JPWO2016002714A1 - Semiconductor porcelain composition and PTC element - Google Patents

Semiconductor porcelain composition and PTC element Download PDF

Info

Publication number
JPWO2016002714A1
JPWO2016002714A1 JP2015558263A JP2015558263A JPWO2016002714A1 JP WO2016002714 A1 JPWO2016002714 A1 JP WO2016002714A1 JP 2015558263 A JP2015558263 A JP 2015558263A JP 2015558263 A JP2015558263 A JP 2015558263A JP WO2016002714 A1 JPWO2016002714 A1 JP WO2016002714A1
Authority
JP
Japan
Prior art keywords
mol
raw material
amount
semiconductor ceramic
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015558263A
Other languages
Japanese (ja)
Inventor
武司 島田
武司 島田
健太郎 猪野
健太郎 猪野
到 上田
到 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2016002714A1 publication Critical patent/JPWO2016002714A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient

Abstract

本発明は、抵抗温度係数αの高い半導体磁器組成物を提供することを目的とする。また、その半導体磁器組成物に電極が形成されたPTC素子を提供することを目的とする。BaTiO3系酸化物におけるBaの一部をBiおよびA(Aはアルカリ金属の少なくとも一種の元素であってをNaを必須で含む)で置換した非鉛の半導体磁器組成物であって、結晶粒の粒界におけるNa量が3mol%以上であることを特徴とする。抵抗温度係数は4.5%/℃以上であることが好ましい。An object of the present invention is to provide a semiconductor ceramic composition having a high temperature coefficient of resistance α. It is another object of the present invention to provide a PTC element in which an electrode is formed on the semiconductor ceramic composition. A lead-free semiconductor ceramic composition in which a part of Ba in a BaTiO3-based oxide is replaced with Bi and A (A is at least one element of an alkali metal and Na is essential), The amount of Na at the grain boundary is 3 mol% or more. The temperature coefficient of resistance is preferably 4.5% / ° C. or higher.

Description

この発明は、PTCヒータ、PTCサーミスタ、PTCスイッチ、温度検知器などに用いられる、半導体磁器組成物およびPTC素子に関する。   The present invention relates to a semiconductor ceramic composition and a PTC element used for a PTC heater, a PTC thermistor, a PTC switch, a temperature detector, and the like.

従来より、PTC(Positive Temperature Coefficient of resistivity)特性を示す材料として、BaTiO3系酸化物に様々な半導体化元素を加えた半導体磁器組成物が提案されている。この半導体磁器組成物に電極を設けたものは、PTC素子として使用することができる。Conventionally, as a material exhibiting PTC (Positive Temperature Coefficient of Reactive) characteristics, semiconductor porcelain compositions in which various semiconducting elements are added to a BaTiO 3 oxide have been proposed. This semiconductor ceramic composition provided with electrodes can be used as a PTC element.

BaTiO3系酸化物の半導体磁器組成物は、そのキュリー温度が120℃前後であるものが殆どである。これらの半導体磁器組成物は、用途に応じてキュリー温度をシフトさせることが必要になる。例えば、BaTiO3系酸化物にSrTiO3系酸化物を添加することによってキュリー温度をシフトさせることが提案されているが、この場合、キュリー温度は負の方向にのみシフトし、正の方向にはシフトしない。現在実用化されている材料で、キュリー温度を正の方向にシフトさせる添加物として知られているのはPbTiO3である。しかし、鉛は環境汚染を引き起こす元素であるため、鉛を含まない非鉛の半導体磁器組成物が要望されている。Most BaTiO 3 -based semiconductor ceramic compositions have a Curie temperature of around 120 ° C. These semiconductor porcelain compositions need to shift the Curie temperature depending on the application. For example, it has been proposed to shift the Curie temperature by adding SrTiO 3 oxide to BaTiO 3 oxide, but in this case, the Curie temperature is shifted only in the negative direction and in the positive direction. Do not shift. PbTiO 3 is a material that is currently in practical use and is known as an additive that shifts the Curie temperature in the positive direction. However, since lead is an element that causes environmental pollution, a lead-free semiconductor ceramic composition containing no lead is desired.

非鉛でキュリー温度が高い半導体磁器組成物として、BaTiO3系酸化物におけるBaの一部をBi-Naで置換したものが知られている。
例えば特許文献1は、組成式が[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3(AはNa,Li,Kのうち少なくとも一種、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.2、0≦y≦0.02、0≦z≦0.01(但し、y+z>0)を満足する結晶粒を有する半導体磁器組成物が記載されている。
また特許文献1は、その製造方法として、(BiA)TiO3系の第1の原料と(BaR)[TiM]O3(RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種であり、R,Mは少なくともどちらか一方が必須である)系の第2の原料をそれぞれ用意し、前記第1の原料を700℃以上950℃以下で仮焼、前記第2の原料を900℃以上1300℃以下で仮焼し、仮焼したそれぞれの材料を混合して第3の原料とし、前記第3の原料を900℃以上1250℃以下で熱処理し、その後焼結することが記載されている。
As a semiconductor porcelain composition that is lead-free and has a high Curie temperature, a part of Ba in the BaTiO 3 oxide is substituted with Bi—Na.
Patent Document 1, at least one of the composition formula [(BiA) x (Ba 1 -y R y) 1-x] [Ti 1-z M z] O 3 (A is Na, Li, K, R Is at least one of rare earth elements including Y, M is at least one of Nb, Ta, and Sb), and x, y, and z are 0 <x ≦ 0.2, 0 ≦ y ≦ 0.02, and 0 ≦ z A semiconductor ceramic composition having crystal grains satisfying ≦ 0.01 (where y + z> 0) is described.
In addition, Patent Document 1 describes, as a manufacturing method thereof, (BiA) TiO 3 -based first raw material and (BaR) [TiM] O 3 (R is at least one of rare earth elements including Y, M is Nb, Ta, A second raw material of each system is prepared, and the first raw material is calcined at 700 ° C. or higher and 950 ° C. or lower; The raw material of 2 is calcined at 900 ° C or higher and 1300 ° C or lower, and the calcined materials are mixed to form a third raw material. The third raw material is heat treated at 900 ° C or higher and 1250 ° C or lower, and then sintered. It is described to do.

国際公開第2013/157649号公報International Publication No. 2013/157649

BaTiO3系酸化物におけるBaの一部をBi-Naで置換した半導体磁器組成物は、キュリー温度を正の方向にシフトするのには有効である。しかし、抵抗温度係数αは十分に高いとは言えない場合があった。A semiconductor ceramic composition in which part of Ba in the BaTiO 3 oxide is substituted with Bi—Na is effective for shifting the Curie temperature in the positive direction. However, the temperature coefficient of resistance α may not be sufficiently high.

そこで本発明は、抵抗温度係数αの高い半導体磁器組成物を提供することを目的とする。また、その半導体磁器組成物に電極を形成したPTC素子を提供することを目的とする。   Therefore, an object of the present invention is to provide a semiconductor ceramic composition having a high resistance temperature coefficient α. Another object of the present invention is to provide a PTC element in which an electrode is formed on the semiconductor ceramic composition.

本発明は、BaTiO3系酸化物におけるBaの一部をBiおよびA(Aはアルカリ金属の少なくとも一種の元素であってNaを必須で含む)で置換した非鉛の半導体磁器組成物であって、結晶粒の粒界におけるNa量が3mol%以上であることを特徴とする。
本発明の半導体磁器組成物は、抵抗温度係数が4.5%/℃以上のものを得ることができる。
本発明の半導体磁器組成物は、結晶粒の組成式が[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3(Aはアルカリ金属の少なくとも一種の元素であってNaを必須で含み、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.2、0≦y≦0.02、0≦z≦0.01を満足するものとすることができる。
これらの半導体磁器組成物に電極を形成してPTC素子とすることができる。
The present invention is a lead-free semiconductor ceramic composition in which a part of Ba in a BaTiO 3 -based oxide is replaced with Bi and A (A is at least one element of an alkali metal and contains Na as an essential element). The amount of Na at the grain boundaries of the crystal grains is 3 mol% or more.
The semiconductor ceramic composition of the present invention can have a temperature coefficient of resistance of 4.5% / ° C. or higher.
The semiconductor ceramic composition of the present invention, at least one composition formula of the crystal grains is [(BiA) x (Ba 1 -y R y) 1-x] [Ti 1-z M z] O 3 (A is an alkali metal Wherein R is at least one of rare earth elements including Y, M is at least one of Nb, Ta, and Sb), and x, y, and z are 0 <x ≦ 0.2, 0 ≦ y ≦ 0.02, and 0 ≦ z ≦ 0.01 may be satisfied.
Electrodes can be formed on these semiconductor ceramic compositions to form PTC elements.

本発明の半導体磁器組成物は、組成が同じだとしても結晶粒の粒界におけるNaの量が3mol%以上であることにより、高い抵抗温度係数αを得ることができる。そのため、この半導体磁器組成物に電極を形成すれば、抵抗温度係数αに優れたPTC素子が得られる。   Even if the composition is the same, the semiconductor ceramic composition of the present invention can obtain a high resistance temperature coefficient α when the amount of Na at the grain boundaries of the crystal grains is 3 mol% or more. Therefore, when an electrode is formed on this semiconductor ceramic composition, a PTC element having an excellent resistance temperature coefficient α can be obtained.

本発明の半導体磁器組成物の結晶粒界におけるNa量と抵抗温度係数αの関係を示す図である。It is a figure which shows the relationship between the amount of Na in the crystal grain boundary of the semiconductor ceramic composition of this invention, and resistance temperature coefficient (alpha). 本発明の別の半導体磁器組成物の結晶粒界におけるNa量と抵抗温度係数αの関係を示す図である。It is a figure which shows the relationship between the amount of Na in the crystal grain boundary of another semiconductor ceramic composition of this invention, and resistance temperature coefficient (alpha). 本発明のさらに別の半導体磁器組成物の結晶粒界におけるNa量と抵抗温度係数αの関係を示す図である。It is a figure which shows the relationship between the amount of Na in the crystal grain boundary of another semiconductor ceramic composition of this invention, and resistance temperature coefficient (alpha). 本発明の半導体磁器組成物の結晶粒界におけるSTEM画像である。It is a STEM image in the crystal grain boundary of the semiconductor ceramic composition of this invention. 本発明の半導体磁器組成物を得るための製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method for obtaining the semiconductor ceramic composition of this invention. 抵抗温度係数αを説明するための図である。It is a figure for demonstrating resistance temperature coefficient (alpha). 試料No.2-12をSTEM-EDXでライン分析した際の測定箇所を模式的に示した図である。It is the figure which showed typically the measurement location at the time of carrying out line analysis of sample No.2-12 by STEM-EDX. 試料No.2-12をライン分析した際のNa濃度、Bi濃度を示したものである。It shows the Na concentration and Bi concentration when sample No. 2-12 was line analyzed. 比較例*No.1-1をライン分析した際のNa濃度、Bi濃度を示したものである。This shows the Na concentration and Bi concentration when Comparative Example * No. 1-1 was line analyzed.

本発明は、BaTiO3系酸化物におけるBaの一部をBiおよびA(Aはアルカリ金属の少なくとも一種の元素であってNaを必須で含む)で置換した非鉛の半導体磁器組成物であっても、図1に示すように、結晶粒の粒界におけるNa量(以下、粒界Na量という)を高めることにより抵抗温度係数αを大きくできることを知見したものである。抵抗温度係数αが大きくなる理由は、推定であるが、Naが粒界に存在することで粒界準位が大きくなり、粒界二重ショットキー障壁が増大したためと考えられる。The present invention is a lead-free semiconductor ceramic composition in which a part of Ba in a BaTiO 3 -based oxide is replaced with Bi and A (A is at least one element of an alkali metal and contains Na as an essential element). In addition, as shown in FIG. 1, it has been found that the resistance temperature coefficient α can be increased by increasing the amount of Na at the grain boundary of the crystal grains (hereinafter referred to as grain boundary Na amount). The reason why the temperature coefficient of resistance α increases is presumed to be that the presence of Na at the grain boundary increases the grain boundary level and increases the grain boundary double Schottky barrier.

本発明において、結晶粒界とは、図4に示すように、異なる二つの正方晶の結晶粒(BaTiO3系酸化物)1a,1bの境界面を指す。粒界Na量はその境界面の断面中央部を走査型透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM)により10万倍の視野で測定したものである。測定方法の詳細は後述する。In the present invention, the crystal grain boundary refers to a boundary surface between two different tetragonal crystal grains (BaTiO 3 -based oxides) 1a and 1b as shown in FIG. The amount of grain boundary Na was measured at the center of the cross section of the boundary surface with a scanning transmission electron microscope (STEM) at a field of view of 100,000 times. Details of the measurement method will be described later.

粒界Na量が3mol%未満では、抵抗温度係数αが4.5%/℃以上にならない。粒界Na量は5mol%以上、さらには7mol%以上とすることが好ましい。
一方、粒界Na量の上限値は、特に限定されるものではないが、20mol%を超えると溶融や軟化により成形時とは異なる焼成体の形状になったり、炉中の被処理物の設置台や容器等と反応してしまうという問題がある。そのため、粒界Na量は20mol%以下が好ましい。
When the grain boundary Na content is less than 3 mol%, the resistance temperature coefficient α does not exceed 4.5% / ° C. The grain boundary Na amount is preferably 5 mol% or more, more preferably 7 mol% or more.
On the other hand, the upper limit of the amount of grain boundary Na is not particularly limited, but if it exceeds 20 mol%, it becomes a shape of a fired body different from that during molding due to melting or softening, or the processing object in the furnace is installed. There is a problem that it reacts with a table or a container. Therefore, the grain boundary Na content is preferably 20 mol% or less.

本発明の半導体磁器組成物は、BaTiO3系酸化物におけるBaの一部をBiおよびAで置換した結晶粒を有する。
その中でも、組成式が[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3(Aはアルカリ金属の少なくとも一種の元素であってNaを必須で含み、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.2、0≦y≦0.02、0≦z≦0.01を満足する結晶粒を有するものが好ましい。
The semiconductor ceramic composition of the present invention has crystal grains in which a part of Ba in a BaTiO 3 oxide is substituted with Bi and A.
Among them, the composition formula is [(BiA) x (Ba 1-y R y ) 1-x ] [Ti 1-z M z ] O 3 (A is at least one element of an alkali metal and Na is essential. And R is represented by at least one of rare earth elements including Y, M is represented by at least one of Nb, Ta, and Sb), and x, y, and z are 0 <x ≦ 0.2, 0 ≦ y ≦ 0.02, Those having crystal grains satisfying 0 ≦ z ≦ 0.01 are preferable.

xの範囲を0を超え0.2以下とすることでキュリー温度を130℃〜200℃にすることができる。xが0.2を超えてしまうと異相ができ易くなるため好ましくない。xは、さらに0.03以上0.1以下が好ましい。   Curie temperature can be 130 degreeC-200 degreeC by making the range of x exceed 0 and 0.2 or less. If x exceeds 0.2, it is not preferable because a different phase is easily formed. x is more preferably 0.03 or more and 0.1 or less.

R、Mが共に添加されない組成(y=z=0)でもよいが、その場合は室温比抵抗が200Ωcmを超えて低電圧用途として用いられるヒータ素子とした場合には効率が下がる。そのため、y+z>0とすることが好ましい。ただし、RとMの両方を必須とする必要はなく、少なくともどちらか一方を用いれば良い。   A composition in which neither R nor M is added may be used (y = z = 0). In this case, however, the efficiency decreases when the heater element is used for low voltage applications with a room temperature resistivity exceeding 200 Ωcm. Therefore, it is preferable to satisfy y + z> 0. However, both R and M are not necessarily required, and at least one of them may be used.

Rのyの値は、0≦y≦0.02の範囲としてもよいが、0<y≦0.02が好ましい範囲である。yが0では組成物が十分に半導体化しづらく、0.02を超えると室温比抵抗が大きくなりやすい。yの値を変化させることで原子価制御ができる。但し、BaTiO3系酸化物におけるBaの一部をBiおよびAで置換した系において組成物の原子価制御を行う場合、3価の陽イオンを半導体化元素として添加すると半導体化の効果が1価のAイオンの存在のために低下し、室温比抵抗が高くなるという問題がある。そのため、より好ましい範囲は0.002≦y≦0.02である。Rは希土類(Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Tb,Tm,Yb,Lu)から選ばれる少なくとも一種以上の元素であり、特にLa,Yが優れたPTC特性を得られるため好ましい。The value of y in R may be in the range of 0 ≦ y ≦ 0.02, but 0 <y ≦ 0.02 is a preferable range. When y is 0, the composition is not sufficiently semiconducting, and when it exceeds 0.02, the room temperature resistivity tends to increase. The valence can be controlled by changing the value of y. However, when the valence control of the composition is performed in a system in which a part of Ba in the BaTiO 3 oxide is substituted with Bi and A, the addition of a trivalent cation as a semiconducting element results in a monovalent effect. There is a problem that the room temperature resistivity increases due to the presence of A ions. Therefore, a more preferable range is 0.002 ≦ y ≦ 0.02. R is at least one element selected from rare earths (Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Tb, Tm, Yb, Lu), particularly La and Y are preferable because excellent PTC characteristics can be obtained.

M量を示すzは、0≦z≦0.01の範囲としてもよいが、0<z≦0.01が好ましい範囲である。zが0では原子価制御ができずに組成物が十分に半導体化しづらく、z=0.01を超えると室温比抵抗が高くなったりキュリー温度が低下しやすい。より好ましい範囲は0.001≦z≦0.005である。Mは、Nb、Ta、Sbのうち、Nbが特に優れたPTC特性を得られるため好ましい。   Z indicating the amount of M may be in a range of 0 ≦ z ≦ 0.01, but 0 <z ≦ 0.01 is a preferable range. When z is 0, the valence cannot be controlled and the composition is not sufficiently semiconducting. When z is more than 0.01, the room temperature resistivity increases or the Curie temperature tends to decrease. A more preferable range is 0.001 ≦ z ≦ 0.005. M is preferable because Nb can obtain particularly excellent PTC characteristics among Nb, Ta, and Sb.

BiとAの比は1:1が良い。但し材料の配合時はこの比が1:1であっても、仮焼や焼結の工程によりBiが揮散してBiとAの比にずれが生じることで焼結体では1:1になっていない場合も本発明に含まれる。Bi:A=0.78〜1.55:1の範囲で許容でき、この範囲内であれば異相の増大を抑制できるので、室温比抵抗の増大や経時変化を抑制できる。さらに好ましい範囲はBi:A=0.90〜1.2:1である。   A good ratio of Bi and A is 1: 1. However, even when this ratio is 1: 1 when blending the materials, Bi is volatilized by the calcination or sintering process, and the ratio of Bi and A is shifted, resulting in a 1: 1 ratio in the sintered body. This is also included in the present invention. Bi: A = 0.78 to 1.55: 1 is acceptable, and if it is within this range, the increase in heterogeneous phase can be suppressed, so that the increase in room temperature resistivity and change with time can be suppressed. A more preferable range is Bi: A = 0.90 to 1.2: 1.

上記組成式において、[(BiA)x(Ba1-yRy)1-x]側のAサイトと[Ti1-zMz]側のBサイトの比は、Aサイト:Bサイト=0.9〜1.1:1の範囲でずれても良い。好ましくはAサイト:Bサイト=0.9〜1.0:1とすることが好ましく、さらには0.990〜1.000:1とすることが好ましい。経時変化を低減する効果や、抵抗温度係数αを向上させる効果が期待できる。In the above composition formula, the ratio of the A site on the [(BiA) x (Ba 1-y R y ) 1-x ] side and the B site on the [Ti 1-z M z ] side is A site: B site = 0.9 It may deviate in the range of -1.1: 1. Preferably, A site: B site = 0.9 to 1.0: 1, more preferably 0.990 to 1.000: 1. The effect of reducing the change with time and the effect of improving the resistance temperature coefficient α can be expected.

なお、これら以外に焼結助剤としてSi原料、Ca原料を用いることができる。これらの焼結助剤を用いた場合は、上記組成式にSi,Caが含まれることもある。   In addition to these, Si raw materials and Ca raw materials can be used as sintering aids. When these sintering aids are used, Si and Ca may be included in the above composition formula.

以下に、本発明の半導体磁器組成物を得るための好ましい製造方法を説明する。
BaTiO3系酸化物におけるBaの一部をBiおよびA(Aはアルカリ金属の少なくとも一種の元素であってNaを必須で含む)で置換した非鉛の半導体磁器組成物を製造する際に、原料として、融点が865℃以上のNa化合物を用いることで上記半導体磁器組成物が得られる。融点が865℃未満のNa化合物を用いた場合には、Naを粒界に3mol%以上析出させることができない。Na化合物は、融点が1000℃以上のものが好ましく、さらには1100℃以上のものが好ましい。例えばNa化合物は、Na2Ti3O7(融点約1130℃)やNa2Ti6O13(融点約1300℃)、またはNa0.5Bi4.5Ti4O15(融点1300℃以上)等を用いることができる。
融点が高いNa化合物を用いることで、BaTiO3系酸化物の結晶粒が形成される際にNa化合物中の一部のNaが結晶粒内に取り込まれず結晶粒界にNaが残り、選択的にNaを粒界に偏析させることが出来る。その結果、本発明の抵抗温度係数αが大きい半導体磁器組成物が得られる。
Below, the preferable manufacturing method for obtaining the semiconductor ceramic composition of this invention is demonstrated.
A raw material for producing a lead-free semiconductor ceramic composition in which a part of Ba in a BaTiO 3 oxide is substituted with Bi and A (A is an element of at least one alkali metal and contains Na as an essential element). As described above, the semiconductor ceramic composition can be obtained by using a Na compound having a melting point of 865 ° C. or higher. When a Na compound having a melting point of less than 865 ° C. is used, Na cannot be precipitated at 3 mol% or more at the grain boundary. The Na compound preferably has a melting point of 1000 ° C. or higher, more preferably 1100 ° C. or higher. For example, Na 2 Ti 3 O 7 (melting point: about 1130 ° C), Na 2 Ti 6 O 13 (melting point: about 1300 ° C), or Na 0.5 Bi 4.5 Ti 4 O 15 (melting point: 1300 ° C or higher) should be used. Can do.
By using a Na compound with a high melting point, when NaTiO 3 -based oxide crystal grains are formed, some of the Na in the Na compound is not taken into the crystal grains and remains at the crystal grain boundaries. Na can be segregated at grain boundaries. As a result, the semiconductor ceramic composition having a large resistance temperature coefficient α according to the present invention is obtained.

本発明の半導体磁器組成物を得るための製造方法は、以下の図5に示す、(Step1)〜(Step7)の工程を持つ製造方法を採用できる。
(Step1) (BiA)TiO3系(Aはアルカリ金属の少なくとも一種の元素であってNaを必須で含む)の第1の原料と(BaR)[TiM]O3(RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種であり、R,Mは少なくともどちらか一方が必須である)系の第2の原料をそれぞれ用意し、
(Step2) 前記第1の原料を700℃以上950℃以下で仮焼、前記第2の原料を900℃以上1300℃以下で仮焼し、
(Step3) 仮焼したそれぞれの材料を混合して第3の原料とし、
(Step4) 前記第3の原料を900℃以上1250℃以下で熱処理し、その後、
(Step5) 前記の熱処理した第3の原料に、融点が865℃以上のNa化合物を添加し、
(Step6) 成形し、
(Step7) 1200℃以上1500℃以下で焼結する。
As a manufacturing method for obtaining the semiconductor ceramic composition of the present invention, a manufacturing method having steps (Step 1) to (Step 7) shown in FIG. 5 below can be adopted.
(Step 1) (BiA) TiO 3 system (A is at least one element of alkali metal and contains Na essential) and (BaR) [TiM] O 3 (R is a rare earth element containing Y) At least one of them, M is at least one of Nb, Ta, and Sb, and at least one of R and M is essential).
(Step 2) The first raw material is calcined at 700 ° C. or higher and 950 ° C. or lower, the second raw material is calcined at 900 ° C. or higher and 1300 ° C. or lower,
(Step3) Mix each calcined material to make the third raw material,
(Step 4) The third raw material is heat-treated at 900 ° C. or higher and 1250 ° C. or lower, and then
(Step 5) To the heat-treated third raw material, a Na compound having a melting point of 865 ° C. or higher is added,
(Step6) Molding,
(Step 7) Sinter at 1200 ° C or higher and 1500 ° C or lower.

本発明の半導体磁器組成物を得るための製造方法は、 特に、(Step5)の「前記の熱処理した第3の原料に、融点が865℃以上のNa化合物を添加する工程」を有している。この工程により、抵抗温度係数αが優れた半導体磁器組成物が得られる。
つまり、第1と第2の原料の仮焼粉を混合して第3の原料とし、第3の原料を900℃以上1250℃以下で熱処理することで、最終的に得たい半導体磁器組成物の結晶粒の組成である[(BiA)(BaR)][TiM]O3系((具体的には、[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3(x、y、zが、0<x≦0.2、0≦y≦0.02、0≦z≦0.01))の化合物、若しくは、それに近い組成の化合物にしておき、その後、融点が865℃以上のNa化合物をさらに添加する。[(BiA)(BaR)][TiM]O3系の化合物は高温においてもある程度安定な組成であるため、その後の焼結においても組成の変動が抑制された状態で結晶粒が形成される。添加したNa化合物も、融点が高いので、Naが揮発する時間を短くでき、かつ、焼結中においてNa成分が液相化している時間を短く出来るので結晶粒内にNaが含まれることが抑制される。これらのメカニズムにより、Naが結晶の粒界に偏析しやすくなり、粒界でのショットキー障壁が大きくなるので、抵抗温度係数が大きくなると推察される。
The production method for obtaining the semiconductor ceramic composition of the present invention particularly has (Step 5) “step of adding a Na compound having a melting point of 865 ° C. or higher to the heat-treated third raw material”. . By this step, a semiconductor ceramic composition having an excellent resistance temperature coefficient α is obtained.
In other words, by mixing the calcined powder of the first and second raw materials into the third raw material, the third raw material is heat-treated at 900 ° C. or higher and 1250 ° C. or lower, so that the semiconductor ceramic composition to be finally obtained [(BiA) (BaR)] [TiM] O 3 system ((specifically, [(BiA) x (Ba 1-y R y ) 1-x ] [Ti 1-z M z ] O 3 (x, y, z is 0 <x ≦ 0.2, 0 ≦ y ≦ 0.02, 0 ≦ z ≦ 0.01)) or a compound having a composition close thereto, and then the melting point is 865. Add an Na compound at a temperature not lower than ° C. Since the [(BiA) (BaR)] [TiM] O 3 compound has a composition that is stable to some extent even at high temperatures, fluctuations in the composition are suppressed even in subsequent sintering. Since the added Na compound has a high melting point, the time for Na to volatilize can be shortened, and the time during which the Na component is in a liquid phase during sintering can be shortened. It is suppressed that Na is contained in the grains. By this mechanism, Na is likely to segregate at the grain boundaries of the crystal, and the Schottky barrier at the grain boundaries increases, so it is assumed that the temperature coefficient of resistance increases.

以下に上記(Step1)〜(Step7)の工程について説明する。
先ず(Step1)について詳述する。(BiA)TiO3系の第1の原料は、原料粉末となるA2CO3、Bi2O3、TiO2を混合して作製する。なお、(BiA)TiO3系の第1の原料とは、(BiA)TiO3酸化物を形成するための原料を指す。
また、(BaR)[TiM]O3系の第2の原料は、BaCO3、TiO2、R,Mの原料粉末、例えば、La2O3等のR元素酸化物や、Nb2O5等のM元素酸化物を混合して作製する。R,Mは半導体化元素として用いるものである。なお、(BaR)[TiM]O3系の第2の原料とは、(BaR)[TiM]O3酸化物を形成するための原料を指す。
The steps (Step 1) to (Step 7) will be described below.
First, (Step 1) will be described in detail. The (BiA) TiO 3 -based first raw material is prepared by mixing A 2 CO 3 , Bi 2 O 3 , and TiO 2 as raw material powders. Note that the (BiA) TiO 3 -based first raw material refers to a raw material for forming the (BiA) TiO 3 oxide.
The (BaR) [TiM] O 3 -based second raw material is a raw material powder of BaCO 3 , TiO 2 , R, M, for example, an R element oxide such as La 2 O 3 , Nb 2 O 5, etc. It is made by mixing the M element oxide. R and M are used as semiconducting elements. Note that the (BaR) [TiM] O 3 -based second raw material refers to a raw material for forming the (BaR) [TiM] O 3 oxide.

(Step1)の工程においては、第1の原料及び第2の原料ともに、原料粉末の混合の際に、原料粉末の粒度に応じて粉砕を施してもよい。また、原料粉末の混合は純水やエタノールを用いた湿式混合または乾式混合のいずれでもよいが、乾式混合を行うと、組成ずれをより防止しやすい。なお、第1の原料として、A2CO3、Bi2O3、TiO2などの他に、別のA化合物、Bi化合物、Ti化合物を用いてもよい。また、第2の原料も同様に、BaCO3、TiO2などの他に、別のBa化合物、Ti化合物を用いてもよい。In the step (Step 1), both the first raw material and the second raw material may be pulverized according to the particle size of the raw material powder when the raw material powder is mixed. The raw material powder may be mixed by either wet mixing using pure water or ethanol or dry mixing. However, when dry mixing is performed, compositional deviation is more easily prevented. In addition to A 2 CO 3 , Bi 2 O 3 , TiO 2, etc., another A compound, Bi compound, or Ti compound may be used as the first raw material. Similarly, other Ba compounds and Ti compounds may be used for the second raw material in addition to BaCO 3 , TiO 2 and the like.

(Step2)の(BiA)TiO3系の第1の原料の仮焼について詳述する。
第1の原料の仮焼温度は700℃以上950℃以下とする。仮焼温度が700℃未満では、未反応のA2CO3や、BiやTiと未反応のA2Oが、炉内雰囲気の水分あるいは湿式混合の場合はその溶媒と反応して発熱し、組成が所望の値からずれてPTC特性が不安定になりやすい。一方、仮焼温度が950℃を超えると、Biの揮散が進み、組成ずれを起こし、異相の生成が促進されてしまう。その他にも仮焼に用いる匣鉢との反応が増大して劣化を速めてしまうという問題があるため好ましくない。
仮焼時間は0.5時間以上10時間以下が好ましい。仮焼時間が0.5時間未満では、仮焼温度が700℃未満のときと同様の理由で、得られるPTC特性が不安定になりやすい。仮焼時間が10時間を超えると、仮焼温度が950℃を超えるときと同様の理由で、異相の生成が促進されやすくなる。仮焼時間は、1時間以上8時間以下とすることが好ましい。
第1の原料の仮焼は大気中で行うことが好ましい。
また、Biの揮発を抑制するため、第1の原料の仮焼温度は第2の原料の仮焼温度よりも低くすることが好ましい。
The calcination of the (BiA) TiO 3 -based first raw material in (Step 2) will be described in detail.
The calcining temperature of the first raw material is 700 ° C. or higher and 950 ° C. or lower. When the calcining temperature is less than 700 ° C, unreacted A 2 CO 3 and Bi or Ti and unreacted A 2 O react with the solvent in the case of moisture in the furnace atmosphere or wet mixing, and generate heat, The composition tends to deviate from the desired value and PTC characteristics tend to become unstable. On the other hand, when the calcining temperature exceeds 950 ° C., the volatilization of Bi proceeds, causing a composition shift and promoting the generation of a different phase. In addition, there is a problem that the reaction with the mortar used for calcination increases and the deterioration is accelerated, which is not preferable.
The calcination time is preferably 0.5 hours or more and 10 hours or less. When the calcination time is less than 0.5 hours, the obtained PTC characteristics are likely to be unstable for the same reason as when the calcination temperature is less than 700 ° C. When the calcining time exceeds 10 hours, the generation of a heterogeneous phase is easily promoted for the same reason as when the calcining temperature exceeds 950 ° C. The calcination time is preferably 1 hour or more and 8 hours or less.
The calcination of the first raw material is preferably performed in the air.
In order to suppress the volatilization of Bi, the calcining temperature of the first raw material is preferably lower than the calcining temperature of the second raw material.

第2の原料の組成は、R、Mが共に添加されない組成であると、室温比抵抗が大きくなるため、少なくともR,Mのどちらかは必須とすることが好ましい。   When the composition of the second raw material is a composition in which neither R nor M is added, the room temperature specific resistance is increased. Therefore, at least one of R and M is preferably essential.

(Step2)の(BaR)[TiM]O3系の第2の原料の仮焼について詳述する。
第2の原料の仮焼温度は900℃以上1300℃以下とする。仮焼温度が900℃未満であると (BaR)[TiM]O3が完全に形成されず、BaCO3から分解した一部のBaOが水と反応したり、残存したBaCO3の一部が水に溶解したりするため、組成ずれの原因となって特性がばらつく可能性がある。
一方、仮焼温度が1300℃を超えると、仮焼粉の一部が互いに焼結し、後に混合する(BiA)TiO3仮焼粉との固溶の妨げになるため好ましくない。その他にも、仮焼に用いる匣鉢に固着してしまうため仮焼粉の取り扱いが難しくなることや、匣鉢の劣化を速めるという問題があるため好ましくない。
仮焼時間は0.5時間以上が好ましい。仮焼時間が0.5時間未満では組成ずれの原因となる。上限は特に限定されないが、100時間以下とすることが、後に混合する(BiA)TiO3仮焼粉との固溶を促進できるため好ましい。
第2の原料の仮焼は大気中で行うことが好ましい。
The calcination of the (BaR) [TiM] O 3 -based second raw material in (Step 2) will be described in detail.
The calcining temperature of the second raw material is 900 ° C. or higher and 1300 ° C. or lower. When the calcining temperature is less than 900 ° C., (BaR) [TiM] O 3 is not completely formed, and some BaO decomposed from BaCO 3 reacts with water, or a part of the remaining BaCO 3 is water. Or the like, it may cause a compositional deviation and the characteristics may vary.
On the other hand, when the calcining temperature exceeds 1300 ° C., a part of the calcined powder is sintered together, which is not preferable because it prevents solid solution with the (BiA) TiO 3 calcined powder to be mixed later. In addition, since it sticks to the mortar used for calcination, it is difficult to handle the calcined powder, and the problem of accelerating the deterioration of the mortar is not preferable.
The calcining time is preferably 0.5 hours or more. If the calcining time is less than 0.5 hours, it causes a composition shift. The upper limit is not particularly limited, but it is preferable that the upper limit is 100 hours or less because solid solution with the (BiA) TiO 3 calcined powder to be mixed later can be promoted.
The calcination of the second raw material is preferably performed in the air.

(Step1)と(Step2)の工程により、Biの揮散が抑制されるとともに、Bi-Aの組成ずれを防止してAを含有する異相の生成を抑制し、室温比抵抗を低下させるとともに、キュリー温度のバラツキを抑制することができる。   By the steps of (Step 1) and (Step 2), the volatilization of Bi is suppressed, the composition deviation of Bi-A is prevented, the generation of heterogeneous phase containing A is suppressed, the room temperature resistivity is lowered, and the Curie is reduced. Variation in temperature can be suppressed.

(Step3)について詳述する。
各仮焼粉を所定量で配合した後、混合して第3の原料とする。
混合は、純水やエタノールを用いた湿式混合または乾式混合のいずれでもよい。また、仮焼粉の粒度に応じて、混合の後に粉砕するか、あるいは混合と粉砕を同時に行ってもよい。混合、粉砕後の仮焼粉の平均粒度は、0.5μm〜7.0μmが好ましい。さらには、0.8μm〜5.0μmが好ましく、1.0μm〜4.0μmがより好ましい。
(Step 3) will be described in detail.
Each calcined powder is blended in a predetermined amount and then mixed to obtain a third raw material.
Mixing may be either wet mixing using pure water or ethanol or dry mixing. Further, depending on the particle size of the calcined powder, pulverization may be performed after mixing, or mixing and pulverization may be performed simultaneously. The average particle size of the calcined powder after mixing and pulverization is preferably 0.5 μm to 7.0 μm. Furthermore, 0.8 μm to 5.0 μm is preferable, and 1.0 μm to 4.0 μm is more preferable.

(Step4)について詳述する。
第3の原料を900℃以上1250℃以下で熱処理する。この熱処理で第1の仮焼粉と第2の仮焼粉の組成を均一化させることができ、その均一化された状態は結晶粒が育成される直前の状態に近く、その後の焼結においてもこの組成が大きく変わらないまま結晶粒になるが、この工程の後に添加する原料組成を結晶粒外に留まりやすくするという効果がある。
熱処理の温度は、この工程により両者の組成のX線回折の回折線ピークが同じ位置、つまり固溶状態になる温度とすることが好ましい。900℃未満ではBiが十分に拡散されない。1250℃を超えると(BiA)TiO3系の融点が1250℃付近であるためにBiが炉内雰囲気へ蒸発してしまう。Biの蒸発を防ぐためには低い温度で熱処理することが望ましいが、低すぎると熱処理を長時間行う必要がある。さらに好ましい熱処理温度は1000℃以上1200℃以下である。
(Step 4) will be described in detail.
The third raw material is heat-treated at 900 ° C. to 1250 ° C. With this heat treatment, the composition of the first calcined powder and the second calcined powder can be made uniform, and the homogenized state is close to the state immediately before the crystal grains are grown. However, although this composition does not change greatly, crystal grains are formed, but there is an effect that the raw material composition added after this step is easily retained outside the crystal grains.
The temperature of the heat treatment is preferably set to a temperature at which the diffraction line peaks of the X-ray diffraction of both compositions are in the same position, that is, a solid solution state by this step. Below 900 ° C, Bi is not sufficiently diffused. If it exceeds 1250 ° C, the melting point of the (BiA) TiO 3 system is around 1250 ° C, so Bi evaporates into the furnace atmosphere. In order to prevent the evaporation of Bi, it is desirable to perform heat treatment at a low temperature, but if it is too low, it is necessary to perform the heat treatment for a long time. A more preferable heat treatment temperature is 1000 ° C. or higher and 1200 ° C. or lower.

熱処理時間は0.5時間以上20時間以下が好ましい。0.5時間より短い場合は(BaR)[TiM]O3系の仮焼粉と(BiA)TiO3系の仮焼粉の固溶が安定せず、得られるPTC特性が安定しなくなる。これに対して20時間を超えるとBiの揮散が多くなり組成ずれを起こしやすくなる。好ましい熱処理時間は1時間以上12時間以下、さらに好ましくは1.5時間以上6時間以下である。この第3の原料の熱処理は、大気中で行うことが好ましい。The heat treatment time is preferably 0.5 hours or more and 20 hours or less. When the time is shorter than 0.5 hours, the solid solution of the (BaR) [TiM] O 3 type calcined powder and the (BiA) TiO 3 type calcined powder is not stable, and the obtained PTC characteristics are not stable. On the other hand, when it exceeds 20 hours, the volatilization of Bi increases and the composition shift tends to occur. The heat treatment time is preferably 1 hour or more and 12 hours or less, more preferably 1.5 hours or more and 6 hours or less. The heat treatment of the third raw material is preferably performed in the atmosphere.

(Step5)について詳述する。
熱処理した第3の原料に、融点が865℃以上のNa化合物を添加する。
Na化合物は、例えばNa2Ti3O7(融点約1130℃)やNa2Ti6O13(融点約1300℃)、またはNa0.5Bi4.5Ti4O15(融点1300℃以上)等を用いることができる。上記(Step4)の熱処理の後にNa化合物を添加することで、結晶粒内にNaが含まれることを抑制でき、融点が865℃未満のNa化合物(例えばNa2CO3)を用いた場合に比較して粒界Na量を増やすことができる。
(Step 5) will be described in detail.
A Na compound having a melting point of 865 ° C. or higher is added to the heat-treated third raw material.
For example, Na 2 Ti 3 O 7 (melting point: about 1130 ° C), Na 2 Ti 6 O 13 (melting point: about 1300 ° C), or Na 0.5 Bi 4.5 Ti 4 O 15 (melting point: 1300 ° C or higher) should be used as the Na compound. Can do. By adding a Na compound after the heat treatment of (Step 4) above, it is possible to suppress the inclusion of Na in the crystal grains, compared with a case where a Na compound having a melting point of less than 865 ° C. (for example, Na 2 CO 3 ) is used. And the amount of grain boundary Na can be increased.

Na化合物としてNa2Ti3O7やNa2Ti6O13を用いる場合には、第3の原料を100mol%として、0.005mol%以上添加することが好ましい。
0.005mol%未満であると、結晶粒界に生じる粒界Na量が3mol%以上にならず、その結果として抵抗温度係数αを高める効果が得られない。上限は特に限定されないが、5mol%を超えると、材料が焼成の際に溶融や軟化して成形時とは異なる焼成体の形状になったり、焼成炉の容器等と反応してしまうという問題がある。このため、上限は好ましくは5mol%以下である。さらに好ましいNa化合物の添加量は0.5 mol%以上3mol%以下である。
また、Na0.5Bi4.5Ti4O15を用いる場合には、0.1mol%以上の範囲で添加することが好ましい。上限は特に限定されないが、5mol%以下とすることが好ましい。上限および下限の限定理由はNa2Ti3O7やNa2Ti6O13を用いた場合と同じである。好ましいNa0.5Bi4.5Ti4O15の添加量は0.5 mol%以上3.5mol%以下である。
When Na 2 Ti 3 O 7 or Na 2 Ti 6 O 13 is used as the Na compound, it is preferable to add 0.005 mol% or more with the third raw material as 100 mol%.
If it is less than 0.005 mol%, the amount of grain boundary Na generated at the crystal grain boundary does not exceed 3 mol%, and as a result, the effect of increasing the resistance temperature coefficient α cannot be obtained. The upper limit is not particularly limited, but if it exceeds 5 mol%, there is a problem that the material melts or softens during firing to form a fired body different from that during molding or reacts with the container of the firing furnace. is there. Therefore, the upper limit is preferably 5 mol% or less. A more preferable amount of Na compound added is 0.5 mol% or more and 3 mol% or less.
When Na 0.5 Bi 4.5 Ti 4 O 15 is used, it is preferably added in a range of 0.1 mol% or more. The upper limit is not particularly limited, but is preferably 5 mol% or less. The reason for limiting the upper limit and the lower limit is the same as that when Na 2 Ti 3 O 7 or Na 2 Ti 6 O 13 is used. A preferable addition amount of Na 0.5 Bi 4.5 Ti 4 O 15 is 0.5 mol% or more and 3.5 mol% or less.

第3の原料とNa化合物を混合するために既知の手段が採用できる。例えば、有機溶媒と第3の原料を混合して固溶体の濃度が30〜60%のスラリーとし、このスラリーにNa化合物を添加し、ボールミルやポットミル等で中心粒径が1.0〜5.0μmになるまで粉砕しながら混合する手段を用いることができる。   Known means can be employed to mix the third raw material and the Na compound. For example, the organic solvent and the third raw material are mixed to form a slurry having a solid solution concentration of 30 to 60%, and a Na compound is added to this slurry until the center particle diameter becomes 1.0 to 5.0 μm by a ball mill or a pot mill. A means for mixing while pulverizing can be used.

半導体磁器組成物のPTC特性の経時変化を小さくするために、Y2O3等のY原料を添加することが好ましい。Y原料は、第3の原料に対してY203換算で0.5mol%以上4.0mol%以下の範囲で添加することが好ましい。In order to reduce the change over time of the PTC characteristics of the semiconductor ceramic composition, it is preferable to add a Y raw material such as Y 2 O 3 . Y material is preferably added in the third Y 2 0 3 4.0 mol% or less of the range of 0.5 mol% in terms of the raw material.

また、(Step1)〜(Step5)のいずれかの工程において、1250℃超1500℃以下の温度下で液相となるBa及びTiを含む酸化物(以後、BaTi酸化物という)を混合することができる。BaTi酸化物を添加することで、焼結温度がばらついても抵抗温度係数αが小さくなることを抑制でき、得られる特性が安定する。また、BaTi酸化物を添加することで、PTC特性の経時変化を小さくすることができる。
BaTi酸化物は、組成式Ba6Ti17O40、BaTi2O5、Ba4Ti13O30、BaTi3O7、BaTi4O9、Ba2Ti9O20、Ba2TiO5で表されるものを適用することができる。焼結温度が低くても抵抗温度係数αが小さくなることを抑制できる。BaTi酸化物としてBa6Ti17O40を用いることが特に好ましい。
BaTi酸化物は、第3の原料に対して、上記組成式換算で、0.1mol%以上1.0mol%以下で添加することが好ましい。
Further, in any of the steps (Step 1) to (Step 5), an oxide containing Ba and Ti that becomes a liquid phase at a temperature of more than 1250 ° C. and 1500 ° C. or less (hereinafter referred to as BaTi oxide) may be mixed. it can. By adding BaTi oxide, even if the sintering temperature varies, the resistance temperature coefficient α can be suppressed from decreasing, and the obtained characteristics are stabilized. Further, the addition of BaTi oxide can reduce the change with time in the PTC characteristics.
BaTi oxide is represented by the composition formula Ba 6 Ti 17 O 40 , BaTi 2 O 5 , Ba 4 Ti 13 O 30 , BaTi 3 O 7 , BaTi 4 O 9 , Ba 2 Ti 9 O 20 , Ba 2 TiO 5. Can be applied. Even if the sintering temperature is low, the resistance temperature coefficient α can be suppressed from decreasing. It is particularly preferable to use Ba 6 Ti 17 O 40 as the BaTi oxide.
The BaTi oxide is preferably added in an amount of 0.1 mol% or more and 1.0 mol% or less in terms of the above composition formula with respect to the third raw material.

(Step6)について詳述する。
第3の原料とNa化合物の混合物を成形する。成形前に必要に応じて混合物を造粒装置によって造粒してもよい。成形後の成形体密度は2.5〜4.2g/cm3が好ましく、2.5〜3.5g/cm3がより好ましい。
(Step 6) will be described in detail.
A mixture of the third raw material and the Na compound is formed. You may granulate a mixture with a granulator as needed before shaping | molding. Compact density after the forming is preferably 2.5~4.2g / cm 3, 2.5~3.5g / cm 3 is more preferable.

(Step7)について詳述する。
焼結は、焼結温度が1200℃以上1500℃以下で行うことができる。焼結温度が1200℃未満では焼結が不十分となりやすい。焼結温度が1500℃を超えると焼結中に軟化して所望の形状にならなくなったり抵抗温度係数αが小さくなりやすい。
(Step 7) will be described in detail.
Sintering can be performed at a sintering temperature of 1200 ° C to 1500 ° C. If the sintering temperature is less than 1200 ° C., the sintering tends to be insufficient. If the sintering temperature exceeds 1500 ° C., it becomes soft during sintering and does not become a desired shape, and the temperature coefficient of resistance α tends to decrease.

例えば、(Step5)においてNa化合物としてNa2Ti3O7を用いた場合には、焼結温度が1250℃以上1460℃以下がより好ましい。Na化合物としてNa2Ti6O13を用いた場合には、焼結温度が1200℃以上1380℃以下がより好ましい。Na化合物としてNa0.5Bi4.5Ti4O15を用いた場合には、焼結温度が1200℃以上1500℃以下がより好ましい。For example, when Na 2 Ti 3 O 7 is used as the Na compound in (Step 5), the sintering temperature is more preferably 1250 ° C. or higher and 1460 ° C. or lower. When Na 2 Ti 6 O 13 is used as the Na compound, the sintering temperature is more preferably 1200 ° C. or higher and 1380 ° C. or lower. When Na 0.5 Bi 4.5 Ti 4 O 15 is used as the Na compound, the sintering temperature is more preferably 1200 ° C. or higher and 1500 ° C. or lower.

焼結の際の雰囲気は、大気中または還元雰囲気中、あるいは低酸素濃度の不活性ガス雰囲気とすることが好ましい。
焼結時間は1時間以上10時間以下とすることが好ましい。焼結時間が1時間未満では焼結が不十分となる。焼結時間が10時間を超えると、粒界に析出しているNaが粒界から拡散し、結晶同士の間に正方晶ではない別の相を形成し、その結果として抵抗温度係数αが小さくなってしまう可能性がある。さらに好ましい焼結時間は2時間以上6時間以下である。
The atmosphere during sintering is preferably the air, a reducing atmosphere, or an inert gas atmosphere having a low oxygen concentration.
The sintering time is preferably 1 hour or more and 10 hours or less. If the sintering time is less than 1 hour, sintering is insufficient. When the sintering time exceeds 10 hours, Na precipitated at the grain boundary diffuses from the grain boundary and forms another phase that is not tetragonal between the crystals, resulting in a low resistance temperature coefficient α. There is a possibility of becoming. A more preferable sintering time is 2 hours or more and 6 hours or less.

本発明において、結晶粒界におけるNa量、抵抗温度係数α、室温比抵抗R25の評価方法、結晶粒の組成分析は以下のように行った。In the present invention, the amount of Na at the crystal grain boundary, the temperature coefficient of resistance α, the evaluation method of the room temperature specific resistance R 25 , and the composition analysis of the crystal grains were performed as follows.

(結晶粒界におけるNa量)
まず、JEOL社製の原子分解能分析電子顕微鏡(型番JEM-ARM200F)を用いて、2つの結晶粒の断面(粒界)が隣接した視野を定める。BaTiO3系以外の結晶である可能性もあるため、これらの結晶粒がBaTiO3系の正方晶であることを確認する。その後、この二つの結晶の境界面をSTEM-EDXで元素分析する。倍率は10万倍とする。加速電圧は200kV、ビーム径は0.2 nmとする。任意の境界面の5箇所を測定し、その平均値を結晶粒界におけるNa量とする。
(Na amount at grain boundaries)
First, using a JEOL atomic resolution analytical electron microscope (model number JEM-ARM200F), a field of view where the cross-sections (grain boundaries) of two crystal grains are adjacent to each other is defined. Since possibly a BaTiO 3 other than based crystal, confirms that these grains is tetragonal in BaTiO 3 system. After that, the interface between these two crystals is subjected to elemental analysis with STEM-EDX. The magnification is 100,000 times. The acceleration voltage is 200 kV and the beam diameter is 0.2 nm. Measure five points on an arbitrary boundary surface, and take the average value as the Na amount at the grain boundary.

(抵抗温度係数α)
抵抗温度係数αは、半導体磁器組成物を260℃まで昇温しながら抵抗−温度特性を測定して算出した。
尚、抵抗温度係数αは次式で定義される。
α=(lnRL-lnRC)×100/(TL-TC)
なお図6(横軸:温度、縦軸(対数表記):比抵抗)に示すように、RLは260℃の比抵抗、TLは260℃、TCはキュリー温度、RCはTCにおける比抵抗である。ここでキュリー温度TCは非抵抗が室温比抵抗R25の2倍となる温度とした。
(Resistance temperature coefficient α)
The temperature coefficient of resistance α was calculated by measuring resistance-temperature characteristics while raising the temperature of the semiconductor ceramic composition to 260 ° C.
The resistance temperature coefficient α is defined by the following equation.
α = (lnR L -lnR C ) × 100 / (T L -T C )
As shown in FIG. 6 (horizontal axis: temperature, vertical axis (logarithmic notation): specific resistance), R L is the specific resistance at 260 ° C, T L is 260 ° C, T C is the Curie temperature, and R C is T C The specific resistance at. Here, the Curie temperature T C was set to a temperature at which the non-resistance is twice the room temperature specific resistance R 25 .

(室温比抵抗R25
半導体磁器組成物の室温比抵抗R25(Ωcm)は、25℃、4端子法で測定した。
(Room temperature resistivity R 25 )
The room temperature resistivity R 25 (Ωcm) of the semiconductor ceramic composition was measured at 25 ° C. by a four-terminal method.

(結晶粒の組成分析)
JEOL社製の原子分解能分析電子顕微鏡(型番JEM-ARM200F)を用いて、結晶粒の内部をSTEM-EDXで元素分析した。測定条件は粒界Na量の測定と同様に行った。
(Composition analysis of crystal grains)
Using an atomic resolution analytical electron microscope (model number JEM-ARM200F) manufactured by JEOL, the inside of the crystal grains was subjected to elemental analysis by STEM-EDX. The measurement conditions were the same as the measurement of the grain boundary Na amount.

(実施例1)
Na化合物の添加量を変え、粒界Na量の変化とそれに伴う抵抗温度係数αの関係を調べた。
図5に示すように、原料として、(BiA)TiO3系の第1の原料と(BaR)[TiM]O3系の第2の原料をそれぞれ用意した(Step1)。本実施例では、(BiA)TiO3系の第1の原料として、Na2CO3、Bi2O3、TiO2の原料粉末を準備し、BiとNaのモル比率Bi/Naが1.05の(Bi0.525Na0.500)TiO3となるように配合し、乾式混合した。また、(BaR)[TiM]O3系の第2の原料としてBaCO3、TiO2、La2O3の原料粉末を準備し、(Ba0.994La0.006)TiO3となるように配合し、純水で混合した。
前記第1の原料を700℃以上950℃以下で仮焼、前記第2の原料を900℃以上1300℃以下で仮焼した(Step2)。本実施例では、得られた第1の原料を800℃で2時間大気中で仮焼し、(BiA)TiO3系の仮焼粉を用意した。また、第2の原料を1200℃で4時間大気中で仮焼し、(BaR)[TiM]O3系の仮焼粉を用意した。
仮焼したそれぞれの材料を混合して第3の原料とした(Step3)。本実施例では、(BiA)TiO3系の仮焼粉と(BaR)[TiM]O3系の仮焼粉を、[(Bi0.5Na0.5)0.085(Ba0.994La0.006)0.915]TiO3となるように混合した。この材料を、純水を媒体としてポットミルにより、平均粒径が2.0μm〜3.0μmになるまで混合、粉砕し、その後、乾燥させて第3の原料とした。
第3の原料を900℃以上1250℃以下で熱処理した(Step4)。本実施例では、(BiA)TiO3系の仮焼粉と(BaR)[TiM]O3系の仮焼粉を反応させるため、第3の原料を1150℃で、4時間大気中で熱処理を行った。この温度で熱処理した第3の原料は、X線回折で測定すると(BaR)[TiM]O3系の仮焼粉と(BiA)TiO3系の仮焼粉のそれぞれの回折線がひとつになっていた。
(Example 1)
By changing the amount of Na compound added, the relationship between the change in grain boundary Na amount and the accompanying temperature coefficient of resistance α was investigated.
As shown in FIG. 5, a (BiA) TiO 3 -based first material and a (BaR) [TiM] O 3 -based second material were prepared as raw materials (Step 1). In this example, raw material powder of Na 2 CO 3 , Bi 2 O 3 , TiO 2 was prepared as the first raw material of (BiA) TiO 3 system, and the molar ratio Bi / Na Bi / Na of 1.05 ( Bi 0.525 Na 0.500 ) TiO 3 was blended and dry mixed. In addition, a raw material powder of BaCO 3 , TiO 2 , and La 2 O 3 was prepared as the second raw material of the (BaR) [TiM] O 3 system, blended so as to be (Ba 0.994 La 0.006 ) TiO 3, and pure Mixed with water.
The first raw material was calcined at 700 to 950 ° C., and the second raw material was calcined at 900 to 1300 ° C. (Step 2). In this example, the obtained first raw material was calcined in the air at 800 ° C. for 2 hours to prepare a (BiA) TiO 3 -based calcined powder. The second raw material was calcined at 1200 ° C. for 4 hours in the air to prepare a (BaR) [TiM] O 3 -based calcined powder.
The calcined materials were mixed to obtain a third raw material (Step 3). In this example, (BiA) TiO 3 -based calcined powder and (BaR) [TiM] O 3 -based calcined powder were converted into [(Bi 0.5 Na 0.5 ) 0.085 (Ba 0.994 La 0.006 ) 0.915 ] TiO 3 It mixed so that it might become. This material was mixed and pulverized with a pot mill using pure water as a medium until the average particle size became 2.0 μm to 3.0 μm, and then dried to obtain a third raw material.
The third raw material was heat-treated at 900 ° C. to 1250 ° C. (Step 4). In this embodiment, the heat treatment (BIA) and calcined powder of TiO 3 system (BaR) [TiM] for reacting O 3 based calcined powder at 1150 ° C. The third raw material, with 4 hours in the air went. The third raw material heat-treated at this temperature has one diffraction line for each of the (BaR) [TiM] O 3 type calcined powder and the (BiA) TiO 3 type calcined powder as measured by X-ray diffraction. It was.

その後、前記の熱処理した第3の原料に、融点が865℃以上のNa化合物を添加した(Step5)。本実施例では、Na化合物としてNa2Ti3O7化合物を用い、第3の原料を100mol%として0.01mol%、0.5mol%、2.0mol%、4.0mol%、5.0mol%添加した。
その後、本実施例では、Ba6Ti17O40で表されるBaTi酸化物とY2O3とCaCO3を添加した。Ba6Ti17O40とY2O3とCaCO3の添加量は、第3の原料を100mol%として、Ba6Ti17O40は0.6mol%、Y2O3は1.0mol%、CaCO3は2mol%とした。
また比較例として、Na化合物を添加しない(0mol%)ものも作製した。比較例1は、Na化合物を添加しない以外は実施例1と同様にして半導体磁器組成物を作製した。以下のStepについても同様である。
その後、成形した(Step6)。本実施例では、PVAを添加、混合し、造粒した。得られた造粒粉を一軸プレス装置で成形し、700℃で10時間加熱する脱バインダー処理を行った。
その後、焼結した(Step7)。本実施例では、窒素中、酸素濃度0.007vol%(70ppm)の雰囲気にて1420℃、4時間保持で焼結し、焼結体を得た。
得られた焼結体を10mm×10mm×1.0mmの板状に加工して試験片を作製し、卑金属製のオーミック電極を塗布し、さらにAgを主成分とするカバー電極を塗布して180℃で乾燥後600℃、10分保持で焼き付けて電極を形成しPTC素子とした。
Thereafter, a Na compound having a melting point of 865 ° C. or higher was added to the heat-treated third raw material (Step 5). In this example, a Na 2 Ti 3 O 7 compound was used as the Na compound, and 0.01 mol%, 0.5 mol%, 2.0 mol%, 4.0 mol%, and 5.0 mol% were added with the third raw material as 100 mol%.
Thereafter, in this example, BaTi oxide represented by Ba 6 Ti 17 O 40 , Y 2 O 3 and CaCO 3 were added. The addition amount of Ba 6 Ti 17 O 40 , Y 2 O 3 and CaCO 3 is that the third raw material is 100 mol%, Ba 6 Ti 17 O 40 is 0.6 mol%, Y 2 O 3 is 1.0 mol%, CaCO 3 Was 2 mol%.
In addition, as a comparative example, a product without addition of Na compound (0 mol%) was also produced. In Comparative Example 1, a semiconductor ceramic composition was produced in the same manner as in Example 1 except that no Na compound was added. The same applies to the following steps.
Thereafter, molding was performed (Step 6). In this example, PVA was added, mixed, and granulated. The obtained granulated powder was molded with a single screw press machine and subjected to binder removal treatment by heating at 700 ° C. for 10 hours.
Thereafter, sintering was performed (Step 7). In this example, sintering was performed in nitrogen at an oxygen concentration of 0.007 vol% (70 ppm) by holding at 1420 ° C. for 4 hours to obtain a sintered body.
The obtained sintered body is processed into a plate of 10 mm × 10 mm × 1.0 mm to produce a test piece, a base metal ohmic electrode is applied, and a cover electrode mainly composed of Ag is further applied to 180 ° C. After drying, the electrode was formed by baking at 600 ° C. for 10 minutes to form a PTC element.

Na化合物の添加量、粒界Na量、抵抗温度係数α、室温比抵抗R25、キュリー温度Tcの結果を表1に示す。なお、表1において、比較例には*を付けた。Table 1 shows the results of the amount of Na compound added, the amount of grain boundary Na, the resistance temperature coefficient α, the room temperature resistivity R 25 , and the Curie temperature Tc. In Table 1, the comparative examples are marked with *.

Figure 2016002714
Figure 2016002714

表1の各半導体磁器組成物の結晶粒の組成を調べたところ、組成式が[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3(AはNa,Li,Kのうち少なくとも一種、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.2、0≦y≦0.02、0≦z≦0.01を満足するものであった。When the composition of the crystal grains of each semiconductor ceramic composition of Table 1 was examined, the composition formula was [(BiA) x (Ba 1-y R y ) 1-x ] [Ti 1-z M z ] O 3 (A Is at least one of Na, Li and K, R is at least one of rare earth elements including Y, M is at least one of Nb, Ta and Sb), and x, y and z are 0 <x ≦ 0.2, 0 ≦ y ≦ 0.02, and 0 ≦ z ≦ 0.01 were satisfied.

No.1-1はNa化合物を添加せずに作製した比較用の半導体磁器組成物であるが、粒界Na量は3mol%未満であった。また、その抵抗温度係数αは4.4%/℃と低いものであった。
対してNo.1-2〜1-6の本発明の半導体磁器組成物は、粒界Na量は全て3mol%以上であり、抵抗温度係数αは全て4.5%/℃以上となった。
No. 1-1 is a comparative semiconductor porcelain composition prepared without adding a Na compound, but the amount of grain boundary Na was less than 3 mol%. The temperature coefficient of resistance α was as low as 4.4% / ° C.
On the other hand, in the semiconductor ceramic compositions of the present invention of No. 1-2 to 1-6, the grain boundary Na amount was all 3 mol% or more, and the resistance temperature coefficient α was 4.5% / ° C. or more.

図4は、No.1-3の結晶粒界をSTEMで観察した結果である。左右に結晶粒1a,1bがあり、その結晶粒の粒界2が確認できる。同一視野で粒界2のNa量を測定したところ、結晶粒内よりも粒界のNa量の方が多いことが確認できた。   FIG. 4 is a result of observing the grain boundary of No. 1-3 with STEM. There are crystal grains 1a and 1b on the left and right, and the grain boundary 2 of the crystal grains can be confirmed. When the amount of Na in the grain boundary 2 was measured in the same field of view, it was confirmed that the amount of Na in the grain boundary was larger than that in the crystal grains.

(実施例2)
焼結温度を変え、粒界Na量の変化とそれに伴う抵抗温度係数αの関係を調べた。
実施例1のNo.1-3およびNo.1-4(Na化合物の添加量が0.5mol%と2.0mol%)の製造方法と同じ条件で、(Step1)から(Step4)までを行った。
その後、(Step4)で熱処理した第3の原料に、融点が865℃以上のNa化合物を添加した(Step5)。本実施例ではNa化合物としてNa2Ti3O7化合物を用い、第3の原料を100mol%として0.5mol%添加したものと、2.0mol%添加したものを用意した。
その後、本実施例では、Ba6Ti17O40で表されるBaTi酸化物とY2O3とCaCO3を添加した。添加量は、第3の原料を100mol%として、Ba6Ti17O40は0.6mol%、Y2O3は1.0mol%、CaCO3は2mol%添加した。
その後、成形した(Step6)。本実施例では、PVAを添加、混合し、造粒した。得られた造粒粉を一軸プレス装置で成形し、700℃で10時間加熱する脱バインダー処理を行った。
その後、焼結した(Step7)。本実施例では、(Step5)でNa2Ti3O7を0.5mol%添加したものは、焼結温度を1300℃〜1460℃の範囲で変え、4時間保持で窒素中、酸素濃度0.007vol%(70ppm)の条件にて焼結し、それぞれの焼結体(2-1〜2-7)を得た。また、(Step5)でNa2Ti3O7を2.0mol%添加したものは、焼結温度を1340〜1460℃の範囲で変え、4時間保持で窒素中、酸素濃度0.007vol%(70ppm)の条件にて焼結し、それぞれの焼結体(2-8〜2-13)を得た。
以降の加工、電極の形成、評価は実施例1と同様に行った。
Na化合物の添加量、焼結温度、粒界Na量、抵抗温度係数α、室温比抵抗R25、キュリー温度Tcの結果を表2に示す。
(Example 2)
The relationship between the change in the grain boundary Na amount and the accompanying resistance temperature coefficient α was investigated by changing the sintering temperature.
(Step 1) to (Step 4) were performed under the same conditions as in the production methods of No. 1-3 and No. 1-4 of Example 1 (the addition amounts of Na compound were 0.5 mol% and 2.0 mol%).
Thereafter, a Na compound having a melting point of 865 ° C. or higher was added to the third raw material heat-treated in (Step 4) (Step 5). In this example, a Na 2 Ti 3 O 7 compound was used as the Na compound, and the third raw material was added at 0.5 mol% with 100 mol% and 2.0 mol% added.
Thereafter, in this example, BaTi oxide represented by Ba 6 Ti 17 O 40 , Y 2 O 3 and CaCO 3 were added. The amount of addition was 100 mol% for the third raw material, 0.6 mol% for Ba 6 Ti 17 O 40 , 1.0 mol% for Y 2 O 3 and 2 mol% for CaCO 3 .
Thereafter, molding was performed (Step 6). In this example, PVA was added, mixed, and granulated. The obtained granulated powder was molded with a single screw press machine and subjected to binder removal treatment by heating at 700 ° C. for 10 hours.
Thereafter, sintering was performed (Step 7). In this embodiment, those of Na 2 Ti 3 O 7 was added 0.5 mol% in (Step5) alters the sintering temperature in the range of 1300 ℃ ~1460 ℃, nitrogen at 4 hour hold, the oxygen concentration 0.007Vol% Sintering was performed under the condition of (70 ppm) to obtain respective sintered bodies (2-1 to 2-7). In (Step 5), 2.0 mol% of Na 2 Ti 3 O 7 was added. The sintering temperature was changed in the range of 1340 to 1460 ° C, and the oxygen concentration was 0.007vol% (70ppm) in nitrogen after holding for 4 hours. Sintering was performed under the conditions to obtain respective sintered bodies (2-8 to 2-13).
Subsequent processing, electrode formation, and evaluation were performed in the same manner as in Example 1.
Table 2 shows the results of the Na compound addition amount, sintering temperature, grain boundary Na amount, resistance temperature coefficient α, room temperature resistivity R 25 , and Curie temperature Tc.

Figure 2016002714
Figure 2016002714

表2の各半導体磁器組成物の結晶粒の組成を調べたところ、組成式が[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3(AはNa,Li,Kのうち少なくとも一種、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.2、0≦y≦0.02、0≦z≦0.01を満足するものであった。Examination of the crystal grains of the composition of the semiconductor ceramic composition shown in Table 2, the composition formula [(BiA) x (Ba 1 -y R y) 1-x] [Ti 1-z M z] O 3 (A Is at least one of Na, Li and K, R is at least one of rare earth elements including Y, M is at least one of Nb, Ta and Sb), and x, y and z are 0 <x ≦ 0.2, 0 ≦ y ≦ 0.02, and 0 ≦ z ≦ 0.01 were satisfied.

表2に示すように、粒界Na量が3.0mol%以上の本発明の半導体磁器組成物は、抵抗温度係数αが高く、本実施例においては全て4.5%/℃以上であった。なお、抵抗温度係数αは、5.0%/℃以上であることがさらに好ましい。   As shown in Table 2, the semiconductor ceramic composition of the present invention having a grain boundary Na amount of 3.0 mol% or more had a high resistance temperature coefficient α, and in this example, all were 4.5% / ° C. or more. The resistance temperature coefficient α is more preferably 5.0% / ° C. or more.

(比較例1)
Na化合物として融点が865℃未満のものを用い、粒界Na量の変化とそれに伴う抵抗温度係数αの関係を調べた。
実施例2のNo.2-3(Na化合物の添加量が0.5mol%)と同じ条件で、(Step1)から(Step4)までを行った。
その後、前記の熱処理した第3の原料に対して、融点が851℃のNa2CO3を、第3の原料を100mol%として0.4mol%添加した(Step5に相当)。
また、Ba6Ti17O40で表されるBaTi酸化物とY2O3とCaCO3を、第3の原料に対し、BaTi酸化物は0.6mol%、Y2O3は1.0mol%、CaCO3は2mol%添加した。
以降は実施例1の製造方法と同じ工程を経てPTC素子を製造し、評価を行った。
Na化合物の添加量、粒界Na量、抵抗温度係数α、室温比抵抗R25、キュリー温度Tcの結果を表3に示す。
(Comparative Example 1)
A Na compound having a melting point of less than 865 ° C. was used, and the relationship between the change in grain boundary Na amount and the accompanying temperature coefficient of resistance α was investigated.
(Step 1) to (Step 4) were performed under the same conditions as in No. 2-3 of Example 2 (the amount of Na compound added was 0.5 mol%).
Thereafter, Na 2 CO 3 having a melting point of 851 ° C. was added to the heat-treated third raw material at 0.4 mol% with the third raw material as 100 mol% (corresponding to Step 5).
Further, the BaTi oxide and Y 2 O 3 and CaCO 3 represented by Ba 6 Ti 17 O 40, with respect to the third material, BaTi oxide 0.6 mol%, Y 2 O 3 is 1.0 mol%, CaCO 3 was added at 2 mol%.
Thereafter, a PTC element was manufactured through the same process as the manufacturing method of Example 1 and evaluated.
Table 3 shows the results of the amount of Na compound added, the amount of grain boundary Na, the resistance temperature coefficient α, the room temperature specific resistance R 25 , and the Curie temperature Tc.

Figure 2016002714
Figure 2016002714

表3に示すように、粒界Na量が3.0mol%未満であった。また、抵抗温度係数αが低く、本比較例においては2.3%/℃であった。   As shown in Table 3, the amount of grain boundary Na was less than 3.0 mol%. Further, the temperature coefficient of resistance α was low, which was 2.3% / ° C. in this comparative example.

(実施例3)
組成式が[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3におけるRの量(La量)を変え、粒界Na量の変化とそれに伴う抵抗温度係数αの関係を調べた。
図5に示すように、原料として、(BiA)TiO3系の第1の原料と(BaR)[TiM]O3系の第2の原料をそれぞれ用意した(Step1)。本実施例では、(BiA)TiO3系の第1の原料として、Na2CO3、Bi2O3、TiO2の原料粉末を準備し、BiとNaのモル比率Bi/Naが1.05の(Bi0.525Na0.500)TiO3となるように配合し、乾式混合した。また、(BaR)[TiM]O3系の第2の原料としてBaCO3、TiO2、La2O3の原料粉末を準備し、(Ba0.999La0.001)TiO3、(Ba0.998La0.002)TiO3、(Ba0.997La0.003)TiO3、となるようにそれぞれ配合し、純水で混合した(Step1)。
(Step2)以降は実施例1の製造方法と同じ条件で製造し、その後、加工し、電極を形成し、PTC素子を製造し、評価を行った。
Na化合物の添加量、R量y、粒界Na量、抵抗温度係数α、室温比抵抗R25、キュリー温度Tcの結果を表4に示す。
(Example 3)
The composition formula changes the amount of R (La amount) in [(BiA) x (Ba 1-y R y ) 1-x ] [Ti 1-z M z ] O 3 and changes the amount of grain boundary Na and accompanying it The relationship of the resistance temperature coefficient α was examined.
As shown in FIG. 5, a (BiA) TiO 3 -based first material and a (BaR) [TiM] O 3 -based second material were prepared as raw materials (Step 1). In this example, raw material powder of Na 2 CO 3 , Bi 2 O 3 , TiO 2 was prepared as the first raw material of (BiA) TiO 3 system, and the molar ratio Bi / Na Bi / Na of 1.05 ( Bi 0.525 Na 0.500 ) TiO 3 was blended and dry mixed. In addition, raw material powders of BaCO 3 , TiO 2 , and La 2 O 3 are prepared as (BaR) [TiM] O 3 -based second raw materials, and (Ba 0.999 La 0.001 ) TiO 3 , (Ba 0.998 La 0.002 ) TiO 3 and (Ba 0.997 La 0.003 ) TiO 3 , respectively, and mixed with pure water (Step 1).
(Step 2) and subsequent steps were manufactured under the same conditions as in the manufacturing method of Example 1, then processed, formed electrodes, manufactured PTC elements, and evaluated.
Table 4 shows the results of the Na compound addition amount, R amount y, grain boundary Na amount, resistance temperature coefficient α, room temperature resistivity R 25 , and Curie temperature Tc.

Figure 2016002714
Figure 2016002714

表4の各半導体磁器組成物の結晶粒の組成を調べたところ、組成式が[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3(AはNa,Li,Kのうち少なくとも一種、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.2、0≦y≦0.02、0≦z≦0.01を満足するものであった。When the composition of the crystal grains of each semiconductor ceramic composition in Table 4 was examined, the composition formula was [(BiA) x (Ba 1-y R y ) 1-x ] [Ti 1-z M z ] O 3 (A Is at least one of Na, Li and K, R is at least one of rare earth elements including Y, M is at least one of Nb, Ta and Sb), and x, y and z are 0 <x ≦ 0.2, 0 ≦ y ≦ 0.02, and 0 ≦ z ≦ 0.01 were satisfied.

表4に示すように、粒界Na量が3.0mol%以上の本発明の半導体磁器組成物は、比較例(No.1-1)のものよりも抵抗温度係数αが高く、本実施例においては全て4.5%/℃以上であった。   As shown in Table 4, the semiconductor ceramic composition of the present invention having a grain boundary Na amount of 3.0 mol% or more has a higher resistance temperature coefficient α than that of the comparative example (No. 1-1). All were above 4.5% / ° C.

図1は、本発明の半導体磁器組成物の粒界Na量と抵抗温度係数αとの関係を示すものである。
なお、図1に用いた粒界Na量と抵抗温度係数αは実施例1〜3の表1,2,4の値である。黒塗りの測定点は比較例(No.1-1)である。
本実施例の半導体磁器組成物は、粒界Na量が増えるほど、抵抗温度係数αが増える傾向にある。粒界Na量が3mol%未満のNo.1-1は、粒界Na量が2.7mol%で抵抗温度係数αが小さく、具体的には4.5%/℃に満たない。
粒界Na量が3mol%以上の範囲では抵抗温度係数αが4.5%/℃以上であり、かつ、粒界Na量が多くなるに従い抵抗温度係数αも大きくなる傾向が伺える。特に粒界Na量が5mol%以上であると、粒界Na量と抵抗温度係数αとが比例的に向上し、かつ、さらに抵抗温度係数αが大きくなる。
FIG. 1 shows the relationship between the amount of grain boundary Na and the temperature coefficient of resistance α of the semiconductor ceramic composition of the present invention.
The grain boundary Na amount and the resistance temperature coefficient α used in FIG. 1 are the values in Tables 1, 2, and 4 of Examples 1 to 3. The black points are the comparative example (No. 1-1).
In the semiconductor ceramic composition of this example, the temperature coefficient of resistance α tends to increase as the grain boundary Na amount increases. No. 1-1 having a grain boundary Na amount of less than 3 mol% has a small grain temperature Na amount of 2.7 mol% and a small temperature coefficient of resistance α, specifically less than 4.5% / ° C.
In the range where the grain boundary Na amount is 3 mol% or more, the resistance temperature coefficient α is 4.5% / ° C. or more, and the resistance temperature coefficient α tends to increase as the grain boundary Na amount increases. In particular, when the grain boundary Na amount is 5 mol% or more, the grain boundary Na amount and the resistance temperature coefficient α are proportionally improved, and the resistance temperature coefficient α is further increased.

図7は、試料No.2-12をSTEM-EDXでライン分析した際の測定箇所を模式的に示した図である。各測定箇所は、中央の横方向に引かれた線上の丸点の位置である。倍率は10万倍である。
図8は、試料No.2-12をライン分析した際のNa濃度、Bi濃度を示したものである。Na濃度は、粒内から界面に近づくにつれて高くなる傾向がある。一方、Bi濃度にはそのような傾向が見られなかった。
また、図示していないが、Tiも粒内より界面で濃度が高くなる傾向があった。但し、BaはTiの濃度が高まった分、濃度が低くなる傾向があった。試料No.2-12の抵抗温度係数αは6.0%/℃である。
図9は、比較例である試料*No.1-1を同じくライン分析した際のNa濃度、Bi濃度を示したものである。図8と同様に、Na濃度は、粒内から界面に近づくにつれて高くなる傾向があるものの、Na濃度の最大値は2.8at%であり、抵抗温度係数αは4.4%/℃であり、実施例のものより低い値である。
FIG. 7 is a diagram schematically showing measurement locations when sample No. 2-12 is subjected to line analysis by STEM-EDX. Each measurement point is the position of a round point on a line drawn in the center lateral direction. The magnification is 100,000 times.
FIG. 8 shows the Na concentration and Bi concentration when Sample No. 2-12 was subjected to line analysis. The Na concentration tends to increase from the inside of the grain toward the interface. On the other hand, such a tendency was not seen in the Bi concentration.
Although not shown in the figure, Ti also tends to have a higher concentration at the interface than in the grains. However, the concentration of Ba tended to decrease as the concentration of Ti increased. The temperature coefficient of resistance α of Sample No. 2-12 is 6.0% / ° C.
FIG. 9 shows the Na concentration and Bi concentration when the sample * No. 1-1, which is a comparative example, was similarly subjected to line analysis. As in FIG. 8, the Na concentration tends to increase from the inside of the grain toward the interface, but the maximum value of Na concentration is 2.8 at%, and the resistance temperature coefficient α is 4.4% / ° C. The value is lower than that of

(実施例4)
Na化合物の種類を変え、粒界Na量の変化とそれに伴う抵抗温度係数αの関係を調べた。
実施例1の製造方法と同じ条件で、(Step1)から(Step4)までを行った。
その後、熱処理した第3の原料に、融点が865℃以上のNa化合物を添加した(Step5)。Na化合物としてNa2Ti6O13を用いた。第3の原料を100mol%としてNa2Ti6O13を0.5mol%添加したものと、2.0mol%添加したものを用意した。
その後、本実施例では、Ba6Ti17O40で表されるBaTi酸化物とY2O3とCaCO3を添加した。Ba6Ti17O40とY2O3とCaCO3の添加量は、第3の原料を100mol%として、Ba6Ti17O40は0.6mol%、Y2O3は1.0mol%、CaCO3は2mol%とした。
その後、成形した(Step6)。本実施例では、PVAを添加、混合し、造粒した。得られた造粒粉を一軸プレス装置で成形し、700℃で10時間の脱バインダー処理を行った。
その後、焼結した(Step7)。本実施例では、(Step5)でNa2Ti6O13を0.5mol%添加したものは、焼結温度を1200〜1420℃の範囲で変え、4時間保持で窒素中、酸素濃度0.007vol%(70ppm)の条件にて焼結し、それぞれの焼結体(5-1〜5-7)を得た。また、(Step5)でNa2Ti6O13を2.0mol%添加したものは、焼結温度を1200℃,1260℃と変え、4時間保持で窒素中、酸素濃度0.007vol%(70ppm)の条件にて焼結し、それぞれの焼結体(5-8〜5-9)を得た。
以降の加工、電極の形成、評価は実施例1と同様に行った。
Na化合物の添加量、焼結温度、粒界Na量、抵抗温度係数α、室温比抵抗R25、キュリー温度Tcの結果を表5に示す。
(Example 4)
The type of Na compound was changed, and the relationship between the change in grain boundary Na content and the accompanying temperature coefficient of resistance α was investigated.
(Step 1) to (Step 4) were performed under the same conditions as in the manufacturing method of Example 1.
Thereafter, a Na compound having a melting point of 865 ° C. or higher was added to the heat-treated third raw material (Step 5). Na 2 Ti 6 O 13 was used as the Na compound. A material obtained by adding 0.5 mol% the Na 2 Ti 6 O 13 a third raw material as 100 mol%, was prepared which was added 2.0 mol%.
Thereafter, in this example, BaTi oxide represented by Ba 6 Ti 17 O 40 , Y 2 O 3 and CaCO 3 were added. The addition amount of Ba 6 Ti 17 O 40 , Y 2 O 3 and CaCO 3 is that the third raw material is 100 mol%, Ba 6 Ti 17 O 40 is 0.6 mol%, Y 2 O 3 is 1.0 mol%, CaCO 3 Was 2 mol%.
Thereafter, molding was performed (Step 6). In this example, PVA was added, mixed, and granulated. The obtained granulated powder was molded with a uniaxial press machine and subjected to binder removal treatment at 700 ° C. for 10 hours.
Thereafter, sintering was performed (Step 7). In this example, in the case where 0.5 mol% of Na 2 Ti 6 O 13 was added in (Step 5), the sintering temperature was changed in the range of 1200 to 1420 ° C., and the oxygen concentration was 0.007 vol% (in nitrogen with holding for 4 hours). Sintering was performed under the condition of 70 ppm) to obtain respective sintered bodies (5-1 to 5-7). In (Step 5), 2.0 mol% of Na 2 Ti 6 O 13 was added. The sintering temperature was changed to 1200 ° C and 1260 ° C, and the oxygen concentration was 0.007vol% (70ppm) in nitrogen after holding for 4 hours. Were sintered to obtain respective sintered bodies (5-8 to 5-9).
Subsequent processing, electrode formation, and evaluation were performed in the same manner as in Example 1.
Table 5 shows the results of the Na compound addition amount, sintering temperature, grain boundary Na amount, resistance temperature coefficient α, room temperature resistivity R 25 , and Curie temperature Tc.

Figure 2016002714
Figure 2016002714

表5の半導体磁器組成物の結晶粒の組成を調べたところ、組成式が[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3(AはNa,Li,Kのうち少なくとも一種、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.2、0≦y≦0.02、0≦z≦0.01を満足するものであった。When the composition of the crystal grains of the semiconductor ceramic composition of Table 5 was examined, the composition formula was [(BiA) x (Ba 1-y R y ) 1-x ] [Ti 1-z M z ] O 3 (A is At least one of Na, Li, and K, R is at least one of rare earth elements including Y, M is at least one of Nb, Ta, and Sb), and x, y, and z are 0 <x ≦ 0.2, 0 ≦ y ≦ 0.02, and 0 ≦ z ≦ 0.01 were satisfied.

表5に示すように、粒界Na量が3.0mol%以上の本発明の半導体磁器組成物は抵抗温度係数αが高く、本実施例においては全て4.5%/℃以上であった。
これらの室温比抵抗が大きな半導体磁器組成物は、電気自動車等の耐電圧が要求されるPTC素子に用いることができる。
As shown in Table 5, the semiconductor ceramic composition of the present invention having a grain boundary Na amount of 3.0 mol% or more had a high resistance temperature coefficient α, and in this example, it was all 4.5% / ° C. or more.
These semiconductor porcelain compositions having a large room temperature specific resistance can be used for PTC elements that require withstand voltage, such as electric vehicles.

また、図2は、表5の半導体磁器組成物における粒界Na量と抵抗温度係数αとの関係を示す図である。図1と同様、本実施例の半導体磁器組成物は、粒界Na量が増えるほど、抵抗温度係数αが増える傾向にあることが分った。   FIG. 2 is a graph showing the relationship between the grain boundary Na amount and the resistance temperature coefficient α in the semiconductor ceramic composition of Table 5. As in FIG. 1, it was found that the temperature coefficient of resistance α tends to increase as the grain boundary Na amount increases in the semiconductor ceramic composition of this example.

(実施例5)
Na化合物の種類をさらに変え、粒界Na量の変化とそれに伴う抵抗温度係数αの関係を調べた。
実施例1と同様に、(Step1)から(Step4)までを行った。
その後、熱処理した第3の原料に、融点が865℃以上のNa化合物を添加した(Step5)。Na化合物としてNa0.5Bi4.5Ti4O15を用いた。第3の原料を100mol%としてNa0.5Bi4.5Ti4O15を0.5mol%添加したものと、2.0mol%添加したものと、5.0mol%添加したものを用意した。また、比較のため、Na化合物を添加しない(0mol%)ものも用意した。
その後、本実施例では、Ba6Ti17O40で表されるBaTi酸化物とY2O3とCaCO3を添加した。第3の原料を100mol%として、Ba6Ti17O40の添加量は0.6mol%、Y2O3の添加量は1.0mol%、CaCO3の添加量は2mol%とした。
その後、成形した(Step6)。本実施例では、PVAを添加、混合し、造粒した。得られた造粒粉を一軸プレス装置で成形し、700℃で10時間の脱バインダー処理を行った。
その後、焼結した(Step7)。本実施例では、(Step5)でNa0.5Bi4.5Ti4O15を0.5mol%添加したものは、焼結温度を1250〜1460℃の範囲で変え、4時間保持で窒素中、酸素濃度0.007vol%(70ppm)の条件にて焼結し、それぞれの焼結体(6-2〜6-10)を得た。また、(Step5)でNa0.5Bi4.5Ti4O15を2.0mol%添加したものは、焼結温度を1340〜1420℃の範囲で変え、4時間保持で窒素中、酸素濃度0.007vol%(70ppm)の条件にて焼結し、それぞれの焼結体(6-11〜6-14)を得た。
また、(Step5)でNa0.5Bi4.5Ti4O15を5.0mol%添加したものは、焼結温度を1420℃とし、4時間保持で窒素中、酸素濃度0.007vol%(70ppm)の条件にて焼結し、焼結体(6-15)を得た。
以降の加工、電極の形成、評価は実施例1と同様に行った。
Na化合物の添加量、焼結温度、粒界Na量、抵抗温度係数α、室温比抵抗R25、キュリー温度Tcの結果を表6に示す。比較例には*を付けて表記した。
(Example 5)
By further changing the kind of Na compound, the relationship between the change in grain boundary Na amount and the accompanying temperature coefficient of resistance α was investigated.
As in Example 1, (Step 1) to (Step 4) were performed.
Thereafter, a Na compound having a melting point of 865 ° C. or higher was added to the heat-treated third raw material (Step 5). Na 0.5 Bi 4.5 Ti 4 O 15 was used as the Na compound. As a Na 0.5 Bi 4.5 Ti 4 O 15 was added 0.5 mol% of a third material as 100 mol%, and those obtained by adding 2.0 mol%, was prepared which was added 5.0 mol%. In addition, for comparison, a sample without Na compound (0 mol%) was also prepared.
Thereafter, in this example, BaTi oxide represented by Ba 6 Ti 17 O 40 , Y 2 O 3 and CaCO 3 were added. The third raw material was 100 mol%, the addition amount of Ba 6 Ti 17 O 40 was 0.6 mol%, the addition amount of Y 2 O 3 was 1.0 mol%, and the addition amount of CaCO 3 was 2 mol%.
Thereafter, molding was performed (Step 6). In this example, PVA was added, mixed, and granulated. The obtained granulated powder was molded with a uniaxial press machine and subjected to binder removal treatment at 700 ° C. for 10 hours.
Thereafter, sintering was performed (Step 7). In this example, in the case of adding 0.5 mol% of Na 0.5 Bi 4.5 Ti 4 O 15 in (Step 5 ), the sintering temperature was changed in the range of 1250 to 1460 ° C., and the oxygen concentration was 0.007 vol. % (70 ppm) was sintered to obtain respective sintered bodies (6-2 to 6-10). In (Step 5 ), 2.0 mol% of Na 0.5 Bi 4.5 Ti 4 O 15 was added. The sintering temperature was changed in the range of 1340 to 1420 ° C, and the oxygen concentration was 0.007 vol% (70 ppm) in nitrogen after holding for 4 hours. ) To obtain respective sintered bodies (6-11 to 6-14).
In addition, in (Step 5 ), Na 0.5 Bi 4.5 Ti 4 O 15 with 5.0 mol% was added at a sintering temperature of 1420 ° C. and maintained for 4 hours under nitrogen at an oxygen concentration of 0.007 vol% (70 ppm). Sintered to obtain a sintered body (6-15).
Subsequent processing, electrode formation, and evaluation were performed in the same manner as in Example 1.
Table 6 shows the results of the Na compound addition amount, sintering temperature, grain boundary Na amount, resistance temperature coefficient α, room temperature resistivity R 25 , and Curie temperature Tc. Comparative examples are marked with *.

Figure 2016002714
Figure 2016002714

表6の半導体磁器組成物の結晶粒の組成を調べたところ、組成式が[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3(AはNa,Li,Kのうち少なくとも一種、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.2、0≦y≦0.02、0≦z≦0.01を満足するものであった。When the composition of the crystal grains of the semiconductor ceramic composition of Table 6 was examined, the composition formula was [(BiA) x (Ba 1-y R y ) 1-x ] [Ti 1-z M z ] O 3 (A is At least one of Na, Li, and K, R is at least one of rare earth elements including Y, M is at least one of Nb, Ta, and Sb), and x, y, and z are 0 <x ≦ 0.2, 0 ≦ y ≦ 0.02, and 0 ≦ z ≦ 0.01 were satisfied.

No.6-1はNa化合物を添加せずに作製した比較用の半導体磁器組成物であるが、粒界Na量は3mol%未満であった。また、その抵抗温度係数αは4.1%/℃であった。
対してNo.6-2〜6-15の本発明の半導体磁器組成物は、粒界Na量は全て3mol%以上であり、抵抗温度係数αは全て4.5%/℃以上となった。
No. 6-1 is a comparative semiconductor porcelain composition prepared without adding a Na compound, but the grain boundary Na content was less than 3 mol%. The temperature coefficient of resistance α was 4.1% / ° C.
On the other hand, in the semiconductor ceramic compositions of the present invention Nos. 6-2 to 6-15, the grain boundary Na amount was all 3 mol% or more, and the resistance temperature coefficient α was all 4.5% / ° C. or more.

また、図3は、表6の半導体磁器組成物における粒界Na量と抵抗温度係数αとの関係を示す図である。図2と同様、本実施例の半導体磁器組成物は、粒界Na量が増えるほど、抵抗温度係数αが増える傾向にあることが分った。   FIG. 3 is a graph showing the relationship between the amount of grain boundary Na and the temperature coefficient of resistance α in the semiconductor ceramic composition shown in Table 6. Similar to FIG. 2, it was found that the temperature coefficient of resistance α tends to increase as the grain boundary Na amount increases in the semiconductor ceramic composition of this example.

本発明の半導体磁器組成物を板状に加工し、その板の両面に電極を形成することでPTC素子とすることができる。電極の形成方法は既知の手段を採用できるが、電極ペーストを塗布した後に焼付ける手段が低コストであり、本実施例ではこの手段を採用した。   A PTC element can be formed by processing the semiconductor ceramic composition of the present invention into a plate shape and forming electrodes on both sides of the plate. As a method for forming the electrode, a known means can be adopted, but a means for baking after applying the electrode paste is low in cost, and this means is adopted in this embodiment.

この発明により得られる半導体磁器組成物は、PTCヒータ、PTCサーミスタ、PTCスイッチ、温度検知器などの材料として最適である。   The semiconductor ceramic composition obtained by the present invention is optimal as a material for PTC heaters, PTC thermistors, PTC switches, temperature detectors, and the like.

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2014年7月2日出願の日本特許出願(特願2014-136708)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on July 2, 2014 (Japanese Patent Application No. 2014-136708), the contents of which are incorporated herein by reference.

1a,1b:結晶粒、2:結晶粒界   1a, 1b: Grain, 2: Grain boundary

Claims (4)

BaTiO3系酸化物におけるBaの一部をBiおよびA(Aはアルカリ金属の少なくとも一種の元素であってNaを必須で含む)で置換した非鉛の半導体磁器組成物であって、
結晶粒の粒界におけるNa量が3mol%以上であることを特徴とする半導体磁器組成物。
A lead-free semiconductor ceramic composition in which a part of Ba in a BaTiO 3 -based oxide is substituted with Bi and A (A is an element of at least one alkali metal and contains Na as an essential element),
A semiconductor ceramic composition characterized in that the amount of Na at grain boundaries of crystal grains is 3 mol% or more.
抵抗温度係数が4.5%/℃以上であることを特徴とする請求項1に記載の半導体磁器組成物。   The semiconductor ceramic composition according to claim 1, wherein the temperature coefficient of resistance is 4.5% / ° C or more. 前記結晶粒の組成式が[(BiA)x(Ba1-yRy)1-x][Ti1-zMz]O3(Aはアルカリ金属の少なくとも一種の元素であってNaを必須で含み、RはYを含む希土類元素のうち少なくとも一種、MはNb、Ta、Sbのうち少なくとも一種)で表わされ、x、y、zが、0<x≦0.2、0≦y≦0.02、0≦z≦0.01を満足するものであることを特徴とする請求項1又は2に記載の半導体磁器組成物。The composition formula of the crystal grain is [(BiA) x (Ba 1-y R y ) 1-x ] [Ti 1-z M z ] O 3 (A is at least one element of an alkali metal and Na is essential. Wherein R is at least one of rare earth elements including Y, M is at least one of Nb, Ta, and Sb), and x, y, and z are 0 <x ≦ 0.2 and 0 ≦ y ≦ 0.02. The semiconductor porcelain composition according to claim 1, wherein 0 ≦ z ≦ 0.01 is satisfied. 請求項1から3のいずれかに記載の半導体磁器組成物に電極が形成されていることを特徴とするPTC素子。   A PTC element, wherein an electrode is formed on the semiconductor ceramic composition according to claim 1.
JP2015558263A 2014-07-02 2015-06-29 Semiconductor porcelain composition and PTC element Pending JPWO2016002714A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014136708 2014-07-02
JP2014136708 2014-07-02
PCT/JP2015/068678 WO2016002714A1 (en) 2014-07-02 2015-06-29 Semiconductor ceramic composition and ptc element

Publications (1)

Publication Number Publication Date
JPWO2016002714A1 true JPWO2016002714A1 (en) 2017-04-27

Family

ID=55019246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015558263A Pending JPWO2016002714A1 (en) 2014-07-02 2015-06-29 Semiconductor porcelain composition and PTC element

Country Status (2)

Country Link
JP (1) JPWO2016002714A1 (en)
WO (1) WO2016002714A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038538A1 (en) * 2006-09-28 2008-04-03 Murata Manufacturing Co., Ltd. Barium titanate semiconductor porcelain composition and ptc device utilizing the same
WO2008050875A1 (en) * 2006-10-27 2008-05-02 Hitachi Metals, Ltd. Semiconductor ceramic composition and method for producing the same
JP2009155145A (en) * 2007-12-26 2009-07-16 Hitachi Metals Ltd Semiconductor porcelain composition
WO2013157649A1 (en) * 2012-04-20 2013-10-24 日立金属株式会社 Semiconductor ceramic composition, method for producing same, and ptc element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038538A1 (en) * 2006-09-28 2008-04-03 Murata Manufacturing Co., Ltd. Barium titanate semiconductor porcelain composition and ptc device utilizing the same
WO2008050875A1 (en) * 2006-10-27 2008-05-02 Hitachi Metals, Ltd. Semiconductor ceramic composition and method for producing the same
JP2009155145A (en) * 2007-12-26 2009-07-16 Hitachi Metals Ltd Semiconductor porcelain composition
WO2013157649A1 (en) * 2012-04-20 2013-10-24 日立金属株式会社 Semiconductor ceramic composition, method for producing same, and ptc element

Also Published As

Publication number Publication date
WO2016002714A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5151477B2 (en) Semiconductor porcelain composition and method for producing the same
JP5218042B2 (en) Semiconductor porcelain composition
JP5228915B2 (en) Semiconductor porcelain composition and method for producing the same
JP4765258B2 (en) Semiconductor porcelain composition
JP5445640B2 (en) Method for producing semiconductor porcelain composition
WO2013157650A1 (en) Method for producing semiconductor ceramic composition
JP5251119B2 (en) Semiconductor porcelain composition
JP5228916B2 (en) Semiconductor porcelain composition and method for producing the same
JP5228917B2 (en) Semiconductor porcelain composition and method for producing the same
JPWO2008053813A1 (en) Semiconductor porcelain composition and method for producing the same
WO2007023512A1 (en) Semiconductor ceramic composition
JP5590494B2 (en) Manufacturing method of semiconductor ceramic composition-electrode assembly
CN101528632B (en) Semiconductor ceramic composition and method for producing the same
JP5844507B2 (en) Method for producing semiconductor porcelain composition and heater using semiconductor porcelain composition
WO2016002714A1 (en) Semiconductor ceramic composition and ptc element
JP5267505B2 (en) Semiconductor porcelain composition
WO2016039253A1 (en) Method for manufacturing semiconductor ceramic composition, semiconductor ceramic composition, and ptc element
JP2010168265A (en) Method for manufacturing semiconductor ceramic composition
WO2015115421A1 (en) Manufacturing method for semiconductor ceramic composition, semiconductor ceramic composition, ptc element, and heating element module

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607