めた。   For each of the 10 samples for measuring the dielectric constant of sample numbers 1 to 21, the capacitance was measured under room temperature (25 ± 2 ° C.) under the measurement conditions of 1 kHz and 0.5 Vrms. From the above, the dielectric constant was calculated, and the average value of 10 samples was obtained.

表1は試料番号1〜21の各試料について、成分組成と測定結果を示している。   Table 1 shows the component composition and measurement results for each of the sample numbers 1 to 21.

Figure 2016006498
Figure 2016006498

試料番号1〜3は、固体電解質層中にMnが含有されていないため、誘電率は21000以上と高く、大気雰囲気で焼成した場合は、比抵抗logρは6.81〜7.21と高かったが、Niが酸化しないような還元性雰囲気で焼成した場合は、比抵抗logρは4.04〜4.44と低くなった。これは、固体電解質層中にMnが含有されていないため、電子伝導性を発現し、このため比抵抗logρが低くなって絶縁性が低下したものと思われる。   In Sample Nos. 1 to 3, since the solid electrolyte layer does not contain Mn, the dielectric constant is as high as 21000 or more, and the specific resistance logρ is as high as 6.81 to 7.21 when fired in the air atmosphere. However, when firing in a reducing atmosphere in which Ni does not oxidize, the specific resistance logρ was as low as 4.04 to 4.44. This is because Mn is not contained in the solid electrolyte layer, so that electron conductivity is exhibited, and therefore, the specific resistance logρ is lowered and the insulating property is lowered.

試料番号4は、Liの置換モル量xが0.005と少ないため、Ti100モル部に3モル部のMnを含有させても、還元性雰囲気での焼成で比抵抗logρは5.90と低く、十分な絶縁性を得ることができなかった。   In Sample No. 4, since the substitution molar amount x of Li is as small as 0.005, even when 3 mol parts of Mn are contained in 100 mol parts of Ti, the specific resistance logρ is as low as 5.90 by firing in a reducing atmosphere. , Could not get enough insulation.

試料番号10は、Liの置換モル量xが0.200と多すぎるため、Ti100モル部に3モル部のMnを含有させても、還元性雰囲気で焼成すると、電子伝導際を発現して比抵抗logρが4.30と低くなり、十分な絶縁性を得ることができなかった。   In Sample No. 10, since the substitution molar amount x of Li is too large as 0.200, even when 3 mol parts of Mn is contained in 100 mol parts of Ti, when it is baked in a reducing atmosphere, the electron conduction occurs and the ratio is increased. The resistance log ρ was as low as 4.30, and sufficient insulation could not be obtained.

試料番号11は、モル比mが0.98であり、Tiが過剰であるため、還元性雰囲気での焼成で比抵抗logρは5.10と低く、十分な絶縁性を得ることができなかった。これはTiの含有モル量が過剰であるため、電荷バランスを補償するためにTiの価数が4価から3価に小さくなり、このため固体電解質層に電子伝導性が生じて比抵抗logρの低下を招いたものと思われる。   Sample No. 11 had a molar ratio m of 0.98 and an excessive amount of Ti. Therefore, the specific resistance logρ was as low as 5.10 when fired in a reducing atmosphere, and sufficient insulation could not be obtained. . This is because the Ti content is excessive, so that the valence of Ti decreases from 4 to 3 in order to compensate for the charge balance. As a result, electron conductivity is generated in the solid electrolyte layer, and the specific resistance logρ is reduced. This seems to have caused a decline.

試料番号16は、モル比mが1.15であり、Tiの含有モル量が少ないため、Aサイト欠陥が増大し、このため比抵抗logρが5.81と低くなり、十分な絶縁性を得ることができず、また、誘電率も2168と低くなり、十分な静電容量を得ることができないことも分かった。   Sample No. 16 has a molar ratio m of 1.15 and a small content of Ti, so that the A-site defects are increased, so that the specific resistance logρ is as low as 5.81 and sufficient insulation is obtained. It was also found that the dielectric constant was as low as 2168, and a sufficient capacitance could not be obtained.

試料番号21は、Mnが、Ti100モル部に対し7モル部と過剰に含有されているため、還元性雰囲気での焼成で比抵抗logρは3.91であり、誘電率も1869であり、いずれも極端に低下することが分かった。   Sample No. 21 contains 7 M parts excessively with respect to 100 parts by mole of Ti, so that the specific resistance logρ is 3.91 and the dielectric constant is 1869 when fired in a reducing atmosphere. Was also found to be extremely low.

これに対し試料番号5〜9、12〜15、及び17〜20は、モル比mは0.99〜1.10、Liの置換モル量xは0.010〜0.167、Ti100モル部に対するMnの含有量が0.1〜5モル部であり、いずれも本発明範囲内である。その結果、誘電率が約2800〜約18500であり、従来のBaTiOと同等以上の誘電率を有し、かつ還元性雰囲気で焼成しても、比抵抗logρは6.80〜8.15であり、同一組成で大気雰囲気で焼成した場合に比べても良好な絶縁性が得られることが分かった。On the other hand, sample numbers 5-9, 12-15, and 17-20 have a molar ratio m of 0.99 to 1.10, a substituted molar amount x of Li of 0.010 to 0.167, and 100 parts by mole of Ti. The Mn content is 0.1 to 5 mole parts, and both are within the scope of the present invention. As a result, the dielectric constant is about 2800 to about 18500, the dielectric constant is equal to or higher than that of conventional BaTiO 3 , and the specific resistance logρ is 6.80 to 8.15 even when fired in a reducing atmosphere. In other words, it has been found that better insulating properties can be obtained than when firing in the air atmosphere with the same composition.

また、試料番号17〜19から明らかなように、Ti100モル部に対するMnの含有モル量を0.1〜1モル部とした場合は、比誘電率は約13000〜約18500であり、従来のBaTiOに比べて格段に大きな誘電率を有し、かつ還元雰囲気で焼成しても良好な絶縁性が得られることが分かった。Further, as apparent from sample numbers 17 to 19, when the molar amount of Mn with respect to 100 mol parts of Ti is 0.1 to 1 mol parts, the relative dielectric constant is about 13,000 to about 18500, which is the conventional BaTiO. It has been found that the dielectric constant is much larger than 3 , and good insulation can be obtained even when firing in a reducing atmosphere.

還元性雰囲気で焼成しても良好な絶縁性を有し、かつ静電容量の大きな固体電解質を得ることができる。この固体電解質を使用してNi等の卑金属材料を主成分とした導電性材料と同時焼成が可能であり、固体電解質を使用した大容量の積層型固体イオンキャパシタを実現することができる。   Even when fired in a reducing atmosphere, it is possible to obtain a solid electrolyte having good insulation and large capacitance. This solid electrolyte can be used for simultaneous firing with a conductive material mainly composed of a base metal material such as Ni, and a large-capacity stacked solid ion capacitor using the solid electrolyte can be realized.

1 部品素体
2a、2b 外部電極
3 固体電解質層
4 内部電極層
1 Parts Element 2a, 2b External Electrode 3 Solid Electrolyte Layer 4 Internal Electrode Layer

Claims (8)

主成分が、一般式(La2/3-xLi3xTiO(ただし、0.99≦m≦1.10、0.01≦x≦0.167)で表される複合酸化物を含有すると共に、
Mnが、前記Ti100モル部に対し0.1〜5モル部の範囲で含有されていることを特徴とする固体電解質。
A composite oxide whose main component is represented by the general formula (La 2 / 3-x Li 3x ) m TiO 3 (where 0.99 ≦ m ≦ 1.10, 0.01 ≦ x ≦ 0.167) Containing,
Mn is contained in the range of 0.1-5 mol part with respect to 100 mol part of said Ti, The solid electrolyte characterized by the above-mentioned.
前記Mnが、前記Ti100モル部に対し0.1〜1モル部の範囲で含有されていることを特徴とする請求項1記載の固体電解質。   The solid electrolyte according to claim 1, wherein the Mn is contained in a range of 0.1 to 1 mole part with respect to 100 mole parts of Ti. 還元性雰囲気で焼成されてなることを特徴とする請求項1又は請求項2記載の固体電解質。   The solid electrolyte according to claim 1 or 2, wherein the solid electrolyte is fired in a reducing atmosphere. 固体電解質層と内部電極層とが交互に積層され、
前記内部電極層が、卑金属材料を主成分とする導電性材料で形成されると共に、
前記固体電解質層が、請求項1乃至請求項3のいずれかに記載の固体電解質で形成され、
かつ、前記内部電極層と前記固体電解質層は、前記卑金属材料が酸化しないような還元雰囲気で焼成されてなることを特徴とする積層型電子部品。
Solid electrolyte layers and internal electrode layers are alternately stacked,
The internal electrode layer is formed of a conductive material mainly composed of a base metal material,
The solid electrolyte layer is formed of the solid electrolyte according to any one of claims 1 to 3,
The internal electrode layer and the solid electrolyte layer are fired in a reducing atmosphere so that the base metal material is not oxidized.
前記卑金属材料が、Niを主成分としていることを特徴とする請求項4記載の積層型電子部品。   The multilayer electronic component according to claim 4, wherein the base metal material contains Ni as a main component. 少なくともLi化合物、La化合物、Ti化合物及びMn化合物を含む素原料を出発原料として固体電解質材料を合成する合成工程と、
前記固体電解質材料をシート状に成形し、グリーンシートを作製するグリーンシート作製工程と、
卑金属材料を主成分とする導電膜を前記グリーンシートの表面に形成する導電膜形成工程と、
前記導電膜が形成されたグリーンシートを積層し、積層体を形成する積層体形成工程と、
前記積層体を焼成し、主成分が一般式(La2/3-xLi3xTiOで表される複合酸化物を含有した固体電解質層と前記卑金属材料を主成分とする内部電極層とが交互に積層された積層焼結体を作製する焼成工程とを含み、
前記合成工程は、前記固体電解質層が、前記一般式中のmが0.99〜1.10であり、xが0.01〜0.167であり、かつ、Mnが、Ti100モル部に対し0.1〜5モル部となるように、前記Li化合物、前記La化合物、前記Ti化合物及び前記Mn化合物をそれぞれ秤量する工程を含むと共に、
前記焼成工程は、前記卑金属材料が酸化しないような還元性雰囲気下で焼成することを特徴とする積層型電子部品の製造方法。
A synthesis step of synthesizing a solid electrolyte material using a raw material containing at least a Li compound, a La compound, a Ti compound and a Mn compound as a starting material;
Green sheet production step of forming the solid electrolyte material into a sheet shape to produce a green sheet;
A conductive film forming step of forming a conductive film mainly composed of a base metal material on the surface of the green sheet;
A laminated body forming step of laminating the green sheets on which the conductive film is formed to form a laminated body;
The laminated body is fired, and a solid electrolyte layer containing a composite oxide whose main component is represented by the general formula (La 2 / 3-x Li 3x ) m TiO 3 and an internal electrode layer mainly containing the base metal material And a firing step of producing a laminated sintered body alternately laminated with,
In the synthesis step, the solid electrolyte layer is such that m in the general formula is 0.99 to 1.10, x is 0.01 to 0.167, and Mn is 100 mol parts of Ti. Including a step of weighing each of the Li compound, the La compound, the Ti compound, and the Mn compound so as to be 0.1 to 5 mol parts,
The method for manufacturing a multilayer electronic component, wherein the firing step is performed in a reducing atmosphere in which the base metal material is not oxidized.
前記卑金属材料は、Niを主成分とすることを特徴とする請求項6記載の積層型電子部品の製造方法。   The method for manufacturing a multilayer electronic component according to claim 6, wherein the base metal material contains Ni as a main component. 前記合成工程が、前記Li化合物、前記La化合物、及び前記Ti化合物を秤量して仮焼し、主成分粉末を作製する主成分粉末作製工程と、
前記Mn化合物を秤量して該Mn化合物を前記主成分粉末に添加し、スラリー化するスラリー化工程とを含むことを特徴とする請求項7又は請求項7記載の積層型電子部品の製造方法。
The synthesizing step is a main component powder preparation step of weighing and calcining the Li compound, the La compound, and the Ti compound to prepare a main component powder,
The method for manufacturing a multilayer electronic component according to claim 7, further comprising: a slurrying step of weighing the Mn compound and adding the Mn compound to the main component powder to form a slurry.
JP2016532889A 2014-07-11 2015-06-30 Solid electrolyte, multilayer electronic component, and method of manufacturing multilayer electronic component Active JP6218202B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014142884 2014-07-11
JP2014142884 2014-07-11
PCT/JP2015/068797 WO2016006498A1 (en) 2014-07-11 2015-06-30 Solid electrolyte, multilayer electronic component, and method for producing multilayer electronic component

Publications (2)

Publication Number Publication Date
JPWO2016006498A1 true JPWO2016006498A1 (en) 2017-04-27
JP6218202B2 JP6218202B2 (en) 2017-10-25

Family

ID=55064135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016532889A Active JP6218202B2 (en) 2014-07-11 2015-06-30 Solid electrolyte, multilayer electronic component, and method of manufacturing multilayer electronic component

Country Status (2)

Country Link
JP (1) JP6218202B2 (en)
WO (1) WO2016006498A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147397A (en) * 2016-02-19 2017-08-24 日本特殊陶業株式会社 Capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059843A (en) * 2006-08-30 2008-03-13 Kyoto Univ Solid electrolytic layer and its manufacturing method
JP2008130844A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Whole solid-type electric double layer condenser
JP2011529243A (en) * 2008-07-25 2011-12-01 トヨタ自動車株式会社 Silicon-containing lithium lanthanum titanate composite solid electrolyte material and method for producing the same
US20110318650A1 (en) * 2010-03-30 2011-12-29 West Virginia University Inorganic Solid Electrolyte Glass Phase Composite and a Battery Containing an Inorganic Solid Electrolyte Glass Phase Composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059843A (en) * 2006-08-30 2008-03-13 Kyoto Univ Solid electrolytic layer and its manufacturing method
JP2008130844A (en) * 2006-11-21 2008-06-05 Matsushita Electric Ind Co Ltd Whole solid-type electric double layer condenser
JP2011529243A (en) * 2008-07-25 2011-12-01 トヨタ自動車株式会社 Silicon-containing lithium lanthanum titanate composite solid electrolyte material and method for producing the same
US20110318650A1 (en) * 2010-03-30 2011-12-29 West Virginia University Inorganic Solid Electrolyte Glass Phase Composite and a Battery Containing an Inorganic Solid Electrolyte Glass Phase Composite

Also Published As

Publication number Publication date
JP6218202B2 (en) 2017-10-25
WO2016006498A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
TWI613688B (en) Multilayer ceramic capacitor
JP5564944B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP5067401B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP2004224653A (en) Dielectric ceramic and its manufacturing method as well as multilayer ceramic capacitor
JP5234035B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP2001316114A (en) Oxide having perovskite structure, barium titanate and its manufacturing method and derivative ceramics and ceramic electronic part
JPWO2012111520A1 (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP5804064B2 (en) Manufacturing method of multilayer ceramic capacitor
JPWO2006082833A1 (en) Multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
WO2014097678A1 (en) Laminated ceramic capacitor and method for producing same
JP6651351B2 (en) Dielectric ceramic composition and ceramic electronic component containing the same
JP5423682B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP5240199B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP2017028224A (en) Multilayer ceramic capacitor
JP5233763B2 (en) Barium titanate-based dielectric raw material powder, method for producing the same, method for producing ceramic green sheet, and method for producing multilayer ceramic capacitor
JP4561922B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP2014162679A (en) Dielectric ceramic composition, and electronic part
JP5035028B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JPWO2017094882A1 (en) Dielectric ceramic composition, multilayer ceramic capacitor, and method for producing multilayer ceramic capacitor
WO2014167754A1 (en) Dielectric ceramic material, and laminated ceramic capacitor
WO2010098033A1 (en) Dielectric ceramic and laminated ceramic capacitor
JP2010173910A (en) Dielectric ceramic and laminated ceramic capacitor
JPWO2009098918A1 (en) Dielectric ceramic and multilayer ceramic capacitor
JP6218202B2 (en) Solid electrolyte, multilayer electronic component, and method of manufacturing multilayer electronic component
JP2011042529A (en) Method for manufacturing dielectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6218202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250